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ABSTRACT. This document is a set of notes to go along with a poster summarizing a summer of work on the QED project.
The poster is located at http://www.stanford.edu/~adebray/CURIS/adebray_qged_poster.pdf, and these annotations (the
document you are reading) can be found at http://www.stanford.edu/~adebray/CURIS/annotations.pdf. The goal is to
provide more comprehensive information to explain methodology, motivations, background, etc. in ways that may not fit on
or be ideal for the poster. As such, they are more complete than the poster, but may not make as much sense without it.

1. BACKGROUND

Post-Silicon Validation and an Introduction to Quick Error Detection. The objective of Quick Error Detection
(QED) is to test reliability in the context of possibly faulting hardware. It was developed as a way to more accurately
report logic errors in silicon chip testing, known as post-silicon validation, but can be used for other, similar purposes
as well. Specifically, QED sets as its goal to report errors extremely soon after they happen; rather than running a test
program or test suite and comparing the output to what should have been calculated, for example, QED modifies a
program so that error checking is incorporated into the code itself.. This makes error reporting much faster, which allows
for more efficient testing in general. These methods can be implemented entirely with software, making them useful on a
variety of different testing platforms, unlike more specialized solutions. For a more detailed overview of QED, see [I].

LLVM. Here is an example of the LLVM intermediate language:

; This program does exactly what you would expect it to.
@hello = private constant [14 x i8] c"Hello, world!\0OO"
declare 132 @puts(i8%* nocapture)

define i32 @main() {

entry:
call i32 @puts(i8* getelementptr inbounds ([14 x i8]* @hello, i64 0, i64 0))
ret i32 0

}

The LLVM intermediate representation (henceforth LLVM IR) is an assembly language, but one with several high-level
constructs, such as strong, static typing and the ability to declare attributes of functions or variables corresponding to
optimization (e.g. declaring a function inline or cold). Additionally, there is an API for manipulating this IR, which makes
it particularly effective for implementing optimization passes for a compiler. A complete description of the language is
given in [3].

The example given above illustrates a few aspects of the IR already: integer types are denoted in to get n bits (so that
the string is really just an array of chars, and so on), and the use of C library functions such as puts.

LLVM is designed to be a set of modular components, and compiling a program with Quick Error Detection uses the
following tools:

e A C or C++ program is translated into the LLVM IR. This can be done with the cla.ndﬂ and 11lvm-gcc compilers,
both of which accept an ~emit-11vm option when creating assembly code. It is perfectly possible to compile other
languages to LLVM assembly, as some compilers for languages such as Haskell use LLVM backends, but we didn’t
do this.

ISee http://clang.llvm.org.
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e The assembly code is optimized. An LLVM utility called opt does the majority of the optimization along
compilation, and the list and order of optimization passes to run on the program can be specified on its command
line. Quick Error Detection was implemented as an opt pass, which allowed it to be easily inserted into arbitrary
programs as part of this compilation process.

e The modified LLVM assembly is converted into native assembly by the LLVM IR compiler, 11c, and then can be
made into machine code using any assembler, such as gcc.

This framework allows for many different program analyses to be implemented as passes through opt; the control-flow
diagrams seen here and on the poster were generated with such a pass, and a different pass was used to inject faults into
programs for testing CFCSS.

Some Definitions.

e A basic block is a sequence of instructions that is always executed in order, with no jumps or breaks. Thus,
it consists of a bunch of “local” instructions followed by a branch, jump, goto, etc. Function calls are usually
considered to terminate a basic block, but the LLVM IR doesn’t follow this convention.

e The control-flow graph of a program is a directed graph in which the nodes are basic blocks and an edge v; — v
indicates that it is possible to branch directly from the end of v; to the beginning of vs. Thus, paths on the graph
correspond to ways that the program can execute at runtime. An example is given in Figure

entry:

%n_addr = alloca i32, align 4

%retval = alloca i32

%0 = alloca i32

%"alloca point” = bitcast i32 0 to i32
store 132 %n, 132* %n_addr

%1 = Load i32* %n_addr, align 4

%2 = icmp eq 132 %1, ©

br i1 %2, Label %bb, Label %bb1

I

bb1:
%3 = Load 132* %n_addr, align 4

%4 = sub nsw 132 %3, 1
%5 = call 32 @fact(i32 %4) #o
%6 = Load i32* %n_addr, align 4
%7 = mul nsw 132 %5, %6

store 132 %7, i32* %0, align 4
br Label %bb2

bb2:

%8 = Load i32* %0, align 4

store 132 %8, i32* %retval, align 4
br Label %return

return:

%retval3 = Load i32% %retval
ret 132 %retval3

bb:
store 132 1, 132* %o, align 4
br Label %bb2

FI1GURE 1. A simple control-flow graph for a function, written in LLVM IR.

e A flip-flop is a type of hardware error in which a bit is incorrectly flipped at some logic gate. These errors can be
modeled on an FPGA, or can be simulated by modifying the code section of an executable.
e The symbol @ is used to represent bitwise xor.

EDDI. EDDI, or error detection by duplicated instructions, is a form of error detection presented in [5] in which two
distinct flows of instructions are executed in or nearly in parallel, and the results are intermittently tested for equality.
Though the key idea is simple, implementing it requires some thought about how to handle pointers, function calls, global
variables, and so on. Additionally, significant speedup can be gained by scheduling instructions to take advantage of
processor scheduling.

CFCSS. CFCSS (control-flow checking by software signatures), presented in [4], assigns each basic block a unique ID
number, and assigns a global variable to keep track of the ID of the block executing at a given moment. At the beginning
of each basic block, it checks whether the global ID is that of one of its valid predecessors; if not, then an illegal branch
was taken and the program signals an error. If the branch was correct, the global ID is updated and execution continues.
More formally, the exact algorithm is as follows:

(1) Every basic block v in the program is assigned a unique integer ID I (U)H

2In practice, not all basic blocks are reachable in all programs, and those that are unreachable aren’t assigned an ID. These include the
blocks of dead functions, return blocks of functions that call exit (), etc.
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(2) A global variable G is created to track the ID of the basic block currently being executed at any point during
runtime, and a runtime signature D is created to handle fan-in nodes (see below).
(3) Let P(v) be the set of predecessors to v; that is, the set of basic blocks that call or branch to v. Then, a signature
difference d is created to allow for efficient checking. How it is created depends on the size of P(v):
(a) If P(v) is empty, no checks need to be inserted.
(b) If P(v) = {p}, so that v has the sole predecessor p, then set D =d = I(p) & I(v).
(c) Otherwise, v is a fan-in node, in that it has multiple predecessors p1, . .., p,. In this case, pick an arbitrary node
p1 and set d = I(p1) @ I(v). Then, in node p;, for 1 <4 < n, insert an instruction updating D = I(p1) ® I(p;).
(4) For each predecessor p € P(v), update G as G = Goq ® D before the branch.
(5) Add an instruction G = Goq ® D @ d to the start of v.
(6) Now, in an error-free program, G = I(v), so raise an error if this is untrue.

This setup ensures that when all of the xors cancel out, the signature check detects most illegal branches. In denser
control-flow graphs, where multiple nodes have the nearly but not quite identical sets of predecessors, an illegal branch can
go undetected, but this setup catches most such faults.

In practice, ¢ instructions can be used for fan-in nodes. These instructions initialize a variable differently depending on
which basic block was the predecessor at runtime. ¢ instructions are standard tools in compiler optimization, and are
supported in the LLVM IR. Thus, the correct values of G and D can be computed in the above algorithm by adding a ¢
instruction to update them correctly.

2. GroBAL CFCSS

Overview. LLVM doesn’t treat function calls as basic block boundaries. This is reasonable for managing some aspects of
runtime, such as activation records, and it makes the most sense given the structure of its assembly (with function calls
abstracted away from just branches), but for implementing CFCSS, it is not the most natural approach. CFCSS treats
a program as a graph given by branch instructions, designed for implementation on a lower level where functions don’t
really exist. Thus, within the LLVM framework, it was necessary to add global checks separately. Checks were inserted
across function calls and function returns, and though the code used to write the pass had special cases, the checks are no
different in the assembly code. The resulting CFCSS checks are slightly different than what one would imagine if function
calls ended basic blocks; here, when a function returns, it returns to the basic block that called it. This is not believed to
have a significant effect on coverage, because the probability of a fault that caused a branch that was silent to one of these
methods but not the other is small.

One interesting stumbling block was the presence of indirect function calls, which are calls made through a function
pointer. Since the value of the pointer can change at runtime, the LLVM API cannot provide any information about
the called function while QED is being inserted. However, this information is required by global CFCSS, since it tries
to insert function call checks that require knowing both the caller and the callee. Later, I realized that a preexisting
LLVM optimization pass would eliminate many such indirect calls, which was sufficient to solve our issues (see below).
This pass is invoked by calling opt -instcombine before the QED pass, and in a separate invocation of opt; calling with
both passes on the same run doesn’t guarantee that they will be run in order. If for some reason this isn’t viable, or it
leaves some indirect calls intact, then it would be necessary to adjust CFCSS such that every basic block containing a
function pointer is a possible predecessor of every function, which is less ideal but not incorrect. However, we didn’t do
this, because -instcombine eliminated this from our testing programs.

Function pointers are rare enough in programming that this didn’t seem like it would be a significant issue at first, but
for some reason the LLVM tools automatically converted some direct function calls into indirect calls. I could find no
pattern indicating which function calls would be converted, though it was consistent across compilations and common
enough to interfere with useful testing programs. However, while trying to optimize Quick Error Detection, I discovered
that ~instcombine eliminated these inserted indirect calls, which was sufficient for our purposes.

Results. Global CFCSS led to a minor increase in coverage, at a cost of performance. This makes sense; most faults
won’t manifest as function calls or global branches. However, those that did caused the minor coverage increase. The
performance cost was due to the additional checks, especially at the start and end of commonly called functions.
However, these global checks meant that the CFCSS algorithm was implemented completely and correctly. Though it
required special-casing in the code for the LLVM pass, it ended up producing more unified assembly code. This allowed
optimizations to be applied more simply, since they didn’t have to work around the special-casing. For example, the
p-node optimization described below is most effective when all branches, including function calls, are tracked by CFCSS.

3. OPTIMIZATION

Overview. Adding all of these checks is nice for reliability, and greatly increases fault detection, but at the cost of running
time. This is understood as an inevitable aspect of reliability testing, but since it was possible to make QED-enhanced
programs run faster, we might as well, as it will simplify large-scale testing. A number of techniques were used to make
these programs run faster:



e One minor source of slowdown was that QED programs kept track of a CF'TSS array, which tracks the last n basic
blocks to have been executed, where n is set by the user, with a default of 10. Then, it dumps this information
when a QED check fails. Though invaluable to debugging, this was less necessary for coverage testing, where it
was more of a concern that something failed than understanding when it failed. Thus, it was possible to turn
this option off by a command-line flag, and when n = 1 there is a bit less data to carry around, allowing other
simplifications.

e The bulk of the optimizations came from passes specified by opt. These passes cover a variety of analyses and
program transformations, and are included by default in the LLVM toolchain. These are discussed in greater
detail below. The trick to this sort of optimization is to ensure that coverage isn’t compromised, which can be
guaranteed by running opt multiple times to force passes to be run in a certain order.

e The use of ¢ nodes was helpful in simplifying global CFCSS checks. Before they were introduced, each basic
block had to check a large number of possible previous IDs, introducing some overhead. For a basic block v, if
|P(v)| = n, then this created n comparison instructions of the runtime ID against the ID of each predecessor,
along with an additional n — 1 instructions to coalesce these checks into a single boolean value. However, ¢ nodes
allow this to be simplified, since the check that needs to be made can be chosen by the path the program takes.

e Finally, the specific implementation of error reporting is worth mentioning. This isn’t explicitly touched on in the
papers introducing various types of QED, and in our implementation the checks were in a separate function, as
follows:

define 132 Q@fft_compute(i32 %argc, i8%* Yargv) {
entry:

%0 = load i32* @LAST_GLOBAL_CFTSS_ID

%1 = icmp eq i32 %0, 239

call void @cfcss_check_function(il %1)
; ... and then the rest of the basic block

define void @cfcss_check_function(il) {
entry:
br il %0, label Yreturn_block, label %exit_block

return_block: ; preds = Yexit_block, Yentry
ret void

exit_block: ; preds = Jentry
%1 = call i32 (i8%, ...)* Q@printf (i8* getelementptr inbounds ([15 x i8]%
@cfcss_error_msg, 132 0, i32 0)) #O
call void @error_detected ()
br label Y%return_block
}

This was useful for debugging, but slowed down performance considerably. However, the LLVM IR has a function
attribute inlinehint, which marks functions as ideal for inliningﬂ Then, one must run the ~inline optimization
pass for this to actually do anything, but it causes a significant speedup in the program, as there are fewer function
calls. It is possible to explicitly inline these checks while generating them (i.e. modifying the QED LLVM pass to
not generate the check functions), but calling the inlining pass is easier and just as efficient.

Testing. The tests were conducted in the following manner:

(1) The QED executable was made with the command
opt $(PRE_PASSES) -load Hello.dylib $(OPT) -hello -QED-Mode=15 $(POST_PASSES). Here, PRE_PASSES
was a Makefile variable that contained the list of passes to be executed before QED, and POST_PASSES was a
variable for the passes conducted after QED. Finally, OPT held the optimization level for the test. For each trial, the
passes and optimization levels are given. Note that opt does not always run its passes in order; thus, I eventually
switched to executing the pre-QED passes, the QED pass, and the post-QED pass over three separate calls to opt.
The trials described below used this convention.

(2) At the same time, a non-QED executable was made with the command opt $(PRE_PASSES) $(POST_PASSES).
This executable was used to compare the times given by the QED and non-QED incarnations of bzip2.

(3) The programs were tested on the input of input.graphic, a 6.7 MB TIFF picture that can be seen in Figure
There are wildly differing numbers of tests, because I wanted extra data about some of the programs. To make the
tests most fair, I used my computer lightly while they were run, and in particular never ran two tests simultaneously.

3There is also an alwaysinline attribute, with the corresponding -always-inline optimization pass, but these were effectively the same as
the inlinehint attribute for testing QED.
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F1cURE 2. The input file used for benchmarking different optimization passes.

The passes specified below are referenced at http://11lvm.org/docs/Passes.html. Rather than list all of the data here,
I have posted it to http://www.stanford.edu/~adebray/CURIS/optimization_data.pdfl. However, a few trials merit
mention:

e The first trial, baseline, served as the control; no passes were run on it except for QED. This run took over 7
minutes to conclude.

e When the optimization level was set to -03, there was a considerable speedup to about 5.5 minutes.

e The speed? trial was run at -00 and with several collections of passes: -std-compile-opts, ~std-link-opts,
and several loop optimizations, followed by the QED pass. These optimizations sped up the test to take about 4
minutes 20 seconds, and changing the optimization level actually made it run more slowly. Various modifications
to this trial didn’t make much of a difference, and the recommended way to run these programs includes all of
these passes.

e Other methods were eventually able to push the time down to about 3 minutes, though these were changes to
QED mentioned above, rather than optimizations applied by opt.

These optimizations must be applied with care in that if run after QED, they can interfere in its coverage; for example,
EDDI creates duplicated instructions that don’t do anything unless faults are introduced; thus, an optimization pass that
eliminates redundant instructions would reduce coverage if introduced after QED. opt does not force an order from the
passes given to it on the command line, so in order to make sure QED is run last, it is necessary to call opt multiple times.

In addition to optimization-focused testing, different tests had to be introduced to determine the coverage of QED.
There are many ways of doing this:

e An FPGA (field-programmable gate array) is the most direct way to simulate logic errors on a silicon chip, since it
acts as an effective chip simulator and can be modified to insert faults. This is used for large-scale testing, though
I didn’t do this.

e One way to do software-based testing is to inject errors using gdb. Its control over the runtime allows one to
stop the program at a random location and modify memory, simulating a flip-flop error. Additionally, a Python
interface makes scripting relatively clean.

e CFCSS was tested with branch fault injection, the method used in [4]. This entails adding, removing, or changing
branches in the assembly code, and leaving the rest of the code unchanged. Thanks to the already existing LLVM
framework, I was able to implement this as an LLVM pass that introduced one error into the control-flow graph,
and feed it into the normal compilation process. I found this very useful for calculating CFCSS coverage.
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In [B], EDDI is tested by modifying the code section of an executable. Specifically, a bit is randomly chosen
and flipped. This was easy to implement as a standalone script, and can even be done in a relatively platform-
independent way by reading the file into an array, modifying a random bit, and then writing the modified array
back to the file. To determine whether the code section was in fact modified, one can disassemble the executable
and check if the code section looks any different. This was very useful for both EDDI and CFCSS, as such
modifications could trigger either error-handling mechanism.

Most programs produced in this way fall into one of two categories. Some simply don’t run, and the OS rejects
them. However, a significant majority simply show no error whatsoever; their output is completely unchanged
from the correct output. This makes testing more difficult, because both of these are not used in the final testing
data, but take up much of the running time of the trials. It is possible that future work could improve this, but
then it might lose platform-independence, or be less useful since a similar percentage of flip-flop errors on the
FPGA also had no noticeable effects.

Results. The graph of results is given on the poster, and here it can be explained in more detail. Each test was run
several times, as described above, and the running time of the program without QED checks was plotted against the
running time of the program with QED checks. Trials near the bottom of the chart are favored, because they correspond
to the best speedups. Many such speedups will also increase the speed of the non-QED executable, so the best trials ended
up near the bottom left of the graph.

4. CONCLUSION AND FURTHER WORK

I was pleasantly surprised to discover how possible it was to improve the speed and coverage of QED; I had initially
seen a nearly complete implementation and wondered how I would be able to approach it.

LLVM is a very powerful tool for transforming programs, and has lots of possible uses outside of its initial
conception as a tool for writing optimizing compilers. I expect that if I want to do program analysis, profiling, or
optimization for some other project, I will probably work with LLVM.

Despite the gains in coverage and optimization mentioned above, there is still more to do. For example, many
errors cause the program to suddenly terminate, and some of these cannot be caught by existing methods. Is there
a way to detect whether the program exited correctly, or to catch the mistakes that led to an unexpected exit?
Lost coverage could also be due to faults affecting the error reporting; CFCSS and EDDI currently report failure
via printf, and faults may affect the runtime in a way that prevents this from working correctly. Other solutions
might improve coverage without actually affecting the algorithm; for example, one could protect system calls or
library functions from the faults (which is a bit harder on the FPGA, but is reasonably possible with software
testing). One might also be able to isolate error reporting on a different thread or process that is known to be free
of faults. Finally, it may be possible to raise and catch signals, which could be less fragile.

The LLVM IR can be used as an intermediate representation for many languages, while we only dealt with C and
sometimes C++. Extending QED to other languages would give more freedom to error testing and possibly provide
more meaningful results if an environment is known to mostly run a given programming language.

Similarly, QED doesn’t work on all kinds of C programs. Most of this is due to EDDI not copying library calls that
are hard to duplicate effectively, such as getting the system time (which can change slightly between instructions
that EDDI duplicates). Figuring out what exactly should be duplicated would also provide more meaningful data
on a wider variety of programs.

EDDI and CFCSS aren’t the only ways to implement QED, just the ones written for LLVM. Adding others would
be a useful way forward.
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