SUMMARY OF MY SLEEP DATA

ARUN DEBRAY
SEPTEMBER 23, 2014

“I want to default on my sleep debt!”

ABSTRACT. Since mid-June 2014, I have kept track of when I have gone to sleep, when I have woken up, and when I napped. This
data is useful, interesting, and sometimes sadly amusing. I've prepared some basic statistics on the data, as well as some notes on
how I made everything work.

This document, the data, and the programs I used to generate them can be found at http://stanford.edu/~adebray/
Haskell/sleep/. Any questions, comments, or concerns may be directed to me, at adebray@stanford.edu.

1. BASIC STATISTICS

During this project, I have recorded my sleep for 98 days, during which I slept a grand total of 792.90 hours. Somehow
it didn’t feel like quite that much.
See Figure 1 for when I went to sleep and woke up each night.

12:00 Slf:ep Tlmes‘

200 e
10:00 s oeeefl e R Pl R
9:00 ol Bl P T A
8:00f || ot Lot L e b Lok e s TR A

7200 e R
G100 |-]

5001 %=X SlEPL [
4:00F *—=X GOt UP |+

Time

3200 e
2:00 vl el L
00|\ K e L N P At AL
0:00f - |4 B ATATRY 0% R T 20 & A B R ¥ (E A S DY R 1 Tx]
23:00L- &% LKA R R EESATON | Lo oSNURURRUN ~ SO O SO0 T
22:00F X M

21:004 ‘ ‘ ‘
06/18 07/02 07/16 07/30 08/13 08/27 09/10

FiGure 1. The most basic plot: when I went to sleep and when I woke up each day.

2. AVERAGES

On average, I have gotten 8.09 hours of sleep per night. If naps are excluded, this is reduced to 8.06 hours per night.
The average has, of course, changed over time. In the last seven days, I've averaged 8.28 hours (8.28 without naps) and
in the last 30 days, I've averaged 8.16 hours (8.09 without naps).
1

http://stanford.edu/~adebray/Haskell/sleep/
http://stanford.edu/~adebray/Haskell/sleep/
mailto:adebray@stanford.edu

3. STANDARD DEVIATIONS

The standard deviation of my sleep has been 1.10 hours with naps and 1.06 hours without them. In the last seven days,
the standard deviation was 0.61 hours (0.61 hours without naps), and in the last 30 days, it was 1.40 hours (1.40 hours
without naps).

4. PER DAY OF THE WEEK

In this section, I will analyze my sleep per day of the week (averages, standard deviations, etc). However, I have yet to
do that... it’s a work in progress. I do have graphs of waking and sleeping times in Figures 2 and 3, though.

3:00 -
‘ —
¢
2:00 4 T ¢ ¢
¢
1:00 —
. ; !
23:00
¢
’ ¢
22:00 - f T T T T T 1
Sunday Monday Tuesday Wednesday Thursday Friday Saturday

FiGURE 2. Box plots for when I went to sleep, broken down per day of the week. The boxes represent
quartiles, so that each box contains 75% of the data of that day, and the whiskers contain the remaining
25%; the bar across the box represents the mean. Qutlier values are represented by the diamonds.

5. PER HOUR OF THE DAy

Here I attempt to answer the question: how likely am I to be asleep at a given hour? See Figure 4 for the answer over
the entire data collection period. A probability p means that on an arbitrary day, I am asleep at that time with probability p.

6. SOME SOURCE CODE

LisTING 1. Common notions for programs.

{-# LANGUAGE GeneralizedNewtypeDeriving #-} -- I like deriving Num

{- sleepTime.hs
Arun Debray, June 29, 2014

Common definitions for my sleep-data trackers, mostly data types.

-}

module SleepTime (
Minute (Minute),

11:00

, -
10:00 -
¢ ¢
¢
’ ’
‘ —
9:00 - ¢
' 1

!
SOOET—ﬁ I .

7:00

6:00 - f + T T T T 1
Monday Tuesday = Wednesday Thursday Friday Saturday Sunday

FiGURE 3. Much the same as Figure 2, this is a box plot of when I woke up over days of the week, with
diamonds as outliers.

Hour (Hour),
Day (Day), -- a day is a number; a date is a DDMMYY combination
Month (Month),
Year (Year),
Date (Date), day, month, year,
Time (Time), hour, minute,
Sleep (Sleep), rise, rest,
Nap,
DailyRecord (DailyRecord), today, bed, naps,
readDataFile
) where

newtype Minute = Minute Int deriving (Read, Show, Ord, Eq, Num)

newtype Hour = Hour Int deriving (Read, Show, Ord, Eq, Num)
newtype Day = Day Int deriving (Read, Show, Ord, Eq, Num)

newtype Month = Month Int deriving (Read, Show, Ord, Eq, Num)
newtype Year = Year Int deriving (Read, Show, Ord, Eq, Num)

data Date = Date {

day :: Day,
month :: Month,
year :: Year

} deriving (Read, Show, Eq)

-- time instance. Doesn 't need to be more exact than this

data Time = Time {
hour :: Hour,
minute :: Minute

} deriving (Read, Show, Eq)

instance Ord Date where
dl <= 42
| year d1 < year d2 = True
| month dl < month d2 = True
| day d1 <= day d2 True
| otherwise = False

instance 0Ord Time where
tl <= t2

Distribution of sleep time

——————————— I L

1.0

0.9

o
)

o
~

o
o

o
U1

Probability I am asleep
o
>
T

0.3

0.2}

0.1}

0.0 L I Y e § L I~
0:00 4:00 8:00 12:00 16:00 20:00 24:00

Time of day

FIGURE 4. A plot of time versus how probable it is that I am asleep at a given time.

| hour t1 < hour t2 = True
| minute tl1 <= minute t2 = True
| otherwise = False
data Sleep = Sleep { rise, rest :: Time } deriving (Read, Show)

type Nap = Sleep

data DailyRecord = DailyRecord {

today :: Date,
bed :: Sleep,
naps :: [Napl

} deriving (Read, Show)

Takes in the data file and produces everything it contains.

readDataFile :: FilePath -> I0 [DailyRecord]
readDataFile filename = do

-- will want to error handle
contents <- readFile filename
return $ map (\s -> (read s :: DailyRecord)) $ lines contents

LisTING 2. Used to record data.

-}

enter_data.hs
Arun Debray, June 2014

Command-line utility for entering sleep data into a file for later statstical analysis.
Usage:

./enter_data [-f filename]
Specify the file to place the data into; otherwise, uses the default, sleep_data.txt.

module Main where

imp
imp

imp
{-

ort System.Environment (getArgs)
ort System.IO (hFlush, stdout)

ort SleepTime -- module for handling dates/times specified to this app

two small utilities for I/0.
Might wrap them in their own module if they 're useful for other programs.

putStr' :: String -> I0 ()

putStr' s = do
putStr s
hFlush stdout

promptLine :: String -> I0 String
promptLine prompt = do

putStr' prompt

getLine

-- actually writes to the file.

recordToFile :: FilePath -> DailyRecord -> IO0 ()
recordToFile filename record = appendFile filename $ (show record) ++ "\n"
queryDay :: IO Date

queryDay = do
putStrLn "What date are you entering data for?"
-- might be able to make this fancier
dayStr <- promptLine "Day: "
monthStr <- promptLine "Month:
yearStr <- promptLine "Year: "
return $§ Date {

day = Day (read dayStr :: Int),
month = Month (read monthStr :: Int),
year = Year (read yearStr :: Int)

}

{- One nice and easy fix would be for this to recognize strings of the form
hh:mm and do something about that. Would make the program considerably
cleaner.

Also, until further notice, please specify all times in 24h.
-}
queryTime :: String -> I0 Time
queryTime kind = do
putStrLn $ "When did you " ++ kind ++ "7"
hourStr <- promptLine "Hour: "
minuteStr <- promptLine "Minute: "
return $ Time {

minute = Minute (read minuteStr :: Int),
hour = Hour (read hourStr :: Int)
}
-- for convenience
napMessage :: [Nap] -> String
napMessage partiallist
| null partialList = "Did you take a nap (yes/mno)? "

| otherwise "Did you take another nap (yes/no)?
getYesNo :: IO Bool
getYesNo = do

userInput <- getLine

case userInput of

"yes" -> return True

"Yes" -> return True

"no" -> return False

"No" -> return False

_ -> do
putStr' "Please answer 'yes' or 'mo' > "
getYesNo

-- loops to ask for naps from the user.
queryNaps :: [Nap] -> IO [Napl]
queryNaps partiallList = do

putStr' $ napMessage partiallist

nextAnswer <- getYesNo

if nextAnswer

then do
start <- queryTime "sleep"
finish <- queryTime "awake"
let nextNap = Sleep {

rest = start,
rise = finish
}
return $ nextNap : partiallist

else return partiallist

-- interactive 1loop
talkToUser :: IO DailyRecord
talkToUser = do
date <- queryDay
asleep <- queryTime "sleep"
up <- queryTime "awake"
naplList <- queryNaps []
return $ DailyRecord {

today = date,
bed = Sleep { rest = asleep, rise = up 1},
naps = naplList

-- chooses the filename based on whether one was specified.
-- note: there is no error checking here...

getFilename :: [Stringl] -> FilePath
getFilename args
| length args < 2 = "sleep_data.txt"
| otherwise = args !! 1
main :: I0 ()
main = do

args <- getArgs
record <- talkToUser
recordToFile (getFilename args) record

LisTiNG 3. Used to generate statistics.

{- writeStatistics.hs
Arun Debray, 22 June 2014

This program reads the sleep data found in sleep_data.txt and generates statistics
about them, which will be fed to the plotter and/or used directly by the final
document .

Ideas: maximum and minimum sleep time, and the date in question...

-3
module Main where

import SleepTime
import System.IO

-- should factor elsewhere. (TODO)
-- is there a smarter way to write this...?
hour0f :: Time -> Int
hour0f t = case (hour t) of
Hour h -> h

minute0f :: Time -> Int
minuteOf t = case (minute t) of
Minute m -> m

-- convert (hour, minute) -> number of hours, as a float
timeAsDouble :: Time -> Double
timeAsDouble t = (fromIntegral $ hour0f t) + ((fromIntegral $ minuteOf t) / 60)

-- calculates sleep time.
-- currently naively |b-al. Perhaps this isn't ideal...
timeDifference :: Double -> Double -> Double
timeDifference awake asleep

-- need to deal with 23 vs. 02 skewing data

| asleep > 12 = 24 + awake - asleep

| otherwise = awake - asleep

-- since I generally don't nap at midnight, it's easier to have these separate functions
-- for napping.

napDifference :: Double -> Double -> Double

napDifference awake asleep = awake - asleep

napAsDouble :: Sleep -> Double

napAsDouble n = napDifference (timeAsDouble $ rise n) (timeAsDouble $ rest n)

-- convert Sleep type into its duration
sleepAsDouble :: Sleep -> Double
sleepAsDouble s = timeDifference (timeAsDouble $ rise s) (timeAsDouble $ rest s)

-- I ought to figure out how to round this or print it in rounded form.
asleepTime :: DailyRecord -> Double
asleepTime = sleepAsDouble . bed

-- guess this is a Daily Double!
asleepTimeWithNaps :: DailyRecord -> Double
asleepTimeWithNaps rec = sleepAsDouble (bed rec) + (sum $ map napAsDouble $ naps rec)

-- here's hoping this works on Doubles. Whoops

mean :: (Fractional a) => [al] -> a

mean xs = (sum xs) / (fromIntegral $ length xs)

stdDev :: (Floating a) => [a] -> a

stdDev xs = sqrt $ mean [(x - m) * (x - m) | x <- xs]
where m = mean xs

overallAverage :: [DailyRecord] -> Double
overallAverage = mean . (map asleepTimeWithNaps)

-- calculates the total average and trims to two decimal places.

overallNoNaps :: [DailyRecord] -> Double
overallNoNaps = mean . (map asleepTime)
overallStdDev :: [DailyRecord] -> Double
overallStdDev = stdDev . (map asleepTimeWithNaps)
stdDevNoNaps :: [DailyRecord] -> Double
stdDevNoNaps = stdDev . (map asleepTime)

totalHours :: [DailyRecord] -> Double

totalHours = sum . (map asleepTimeWithNaps)

recent :: Int -> [DailyRecord] -> Double

recent n = overallAverage . (take n) . reverse
recentNoNaps :: Int -> [DailyRecord] -> Double
recentNoNaps n = overallNoNaps . (take n) . reverse
recentSD :: Int -> [DailyRecord] -> Double

recentSD n = overallStdDev . (take n) . reverse
recentSDNoNaps :: Int -> [DailyRecord] -> Double
recentSDNoNaps n = stdDevNoNaps . (take n) . reverse

-- checks if the given time was between the two others.

-- I'11 need to fix this if I ever sleep past noon... or get up before
-- midnight. It could happen.
timeBetween :: Double -> Sleep -> Bool
timeBetween t s

| restTime > 12 && t > 12 = restTime <= t

| restTime > 12 && t <= 12 = t < riseTime

| otherwise = restTime <= t && t < riseTime

where restTime = timeAsDouble $ rest s

riseTime = timeAsDouble $ rise s

-- since naps don't fall across midnight, this should be separated out.

-- I hope to make this cleaner someday, but for now this is what it shall be.
timeBetweenForNaps :: Double -> Sleep -> Bool

timeBetweenForNaps t s = (timeAsDouble $ rest s) <= t && t < (timeAsDouble $ rise s)

-- on a given night, was I asleep at the given time?
isAsleep :: Double -> DailyRecord -> Bool
isAsleep t rec = (timeBetween t $ bed rec) || any (timeBetweenForNaps t) (mnaps rec)

-- returns P(awake at time t), given records and time t

atTime :: Double -> [DailyRecord] -> Double

atTime t rec = (fromIntegral total) / (fromIntegral $ length rec)
where total = length $ filter (isAsleep t) rec

-- produces list of moving quantities from a list of data

-- arguments: function to apply, window size, list

windowedStat :: ([a]l -> a) -> Int -> [a] -> [a]

-- we need to build the windows

windowedStat f n xs = [f (window i) | i <- [1..length xsl]
where window i = take n § drop (i - 1 - n ~div> 2) xs

-- calculates the moving averge. Arguments: window size, list

-- by a quick call to windowedStat

-- note that you can't pass in records to these functions, just numbers!
windowedMean :: (Fractional a) => Int -> [a] -> [al]

windowedMean = windowedStat mean

-- in the same vein, this calculates the moving standard deviation.
windowedStdDev :: (Floating a) => Int -> [a]l -> [al]
windowedStdDev = windowedStat stdDev

-- Given a filename, writes to 'statistics/filename.txt'
-- In order to make things Python-readable, I don't want to write lists this way.

writeStatistic :: (Num a, Show a) => String -> a -> I0 ()
writeStatistic filename stat = do
let path = "statistics/" ++ filename ++ ".txt"

writeFile path $ show stat

-- recenter going-to-sleep time at midnight (so 23.9 is just before 0.0)
centerFix :: Double -> Double
centerFix val

| val <= 12 = val

| otherwise = val - 24

-- processes awake and asleep times for a single record.

7

putSingleTime :: Handle -> DailyRecord -> IO ()
putSingleTime h record = do
let toSleep = timeAsDouble $ rest $ bed record
wakeUp = timeAsDouble $ rise $ bed record
hPutStrLln h ((show $ centerFix toSleep) ++ "\t" ++ show wakeUp)

putSingleProb :: Handle -> [DailyRecord] -> Double -> I0 ()
putSingleProb h records t = hPutStrLn h $ show $ atTime t records

-- puts raw awake/asleep data into raw form for Python to plot.

-- I think I should factor this out, which will require moving

-- some other functions into SleepTime.hs.

-- also, assumes that the file is ordered, which is true but not enfo
putTimes :: FilePath -> [DailyRecord] -> I0 ()

putTimes filename records = withFile filename WriteMode $ \h -> mapM_

-- these should be refactored and/or prettified.

-- that is, I should kill putSingleTime/Prob and just map strings to
simplest.

putProbs :: FilePath -> [DailyRecord] -> IO ()

putProbs filename records = withFile filename WriteMode $ \h -> mapM_
x <- [0..239]]

-- yeah, I want to refactor. Blah.
-- and then I want to include naps!

-- so many moving averages... this is weekly for now
putMovingAvgs :: FilePath -> [DailyRecord] -> IO ()
putMovingAvgs filename records = withFile filename WriteMode $ \h ->

windowedMean 7 $ map asleepTime records

main :: IO ()

main = do
records <- readDataFile "sleep_data.txt"
writeStatistic "overallAverage" $ overallAverage records
writeStatistic "overallNoNaps" $ overallNoNaps records
writeStatistic "numDays" $ length records
writeStatistic "totalHours" $ totalHours records
writeStatistic "lastWeek" $ recent 7 records
writeStatistic "weekNoNaps" $ recentNoNaps 7 records
writeStatistic "lastMonth" $ recent 30 records
writeStatistic "monthNoNaps" $ recentNoNaps 30 records
writeStatistic "overallStdDev" $ overallStdDev records
writeStatistic "stdDevNoNaps" $ stdDevNoNaps records
writeStatistic "weekSD" $ recentSD 7 records
writeStatistic "weekSDNoNaps" $ recentSDNoNaps 7 records
writeStatistic "monthSD" $ recentSD 30 records
writeStatistic "monthSDNoNaps" $ recentSD 30 records
putTimes "raw_times.txt" records
putProbs "raw_probs.txt" records
putMovingAvgs "weekly_moving_avgs.txt" records

rced anywhere...

(putSingleTime h) records

lines of a file. That makes life

(putSingleProb h records) [x/10.0 |

mapM_ (\x -> hPutStrLn h (show x)) §$

LisTING 4. Used to make plots.

#!/usr/bin/env python3.4

Arun Debray
Started: 29 Jun 2014
Updated: 10 Aug 2014

The part of my project that makes pretty graphs.
Uses matplotlib.

import argparse

import numpy as np

import matplotlib.pyplot as plt
import matplotlib.dates as dates
import matplotlib.axis as axis

Setup: without arguments, makes all plots.

With arguments, makes only the selected plots.
Expand as necessary.

def handle_args():

parser = argparse.ArgumentParser(description = 'generate plots from sleep data')
TODO: abstract these away into a function.
parser.add_argument ('--plot-times', dest = 'should_plot_times', action = 'store_true',

default = None, help = 'create the times plot in plots/raw_times.pdf')
parser.add_argument ('--plot-probs', dest = 'should_plot_probs', action = 'store_true',

default = None, help = 'create the probs. plot in plots/sleep_pobs.pdf')
parser.add_argument ('--plot-boxes', dest = 'should_plot_boxes', action = 'store_true',

default = None, help = 'create boxplots of sleep by week. plot in *_box.pdf')
args_dict = parser.parse_args ()

return [args_dict.should_plot_times,
args_dict.should_plot_probs,
args_dict.should_plot_boxes]

plot the times I slept and awoke

def plot_raw_times():
print ('Generating plot of times...')
dbd = 735401 # offset of start date from 01-01-0001 UTC
with open('raw_times.txt', 'r') as infile:

time_data = [[float(s2) for s2 in sl.split('\t')] for sl in infile]
x = np.arange(dbd, dbd+len(time_data))

_, ax = plt.subplots()
fmt = dates.DateFormatter ('%m/%d"')
ax.xaxis.set_major_formatter (fmt)

ax.plot_date(x, [a[0] for a in time_datal, fmt='bo', marker='x', label='slept', linestyle='-"')
ax.plot_date(x, [al[l1] for a in time_datal], color='r', marker='x', label='got up', linestyle='-

plt.legend(loc="'center left')
plt.title('Sleep Times')
plt.ylabel ('Time')

plt.ylim(ymin = -3, ymax = 12) # may need to change this once the school year starts.
plt.yticks(np.arange(-3,13), [str(n % 24) + ":00" for n in range(-3,13)1)
plt.grid(b='on', which='major', axis='y', linestyle=':")

may change to eps for file-size stuff later.
plt.savefig('plots/raw_times.pdf', format='pdf')

plot the probability that I am awake at a given time
this would be interesting in the last 7 or 30 days.
def plot_raw_probs():

print ('Generating plot of probabilities...')
with open('raw_probs.txt', 'r') as infile:
probs_vector = [float(line) for line in infile]

x = np.arange(0.0, 24.1, 0.1)
probs_vector.append (probs_vector [0])

plt.plot(x, probs_vector, color = '#D20DFF', linewidth = 2)
plt.fill_between(x, probs_vector, alpha = 0.5, color = '#EFCOFA')
plt.xlim(xmin = 0, xmax = 24)

plt.xticks(np.arange(0, 24.1, 4), ['/d:00' % n for n in [0, 4, 8, 12, 16, 20, 24]11)
plt.xlabel ('Time of day')

plt.ylim(ymin = O, ymax = 1.005) # dat font doe
plt.yticks(np.arange (0.0, 1.01, 0.1), ['%.1f' % n for n in np.arange(0.0, 1.01, 0.1)1)
plt.ylabel ('Probability I am asleep')

plt.title('Distribution of sleep times')

This only comes up if plot_raw_times is suppressed
Still generates a warning... hopefully, I'll fix that.
if plt.legend() is not None:

plt.legend() .set_visible(False)

plt.savefig('plots/sleep_probs.pdf', format='pdf')

def get_sleep_times():
with open('raw_times.txt', 'r') as f:
return [float(line.split() [0]) for line in f]

def get_wake_times():
with open('raw_times.txt', 'r') as f:
return [float(line.split () [1]) for line in f]

cycles the list so that Monday starts the awake work week, and
Sunday the asleep work week.
basically, restarts the cycle with arr[offset]
def rearrange (arr, offset):
return arr[offset:] + arr[:offset]

probably will add an optional colorscheme argument...
and prettfiy the fonts on the y-axis.

offset is how different the second plot is.

def boxplot_data(fn, fname, ymin, ymax, offset = 0, cmap = 'muted'):
this is a little hacky: I just wanted to combine the two Python programs I had, but
without messing with the styles. I can unify/prettify everything another time.
import seaborn as sns

times = fn()
sort by day of the week
organized_data = [[x for j, x in enumerate(times) if j % 7 == (i + 5) % 7] for i in range(7)]

D)

and then the plotting

sns.set(style = 'ticks')
f, ax = plt.subplots()
sns.offset_spines ()
sns.boxplot (organized_data, fliersize = 6, names = rearrange(['Sunday', 'Monday', 'Tuesday',
'Wednesday', 'Thursday', 'Friday', 'Saturday']l, offset), color = cmap)

plt.ylim(ymin, ymax)

plt.yticks(np.arange(ymin, ymax + 1), ['%d:00' % (n % 24) for n in np.arange(ymin, ymax + 1)])
sns.despine (trim=True)

plt.savefig('plots/' + fname)

def plot_boxes():

print ('Generating weekly boxplot breakdown...')
boxplot_data(get_sleep_times, 'asleep_box.pdf', ymin = -2, ymax = 3, cmap = 'cool')
boxplot_data(get_wake_times, 'awake_box.pdf', ymin = 6, ymax = 11, offset = 1, cmap = 'hot')

This isn't yet part of the program, but is experimental testing cool stuff. hehehehe
I promise there's no evil plotting going on here. No sir.
def window_plotting():
print ('Generating moving averags plot') # will be more general later
with open('weekly_moving_avgs.txt') as f:
data = [float(line) for line in f]

dbd = 735401

_, ax = plt.subplots()

fmt = dates.DateFormatter ('%m/%d")
ax.xaxis.set_major_formatter (fmt)

xs = np.arange (dbd, dbd+len(data))

note to self: make this look pretty someday.
ax.plot_date(xs, data, color='r', marker='x', linestyle='-")
plt.savefig('plots/weekly_moving_averages.pdf')

A histogram of when I fell asleep.
Not currently being used. I should do something with it.
def asleep_histogram():
with open('raw_times.txt', 'r') as infile:
asleep_data = [float(line.split('\t')[0]) for line in infilel

plt.hist (asleep_data, color='#3FASFF')

plt.xlim(xmin = -2, xmax = 3) # will almost certainly need to change. q_q
plt.xticks(np.arange(-2, 3), ['%d:00' % (n % 24) for n in np.arange (22, 28)1])

plt.savefig('plots/asleep_histogram.pdf', format='pdf')

def main():
#window_plotting () # TODO
#return

flags = handle_args ()
update as necessary
to_plot = [plot_raw_times, plot_raw_probs, plot_boxes]
if any(flags):
_ = [plotfn() for flag, plotfn in zip(flags, to_plot) if flag]
else: # no flags specified, do everything
_ = [plotfn() for plotfn in to_plot]
asleep_histogram()

if name__ == '__main__"':

main ()

10

	1. Basic Statistics
	2. Averages
	3. Standard Deviations
	4. Per Day of the Week
	5. Per Hour of the Day
	6. Some Source Code

