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1. Manifolds: 1/7/14

“What is Riemannian geometry? If you want a one-line summary, it’s the study of curved spaces.”

. . . though not every space is curved. Uncurved spaces are flat, e.g. Euclidean space, Rn. Riemannian geometry
involves lots of calculation, so various notational bookkeeping tricks are common. For example, the coordinates in Rn
are written with superscripts, as x1, . . . , xn.

Geometry in Rn is due to the inner product: 〈v,w〉 =
∑n
i=1 viwi (where v = (v1, . . . , vn), and w is analogous).

This is very useful for measuring lengths, angles, and even k-dimensional volume of k-submanifolds, and is considered
flat Riemannian geometry. For another example, Gauss found a coordinate-invariant quantity that indicates whether
a space is flat, and it happens that all flat spaces locally look like Rn.

For a more exotic example (though maybe not if you’re a physicist), one has flat Lorentz geometry, given by
Minkowski space Rn+1

1 , in which coordinates are denoted x0, . . . , xn, and the inner product is 〈v,w〉 = −v0w0 +∑n
i=1 viwi. The Euclidean metric on Rn is positive definite, so it is called a Riemannian metric, but the Minkowski

metric is indefinite, and is thus called a Lorentz metric.
This space turns out to be important for special relativity, especially when n = 3. It has much more intricate

geometry than Euclidean space. For example, there are three kinds of vectors: time-like, where 〈v,v〉 < 0, space-like,
in which 〈v,v〉 > 0, and null, for which 〈v,v〉 = 0, so that the magnitude of the first component is equal to that of
the last n. These lie on a 45◦ cone called a lightcone; space-like vectors lie outside of this lightcone, and time-like
vectors lie on the inside.
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The group of linear transformations that preserve this inner product is called the Lorentz group, and the
transformations themselves are called Lorentz transformations. These transformations preserve the types of vectors,
so, in some sense, this space has a distinguished direction.

Before talking about curved spaces, it’s probably important to formalize exactly what a space is. Geometry ought
to be a property of the structure of an object, so it should be independent of coordinates. Though in other parts
of math one might use a more general definition, Riemannian geometry uses the notion of smooth n-dimensional
manifolds.

Definition. A chart on M (the thing that will eventually be a manifold) is a pair (ϕ,U), where U ⊆M , ϕ : U → Rn
is one-to-one, and ϕ(U) is open in Rn.

For example, the 2-sphere S2 and 2-torus T 2 are two-dimensional manifolds. At a point, one can map a neighborhood
into R2. Since ϕ is one-to-one, then its inverse ϕ−1 can be thought of as assigning coordinates to a neighborhood U
in M .

Definition. A smooth manifold is a set M such that M =
⋃
i∈I Ui, such that there exist charts (ϕi, Ui) for each i ∈ I,

subject to the condition that if Ui ∩ Uj 6= ∅, then ϕi(Ui ∩ Uj) is open in Rn and the map ϕj ◦ ϕ−1
i : Ui ∩ Uj → Rn is

smooth.1

Like all definitions of manifolds, this one sounds kind of scary, but in essence, an n-dimensional manifold is a set
that locally looks like Rn: the charts give it local coordinates, and the smoothness condition ensures that these sets of
coordinates are compatible with each other. Note that the rigorous definition above wasn’t assembled until the 20th

Century, considerably after Riemann did his stuff.
For convenience, “smooth” will mean C∞ for this class. But there are lots of other interesting classes of manifolds

obtained by changing this requirement to mean, for example, complex-analytic, or C2, or so on.
Finally, note that Kühnel’s definition, which is given here, is different from those given in most advanced textbooks,

which require M to already have some topology, so that each ϕ in a chart is a local homeomorphism (which
automatically implies ϕ(U) is open). However, these two definitions seem to be compatible with each other.

Definition. An atlas is a collection of charts that cover M , i.e. such that for every p ∈M there exists a chart (ϕ,U)
in the atlas with p ∈ U .

For a given manifold there may be many atlases, so one assumes the maximal atlas for a given manifold, which
is unique. This atlas is called a differentiable structure on M . There’s an interesting nuance in that there exist
topologically identical spaces which have different differentiable structures, but that is far beyond the scope of this
class.

Examples. Some examples of manifolds will make the definition less abstruse.

1. Rn and Rn+1
1 as given above are manifolds.

2. If U ⊆ Rn is open, then it is a submanifold. There is a single chart, (U, id).
3. Submanifolds of Rn are an important class, with lots of examples. Special cases include curves and surfaces in

space. These have extrinsic geometry, given by how the submanifold sits in the ambient space, as well as intrinsic
geometry, given by making measurements on or along the submanifold. This class will focus on the intrinsic
geometry, though some submanifolds, such as curves, only have interesting extrinsic geometry. As for what these
things actually are:

Definition. An n-dimensional submanifold is a set M ⊆ Rm where n < m such that for every p ∈M there exists
an open U ⊆ Rm and a f : U → R such that f(q) = 0 for all q ∈M ∩ U and (in the case m = n+ 1; the full case
will be given below) ∇f(p) 6= 0.

This definition is again kind of abstract, but let’s see what it implies: by the Inverse and/or Implicit Function
Theorems, this is the condition that M is locally the graph of a smooth function: M = {(x1, . . . , xn), f(x1, . . . , xn) :
x1, . . . , xn ∈ U}. Then, x1, . . . , xn can be taken to be local coordinates, i.e. they are the result of the chart maps:
ϕ(x1, . . . , xn, f(x1, . . . , xn)) = (x1, . . . , xn). Thus, submanifolds are in fact manifolds!

In the more general case where n < m by some possibly larger amount, the function instead becomes
f : U → Rm−n and the requirement is that its differential map (i.e. the matrix of partial derivatives) Df |p is
onto.2 Thus, one gets charts in the same way.

1Since one also has a smooth map in the opposite direction given by switching i and j, this condition is equivalent to requiring it to be

a diffeomorphism.
2That is, it’s surjective. Since the differential is a linear map, this means it must have full rank, which is a bit easier to check.
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Submanifolds can be thought of as manifolds that exist inside some space Rn instead of abstractly, which makes
them a little easier to visualize: as surfaces that are locally Euclidean or are locally the graph of a smooth function.
These are quite important examples of manifolds.

4. There are also manifolds that don’t have a natural embedding into an ambient space, such as quotient spaces.
For example, the two-dimensional torus T 2 = R2/Z2 is defined as the set of equivalence classes of elements of R2,
where (x, y) ∼ (x+m, y + n) for x, y ∈ R and m,n ∈ Z. Each equivalence class can be thought of as a lattice in
the plane.

To obtain charts for this object, pick an (x0, y0) ∈ R2 and let U(x0,y0) = (x0−1/2, x0 +1/2)×(y0−1/2, y0 +1/2),

which is an open set, so consider the map π : R2 → R2/Z2 that sends a point to its equivalence class. Since U has
side length 1 and is open, then π|U is one-to-one, so if U (x0,y0) = π(U(x0,y0)), then ϕ : U (x0,y0) → R2 = id ◦π−1.

This is a common construction: if a group acts on a manifold without fixed points, then one obtains a quotient
manifold.

There are lots of other examples in the textbook.

Definition. If M is a manifold, then U ⊆M is open if for all charts (ϕ,U ′), the set ϕ(U ∩ U ′) is open in Rn.

One can think of this in the following way: in Rn, a set U is open if for every x ∈ U , there’s an open ball around
x contained in U . The same thing is going on here, but the open ball is given by ϕ−1. The collection of open sets
gives a topology to the manifold, in which all of the chart maps are continuous.3 This topology determines various
properties of the manifold, such as whether it is compact.

In this class, some assumptions will be made on this topology, though only one will be introduced now.

H1. M is Hausdorff; that is, if p1, p2 ∈ M are distinct, then there exist open sets U1, U2 ⊂ M such that p1 ∈ U1,
p2 ∈ U2, and U1 ∩ U2 = ∅. That is, every two points have some disjoint open neighborhoods.

While this might seem intuitive or obvious, it doesn’t actually follow from the other axioms as given.

Definition. A manifold is compact if every open cover has a finite subcover (i.e. that if one has a collection {Ui}i∈I
of sets such that

⋃
i Ui = M , then there is some finite set U ′1, . . . , U

′
n such that

⋃n
j=1 U

′
j = M as well. This can be

thought of as akin to finiteness).

Definition. A map F : M → N of manifolds is continuous if for every open set U of N , its preimage F−1(U) is
open in M . A continuous function is smooth if for all p ∈M , charts (ϕ,U) such that p ∈ U , and charts (ψ, V ) with
F (p) ∈ V , it’s possible to choose an open neighborhood U1 ⊆ U of p such that F (U1) ⊆ V (which is always true
because F is required to be continuous), but then that ψ ◦ F ◦ ϕ−1 : ϕ(U1)→ ϕ(V ) is smooth as a map Rm → Rn.
This is well-defined if one takes different charts, because change-of-chart maps are also smooth.

For some extremal cases, a smooth curve is a map c : (a, b) → M and a smooth function is a map f : M → R.
For the latter, establish the following conventions: let ϕ : U → Rn be a chart and u1, . . . , un be coordinates in Rn
and x1, . . . , xn be local coordinates on U , i.e. xi = ui ◦ ϕ (here, coordinates are treated as functions; the coordinate

function takes a point and returns the value of that coordinate at that point, e.g. x(1, 2) = 1). The notation ∂f
∂xi

∣∣∣
p

means ∂(f◦ϕ−1)
∂ui

∣∣∣
f(p)

for p ∈ U . In some sense, the function is transplanted to a function Rn → R.

The next subject will be that of tangent vectors and tangent spaces, which will be discussed more than tangentially
next lecture. For submanifolds, which are embedded in an ambient space, the notion is reasonably intuitive, but how
should one define the tangent space of an abstract manifold? The tangent space of a p ∈ M is an n-dimensional
vector space, the set of tangent vectors at M , so the question reduces to finding tangent vectors. There are three
equivalent and useful definitions.

The geometric definition considers the set of curves c : (−ε, ε)→M for some ε > 0 and c(0) = p. Then, create an
equivalence relation on this set by c ∼ c̃ if ϕ ◦ c and ϕ ◦ c̃ agree to first order for all charts ϕ (i.e. their difference
vanishes, as does its first derivative). Then, the tangent space is this set of equivalence classes. This definition is
pretty, and it’s important and valid, but it’s not immediately clear how to add tangent vectors.

A more computational definition will invoke the notion of the directional derivative.

2. Tangent and Cotangent Spaces: 1/9/14

Last time, we mentioned manifolds and defined open sets on a manifold M as those sets U where for all charts
(ϕ,U ′), ϕ(U ∩ U ′) is open in Rn. This implies that if (ϕ,U) is a chart, then U is open in M (though this isn’t
completely obvious), and that if V ⊆ ϕ(U) is open in Rn, then ϕ−1(V ) is open.

3If you are unfamiliar with point-set topology, and therefore the general, abstract definitions of topological spaces and continuous

maps, check out the first few chapters of Munkres’ textbook or a similar source, or come ask me.
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Recall that in Rn, a set V is open if for all p ∈ V , there exists an ε > 0 such that Bε(p) = {x ∈ Rn | ‖x− p‖ < ε} ⊆
V . This also works for manifolds: a set U ⊆M is open if for all p ∈ U and charts (ϕ,U ′) with p ∈ U , then Bε(x0) ⊆ U
for some ε > 0, where x1, . . . , xn are local coordinates induced by (ϕ,U ′) in U ′ and x0 = (x1(p), . . . , xn(p)). In Rn,
one can show that this is equivalent to to the other definition. Though these definitions may seem a bit mechanical,
all they mean is that if one introduces local coordinates on a manifold, an open set contains some neighborhood of
every one of its points.

Definition. If M and N are manifolds (m- and n-dimensional, respectively), then F : M → N is smooth if whenever
(ϕ,U) is a chart in M and (ψ, V ) is a chart in N such that F (U) ⊆ V , then ψ ◦ F ◦ ϕ−1 : ϕ(U)→ Rn is smooth.

A more compact (heh) way to say this is that if one views the local coordinates as living in Rn, then the resulting
map is smooth.

In general, manifolds are trickier to deal with, because geometrical notions need to be coordinate-independent, but
there is no one canonical set of global coordinates.

Tangent Spaces. If M is an n-dimensional manifold and p ∈M , then the tangent space TpM is an n-dimensional
real vector space (though this won’t be immediately obvious from the definition).

Definition. Place an equivalence relation on the set of smooth (i.e. C∞), real-valued functions on M in which
f1 ∼ f2 if f1 = f2 within a neighborhood of p. The set of equivalence classes Fp(M) = {[f ]; f ∈ C∞(M)} is called
the set of germs of smooth functions at p. (Here [f ] denotes the equivalence class of f .)

Observe that adding and multiplying functions and multiplying them by real numbers respects the equivalence
relation, so Fp(M) is an R-algebra.

Definition. The tangent vectors of M at p are the derivations X : Fp(M) → R; that is, they must satisfy the
following two properties:

(1) X must be linear: X(c1f1 + c2f2) = c1X(f1) + c2X(f2) for any c1, c2 ∈ R and f1, f2 ∈ C∞(M).4

(2) X must satisfy the Leibniz property: X(f1f2) = f1X(f2) +X(f1)f2.

These are basically derivative-like operators on the germs of functions.
Then, the tangent space TpM is the set of tangent vectors at p.

The tangent space is a real vector space because derivations can be added and multiplied by scalars. However, its
dimension is not apparent.

If p ∈M and c : (−ε, ε)→M is a smooth curve (one says that it’s parameterized, so that it’s a smooth map from
an interval into M) such that c(0) = p, then there is a natural tangent vector c′(0) ∈ Tp(M) given by

c′(0)(f) =
d

dt
(f ◦ c(t))

∣∣∣∣
t=0

.

Basically, how does the function change along a curve? It’s not hard to check that c′(0) is a derivation.
Let x1, . . . , xn be local coordinates near p. Then, some additional tangent vectors are notated

∂

∂xi

∣∣∣∣
p

(f) =
∂f

∂xi

∣∣∣∣
p

=
∂f ◦ ϕ−1

∂ui

∣∣∣∣
ϕ(p)

,

where u1, . . . , un are coordinates in Rn, so that xi = ui ◦ ϕ. These are also derivations.

Theorem 2.1. Given x1, . . . , xn local coordinates near p,{
∂

∂x1

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

}
is a basis for TpM . In particular, TpM is an n-dimensional vector space.

Once again, the message is the same: there are local coordinates, but no canonical choice of them, and certainly no
global coordinates. Similarly, there is no canonical basis for the tangent space, but there certainly is a basis. Change
of basis happens a lot in geometry, because every useful geometric notion must be independent of coordinates.

Proof of Theorem 2.1. This proof will rely on Taylor’s theorem.

4Technically, X acts on the equivalence classes of f1 and f2, but the end result is the same.
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Choose a chart (ϕ,U) such that p ∈ U , and without loss of generality assume ϕ(p) = 0 (since if not, then the chart
can be translated). Then, take a small ball around the origin and points u = (u1, . . . , un) in the ball, and let f be a
smooth function on a neighborhood of p and h = f ◦ ϕ−1. Now, define n functions

hi(u) =

∫ 1

0

∂h

∂ui
(tu) dt,

where hi(0) = ∂h
∂ui (0).

Claim. Then, h(u)− h(0) =

n∑
i=1

hi(u)ui.

Proof. Well, by the Fundamental Theorem of Calculus and the Chain rule, this can be simplified to

h(u)− h(0) =

∫ 1

0

d

dt
h(tu) dt =

∑
i

∂h

∂ui
(tu)ui dt. �

The professor described this as sort-of an exact first-order approximation.
Now, this can be transplanted to the manifold: write hi = fi ◦ ϕ−1 and ui = xi ◦ ϕ−1. Let q = ϕ−1(u), so

that f(q) − f(p) =
∑n
i=1 fi(q)x

i(q). Thus, in a neighborhood of p, f = f(p) +
∑
fix

i, and at p, xi(p) = 0 and

fi(p) = hi(0) = ∂f
∂xi

∣∣∣
p
.

Now, given an X ∈ TpM , one can apply the Leibniz rule:

X(f) = X(f(p)) +

n∑
i=1

(X(fi)x
i(p) + fi(p)X(xi)).

However, the derivation of the constant f(p) must be zero (which can be proven by appealing again to the Leibniz
rule). Thus,

X(f) =

n∑
i=1

X(xi) · ∂

∂xi

∣∣∣∣
p

(f),

and therefore

X =

n∑
i=1

X(xi)
∂

∂xi

∣∣∣∣
p

.

These ∂
∂xi

∣∣
p

are linearly independent because ∂
∂xi (x

j) = δji , so they do indeed form a basis. �

This proof also gave the coefficients X(xi) for the linear combination, which is useful. It also shows that this
abstract definition is concretely what we want as the “right thing.”

Using this, one can make some more useful constructions, appealing to the general principle that from one vector
space one can obtain a lot of other useful vector spaces.

Definition. The cotangent space T ∗pM is the dual space to TpM , i.e. L(TpM,R), the space of linear real-valued
functions on TpM (which is a construction that can be made on any vector space).

T ∗pM is also an n-dimensional vector space, and given a basis v1, . . . , vn for TpM , there is an associated dual basis

ω1, . . . , ωn for T ∗pM given by ωi(vj) = δij (i.e. the Kronecker delta, equal to 1 if i = j and 0 otherwise). Notice the
notation: the indices on basis vectors go down, but those for the dual basis go up.

The dual basis to the basis ∂
∂xi

∣∣
p

has the special notation dx1|p, . . . , dxn|p, which means that dxi
(
∂
∂xj

)
= δij .

Thus, coordinates induce a basis for both the tangent and cotangent spaces.

Vector Fields and One-Forms. A vector field is a map X : p 7→ Xp ∈ TpM , assigning each p to a point in its
tangent space, and is required to be smooth (i.e. that when it is expressed in coordinates, the coordinates themselves
are smooth). More concretely, if (ϕ,U) is a chart with p ∈ U , then

Xp =

n∑
i=1

ξi(p)
∂

∂xi

∣∣∣∣
p

for some smooth functions ξ1, . . . , ξn on U . This is akin to the definitions seen in physics.
A vector field is a special case of a more general object called a tensor field. Specifically, it is a contravariant tensor

field of degree 1, one of the simpler cases.
A one-form is a map p 7→ ωp ∈ T ∗pM that is also required to be smooth: ωp =

∑n
i=1 ai(p) dxi|p. For notational

consistency, the coordinates have lower indices, and these a1, . . . , an are also required to be smooth. The name is
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because a one-form induces a line integral on curves. These are also tensor fields, specifically covariant tensor fields of
degree 1.

The most important tensor fields in this course are Riemannian metrics. Let Bil(TpM,R) denote the space of
bilinear forms on M ,5 i.e. α such that α(v, w) ∈ R for v, w ∈ TpM and α(c1v1 + c2v2, w) = c1α(v1, w) + c2α(v2, w)
(and similarly for the second argument). Bil(TpM,R) is a vector space, and again it’s true that a basis for the
tangent space v1, . . . , vn and the induced dual basis ω1, . . . , ωn induce a basis ωi ⊗ ωj ∈ Bil(TpM,R), given by
ωi ⊗ ωj(v1, v2) = ωi(v1)ωi(v2), which is clearly bilinear. These {ωi ⊗ ωj | 1 ≤ i, j ≤ n} form a basis for Bil(TpM,R),
so it has dimension n2. Inner products in this space lead to Riemannian metrics.

3. Vector Fields, One-Forms, and Riemannian Metrics: 1/14/14

Definition. Let M and N be smooth manifolds of dimensions m and n, respectively, and let F : M → N be a
smooth map. Then, the differential of F at a point p ∈M is the linearization of F at p: DF |p : TpM → TF (p)N given
by DF |p(X)(f) = X(f ◦ F ).

From this definition, intuition isn’t incredibly clear, but it’s easier to see that the differential is a linear map.

Exercise 3.1. Suppose that x1, . . . , xm are coordinates in M near p, and y1, . . . , yn are coordinates in N near F (p),

where f : yi = yi(x1, . . . , xn). If ∂
∂xi

∣∣
p

and ∂
∂yi

∣∣∣
F (p)

are the induced coordinates on the tangent spaces, then the

matrix DF |p is the Jacobian, i.e. it is an n×m matrix whose ijth entry is ∂yi

∂xj .

This exercise convinces us that the differential is really the right thing, so to speak.

Theorem 3.1 (Chain Rule). Let F : M1 →M2 and G : M2 →M3 be smooth maps of smooth manifolds. Then, for
p ∈M1, D(G ◦ F )|p = DG|F (p) ◦DF |p.

Proof. Let X ∈ TpM1 and f be smooth near p. Then,

D(G ◦ F )|p(X)(f) = X(f ◦ (G ◦ F ))

= X((f ◦G) ◦ F ) because composition is associative.

= DF |p(X)(f ◦G)

= DG|F (p)(DFp(X))(f) = (DG|F (p)DF |p)(X)(f),

because matrix composition is just multiplication. �

Basically, the proof boils down to a careful application of the definition.
On the homework, one is provided with the definition of the tangent bundle TM to a manifold M . This allows one

to define a vector field somewhat snazzily as a smooth assignment into the tangent field that projects to the identity,
but it’s generally easier to think of a vector field as X =

∑n
i=1 ξ

i(x) ∂
∂xi

∣∣
p
, where x1, . . . , xn are local coordinates

and the ξi are smooth real-valued functions. Because coordinate changes are smooth, this implies it’s smooth in all
possible charts.

Similarly, a smooth one-form, or a cotangent vector field, is a smooth (in local coordinates) assignment p 7→ ωp ∈
T ∗pM . Thus, in local coordinates, a one-form looks like ω =

∑n
i=1 ai(x) dxi, where the ai are smooth.

Last lecture, it was briefly mentioned that one-forms can be integrated along curves. This means that if c : [a, b]→M
is a smooth curve, then the integral of a one-form ω along the curve c is∫

c

ω =

∫ b

a

ω(c′(t)) dt.

One can integrate higher-degree forms over more general submanifolds, but that’s not really the point of this class.
Natural extensions of this lead to the notion of a Riemannian metric, i.e. a 2-covariant tensor field. The set of

bilinear functions from TpM → R is a vector space of dimension n2, where n = dimM . Given a coordinate chart
x1, . . . , xn near p, one has dual vectors dx1, . . . , dxn. Then, dxi ⊗ dxj ∈ Bil(TpM,R) is given by

dxi ⊗ dxj

(
∂

∂xk

∣∣∣∣
p

,
∂

∂x`

∣∣∣∣
p

)
= δikδ

j
` .

Then, this extends linearly: if v =
∑
ai ∂

∂xi

∣∣
p

and w =
∑
bj ∂

∂xj

∣∣
p
, then dxi|p ⊗ dxj |p(v, w) = aibj .

5The professor used the notation L2(TpM ;R), which usually means something else.
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Claim. These dxi ⊗ dxj form a basis; if α ∈ Bil(TpM,R), then

α =

n∑
i,j=1

αij dxi|p ⊗ dxj |p. (1)

Proof. That they’re independent is fairly clear, so for any given α, let αij = α( ∂
∂xi

∣∣
p
, ∂
∂xj

∣∣
p
), so that the goal is to

show (1) holds for this choice of αij . Thus, just check on all of the basis vectors:

n∑
k,`=1

αk` dxk ⊗ dx`

(
∂

∂xi

∣∣∣∣
p

,
∂

∂xj

∣∣∣∣
p

)
=

n∑
k,`=1

δikδ
j
`αk` = αij . �

Now, with this space of bilinear maps (also called quadratic forms), one can talk about 2-covariant tensor fields:
assignments p 7→ αp ∈ Bil(TpM,R) that are smooth in local coordinates near p, i.e. if α is given by αij as in (1),
then αij is smooth in x.

Definition. A Riemannian metric g is a symmetric, positive definite 2-covariant tensor field. That is,

(1) gp(X,Y ) = gp(Y,X), and
(2) gp(X,X) ≥ 0 for all p and X, and this is 0 iff X = 0.

This is the same thing as requiring gp to be an inner product for all p, or that the matrix gij at every p is symmetric
and positive definite.

Riemannian metrics are, like functions in general, a dime a dozen.

Example 3.1. Suppose M is a manifold covered by a single chart. Then, any matrix-valued function that is
symmetric and positive definite is a Riemannian metric. Some of these are interesting, others aren’t.

More interestingly, consider hyperbolic space Hn, with x1, . . . , xn ∈ Rn, but x1 > 0. The hyperbolic metric is
gij(x) = (1/x2

n)δij . This is a conformal metric, because it’s a multiple by a function of the standard Euclidean metric
δij . It also has constant curvature, which will be particularly important later in the class.

Another example can be given on an n-dimensional submanifold M inside Rk. Then, the metric on Rk has an
inner product 〈, 〉, so a Riemannian metric on M is just 〈, 〉|TpM . It has to be written down why this is smooth, but it
is. In Math 143, this was called the first fundamental form.

To do computations with this metric, one can introduce local coordinates u1, . . . , un given by a chart map ϕ, with
ϕ−1 = F ; then, gij(x) =

〈
∂F
∂ui ,

∂F
∂uj

〉
◦ϕ. This can be thought of as having the ui in Rn, so that ui ◦ϕ is the coordinate

on M . These induced metrics are important examples, and often very complicated.

Of course, this is all fine if M is covered by a single chart, but does every smooth manifold in general admit a
Riemannian metric? Right now, no; we will need to make a stronger assumption on these manifolds, leading to
questions in point-set topology. The assumption is:

3. Assume there exists a countable atlas for M .

This doesn’t follow from the other two axioms, and is related to questions of logic and higher cardinals. Every
manifold one might encounter in practice satisfies this condition, though. One counterexample is known as the
“long line.” Some equivalent assumptions in topology are second-countability (i.e. there exists a countable basis) or
metrizability (there exists a metric which realizes the topology).

Claim. If M is compact and satisfies the given assumptions, then M has a Riemannian metric.

Second-countability is a generalization of compactness, but restricting the proof to this case gives the general idea
and makes the details easier.

Proof. There can be lots of local metrics, and the trick is patching them together using partitions of unity.
For any p ∈M , pick a chart (ϕ,U) such that p ∈ U , and pick an open neighborhood V of p such that V ⊂ U , and

its closure V ⊂ U . Then, there exists a smooth function6 h such that h = 1 on V and h = 0 outside of U .
Then, take any metric in the chart, and let x1, . . . , xn be local coordinates for this chart. For simplicity, in fact, it

suffices to take the Euclidean metric gij(x) = δij in U . Now, patch them together: these V give an open covering of
M , so, because M is compact, then there’s a finite subcovering V1, . . . , VN . Then, there are the associated U1, . . . , UN
and h1, . . . , hN as part of the construction above, so that Vi ⊂ Ui and so on, and metrics g

(1)
ij , . . . , g

(n)
ij in these Ui.

Let fi = hi/
∑n
j=1 hj : since every point within p lies within some Vi, then

∑
hj ≥ 1, and at every point,

∑
fi = 1

(which is why it’s called a partition of unity). Then, let g|p =
∑n
i=1 fig

(i)|p, where fig
(i) is understood to be 0 outside

Ui. This will be shown to be a Riemannian metric.

6This is decidedly untrue for analytic functions, but is true for C∞ functions.
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If V is a vector space, then the collection of inner products on V is a convex cone within the space of bilinear
functions, so taking a convex combination of them still results in an inner product: if a1, . . . , ak ∈ [0, 1], such that∑
ai = 1, then

∑
aig

(i) is still an inner product. Thus, this is also true of Riemannian metrics.7 �

There are lots of metrics, because the construction in the proof offers lots of freedom. Partitions of unity are
in general good ways to patch stuff together, but they don’t work for Lorentz metrics, which don’t have the same
convexity, and in fact stronger topological assumptions are necessary for a manifold to admit a Lorentz metric.

4. The Lie Bracket and Riemannian Connections: 1/16/14

If g is a Riemannian metric, then the assignment p 7→ gp produces an inner product on TpM . For example, if U ⊆ Rn
is open, then U is a manifold, and one can choose global coordinates x1, . . . , xn. Then, x 7→ gx =

∑
gij(x) dxi ⊗ dxj ,

where (gij(x)) is symmetric, positive definite, and smooth. Then, if v =
∑
vi ∂
∂xi and w =

∑
wi ∂

∂xi , then gx(v, w) =∑n
i,j=1 gij(x)viwj . A special case of this is the Euclidean metric gij(x) = δij .
The point of the above example is that it’s not hard to construct Riemannian metrics locally.
For another example, consider an n-dimensional submanifold in Rn+1: locally, xn+1 = u(x1, . . . , xn) (i.e., it’s

the graph of a function). This is one of the (not too common) cases where there are natural coordinates on the
manifold, x1, . . . , xn. The metric is induced from the Euclidean metric, and is unsurprisingly called a Euclidean
metric: p 7→ gp is the restriction of the dot product to TpM . One can find a formula for this: take the coordinate

curve ci(t) = (x1, . . . , xi−1, t, xi+1, . . . , xn), i.e. only varying the ith term. Then, ∂
∂xi is tangent to ci at that point,

but since xn+1 = u(x1, . . . , xn), then ∂
∂xi = (1, 0, 0, . . . , 0, ∂u∂xi ), and so on. From these vectors, one can write down

gij = g

(
∂

∂xi
,
∂

∂xj

)
=

∂

∂xi
· ∂

∂xj
= δij +

∂u

∂xi
∂u

∂xj
.

One can see that this is a smooth, positive definite, symmetric matrix.

Definition. Given a smooth map M
F→ M̃ and a Riemannian metric g̃ on M̃ , the pullback of g̃ by F is F ∗g̃, a

2-tensor field given by (F ∗g̃)|p(v, w) = g̃F (p)(F (v), F (w)) for any v, w ∈ TpM .

Notice that, though this is always a 2-tensor field, it is not generally the case that F ∗g̃ is a Riemannian metric.

Definition. If dimM = dim M̃ and F ∗g̃ = g for some Riemannian metric g of M , then F is called a local isometry.
If in addition F is a diffeomorphism, then F is called a (global) isometry.

Isometries are the equivalence relation on Riemannian manifolds; if two manifolds are isometric, one can think of
them as equivalent.

Example 4.1. Consider the torus T 2 = R2/Z2, i.e. (x, y) ∼ (x+m, y + n) for any x, y ∈ R and m,n ∈ Z. The map
(x, y) 7→ (x+m, y + n) is an isometry, so one is identifying points given by an isometry. This means that T 2 inherits
a metric, called the flat metric (or the flat torus), because it’s locally isometric to Euclidean space. There’s more
generally a family of geometrically distinct flat tori.

In summary, one can take a smooth manifold with symmetry and quotient by such a symmetry, yielding a quotient
manifold with an inherited metric.

Example 4.2. Another example is the real projective plane RP 2, which can be thought of in several ways, e.g. lines
through the origin in R3. it might be easier to see it as RP 2 = S2/ ∼, where x ∼ −x for x ∈ S2. Since this is an
isometry, then the real projective plane inherits a metric.

The geometry of a Riemannian manifold is coordinate-independent, so it’s unaffected by a diffeomorphism. Thus,
the basic problem of Riemannian geometry, which Riemann actually partially solved, is: how can one tell if a
Riemannian metric g is locally isomorphic to the Euclidean metric? That is, do there exist coordinates x̃1, . . . , x̃n

such that g̃ij = δij? Coordinates can be very complicated, so this isn’t easy. Alternatively, one has some coordinate
system x1, . . . , xn and wants to end up with the x̃i above. Let xi = xi(x̃1, . . . , xn); then,

dxp =

n∑
i=1

∂xp

∂x̃i
dx̃i,

i.e. the coordinate basis for the tangent space changes by the Chain Rule, which is left as an exercise. Then, the
metric itself transforms as

g =

n∑
i,j=1

g̃ij(x) dx̃i ⊗ dx̃j =

n∑
p,q,i,j=1

gpq
∂xp

∂x̃i
∂xq

∂x̃j
dx̃i ⊗ dx̃j ,

7The actual statement is ever so slightly different, since some of the values could be zero on some of the sets. But it still works.
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so finding the coordinates is equivalent to solving the PDE

g̃ij =
∑
p,q

gpq(x)
∂xp

∂x̃i
∂xq

∂x̃j
= δij .

There are n unknowns and n(n+ 1)/2 equations, so this is overdetermined. Intuitively, this works only if g satisfies
n(n+ 1)/2 =

(
n
2

)
compatibility conditions, and in fact these compatibility conditions are exactly that the Riemann

curvature tensor R = 0, but we’ll get to that. The thing that makes this difficult is the diffeomorphism-invariance.
Once again, it’ll be necessary to express these compatibility conditions in a coordinate-free way. We can in fact solve
this problem, thanks to lots of hindsight.

Riemann did this directly, by brute force. But between the metric and the curvature is an important object called
the Riemannian connection. But first, vector fields.

Lie Bracket. Consider arbitrary vector fields X and Y . Everything will eventually be done coordinate-independently,
but to motivate it, coordinates will be introduced, so suppose X =

∑
ξi ∂
∂xi and Y =

∑
ηj ∂

∂xj . Then, these are just
operators, so they can be composed:

XY (f) = X

(
n∑
j=1

ηj
∂f

∂xj

)
=
∑
i,j

ξi
∂ηj

∂xi
∂f

∂xj
+
∑
i,j

ξiηj
∂2f

∂xi∂xj
.

But Y X(f) has the same second-order term:

Y X(f) =
∑

ηj
∂ξi

∂xj
∂f

∂xi
+
∑

ξiηj
∂2f

∂xi∂xj
,

so XY − Y X, an a priori 2nd-order operator, is actually first-order, and therefore a vector field! In coordinates,

(XY − Y X)(f) =
∑
i,j

(
ξi
∂ηi

∂xj
− ηj ∂ξ

i

∂xi

)
∂f

∂xi
.

This vector field is called the Lie bracket of X and Y , denoted [X,Y ].8 It has several important properties, which are
listed in the book and left as exercises.

1. It’s anti-symmetric, so [X,Y ] = −[Y,X]. This is probably the most obvious property.
2. It’s R-linear in each slot: [a1X1 + a2X2, Y ] = a1[X1, Y ] + a2[X2, Y ], and similarly for the Y slot, where a1, a2 ∈ R.

This is not true when the scalars are replaced with more general functions.
3. [fX, hY ] = fh[X,Y ] + f(Xh)Y − h(Y f)X.
4. Most importantly, the Jacobi identity [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.
5. In some sense, the Lie bracket distinguishes general vector fields from coordinate vector fields:

[
∂
∂xi ,

∂
∂xj

]
= 0,

because the second-order terms vanish; thus, these operators commute. This is not true for vector fields in general.

This is related to the idea that vector fields generate diffeomorphisms (e.g. as the velocity vector field of some fluid
flow), and that a similar structure exists on Lie algebras and Lie groups.

The Riemannian Connection. If p, q ∈M , then TpM and TqM are generally in no way related, no matter how
close p and q are to each other. In Euclidean geometry, one isn’t used to vectors having a fixed location like this, as
there is a global parallelism that allows one to move them back and forth between tangent spaces.

In general, TpM and TqM are both n-dimensional real vector spaces, which means there are lots of isomorphisms
between them, but none are canonical. The Riemannian connection will address this, and be very useful; it’s what
allows one to define the directional derivative of vectors in Euclidean space in terms of each other:

∇XY = lim
h→0

Y (p+ hX(p))− Y (p)

h
.

Writing this in coordinates, one obtains the directional derivatives as the component functions. But this requires
vectors to have no fixed location, which in general requires a connection.

Definition. An (affine) connection ∇ is a structure imposed on a manifold: given two vector fields X and Y on M ,
∇XY is a vector field such that

(1) ∇ is R-linear in X and Y : ∇a1X1+a2Y2Y = a1∇X1Y + a2∇X2Y , and similarly ∇X(b1Y1 + b2Y2) = b1∇XY1 +
b2∇XY2 for a1, a2, b1, b2 ∈ R.

(2) ∇ is C∞-linear in X; that is, ∇f1X1+f2X2
Y = f1∇X1

Y + f2∇X2
Y for any smooth functions f1 and f2.

8It’s also possible to define [X,Y ] = XY − Y X in a coordinate-free way, though this makes showing it’s a vector field a little more
involved. In particular, one wants to pay attention to the Leibniz rule [X,Y ](fh) = h[X,Y ](f) + f [X,Y ](h), and linearity isn’t that hard.

In some sense, all that needs to be proven is that it’s a derivation of a function at a point.
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(3) Multiplying Y by a function is a little more complicated (since it intuitively gets differentiated): if f is a
smooth function, then ∇X(fY ) = (Xf)Y + f∇XY . This is another form of the Leibniz rule.

Notice that all of these properties hold for the standard directional derivative in Rn. In general, there is always a
connection on a manifold, and there are often very many. However, in the context of a Riemannian metric, there is a
distinguished connection.

Theorem 4.1 (Fundamental Theorem of Riemannian Geometry). On a Riemannian (or Lorentz) manifold (M, g),
there exists a unique affine connection ∇ that satisfies the following two properties:

(1) ∇ is metric-compatible, i.e. if X, Y , and Z are vector fields, so that 〈X,Y 〉 (i.e. g(X,Y )) is a smooth
function, then X(〈X,Z〉) = 〈∇XY, Z〉+ 〈Y,∇XZ〉.

(2) ∇ is torsion-free (or symmetric), i.e. ∇XY −∇YX = [X,Y ].

This connection is called the Riemannian connection.

The first condition should be thought of as yet another Leibniz rule, this time in terms of the metric. In Euclidean
space, thinking of these as derivatives makes them more reasonable, though in this case ∇XY ∼ XY .

The proof of Theorem 4.1 will be given next lecture, albeit through a calculation rather than abstractly. One can
choose local coordinates x1, . . . , xn, and therefore induce the basis ∂

∂x1 , . . . ,
∂
∂xn of the tangent space. If ∇ is some

affine connection, then it can be determined from families of functions Γkij , called Christoffel symbols or connection
coefficients, given by

∇ ∂

∂xi

∂

∂xj
=
∑
k

Γkij(x)
∂

∂xk
. (2)

If we know the Γkij , then we also know the connection by doing a calculation: if X =
∑
ξi ∂
∂xi and Y =

∑
ηj ∂

∂xj , then

∇XY =
∑
i,j

ξi∇ ∂

∂xj

(
ηj

∂

∂xj

)
,

so knowing the Γkij shows how to calculate the connection in coordinates. These coefficients illustrate what the
connection looks like locally. In the special case where the connection is given by the metric, there will exist an
explicit formula in terms of the metric.

5. Existence and Uniqueness of the Riemannian Connection: 1/21/14

“In fact, I can use my magical eraser!”

The point of having an affine connection is to, given vector fields X and Y , understand ∇XY , the directional derivative
of Y (in the X-direction). However, just given the smooth structure, there isn’t really enough information, because
the tangent spaces aren’t related. Connections aren’t special, much like Riemannian metrics, and for a similar reason
involving partitions of unity.

In Rn there is the much nicer case of

∇XY (p) = lim
h→0

Y (p+ hX(p))− Y (p)

h
,

but this cannot be done on arbitrary manifolds; specifically the minus sign.

Remark. Turning back to Theorem 4.1 and writing in local coordindates as discussed at the end of the last lecture,
the torsion-free property of a Riemannian connection can be restated in terms of the Christoffel symbols as Γkij = Γkji
for all i, j, k, because the coordinate vector fields commute:

∇ ∂

∂xi

∂

∂xj
−∇ ∂

∂xj

∂

∂xi
=

[
∂

∂xi
,
∂

∂xj

]
= 0.

This is only true in coordinate bases, not all bases.

Intuition for metric compatibility, the other condition on a Riemannian connection, is that it’s akin to the Leibniz
rule. In Rn, X and ∇X are the same operator, but this is distinctly untrue elsewhere.

The proof given below will work for any scalar product, i.e. an assignment p 7→ Bil(TpM,R) whose component
matrix is everywhere invertible. The positive-definiteness of a Riemannian metric, or the indefiniteness of the Lorentz
metric, do not come into play.
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Proof of Theorem 4.1. This proof will be constructive. First, as for uniqueness: choose 3 vector fields X, Y , and Z.
The metric compatibility implies

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉
Y 〈Z,X〉 = 〈∇Y Z,X〉+ 〈Z,∇YX〉
Z〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉.

Add the first two and subtract the third, but by the second property, ∇YX = ∇XY + [X,Y ], and so on, so that

X〈Y,Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉 = 2〈∇XY,Z〉+ 〈Y, [X,Z]〉+ 〈Z, [Y,X]〉+ 〈X, [Y,Z]〉.

Be careful with signs in this equation; the Lie bracket is anti-symmetric!
But now, it is possible to determine 〈∇XY,Z〉 as a formula in terms of things that are already known, i.e. the

metric and the Lie bracket. That is, one has the following, known as the Kozul formula:

2〈∇XY,Z〉 = X〈Y, Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉 − 〈X, [Y,Z]〉 − 〈Y, [X,Z]〉 − 〈Z, [Y,X]〉. (3)

Now we have this formula, which implies uniqueness. Specifically, if we know the inner product of a vector field with
every other vector field, then we can recover the original vector field.

In some special cases, some of the terms in (3) go away. For example, in local coordinates x1, . . . , xn, one also has
induced coordinates ∂

∂xi . Then,

2

〈
∇ ∂

∂xi

∂

∂xj
,
∂

∂xk

〉
= gjk,i + gki,j + gij,k,

where the above uses the classical notation gij,k =
∂gij
∂xk

. This is because gij =
〈
∂
∂xi ,

∂
∂xj

〉
, and then one applies

Z = ∂
∂xk

. On the left-hand side, one can use the formula (2) for the Christoffel symbols to obtain

2
∑
p

Γpijgpk = gjk,i + gki,j + gij,k.

Another notational thing: if (gij) is a matrix, then (gij)
−1 = gij is understood to be the matrix inverse. Then,

Γkij =
1

2
gk`(gj`,i + gi`,j − gij,`).

This uses another notation called the summation convention, i.e. if the same index i appears as an upper index and a
lower index in an expression, then the expression is treated as a sum, even if it isn’t explicitly written. Thus, the
above formula actually means

Γkij =
1

2

∑
`

gk`(gj`,i + gi`,j − gij,`)

Sometimes it’s easier to instead work in an orthonormal basis, so that the inner products drop out and it just deals
with the brackets. This is more common in the study of Lie groups.

Now, with uniqueness settled, it still remains to show that (3) actually gives a Riemannian connection. First, why
is it a connection?

(1) It’s pretty obviously R-linear in X and Y , because the right-hand side of (3) is.
(2) To check that ∇fXY = f∇XY , take the difference of these terms. Then, X〈Y,Z〉 cancels out, because it

isn’t changed since X isn’t differentiated, and a couple other terms that don’t differentiate X go away. The
terms that do change come out to

2〈∇fXY, Z〉 − 2f〈∇XY, Z〉 = (Y f)〈Z,X〉 − (Zf)〈X,Y 〉+ (Zf)〈X,Y 〉 − (Y f)〈X,Z〉,

which clearly goes to zero, because the inner product is symmetric.
(3) ∇X(fY ) = X(f)Y + f∇XY . Essentially the same idea: after ignoring the terms where Y isn’t differentiated

in (3),

2〈∇XfY, Z〉 − 2X(f)〈Y,Z〉 − 2f〈∇XY,Z〉 = (Zf)〈X,Y 〉 − (Zf)〈X,Y 〉,
albeit after a little bit of thinking. It’s somewhat hard to follow on the board, but you can plug and chug.

Then, the Riemannian properties follow from the symmetries of (3):

(4) For metric compatibility, we want that X〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉. But when subtracting these two,
this equation is symmetric in terms of Y and Z, so anything antisymmetric in Y and Z cancels out, such as
〈X, [Y, Z]〉, 〈Y, [X,Z]〉 − 〈Z, [X,Y ]〉, and Y 〈Z,X〉 − Z〈X,Y 〉. Then, everything ends up working, which is no
surprise since metric compatibility was used to generate (3).
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(5) For the torsion-free property, all of the terms symmetric in X and Y drop out, including X〈Y,Z〉+ Y 〈Z,X〉,
Z〈X,Y 〉, and 〈X, [Y, Z]〉+ 〈Y, [X,Z]〉. Then,

2〈∇XY, Z〉 − 2〈∇YX,Z〉 = −2〈Z, [Y,X]〉 = 2〈[X,Y ], Z〉. �

Again, the proof of existence shouldn’t be too surprising, given that the formula was essentially derived from the
properties that one wants to prove.

The connection allows for various geometrical notions. For example, given a Riemannian manifold (M, g) and a
connection ∇, we have parallel transport, or parallel displacement. This is in general not as absolute as Rn.

Given p, q ∈ M and a curve c(t) : [0, 1] → M with c(0) = p and c(1) = q, a vector field along c is a smooth
assignment Y : (a, b) → TM that projects back down to the curve, i.e. if π : TM → M is the natural projection
π(p, V ) = p, then π ◦ Y = c. The smoothness condition means that in local coordinates, there exist smooth functions
ηi such that

Y (t) =

n∑
i=1

ηi(t)
∂

∂xi

∣∣∣∣
c(t)

.

This is different from the notion of a vector field in general! If c is self-intersecting, so that c(t1) = c(t2) for some
distinct t1 6= t2, then it’s perfectly possible to have Y (t1) 6= Y (t2), while this is not possible for vector fields in general.
Thus, this is a broader notion than the restriction of a vector field to a curve.

Then, using the connection, we can differentiate Y : let ċ =
∑
ẋj ∂

∂xj . Then,

∇ċ(t)Y =

n∑
i=1

(
dηi

dt

∂

∂xi
+ ηi∇ċ

∂

∂xi

)
.

The connection can be used to define the covariant derivative along a curve. Then,

=
∑
i

dηi

dt

∂

∂xi
+
∑
i,j,k

Γkij(c(t))ẋ
jηi

∂

∂xk
.

Rewriting this, it becomes

∇ċ(t)Y =

(
dηi

dt
+ Γikj(c(t))ẋ

jηk
)

∂

∂xi
(c(t)).

From this calculation, we see that given an initial vector Y0 ∈ TpM this is just an ODE, so there is a unique vector
field Y (t) such that ∇ċY (t) = 0 for all t and Y (0) = Y0. In fact, since it’s a linear, first-order system with smooth
coefficients, the solution is global; it exists for all time. The Γkij illustrate that it depends on the connection, and the

ẋj that it depends on the curve.
In essence, one can start with a vector Y0 at p and uniquely drag it along the curve to Y (1) ∈ TqM . Thus, one can

work around the notion that tangent vectors are unrelated in different tangent spaces.
The specific ODE that one must solve is

dηi

dt
+ Γijk(c(t))ẋjηk(t) = 0 (4)

for i = 1, . . . , n, and subject to the initial conditions that ηi(0) = ηi0 and Y0 =
∑
ηi0

∂
∂xi

∣∣
p
.9

Now, there is a parallel transport map Pc : TpM → TqM . It ends up being a linear map, and since we have
the inverse map given by reversing the orientation of the curve, it’s an isomorphism. Also, because ∇ has metric
compatibility, then Pc also preservers the metric: if Y1 and Y2 are both parallel, then

d

dt
〈Y1(t), Y2(t)〉 = 〈∇ċY1, Y2〉+ 〈Y1,∇ċY2〉 = 0.

Thus, Pc is a linear isometry between tangent spaces!
In Rn, parallel transport is path-independent, and in particular, if c is a loop, then Pc = id. This is distinctly not

true on general manifolds, but more on that next lecture.
Connections can also be used to define geodesics.

Definition. A (parameterized) geodesic is a curve c for which ċ is parallel along c, i.e. ∇ċċ = 0.

9Theoretically, one would have to deal with coordinate changes, but it happens to be true that every curve can be covered with a

single chart.
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One can think of this as having a curve with zero acceleration. It makes the ODE (4) into a second-order equation
called the geodesic equation:

d2xi

dt2
+ Γkij(c(t))

dxi

dt

dxj

dt
= 0.

With two initial conditions (since it’s second-order), one can solve this. The values of c(0) and ċ(0) will do the trick.
However, since Γkij is nonlinear, then the geodesic equation isn’t necessarily solvable for all time — solutions can blow
up.

6. Tensor Fields, Parallel Transport, and Holonomy: 1/23/14

Though we already saw the directional derivative as an example of a Riemannian connection in Rn, this can be
generalized somewhat to provide another example. Let M be an n-dimensional submanifold of Rk, so that n < k.
Then, DXY still makes sense, since one only needs to know Y along a curve tangent to X, so take the tangential
component. That is, DXY = (DXY )> + (DXY )⊥, where the first term is the tangential component and the second
the normal part. This is possible because the tangent space is a vector space.

Then, the Riemannian connection is ∇XY = (DXY )>. That ∇ is in fact a Riemannian connection is easy to
check, though it helps to know that the Lie bracket of two tangent vector fields is also a tangent vector field. This is
another nice, concrete example of the Riemannian connection; one can easily calculate its Christoffel symbols.

Recall the notion of parallel transport from last lecture; though there it was called Pc, today it is P c. Since this
isn’t an index in the sense of the summation convention, it makes no difference. The map itself was given by a solution
to an ODE; though the theory guarantees that such a solution exists, it’s in practice rather hard to explicitly solve
and write down.
P c has some nice properties; to wit, it’s a linear isometry TpM → TqM . Linearity follows from the fact that the

equations to solve are linear, so plugging in the solution shows that it must respect linearity.10 It’s an isometry
because if Y (t) and Z(t) are parallel along c, then

c〈Y,Z〉 =
d

dt
〈Y (t), Z(t)〉 = 〈∇ċY, Z〉+ 〈Y,∇ċZ〉 = 0,

so 〈P c(Y (q)), P c(Z(q))〉 = 〈Y0, Z0〉.

Holonomy. This is particularly nice if c is a smooth closed curve, since then it’s an automorphism of a vector space
(i.e. c(0) = c(1) = p), and is also an isometry. This curve has an orientation given by increasing values of t, and it’s
possible to define a curve −c with the opposite orientation (i.e. (−c)(t) = c(1− t)). Then, P−c = (P c)−1. This is
because when one looks at the ODE, reversing the sign reverses the solution, and thus P−c(P c(Y0)) = Y0.

Furthermore, if c1 and c2 are closed curves, let c2c1 be the curve given by tracing c1 and then c2.11 Then,
P c2c1 = P c2 ◦ P c1 . c2c1 isn’t necessarily smooth at p, but it’s smooth everywhere else, which is OK, because it’s
possible to define parallel transport on piecewise smooth curves and so this works out.

What this means is that the set of parallel-transport isometries under closed curves is a group, called the holonomy
group. This is a subgroup (often a strict subgroup) of the orthogonal group of all linear isometries of TpM .

Example 6.1. The easiest example is Rn with the standard connection D. Then, for any p ∈ Rn and closed curve c
through P , P c = id, because DċY = 0 iff d

dtY
i = 0, and therefore Y i(0) = Y i(1). In this case, there’s this notion of

global parallelism.

Remark. If one has a metric (U, g) that’s isometric to an open set of Rn with the Euclidean metric (i.e. pulled
back with a diffeomorphism, which could look very complicated), then P c = id for all loops c ⊂ U at p. This is an
interesting way of showing that a given metric is not isometric to the Euclidean one.12

Example 6.2. Consider the sphere S2 and let p be the north pole. Then, let c be a curve that goes down from p to
the equation along a great circle, along the equator for some angle θ, and then back up along a great-circle path to p.
This ends up being a rotation: let X0 be the unit tangent vector of c. Then, since the great circles are geodesics,
parallel transport of X0 along the first sector of c makes it still the unit tangent vector, so at the equator, it still
looks like (0, 0,−1). Along the equator, it doesn’t change at all, so that when it begins the third sector it’s rotated
from the unit tangent vector and ends up back at p rotated by θ. In particular, the holonomy group is nontrivial, so
the sphere isn’t isometric to R2. This is why there are no perfect maps of the sphere on paper: there must always be
some distortion.13

10This also depends on the fact that the solution to the initial value problem is unique.
11This is technically parameterized on [0, 2] rather than [0, 1], but this is easy to fix.
12It turns out this implication goes both ways, but that’s a story for later.
13The fact that this is piecewise smooth might not appeal to everyone, but this can be made into a smooth curve by slowing down and

speeding up the acceleration (or suitably scaling the parameter) in order to smooth it out.
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Tensor Fields. The next topic will be the curvature tensor, but first one needs to discuss tensor analysis more
formally.

Definition. Let M be an n-dimensional manifold and r, s ∈ N.

• A (0, s)-tensor field (an s-covariant tensor field) A is a smooth assignment

p ∈M 7−→ Ap : TpM × · · · × TpM︸ ︷︷ ︸
s times

→ R,

where Ap is required to be s-linear; that is, linear in each slot if the others are fixed.
If one has coordinates x1, . . . , xn near p, this is written

A =

n∑
i1,...,is=1

Ai1i2···is(x) dxi1 ⊗ · · · ⊗ dxis ,

where the Ai1···is are required to be smooth and the basis elements are the functions

dxi1 ⊗ · · · dxis : (v1, . . . , vs) 7−→ dxi1(v1) dxi2(v2) · · · dxis(vs).

Each of these is clearly s-linear, and they form a basis on the ns-dimensional subspace of s-linear functions
(adding symmetries gives interesting, lower-dimensional subspaces).

For a few special cases, if s = 1, one has a vector field, and it’s convenient to think of a smooth function as
a (0, 0)-tensor, in that it associates each p ∈M with a real number.

• An (r, 0)-tensor field (r-contravariant) can be quickly defined because a finite-dimensional real vector space
is self-dual, so TpM = (T ∗pM)∗. This sounds silly, but it turns out to work really well. Let v : T ∗pM → R
be defined as v(ω) = ω(v) (so that now, we vary ω instead of v), so v ∈ (T ∗pM)∗, allowing the canonical
identification with the double-dual.

Then, an (r, 0)-tensor field is a smooth assignment

p ∈M 7−→ Bp : T ∗pM × · · · × T ∗pM︸ ︷︷ ︸
r times

→ R

that is required to be r-linear. The smoothness condition once again means that in local coordinates, it’s
given by smooth functions

B =

n∑
j1,...,jr=1

Bj1j2···jr
∂

∂xj1
⊗ · · · ⊗ ∂

∂xjr
.

Here, ∂
∂xi is the ith component of the standard basis for TpM .

• In general, a tensor field of type (r, s), also known as an (r, s)-tensor field, is a smooth assignment

p 7−→ Ap : T ∗pM × · · · × T ∗pM︸ ︷︷ ︸
r times

×TpM × · · · × TpM︸ ︷︷ ︸
s times

→ R,

where the smoothness conditions are the same as before.

In geometry, one often makes big tensor fields, so having some properties and examples will be useful. We
have already been introduced to (0, 0)-tensors (smooth functions), (1, 0)-tensors (vector fields), and (0, 1)-tensors
(one-forms). Riemannian metrics are examples of (0, 2)-tensors (though there are the additional conditions of symmetry
and positive definiteness).

For another example, consider an assignment p 7→ Ap : TpM → TpM that is smooth in the above sense. This is a
(1, 1)-tensor, because if v ∈ TpM , then one can define Ap(v, ω) = ω(Ap(v)). The coefficients in terms of a local chart
are

A =

n∑
i,j=1

aij
∂

∂xi
⊗ dxj ,

where aij is the matrix of A with respect to the coordinate basis. This is a fairly common construction in geometry. In
this sense, tensor fields generalize matrix theory: higher-order tensors look like matrices in more than two dimensions.

As an example of this, if ∇ is a connection and Y is a vector field, then Ap(X) = ∇XY (p) is a (1, 1)-tensor.
There are various algebraic operations one can use to send tensors of one type to tensors of another type, such as

the trace or the tensor product.
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7. The Riemann Curvature Tensor: 1/28/14

“When I was an undergraduate, I thought all functions had converging power series.”

On this week’s homework, it will be useful to know that if (M1, g1) and (M2, g2) are manifolds and one has an
isometry F ∗(f2) = g1, then if c(T ) is a geodesic in M1, then F ◦ c(t) is a geodesic in M2, because ∇ and everything
else necessary is preserved.

Recall that we had an assignment p 7→ Lp : TpM → TpM linear and smooth in coordinates. This is a (1, 1)-tensor
field A ∈ T1,1: if v ∈ TpM and ω ∈ T ∗pM , then Ap(v, ω) = ω(Lp(v)) ∈ R. It is also possible to describe A in
coordinates, as was done last lecture.

Soon we will construct the most important tensor in this course, but first we will see how to recognize tensors.
Recall more generally that A ∈ Tr,s is an assignment

p 7→ Ap : T ∗pM × · · · × T ∗pM︸ ︷︷ ︸
r times

×TpM × · · · × TpM︸ ︷︷ ︸
s times

→ R.

This can also be thought of as a multilinear operation on vector fields and one-forms: if X is the space of vector fields
o M and E the space of (smooth) one-forms, then one has

A : E × · · · × E︸ ︷︷ ︸
r times

×X × · · · × X︸ ︷︷ ︸
s times

→ C∞(M),

i.e. to the space of C∞ functions M → R. This is given by

A(ω1, . . . , ωr, X1, . . . , Xs)(p) = Ap(ω1(p), · · · , ωr(p), X1(p), . . . , Xs(p)).

Moreover, this operation is C∞-linear in each slot: it’s obviously R-linear, but if one takes, for example,

A(ω1, . . . , ωi−1, f · ωi, ωi+1, . . . , ωr, X1, . . . , Xs) = f ·A(ω1, . . . , ωr, X1, . . . , Xs).

This is because at a point p, (f · ωi)(p) = f(p) · ωi(p), but then all that one has to pull out is the real number
f(p). Recall that ∇XY is also C∞-linear in the X slot; this linearity is sometimes called tensorial. This property
characterizes tensor fields, and in fact one often constructs tensor fields by cooking up multilinear functions on E and
X and showing that they’re C∞-linear.

Lemma 7.1. If A : E × · · · × E × X × · · · × X → C∞(M) is R-multilinear, then A defines a tensor field iff A is
C∞-linear in each slot.

Example 7.1. Recall that the Christoffel symbols looked like (1, 2)-tensors, so if ∇ is the Riemannian connection,
is A(ω,X, Y ) = ω∇XY a (1, 2)-tensor? It’s certainly R-linear, and it’s C∞-linear in ω and X, but not in Y :
A(ω,X, fY ) = ω(∇XfY ) 6= fω(∇XY ) in general.

The tensor is an algebraic operator: its value only depends on the values of other things at that point. But the
connection is a differential operator: it also depends on the local behavior of Y . In operator terminology, the tensor is
a 0th-order operator.

Proof of Lemma 7.1. The forward direction was just shown above, so the content is in the converse. Suppose A is
C∞-linear in each slot. Then, we need to define Ap pointwise, so pick ω1, . . . , ωr ∈ T ∗pM and X1, . . . , Xs ∈ TpM .
Then, define

Ap(ω1, . . . , ωr, X1, . . . , Xs) = A(ω̂1, . . . , ω̂r, X̂1, . . . , X̂s),

where ω̂i ∈ E and X̂i ∈ X are smooth extensions, i.e. ω̂i(p) = ωi and X̂i(p) = Xi. Now, all that remains is to show

this is well-defined independently of the choice of the extension. Let ω̃i and X̃i be some other extensions that agree
at p. Thus, since A is R-multilinear, it suffices to show that A(ω1, . . . , ωr, X1, . . . , Xs)(p) = 0 if any ωi or Xj = 0 at
p. But then, assuming that (which will be proven later), there is always a way to break up the difference of any two
extensions into terms which vanish at p:

A(ω̂1, . . . , ω̂r − X̂1, . . . , X̂s)−A(ω̃1, . . . , ω̃r, X̃1, . . . , X̃s) = A(ω̂1 − ω̃1, ω̂2, . . . , ω̂r, X̂1, . . . , X̂s)

+A(ω̂1, ω̃2, . . . , ω̃r, X̃1, . . . , X̃s)

−A(ω̃1, ω̃2, . . . , ω̃r, X̃1, . . . , X̃s).

Then, this can be repeated in the second slot, to carry the difference further down, and thus eventually terminate it.
It makes much more sense in small tensors as an example:

A(X̂1, X̂2)−A(X̃1, , X̃2) = A(X̂1 − X̃1, X̂2)−A(X̃1, X̂2)−A(X̃1, X̃2)

= A(X̂1 − X̃1, X̂2)−A(X̃1, X̂2 − X̃2).
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In short, there’s an inductive way to break it up so that each term goes to zero at p. This only uses the R-linearity
that was already known of A.

Now, it’s reduced to the case where ωi(p) = 0, and the goal is to show A(ω1, . . . , ωr, X1, . . . , Xs) = 0. (The same
idea applies for any other slot, even the contravariant ones). Work in local coordinates x1, . . . , xn near p given by a
chart U . Then, choose some cutoff function ζ ∈ C∞(M) and a V open in U such that V ⊂ U , and ζ = 1 on V but
ζ = 0 near ∂U . Then, by C∞-linearity,

A(ω1, . . . , ωr, X1, . . . , Xs)(p)−A(ζω1, ω2, . . . , ωr, X1, . . . , Xs)(p) = A((1− ζ)ω1, ω2, . . . , ωr, X1, . . . , Xs)(p)

= (1− ζ(p))A(ω1, . . . , ωr, X1, . . . , Xs) = 0.

Great, so now we’ve reduced to showing that A(ζω1, ω2, . . . , ωr, X1, . . . , Xs) = 0. Well,

ζω1 =

n∑
i=1

ζai dxi

in U , where the ai are globally defined functions that are 0 outside of U . Assume for simplicity that x(p) is the
original; then, this forces ai(0) = 0. Therefore, again by C∞-linearity,

A(ζω1, ω2, . . . , ωr, X1, . . . , Xs) = A

(
m∑
i=1

aiζ dxi, ω2, . . . , ωr, X1, . . . , Xs

)

=

n∑
i=1

ai(0)A(ζ dxi, ω2, . . . , ωr, X1, . . . , Xs)

= 0. �

Cutoff functions were originally counterexamples to the notion that C∞ functions must have compact support. For
example, on R, one could take

f(t) =

{
0, t ≤ 0

e−1/t2 , t > 0.

There are lots of such examples, but they tend to be complicated to write down. The trick is necessary so that one
can do this everywhere (i.e. make ω1 = 0 outside of U).

The term C∞-linear in this discussion appears because one can perceive M as a C∞(M)-module.

The Riemann Curvature Tensor. Now, for the most interesting tensor in this course. Let M be a manifold and
∇ be an affine (so, not necessarily Riemannian) connection. Then, the curvature tensor of ∇ is the (1, 3)-tensor field

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Behind the scenes we have A(ω,X, Y, Z) = ω(R(X,Y )Z) ∈ C∞(M), but usually we’ll use the first formula.
The curious notation is to reflect that R(X,Y ) – is a linear transformation of Z.

Proposition 7.2. R is in fact a (1, 3)-tensor field.

Proof. The proof will show that R is C∞-multilinear, and then use the previous lemma. R is pretty clearly R-
multilinear because ∇ is. As A(ω, . . . ), it’s clearly C∞-linear, because the function is already on the outside. Thus,
it’s necessary to check this in terms of X, Y , and Z. But since R is anti-symmetric in X and Y , C∞-linearity in one
implies it in the other, so there are in fact only two things to check.

On to the calculation. The only interesting terms in the first calculation will be those where fX is differentiated,
i.e. the Lie bracket.

R(fX, Y )Z = ∇fX∇Y Z −∇Y∇fXZ −∇[fX,Y ]Z

= f(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z)− (Y f)∇XZ +∇(Y f)·XZ

= f(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z)− Y (f)∇XZ + Y (f)∇XZ
= fR(X,Y )Z.

Thus, this is tensorial in the X (and therefore Y ) slots. Z is a little harder, since it involves two derivatives of f .

R(X,Y )(FZ) = fR(X,Y )Z + (Y f)∇XZ + (XY f)Z + (Xf)∇Y Z
− (Xf)∇Y Z − (Y Xf)Z − (Y f)∇XZ − ([X,Y ]f)Z

= (XY f)Z − (Y Xf)Z − ([X,Y ]f)Z = 0,

so this is also tensorial in Z. �
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R is really a (1, 3)-tensor, an algebraic object even as it was defined as a differential-like object. This is kind of
magical. Its meaning will be mentioned today, proven in the next lecture.

Definition. let M be a manifold and ∇ a connection.

• ∇ is locally trivial if for all p ∈M there exists a local basis E1, . . . , En of vector fields in a neighborhood of p
that are parallel, i.e. ∇XEi = 0 for all i.

• The induced curvature tensor R is called flat if R = 0 everywhere.

Then, we will show the following theorem. It is a local theorem, as it speaks about things happening in neighborhoods
of a point.

Theorem 7.3. A connection is flat iff it is locally trivial.

This tells us what the curvature actually is, i.e. an obstruction to parallelism. The Riemannian connection has
special properties (i.e. locally trivial implies locally Euclidean).

Theorem 7.4. If g is a Riemannian (or Lorentz) metric and ∇ is metric-compatible, then if R = 0, then one can
take E1, . . . , En to be an orthonormal basis.

In particular, if g is a Riemannian metric and ∇ its connection, then g(Ei, Ej) = δij if R = 0. The final step will
be making these locally Euclidean — which is precisely the torsion-free condition.

8. Flatness: 1/30/14

Recall that the Riemannian curvature tensor is a (1, 3)-tensor field defined as R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −
∇[X,Y ]Z. In local coordinates, one writes

R

(
∂

∂xi
,
∂

∂xj

)
∂

∂xk
= R`kij

∂

∂x`
.

(Remember the summation convention!)

Proposition 8.1. ∇ is locally trivial iff R = 0.

Definition. A connection is trivial if there exists a trivialization, i.e. a basis of vector fields E1, . . . , En such that
∇EiEj = 0 for all i and j.

Proof of Proposition 8.1. The forward direction is easy, because in that basis one can just calculate R and see that it
is zero.

In the reverse direction, suppose R = 0; then, choose coordinates x1, . . . , xn centered at p (i.e. xi(p) = 0). Work
in the cube C = {x : −a < xi < a, i = 1, . . . , n}, so that we have the x1-axis {x ∈ C : x = (x1, 0, . . . , 0)}. Let
e1, . . . , en be a basis for TpM , and let E1, . . . , En be the vector fields obtained from e1, . . . , en, respectively, by parallel
displacement along the x1-axis; thus, on the x1-axis, ∇ ∂

∂x1
Ei = 0.

Now, extend one dimension higher, to the x1x2-plane. Extend Ei to (x1, x2, 0 . . . , 0) by parallel transport along
the curve c(t) = (x1, t, 0, . . . , 0). Then, the Ei are still a basis, because parallel transport is invertible, and now
∇ ∂

∂x2
Ei = 0 and ∇ ∂

∂x1
= 0 when x2 = 0. But using the flatness of R, this can be extended to the entire plane:

∇ ∂
∂x1

Ei = 0 on the entire x1x2-plane. Since R = 0 and the Lie bracket of two coordinate vector fields is 0, then

∇ ∂
∂x2
∇ ∂

∂x1
Ei = 0,

and therefore ∇ ∂
∂x1

Ei is parallel in the x2-direction. But since it was zero on the x1-axis, then it must stay zero on

the entire plane, because the parallel transport of the zero vector is always the zero vector.
This gives an inductive process for finding a parallel basis on the whole cube. Assume E1, . . . , En are parallel in the

x1 . . . xp-plane for some p < n. Then, one can extend E1, . . . , En to a parallel basis in the x1 · · ·xp+1-plane: extend
the Ei by parallel transport along c(t) = (x1, . . . , xp, 0, . . . , 0), so that ∇ ∂

∂xp+1
Ei = 0 on the whole x1 · · ·xp+1-plane.

Then, using flatness, for any j = 1, . . . , p+ 1,

∇ ∂

∂xj
∇ ∂

∂xp+1
Ei = 0, so ∇ ∂

∂xp+1

(
∇ ∂

∂xj
Ei

)
= 0, (5)

and thus it’s parallel in the xp+1-direction, so the parallel transport preserves the zero vector. �

The key to the proof is that in (5), you can switch the order of the derivatives because the space is flat. In some
sense, the curvature measures the failure of the covariant derivatives to commute. Notice also that this proof works
for any scalar product and induced connection, e.g. Lorentz metrics.
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Theorem 8.2. A Riemannian manifold (M, g) is locally isometric to Rn iff R = 0, where R is the curvature tensor
given by the Riemannian connection ∇.

(M, g) is locally isometric to Rn means that for all p ∈M , there is a chart (ϕ,U) and induced local coordinates
x1, . . . , xn such that ϕ : (U, g)→ (ϕ(U), δij) is an isometry, or gij = δij in these local coordinates.

Proof of Theorem 8.2. The proof will almost entirely follow from Proposition 8.1. Again, it’s clear that if (M, g) is
locally isometric to Rn, then the cuvature tensor is flat.

In the other direction, suppose R = 0. Then, for any p ∈M , choose an orthonormal basis e1, . . . , en for TpM ; thus,
there exists a locally parallel frame (i.e. a trivialization of the connection) E1, . . . , En in U such that ∇EiEj = 0 and
Ei(p) = pi. Then, these Ei are still orthonormal: for any vector field X, by metric compatibility,

X〈Ei, Ej〉 = 〈∇XEi, Ej〉+ 〈Ei,∇XEj〉 = 0.

We haven’t used the torsion-free condition, and in fact the theorem is false without it. This tells us that the vector
fields commute:

[Ei, Ej ] = ∇EiEj −∇EjEi = 0.

As a consequence of the rectification theorem from the homework, if one takes k commuting vector fields which are
independent at all points, then there exists a set of local coordinates x1, . . . , xn such that Ei = ∂

∂xi for i = 1, . . . , k.
But since the Ei produced above satisfy these conditions (where k = n), then they become coordinate vector fields.
But they’re still orthonormal, so in U ,

gij =

〈
∂

∂xi
,
∂

∂xj

〉
= δij .

The fact above (the generalized rectification theorem) deserves at least a proof sketch. The basic lemma is that if one
takes two smooth vector fields X and Y , then [X,Y ] = 0 iff their local flows commute: if X gives local flow ψt and Y
gives the local flow ϕs, then ϕs ◦ ψt = ψt ◦ ϕs. Then, one can define a system of coordinates x̃1, . . . , x̃n such that x̃i

is in the direction of the flow of Ei, and since they commute, then one can do this everywhere.
Now, why is the lemma true? The flow and vector field uniquely determine each other, so given some flow

ϕs, one can conjugate it, and get a new flow ψ−t ◦ ϕs ◦ ψt given by s, so that s1 + s2 7→ ψ−t ◦ ϕs1 ◦ ϕs2 ◦ ψt =
(ψ−t ◦ ϕs1 ◦ ψt) ◦ (ψ−t ◦ ϕs2 ◦ ψt). Let Z be the vector field with this flow; then, Z(p) = Dψ−t(Yψt(p)). Then, the
goal is to show that Z = Y ; assume X is nonzero (so that this problem is interesting), so that one can rectify and
choose coordinates in which X = ∂

∂x1 , and ψt(x
1, . . . , xn) = (x1 + t, x2, . . . , xn). Then, one can explicitly calculate Z

in these coordinates, and get Y . �

Structure of the Riemann Curvature Tensor. The way the curvature tensor is set up gives it an interesting
algebraic structure. Though as defined it is a (1, 3)-tensor, the metric it induces can make it into a (0, 4)-tensor,
defined as follows for four vector fields X, Y , Z, and V :

(X,Y, Z, V ) 7→ 〈R(X,Y )Z, V 〉.
In some sense, one uses the metric to lower one of the indices. This can be nicer, because each index is on equal
footing, so to speak.

Here are some zero-order symmetries, i.e. properties of the tensor that are algebraic in nature.

(1) Like any curvature tensor, R is anti-symmetric in X and Y : R(X,Y )Z = −R(Y,X)Z.
(2) The first Bianchi identity: R(X,Y )Z+R(Y,Z)X+R(Z,X)Y = 0. Not all curvature tensors of all connections

satisfy this, but the Riemann curvature tensor does.
(3) The (0, 4)-tensor is anti-symmetric in Z and V : 〈R(X,Y )Z, V 〉 = −〈R(X,Y )V,Z〉. This is not obvious, and

follows from metric compatibility.
(4) 〈R(X,Y )Z, V 〉 = 〈R(Z, V )X,Y 〉.

These symmetries make it easier to see the geometric structure of the tensor: it’s a huge object, with four indices, so
these make life easier to understand. For example, in general relativity, Einstein’s equations use the Ricci curvature,
which is derived from these symmetries. Similarly, one might use these in differential geometry to understand sectional
curvature on two-dimensional slices of a manifold.

These properties aren’t too hard to check: (1) is trivial. For (2), add the following together:

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

R(Y,Z)X = ∇Y∇ZX −∇Z∇YX −∇[Y,Z]X

R(Z,X)Y = ∇Z∇XY −∇X∇ZY −∇[Z,X]Y.

Since ∇ is torsion-free, ∇Y Z −∇ZY = [Y, Z], so the sum becomes

∇X [Y,Z] +∇Y [Z,X] +∇Z [X,Y ]−∇[X,Y ]Z −∇[Y,Z]X −∇[Z,X]Y,
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which using metric compatibility again, becomes [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]], which is zero by the Jacobi
identity.

For part (3), one can use the polarization trick, that showing a bilinear form is antisymmetric is equivalent to
showing it’s 0 on the diagonal, because then one can use linearity to get the full anti-symmetry. Thus, the goal is to
show that for any X, Y , and Z, 〈R(X,Y )Z,Z〉 = 0. Then,

XY 〈Z,Z〉 = X(2〈∇Y Z,Z〉) = 2〈∇X∇Y Z,Z〉+ 2〈∇Y Z,∇XZ〉.
=⇒ [X,Y ]〈Z,Z〉 = 2〈∇X∇Y Z −∇Y∇XZ,Z〉,

where the second follows from the symmetries in the first. Then, since this is also equal to 2
〈
∇[X,Y ]Z,Z

〉
, then one

can collect the terms and discover 〈R(X,Z)Z,Z〉 = 0.

9. Symmetries of the Curvature Tensor: 2/4/14

Recall that given a Riemannian manifold (M, g), one obtains a Riemannian connection ∇, and from that the
Riemann curvature tensor, either the (1, 3)-tensor R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z or the (0, 4)-tensor

R̂(X,Y, Z, V ) = 〈R(X,Y )Z, V 〉. Then, we showed the following identities:

• R(X,Y )Z = −R(Y,X)Z.
• The first Bianchi identity: R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0.
• 〈R(X,Y )Z, V 〉 = −〈R(X,Y )V,Z〉.
• 〈R(X,Y )Z, V 〉 = 〈R(Z, V )X,Y 〉.

These are the 0th-order identities of the curvature tensor; there are other symmetries, but they involve derivatives.
We haven’t yet proved the last one, so let’s do that: using the third identity,

〈R(X,Y )Z, V 〉 = −〈R(Y,X)Z, V 〉
= 〈R(X,Z)Y, V 〉+ 〈R(Z, Y )X,V 〉

by the 1st Bianchi identity.

〈R(X,Y )Z, V 〉 = −〈R(X,Y )V,Z〉
= 〈R(Y, V )X,Z〉+ 〈R(V,X)Y, Z〉.

Taking the sum,

2〈R(X,Y )Z, V 〉 = 〈R(X,Z)Y, V 〉+ 〈R(Y, V )X,Z〉+ 〈R(Z, Y )X,V 〉+ 〈R(V,X)Z, Y 〉.

Sectional Curvature. Let Π ⊆ TpM be a two-dimensional subspace, and {v1, v2} be a basis for Π.

Definition. The sectional curvature of Π is

K(Π)p =
〈R(v1, v2)v2, v1〉

det(〈vi, vj〉)
.

In two dimensions (i.e. n = 2, so that Π = TpM), this is called the Gauss curvature.

This quantity is a smooth function of the point p. It’s also independent of the choice of basis, which follows from
the symmetries discussed above. Let {ṽ1, ṽ2} be another basis for Π, so that

vi =

2∑
j=1

aij ṽj .

Let A = (aij). Then,

〈R(v1, v2)v2, v1〉 = 〈R(a11ṽ1 + a12ṽ2, a21ṽ1 + a22ṽ2)v2, v1〉
= (a11a22 − a12a21)︸ ︷︷ ︸

detA

〈R(ṽ1, ṽ2)v2, v1〉

= (detA)2〈R(ṽ1, ṽ2)ṽ2, ṽ1〉.

The change is by the determinant squared, but fortunately, this goes for the denominator, too: (〈vi, vj〉) = A(〈ṽi, ṽj〉)AT,
so when one takes the determinant, there’s an extra factor of det(A) det(AT) = (detA)2. Thus, the changes cancel
out, and the sectional curvature is independent of basis.

The idea of sectional curvature is that a two-dimensional section of TpM traces out a two-dimensional submanifold
of M , and the sectional curvature is just the Gauss curvature of that submanifold.
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Curvature of Hypersurfaces. Let M be an n-dimensional submanifold of an (n+ 1)-dimensional manifold N . Let
g be a Riemannian metric on N and g be the induced metric on M , i.e. gp = g|TpM . If ∇ is the induced Riemannian

connection on M and ∇ is that on N , then ∇XY = (∇XY )> = ∇XY − 〈∇XY, ν〉ν, where ν is a unit normal. (Note
that this does require a choice of a unit normal at every point.)

Definition. The second fundamental form on a Riemannian manifold (M, 〈·, ·〉) with Riemannian connection ∇ is
h(X,Y ) = 〈∇XY, ν〉, where ν is normal to X and Y . Sometimes, in physics, this is called the extrinsic curvature.

This is a (0, 2)-tensor, and is symmetric: h(X,Y )− h(Y,X) = 〈[X,Y ], ν〉 = 0. Moreover,

h(X, fY ) = 〈f∇XY + (Xf)Y, ν〉 = f〈∇XY, ν〉 = fh(X,Y ).

The second fundamental form isn’t really an intrinsic quantity, and thus doesn’t come up much in Riemannian
geometry. But it’s useful in some cases, e.g. deriving the Gauss equation.

Example 9.1. A nice example of this is a graph, which has natural global coordinates: suppose M = {(x, u(x)) :
x ∈ Ω}, where Ω ⊆ Rn is open. Then, xn+1 = u(x1, . . . , xn), so one can take the coordinates x1, . . . , xn for M . Then,

∂

∂xi
=

(
0, . . . , 0, 1, 0, . . . ,

∂u

∂xi

)
,

with the 1 in the ith position, so

gij =
∂

∂xi
· ∂

∂xj
= δij + uxiuxj .

Now, it’s necessary to pick a unit normal, but in this case it’s fairly explicit: ν = (−∇u, 1)/

√
1 + |∇u|2 (since

xn+1 − u(x1, . . . , xn) = 0 if (x1, . . . , xn+1) ∈M , so ∇F = (−∇u, 1) is normal to the level sets of F (x1, . . . , xn+1) =
xn+1 − u(x1, . . . , xn)). Then,

∇ ∂

∂xi

∂

∂xj
· ν =

(
0, . . . , 0,

∂2u

∂xi∂xj

)
· ν,

so in coordinates, the second fundamental form is given by the matrix

hij =
1√

1 + |∇u|2
∂2u

∂xi∂xj
.

The idea behind the Gauss equation is that the curvature tensor can be written in terms of this second fundamental
form, which makes it easier to compute the curvature of a given manifold. Let X, Y , and Z be tangent vector fields
to M (which sits inside N , an (n+ 1)-dimensional manifold, as before). Let R be the curvature tensor for N and R
be that for M ; then, the Gauss equation says that

(R(X,Y )Z)> = R(X,Y )Z + h(Y,Z)LX − h(X,Z)LY, (6)

where L is the shape operator (or Weingarten map), which is just the (1, 1)-tensor version of the second fundamental
form, i.e. 〈LX, Y 〉 = h(X,Y ) = g(∇XY, ν) = X〈Y, ν〉 −

〈
Y,∇Xν

〉
. Thus, once things cancel out, one has the formula

LX = −∇Xν. In other words, at a point p ∈ M , one obtains a linear map Lp : TpM → TpM . In some sense, this
makes the Gauss equation quadratic in terms of the second fundamental form, and when the (0, 4)-version of the
equation is used, the shape operator disappears entirely.

Here’s why the Gauss equation works:

(R(X,Y )Z)> = (∇X∇Y Z)> − (∇Y∇XZ)> − (∇[X,Y ]Z)>.

Then, the first term simplifies to (∇X(∇Y Z + h(Y, Z)ν))>, which is just ∇X∇Y Z − LX, and the other two terms
follow similarly.

The (0, 4)-version of the Gauss equation might look a little more familiar: if X, Y , Z, and V are all tangent vector
fields to M , then

〈R(X,Y )Z, V 〉 =
〈
R(X,Y )Z, V

〉
+ h(Y,Z)h(X,V )− h(X,Z)h(Y, V ). (7)

Now, the fact that it’s quadratic in the second fundamental form is more obvious. If e1, e2 is a basis for TpM and M
is a two-dimensional submanifold of R3, then 〈R(e1, e2)e2, e1〉 = h22h11 − h2

12 = det(hij). Thus, one has the following
consequence, also due to Gauss:

Theorem 9.1 (Theorema Egregium).

K =
〈R(e1, e2)e2, e1〉

det(gij)
=

det(hij)

det(gij)
.
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This indicates some interesting relations between the extrinsic curvature, given by the second fundamental form,
and the intrinsic curvature, given by the metric.

Example 9.2. The above results make calculating the curvature a lot less painful; for example, consider Sn ⊆ Rn+1

given by {x | ‖x‖ = 1}. Then, the unit normal is just the position vector, which is a really nice property of the sphere:
ν = x, so LX = −∇Xx = −X, and thus R(X,Y )Z = h(Y,Z)(LX) − h(X,Z)(LY ) = 〈Y,Z〉X − 〈X,Z〉Y , because
h(X,Y ) = 〈X,Y 〉. Thus the curvature is

K =
〈R(X,Y )Y,X〉

‖X‖2‖Y ‖2 − 〈X,Y 〉2
=
‖X‖2‖Y ‖2 − 〈X,Y 〉2

‖X‖2‖Y ‖2 − 〈X,Y 〉2
= 1.

A useful reference tensor on any Riemannian manifold (M, g) is R1(X,Y )Z = 〈Y, Z〉X − 〈X,Z〉Y . This is akin to
the curvature tensor, but with a constant curvature of 1.

Another interesting fact is that the sectional curvatures algebraically completely determine the curvature tensor.
The book explains this in gory detail (even though most don’t). It’s an interesting formula, if not particularly useful.

Theorem 9.2. All entries in 〈R(X,Y )Z, V 〉 can be expressed as linear combinations of entries of the form
〈R(A,B)B,A〉.

Proof. Let R and R̃ be curvature tensors (i.e. they satisfy the four algebraic symmetries outlined above) and

〈R(A,B)B,A〉 and 〈R̃(A,B)B,A〉 for all A,B ∈ X (M), then one can show that R = R̃ by subtracting R − R̃ and
doing some algebraic manipulation. �

10. Traces and Sectional Curvature: 2/6/14

“So in particular, if I’m Einstein. . . ”

Theorem 10.1. The sectional curvature determines the full curvature tensor.

Proof. Let R and R̃ be curvature-type tensors, i.e. the four algebraic identities outlined in the previous lecture all

hold. Then, if for all X, Y , 〈R(X,Y )Y,X〉 =
〈
R̃(, Y )Y,X

〉
, then R = R̃, by the Gauss equation. Each tensor can be

written as linear combinations of such elements, albeit in a complicated way.

Let Q(X,Y, Z, V ) = 〈R(X,Y )Z, V 〉 −
〈
R̃(X,Y )Z, V

〉
; then, the goal is to show that Q(X,Y,X, Y ) = 0. This can

be shown by expanding out Q and using the identities for R and R̃ (in particular, the Bianchi identity for cyclic
permutation) to show that it goes to zero. �

The sectional curvatures are everything, and are useful for understanding the total curvature. This is more of a
philosophical point, but still helpful in practice.

The (0, 4)-curvature tensor has traces defined for all pairs of slots; for example, the (1, 2)-trace of Z and V is∑
i〈R(ei, ei)Z, V 〉, where e1, . . . , en is a basis of TpM . However, this is anti-symmetric, so it goes to zero. Similarly,

the (3, 4)-trace is anti-symmetric in ei and ei, and goes to zero as well.
Then, the remaining traces are equal up to sign: The (2, 3)-trace is

n∑
i=1

〈R(X, ei)ei, Y 〉 =

n∑
i=1

〈R(ei, X)Y, ei〉,

using the curvature identities, but this is the (1, 4)-trace. And the (2, 4)-trace is
∑n
i=1〈R(ei, X)ei, Y 〉, which is the

negative of the (1, 4)-trace.
The Ricci tensor is just a choice of one of these, e.g. the (2, 3)-trace:

Ric(X,Y ) =

n∑
i=1

〈R(X, ei)ei, Y 〉.

This is a symmetric (0, 2)-tensor field, somewhat like the Riemannian metric.
The Ricci curvature contains less information than the Riemann curvature tensor, because some entries are summed;

thus, the Ricci curvature says useful things about the sectional curvature, but doesn’t always completely determine R.
In lower dimensions (n = 2, 3), though, they do contain the same amount of information.

Definition. The scalar curvature is a real-valued function that is given by the full trace of the Riemann curvature
tensor:

R =

n∑
i=1

Ric(ei, ej).
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These are all independent of basis, which follows from more general facts about tensor fields, generalization of the
notion of a trace of a matrix. For example, consider a (1, 1)-tensor

A =

n∑
i,j=1

aij
∂

∂xi
⊗ dxj .

But one can always contract a covariant entry with a contravariant entry, to get a basis-independent quantity:

c(A) =

n∑
i=1

aii ∈ C∞(M).

On (0, 2)-tensor fields (using the summation convention) α = αij dxi ⊗ dxi, one can use the metric to convert a
covariant index to a contravariant index, obtaining a (1, 1)-tensor

A = giαpj
∂

∂xi
⊗ dxj .

Now, it’s possible to contract (though in general this requires the metric, so that there are both covariant and
contravariant indices).

In general, if A is an (r, s)-tensor field, then one can contract and obtain c(A), an (r − 1, s− 1)-tensor field. This
can be done in several ways: if in coordinates

A =
∑

ai1...irj1...js

∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs .

However, it happens that all of the choices for this are the same. This is the principle that underlies index notation.
The scalar curvature admits a geometric interpretation: suppose e1, . . . , en is an orthonormal basis for TpM .

R =

n∑
i,j=1

〈R(ei, ej)ej , ei〉︸ ︷︷ ︸
K(Πij)

,

where Πij is the space spanned by ei and ej . This means that R is twice the sum of the sectional curvatures of the
coordinate 2-planes. In the case n = 2, R = 2K, where K is the Gauss curvature again. In some sense, this is the
weakest version of the curvature tensor (weakest invariant), except in dimension 2, where they’re equally powerful.

Definition. If (M, g) is a Riemannian manifold, then g is Einstein if the Ricci tensor is proportional to the metric:
Ric(g) = λg for some λ.

One can also define an Einsteinian metric for Lorentz metrics, and this is what is used in physics, but the
Riemannian case is also interesting in geometry.

Example 10.1.

(1) Any space of constant curvature clearly has an Einstein metric.
(2) Suppose R = cR1, for some constant c. Then, one can calculate that Ric(X,Y ) = c(n− 1)〈X,Y 〉, and c(n− 1)

is constant. This can be shown by plugging into the definition of the Ricci curvature.

Proposition 10.2. If n = 2 or n = 3 and if g is an Einstein metric on M , then (M, g) has constant curvature.

Proof. In the case n = 2, the Ricci tensor is just the Gauss tensor, so if g is Einstein, then K must be constant.
For n = 3, the idea is that the sectional curvatures can be recovered from the Ricci curvature: if Π is a 2-plane

and e1 and e2 are orthonormal on Π, then one can choose an orthonormal e3 to e1 and e2. Then, one can recover
the sectional curvature as follows: if Kij is the sectional curvature of the eiej-plane, then Ric(e1, e1) = K12 +K13,
Ric(e2, e2) = K12 +K23, and Ric(e3, e3) = K13 +K23.

Thus, one solves these to obtain, e.g. K12 = (R11 +R22 −R33)/2, so K(Π) = λ/2 if g is Einstein with constant
λ. �

This also works for Lorentz metrics: in three dimensions, Einstein metrics have constant curvature. But in neither
case (Riemannian nor Lorentz) does this work in n = 4; instead, there are plenty of counterexamples. Perhaps the
simplest is S2 × S2, but that’s a story for the problem set.

These are all of the 0th-order properties we need, so let’s see how to extend ∇ to accept more general tensor fields.
As a starting point, ∇Xf = Xf , and ∇XY is defined for vector fields X and Y . We also have the Leibniz rule, which
will really be useful.

22



Look at a simple (2, 0)-tensor Y ⊗Z, where Y ⊗Z(w1, w2) = w1(Y )w2(Z). Then, ∇X(Y ⊗Z) = (∇XY )⊗Z+Y ⊗
∇XZ is a natural way of understanding the Leibniz rule. Then, this can be extended, since what has been already
defined works for the basis. Thus, if A = aij ∂

∂xi
∂
∂xj , then

∇XA =

n∑
i,j=1

∇X
(
aij

∂

∂xi
⊗ ∂

∂xj

)
,

using the rules defined above.
Then, this can be extended to (r, 0)-tensors in the same way. But what about covariant tensors? These can be

accounted for by declaring that ∇ commutes with contractions. Thus, if ω is a (1, 1)-tensor, then c(∇X(Y ⊗ ω)) =
∇XY ⊗ ω + Y ⊗∇Xω. But then, since c(Z ⊗ ω) = w(Z), then this simplifies to the following rule:

(∇Xω)(Y ) = X(ω(Y )− ω(∇XY ).

This just follows because we want the Leibniz rule to work, and for the operation to commute with contraction. And
now, these formulas allow one to apply ∇ on general (r, s)-tensors.

If A is an (r, s)-tensor field, then ∇XA is also an (r, s)-tensor field, but since it’s C∞-linear, and therefore tensorial,
in X, then ∇A is an (r, s+ 1)-tensor field, given by

∇A(ω1, . . . , ωr, Y1, . . . , Ys, X) = (∇XA)(ω1, . . . , ωr, Y1, . . . , Ys).

The indices might look like ∇iai1...isj1...js
, so there’s an extra lower index, making it an (r, s+ 1)-tensor.

Note that the direction one differentiates in should always be a vector field; more general tensor fields don’t seem
to have sense of direction, which is what the covariant derivative actually means.

With this extension of ∇, one can state the second Bianci identity for the (1, 3) curvature tensor R,

(∇XR)(Y,Z)V + (∇YR)(Z,X)V + (∇ZR)(X,Y )V = 0.

Here. ∇XR is also a (1, 3)-tensor field, so the same notation is used (∇XR)(Y,Z, V ) = (∇XR)(Y,Z)V .
Then, in coordinates with the Christoffel symbols, one has

∇i dxj = −
∑

Γjik dxk.

11. The Second Bianchi Identity: 2/11/14

“Everyone believes that’s a completely rigorous proof, right? You won’t go complain to the Dean or
anything?”

Recall that along the way to proving the second Bianchi identity, it was necessary to extend the connection ∇ to
general tensor fields. For example, if x1, . . . , xn are local coordinates and A is a (1, 1)-tensor in coordinates

A =
∑

aij
∂

∂xi
⊗ dxj ,

then ∇kaij is the coefficient of the (1, 2)-tensor

∇A =
∑
∇kaij

∂

∂xi
⊗ dxk ⊗ dxj .

Expanding out and implicitly summing `, this is

∇kaij = ∂ka
i
j + a`jΓ

i
`k − ai`Γ`jk.

(Here, ∂k = ∂
∂xk

.) Moreover, using the torsion-free property, if ∇ ∂
∂xi = 0 at p, then ∇kaij = ∂ka

i
j (which follows from

a homework problem).
All of this can also be said about more general tensor fields, but there are just more terms on the right.
Recall that we were proving the second Bianchi identity:

(∇XR)(Y,X)V + (∇YR)(Z,X)V + (∇ZR)(X,Y )V = 0.

It’s enough to check this in a basis, but in local coordinates we have

R

(
∂

∂xi
,
∂

∂xj

)
∂

∂xk
=
∑
`

R`kij
∂

∂x`
.

So the goal is to show that

∇kRpqij +∇iRpqjk +∇jRpqki = 0.
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It’s possible to choose suitable coordinates such that ∇kij = 0 at a point P , so ∇ becomes ∂:

0 = ∂kR
p
qij + ∂iR

p
qjk + ∂jR

p
qki

Rpqij = ∂iΓ
p
qj − ∂jΓ

p
qi + Γ2.

But the Γ2 term vanishes quadratically once the derivative is taken, and ∂iΓ
p
qj = ai, so the goal is to calculate

∂k∂iaj − ∂k∂jai + ∂i∂jak − ∂i∂kaj + ∂j∂kai − ∂j∂iak, but partials commute, so this is zero.
This is different than in the book, but is a completely honest proof: choosing the right basis can make a lot of

terms go away.

Definition. The Einstein tensor is G = Ric−(1/2)Rg. This is a symmetric, (0, 2)-tensor.

In this notation, G stands for “gravity.”

Definition. The divergence of a (0, 2)-tensor field G is the (0, 1)-tensor field

divG(X) =

n∑
i=1

(∇eiG)(ei, X),

where e1, . . . , en is an orthonormal basis.

Proposition 11.1 (Twice-contracted 2nd Bianchi identity). G is divergence-free.

Proof. Write Q(X,Y, Z, V ) = 〈R(X,Y )Z, V 〉; then, by the second Bianchi identity,

(∇XQ)(Y, Z, V,W ) + (∇YQ)(Z,X, V,W ) + (∇ZQ)(X,Y, V,W ) = 0.

Then, take the trace in the Z and V slots. This commutes with the covariant derivative because of metric compatibility
of ∇, which can be explicitly calculated. Then, after the traces are taken, one obtains

(∇X Ric)(Y,W )− (∇Y Ric)(X,W ) + (∇eiQ)(X,Y, ei,W ) = 0.

Then, take the trace with respect to X and W :

0 = 2(div Ric)(Y )− Y (R)

= 2(div Ric)(Y )− div(Rg)(Y ),

so div(Ric−(1/2)Rg) = 0. �

This version is arguably more useful than the conventional 2nd Bianchi identity.
There’s two nice corollaries called the Schur theorems. Oddly enough, the easier one is the stronger one.

Theorem 11.2 (First Schur Theorem). If n ≥ 3 and there exists an open connected U ⊆M such that Ric(g)p = λ(p)gp
for all p ∈ U , then λ is constant (i.e. g is Einstein).

This means that if the Ricci curvature is constant o TpM , then it’s constant everywhere. But in dimension 2, the
fact that the Ricci curvature is identical to the Gauss curvature creates plenty of counterexamples.

Theorem 11.3 (Second Schur Theorem). If n ≥ 3 and there exists a open connected U ⊆M such that, for all p ∈ U ,
there exists a κ(p) such that Kp(Πp) = κ(p) for all Πp ⊆ TpM , then κ is constant and g is a constant curvature
metric.

Proof. This proof will assume the first Schur theorem, which will be proven next. Furthermore, we have

〈R(X,Y )Z, V 〉p = κ(p)(〈X,V 〉〈Y,Z〉 − 〈Y, V 〉〈X,Z〉).
Thus, Ric(X,V ) = (n− 1)κ(p)g(X,V ), so let λ(p) = (n− 1)κ(p), and then all that needs to be done is invoking the
first Schur theorem. �

The direct proof of this theorem is a little more messy algebra.

Proof of Theorem 11.2. Write

G = Ric−1

2
Rg =

(
1

n
− 1

2

)
Rg,

and since n > 2, then this constant, (2− n)/2n, is nonzero. But I know that div(G) = 0, so div(Rg) = 0 as well, so

0 = (div(Rg))(X) = ∇ei(Rg)(ei, X)

= (eiR)g(ei, X)

= XR,

so R must be constant on U . �
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Theorem 11.4. Suppose n ≥ 3 and M is a connected n-dimensional submanifold embedded in Rn+1. If M is Einstein
and R 6= 0, then M is a portion of the sphere.

That the sphere is a hypersurface of constant curvature is no surprise, but it’s more interesting that it’s the only
one.

Corollary 11.5. No piece of hyperbolic space Hn for n ≥ 3 can be embedded as a hypersurface.

Once again, this is false for n = 2: there are local embeddings (though by a theorem of Hilbert, no global
embeddings), including a surface of revolution called the pseudosphere.

The consequence of this theorem is that Riemannian geometry is much more general than that of hypersurfaces.
There is a (hard) theorem of John Nash that every manifold can be globally embedded in sufficiently high-dimensional
Euclidean space, but embeddings as hypersurfaces are special. The signature of the metric is important: Hn has a
natural embedding in (n+ 1)-dimensional Minkowski space, for example.

The question of finding an isometric embedding F : M → Rn is equivalent to solving the system of PDEs
g̃ij = ∂F

∂xi ·
∂F
∂xj = gij (for given gij , solving for F , which leads to g̃ij). This is an overdetermined system, so generically

there isn’t a solution (unless the codimension is high). It’s more reasonable for n = 3, because then there are fewer
constraints, and under a lot of conditions surfaces can be embedded (sometimes only locally) into R3; the general
conjecture is open.

12. Models of Hyperbolic Space: 2/18/14

There are standard examples of simply connected spaces of constant curvature: for positive curvature, the sphere
Sn, and for zero curvature, Euclidean space Rn. There are several standard models for hyperbolic space Hn, and
they are abstractly isometric. In some cases, one can give explicit isometries between these formulations.

Consider Minkowski space Rn+1
1 , i.e. (n+1)-dimensional space with the Lorentz pairing 〈v, w〉 = −v0w0+

∑n
i=1 v

iwi.
Another way to write this is

g = −( dx0)2 +

n∑
i=1

( dxi)2 =

n∑
a,b=0

ηab dxa dxb,

where η is the matrix equal to In except with a −1 in position (1, 1). (It’s common to leave the ⊗ sign out of metrics
in this context.) Minkowski space has some interesting geometry. For a start, vectors fall into three types: spacelike,
i.e. 〈v, v〉 > 0, timelike, i.e. 〈v, v〉 < 0, and null, for which 〈v, v〉 = 0.

A more general linear-algebraic fact is that if 〈·, ·〉 is any nondegenerate scalar product and V ⊆ Rn+1
1 is a linear

subspace of codimension 1, then there exists a normal vector ν 6= 0 such that V = {x : 〈x, ν〉 = 0}. In other words, V
is the zero set of a linear function. This means one can classify subspaces of codimension 1:

• V is spacelike if its normal vector ν is timelike. In this case, one can always scale ν such that 〈ν, ν〉 = −1.
• V is timelike if its normal vector ν is space-like, in which case it can be normalized such that 〈ν, ν〉 = 1.
• V is a null plane if ν is a null vector. In this case, ν ∈ V , which is slightly weird.

One can think of a spacelike plane as a plane with slope less than 1 (relative to everything vs. x0), roughly, so that
its normal vector is inside the null cone (and therefore timelike). A timelike plane has slope greater than 1 (or is
vertical), so that its normal vector is spacelike. Then, a null plane must have slope exactly 1, and is contained within
the null cone (lightcone).

It is also possible to classify curves: a curve is spacelike if its tangent vector is always spacelike, and so on. We will
ignore the cases of curves (and hypersurfaces) where the curve doesn’t change.

One can also classify hypersurfaces: if M is an n-dimensional hypersurface in Rn+1
1 , then:

• M is spacelike if TpM is always spacelike for all p.
• M is timelike if TpM is timelike for all p.
• M is null if TpM is a null plane for all p.

The null cone is singular at the origin, but when that singularity is removed, it becomes a null hypersurface. If
M = {x0 = u(x1, . . . , xn)}, then it is spacelike if ‖∇u‖ < 1, timelike if ‖∇u‖ > 1, and is timelike if ‖∇u‖ = 1 (the
eikonal equation), since this determines the slopes of the tangent planes. Null hypersurfaces have more of a structure
because this is an equality, rather than an inequality.

Within this Minkowski space, consider the unit sphere Sn−1 = {x ∈ Rn+1
1 : 〈x,x〉 = −1, x0 > 0}. The first equation

requires that (x0)2 = 1 +
∑n
i=1(xi)2, which is a hyperboloid of two sheets, and thus has two connected components.

Sn−1 is one of them. This is isometric to Hn, as it will be shown to have constant curvature of −1. Interestingly, the
restriction of the standard Lorentz metric to Sn−1 gives a Riemannian metric, which is what allows this to work.

One also has Sn+1 = {x ∈ Rn+1
1 : 〈x,x〉 = 1}. This intersects all planes where x0 is constant, and is a hyperboloid

of one sheet. This is a surface of revolution, asymptotic to the lightcone, and simply connected. This is a timelike
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hypersurface, unlike Sn−1, which is spacelike. Thus, the induced metric onto Sn+1 is a Lorentz metric. This induced
spacetime is called de Sitter spacetime, and is a well-studied object. This Lorentz manifold has lots of symmetries;
it’s akin to the sphere, in terms of constant positive curvature, but the fact that it’s not compact makes life more
interesting.

Since Sn−1 has constant negative curvature and is Riemannian, one can compute that the sectional curvature is
just −1. But for de Sitter spacetime, it’s harder, and one can’t even compute cuvature for null hypersurfaces. This
can be derived by looking at the Gauss equation: let M ⊆ Rn+1

1 be either spacelike or timelike, so that it has a unit
normal ν. Let ε = 〈ν, ν〉, so that it’s 1 is M is timelike and −1 if M is spacelike. The induced metric is nondegenerate
(Riemannian in the spacelike case, Lorentz in the timelike case; it’s degenerate in the null case), so one can compute
its connection. This ends up being ∇XY = DXY − ε〈DXY, ν〉ν.

This works, because we want 〈∇XY, ν〉 = 0, but this is 〈DXY, ν〉−ε〈DXY, ν〉〈ν, ν〉, which works because ε〈ν, ν〉 = 1.
The Gauss equation has a similar form, with an ε also appearing:

R(X,Y )Z = ε(h(Y,Z)LX − h(X,Y )LY ),

where h(X,Y ) = 〈DXY, ν〉. Since DXν is tangential and 〈Y, ν〉 = 0, then LX = −DXν, with the shape operator
again a (1, 1)-tensor Lp : TpM → TpM .

First, the curvature in the ambient space is set to zero:

0 = DXDY Z −DYDXZ −D[X,Y ]Z

= (DXDY Z)> − (DYDXZ)> − (D[X,Y ]Z)>.

But DY Z = ∇Y Z + εh(Y, Z)ν, so DXDY Z = ∇X∇Y Z − εh(Y,Z)LX. Then,

= R(X,Y )Z − εh(Y,Z)LX + εh(X,Y )LY. (8)

The last equation, (8), is the specific form of the Gauss equation in Minkowski space. It’s the same idea as before,
but with the sign associated with the tangential projection.

Now, one can check the curvature of a hypersurface, such as Sn−1. Just as with the sphere, one can take the normal
vector to x at a point to be ν = x: if Y is tangent to Sn−1, then 〈x,x〉 = −1, which is constant, so Y (〈x,x〉) = 0, so
2〈DY x,x〉 = 0. But DY x = Y , so 〈Y,x〉 = 0 for all Y ∈ TpS−1n.

Then, LX = −DXν = −X, i.e. L = − id, and

R(X,Y )Z = −(−〈Y,Z〉X + 〈X,Z〉(−Y )) = −(〈Y,Z〉X − 〈X,Z〉Y ) = −R1(X,Y )Z.

Thus, R is a constant multiple of R1, so it has constant sectional curvature equal to −1. Thus, this is the curvature
for the timelike unit sphere Sn−1.

For de Sitter spacetime, the ε changes sign, so one instead obtains R(X,Y )Z = R1(X,Y )Z. This has constant
positive curvature, but since it’s Lorentz and not Riemannian (unlike the timelike unit sphere), then it’s not isometric
to Sn. Then, for any nondegenerate two-dimensional Π ⊆ TpSn+1, K(π) = 1.

The Lorentz and Poincaré Groups. In standard hyperbolic space, the isometries are kind of unpleasant to write
down. However, the advantage of the presentation via Minkowski space is that the isometries are all linear operators.

Definition. An (n+ 1)× (n+ 1) matrix A is Lorentz if 〈Av,Aw〉 = 〈v, w〉.

Using the matrix

η =


−1

1
1

. . .

1


described above, A is Lorentz if 〈Av,Aw〉 = (Av)Tη(Aw) = vTηw, so we need vT(ATηA)w = vTηw, so A−1 = (ηAη)T.
Another characterization is that A is Lorentz iff its columns form a Lorentz basis, i.e. if A = (e0, . . . , en), then
〈ea, eb〉 = ηab. This is because the columns of A are the image of the standard basis under some isometry, so this
equation should still follow.

The group of Lorentz matrices is denoted O(n, 1), and there is a subgroup O+(n, 1) = {A ∈ O(n, 1) : a00 > 0}.

Theorem 12.1. O+(n, 1) is the isometry group of Sn−1.

Proof. First off, all of these act by isometries: if A ∈ O+(n, 1), then A(Sn−1) ⊆ Sn−1, and since a00 > 0, then it sends
e0 = (1, 0, . . . , 0) to somewhere in the positive component, and thus sends the whole positive component to itself.
Then, the fat that it is Lorentz implies that it preserves the metric.
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These are all of the isometries, because there are enough of them that they account for all possible symmetries one
could have. Suppose p, q ∈ Sn−1 and e1, . . . , en is an orthonormal basis at q and v1, . . . , vn is an orthonormal basis at
p; then, if one can show that there is an isometry A ∈ O+(n, 1) such that Ap = q and A(ei) = vi for i = 1, . . . , n, then
these are all possible transformations. The standard way to piece this apart is to construct an A that sends any p to
any q; then, the problem restricts to sending bases to other bases at a single point. First consider p = e0 = (1, 0, . . . , 0),
and try to send q → p. �

13. The Variational Theory of Geodesics: 2/20/14

“I think the ideal course is the one where the students do everything through the homework and the
professor goes up and talks about philosophy.”

Recall that we defined Sn−1 = {x ∈ Rn+1
1 : 〈x, x〉 = −1 and x0 > 0}. This is the upper component of the hyperboloid

that contains e0 = (1, 0, . . . , 0) and is asymptotic to the lightcone. We also defined the Lorentz group O(n, 1) and
O+(n+ 1); the latter acts transitively on Sn−1.

Claim. If x, y ∈ Sn−1, e1, . . . , en is an orthonormal basis at x, and v1, . . . , vn is an orthonormal at y, then there exists
an A ∈ O+(n, 1) such that Ax = y and Aei = vi for each i.

This will in effect show that every Lorentz basis (i.e. a basis w1, . . . , wn such that 〈w1, w1〉 < 0 and the rest are
space-like) is given by a matrix in O+(n, 1).

The Lorentz group is much more interesting than similar groups, such as the orthogonal group. For example, it’s

noncompact (in the metric induced from Rn2

).
Turning to the variational theory of geodesics, let (M, g) be a Riemannian manifold. The metric allows one to

measure lots of things, in particular a curve: if c : [a, b]→M , then its length is

L(c) =

∫ b

a

‖c′(t)‖ dt.

This is independent of parametermization. Once can look at the space of curves, and try to find critical points
(especially minima) of this curve, akin to studying critical points of a function in calculus. The tricky thing is that a
curve can be varied in an infinite number of dimensions (i.e. the space of curves is infinite-dimensional), unlike the
finite-dimensional questions asked in calculus.

But then, one can restrict the dimension. For example, one can take a path of curves, a one-parameter family cs(t)
for different s. Thus, one has a map C : [a, b]× (−ε, ε)→M sending (t, s) 7→ cs(t), such that c(t, 0) = c0(t) = c(t).
But now, the lengths of these curves is a function of one variable: s 7→ L(cs) is a smooth function of s. In fact, since
the length is independent of parameterization, then one can assume that c(t) is parameterized by arc length (i.e.
‖c′(t)‖ = 1 for all t ∈ [a, b)).

It’s also possible to create curves C(t0, s) for a fixed t0 and varying s. Then, there are two kinds of tangent vectors:
let T = ∂C

∂t = c′s(t), i.e. (in a slight abuse of notation) the tangent vector to C as t varies, and X = ∂C
∂s , i.e. as s

varies. Then, one has the following, called the First Variational Formula:

d

ds
L(cs)

∣∣∣∣
s=0

= 〈X,T 〉|t=bt=a −
∫ b

a

〈X,∇TT 〉dt. (9)

Proof. When differentiating L(cs) with respect to s, one applies the Leibniz rule: ‖T‖ =
√
〈T, T 〉, so

∂

∂s
‖T‖ =

∂
∂s 〈T, T 〉

2‖T‖
=

2∇XT, T
2‖T‖

.

Since ‖T‖ = 1 can be chosen (by parameterizing c by arc length14). Since T and X are coordinate vector fields, then
[T,X] = 0, so ∇XT = ∇TX. Thus,

dL

ds

∣∣∣∣
s=0

=

∫ b

a

〈∇XT, T 〉dt =

∫ b

a

〈∇TX,T 〉dT

=

∫ b

a

(T 〈X,T 〉 − 〈X,∇TT 〉) dt

= 〈X,T 〉|t=bt=a −
∫ b

a

〈X,∇TT 〉dt

by the Fundamental Theorem of Calculus. �

14Though c = c0 is parameterized by arc length, nearby cε might not be.
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As a consequence, suppose c is a geodesic and X = 0 at t = a and t = b (i.e. the endpoints are fixed). Then,
the variational length (i.e. ∂L

∂s at s = 0) is zero, which encodes the notion that geodesics are the straightest curves.
Conversely, if X(a) = 0 and X(b) = 0 and the variational length is 0, then c parameterized by arc length is a geodesic,
though the proof of this doesn’t follow from (9) and will be deferred.

In particular, geodesics are critical points of the arc length functional. However, they aren’t necessarily minima:
for example, consider S2 ⊆ R3. The geodesics on S2 are the fixed point sets of reflections, i.e. circular arcs of planes
through the origin. A short enough geodesic segment minimizes length (which is true of any Riemannian manifold,
locally), but a great circle from the north pole to the south pole doesn’t uniquely minimize length. Past the south
pole, too-long geodesics don’t even minimize length!

In order to understand how the function changes at a point (as opposed to that it’s just an extremum), one uses
the second derivative. This leads to the Second Variation Formula: suppose c is parameterized by arc length. Then,

d2

ds2
L(cs)

∣∣∣∣
s=0

= 〈∇XX〉|t=bt=a +

∫ b

a

(
‖∇T X̃‖2 − 〈R(T,X)X,T 〉

)
dt, (10)

where X̃ = X − 〈X,T 〉T is the normal component of X to the curve. Notice that 〈R(T,X)X,T 〉 = 〈R(T, X̃)X̃, T 〉,
so the entire integral can be expressed in termss of X̃. Here, it’s called the index form, I(X̃, X̃).

Bring this to Hn, and look at an X where X(a) = 0 and X(b) = 0. Then,

d2L

ds

∣∣∣∣
s=0

=

∫ b

a

(‖∇T X̃‖2 − 〈R(T, X̃)X̃, T 〉) dT,

so −1 = 〈R(T, X̃)X̃, T 〉/‖X̃‖2. Thus, c is a local minimum of length (and more sophisticated arguments show it’s a
global minimum). This is also called stable (i.e. stable geodesics are local minima of the arc length functional).

On surfaces, the normal component is just a function, so the formula simplifies considerably; in particular,
X = ϕ(t)ν(t) for a unit normal ν(t). Then,

∇T ν = 〈∇T ν, T 〉T + 〈∇T ν, ν〉 = 0T 〈ν, T 〉 − 〈ν,∇TT 〉.

Thus, on S2,

∂2L

∂s2

∣∣∣∣
s=0

=

∫ b

a

(‖∇TX‖2 − 〈R(T,X)X,T 〉) dt =

∫ b

a

((ϕ′)2 − ϕ2) dt = I(ϕ,ϕ),

with the boundary condition ϕ(0) = ϕ(`) = 0. This is hauntingly familiar to the physics majors in the audience. By
Fourier series, or Physics 131, or both, one can show that I(ϕ,ϕ) ≥ 0 for all ϕ with ϕ(0) = 0 = ϕ(`), then this works
if ` ≤ π; after this, there is something in the null space. These variations correspond to taking the geodesic and
rotating it. But then, after this, the geodesics are strictly unstable. This equation plays an important role in both
Rienannian geometry and relativity: one can ask what it means for a timelike geodesic to maximize length and how
this works.

One interesting characterization is how geodesics spread, related to the Jacobi equation in relativity. For example,
in spaces of positive curvature, it says that global geodesics initially spread and then eventually converge.

Proof of (10). Using (9), one can compute the second derivative. Since T is a unit vector, then

∂2

∂s2
‖T‖

∣∣∣∣
s=0

=
∂

∂s
〈∇XT, T 〉 −

〈∇XT, T 〉2

‖T‖3/2

=
∂

∂s
〈∇XT, T 〉 − 〈∇XT, T 〉2

= 〈∇X∇TX,T 〉+ 〈∇TX,∇XT 〉 − 〈∇TX,T 〉2.

Then, introduce a curvature term:

= 〈R(X,T )X,T 〉+ 〈∇T∇XX,T 〉+ ‖∇TX‖2 − 〈∇TX,T 〉2

= 〈R(X,T )X,T 〉+ 〈∇T∇XX,T 〉+ ‖∇T X̃‖2

= −〈R(X,T )X,T 〉+
∂

∂t
〈∇XX,T 〉. �
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14. The Jacobi Field Equation and the Exponential Map: 2/25/14

Today’s class was taught by the TA, Khoa Nguyen.
Last time, we saw that if (M, g) is a Riemannian manifold and c[a, b]→M is a curve, then one can take a C∞

variation of curves cs with fixed endpoints and such that c0 = c. This is equivalent to a C∞ vector field d
ds

∣∣
s=0

cs
along the curve c with value 0 at the endpoints p and q, and in particular any such vector field gives a variation. Then,

we defined the arc length functional L(c) =
∫ b
a
‖ċ‖2 dt, and derived (9). In particular, this implied that if dL

ds = 0 for
all variations cs, then c is a geodesic, and then took the second derivative, which is (10).

Definition. Let X denote the set of vector fields on c that are perpendicular to its tangent T = ċ. Then, the index
form Ind : X × X → R is given by

Ind(X,Y ) =

∫ b

a

〈∇TX,∇TY 〉 − 〈R(X,T )T, Y 〉dt.

Thus, d2L
ds2 = Ind(X,X). This is a bilinear form, so one can talk about when it’s degenerate. The kernel of this

form is defined to be those X ∈ X such that Ind(X,Y ) = 0 for all Y ∈ X . Using metric compatibility, this implies
that

0 = Ind(X,Y ) =

∫ b

a

∇T 〈∇TX,Y 〉 −
〈
∇2
TX,Y

〉
− 〈R(X,T )T, Y 〉dt

=

∫ b

a

〈
−∇2

TX −R(X,T )T, Y
〉

dt

for every Y . Thus, it’s necessary that
∇2
TX +R(X,T )T = 0. (11)

This is known as the Jacobi field equation.
Intuitively, if one has a function f : W → R for a manifold W , then the critical points form a submanifold Wcrit.

Then, the Hessian provides information about these points: its kernel ker Hessp(f) contains TpWcrit. In this specific
situation, W = Ωpq, the space of paths between p and q, which is slightly different (it’s infinite-dimensional, called a
Banach manifold; techniques from functional analysis are needed to understand it); the analogy still works, as we’re
trying to find critical points of the arc length L.

Remark. The idea that’s just come up is to look at a manifold by analyzing its critical points under some real-valued
function. This leads the way to a subject called Morse theory, which is extremely important in differential and
geometric topology. The standard reference is a fantastic book called Morse Theory, by Milnor.

The Exponential Mapping. Given a p ∈M and v ∈ TpM , there is a unique geodesic γv such that γv(0) = p and
γ′v(0) = v, as we have seen before, and if v is sufficiently small, then γv(1) is well-defined. The notation NM (p) denotes
a neighborhood of p ∈M ; then, the exponential map expp : NTpM (0)→ NM (p) sending v 7→ γv(1) is well-defined.

Proposition 14.1. expp is differentiable and (D expp)0 = Id : TpM → TpM .

Moreover, by the Inverse Function Theorem, expp is locally a diffeomorphism near 0.

Remark. A line through 0 in TpM is sent under the exponential map to a geodesic of M . This isn’t necessarily true
of lines that don’t intersect the origin!

Proof of Theorem 14.1. That expp is differentiable follows from the theory of ODEs, but calculating its derivative
shows that

(D expp)0(v) =
d

dt

∣∣∣∣
t=0

expp(tv) =
d

dt

∣∣∣∣
t=0

γtv(1) =
d

dt

∣∣∣∣
t=0

γv(t) = v,

so (D expp)0 = Id. �

Remark. The exponential mapping defines a local chart at p in which the Christoffel symbols vanish at p. These
coordinates are called normal coordinates. This is particularly helpful when computing intrinsic quantities; any chart
will do, so this one makes some calculations easier.

With the exponential map, one can locally construct geodesic variations: if T is tangent to c and W is normal to
it, then one can take combinations of them (e.g. T +W ) to get a family of straight lines through the origin in TpM
and therefore a family of geodesics through c in M . Specifically, for each s, cs(t) = expp(t(T + sW )) is a geodesic

variation of c = c0; then, Y (t) = d
ds

∣∣
s=0

cs(t) is a Jacobi field. Technically, their endpoints aren’t the same, but it

satisfies (11) regardless.
The name “exponential” seems kind of weird, but it comes from Lie theory, where it makes a little more sense.
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If c is a geodesic, let Jc denote the space of Jacobi fields along c. This is a vector space, and T ∈ Jc (i.e. the
velocity vector field), because plugging in T for X satisfies (11). Similarly, tT ∈ Jc for all t. A particularly important
property is that if X,Y ∈ Jc, then 〈∇TX,Y 〉 − 〈∇TY,X〉 is constant along c. This looks complicated, but in the case
Y = T , then 〈∇TX,T 〉 is constant, so ∇T 〈X,T 〉 is constant. Thus, 〈X,T 〉 is linear in t. This ends up meaning that
the exponential map sends circles around the origin to curves perpendicular to all of the geodesics, and for the Y (t)
constructed above, 〈Y (t), T 〉 = 0 for all t.

Theorem 14.2 (Length distortion). Assume W ⊥ T and ‖W‖ = ‖T‖ = 1. Then, near t = 0,

‖Y (t)‖2 = t2 − 1

3
Kt4 +O(t6),

where K is the sectional curvature of the plane spanned by T and W .

This is in some sense a Taylor expansion (so the proof is just four differentiations followed by the Jacobi equation),
placing a bound on how much circles centered at the origin can change under the exponential map. There’s another,
related theorem that uses the sectional curvature to measure the area of the circle, rather than its length.

15. Uniqueness of Constant-Curvature Spaces: 2/27/14

There’s an alternate notation for the exponential map, different from the one used in the book: if p ∈M , then
expp : TpM →M is given by expp(v) = cv(1), where cv is the geodesic such that cv(0) = p and c′v(0) = p. If one defines
v = tV where ‖V ‖ = 1, then it is also true that expp(v) = cv(t). This is because of the scaling property of geodesics:
for any λ > 0, cλv(T ) = cv(λt), which is true because these are both solutions to the same ODE with the same initial
conditions, and thus they must be the same, i.e. if γ(t) = cv(λt), then γ(0) = p and γ′(0) = λc′v(λt)|t=0 = λv.

The terminology comes from Lie groups: if the manifold is also a group, e.g. the orthogonal group, then the
exponential map is also the exponential of a matrix. Another simple case is S1, the unit circle. The identity element’s
tangent space is a copy of the imaginary line, and the exponential map sends it 7→ eit. We also saw last time that
D expp

∣∣
0

= id : TpM → TpM .

There is also a notion of normal coordinates, given by ϕ = exp−1
p : U → TpM ∼= Rn given by an orthonormal basis

e1, . . . , en. In these coordinates, gij = δij +O(|x|2), and Γijk(0) = 0. In some sense, this is as close to the Euclidean
metric as possible. Furthermore, this map preserves radial length:

n∑
j=1

gij(x)xj = xi.

This also encodes the Gauss lemma, which says that spherical and radial directions are orthogonal: if v is spherical
and x is radial, then ∑

i,j

gijx
jvi =

∑
xivi = 0.

Additionally, the rays are geodesics, which is more general but not necessarily as important and the Gauss lemma.
Another way of stating the lemma is that if v, w ∈ TpM are orthogonal, with 〈v, w〉p = 0, then〈

D expp
∣∣
v

(w), D expp
∣∣
v

(v)
〉

expp(v)
= 0.

Now, what happens to D exp|v : TpM → Texpp(v)M when v 6= 0? Calculating this at some w is akin to understanding

an arrow v → w, which suggests the natural curve v + sw. Thus,

D expp
∣∣
v

(w) =
d

ds
expp(t+ sw)

∣∣∣∣
s=0

.

But now, to actually calculate the exponential map, take rays through the origin, so for 0 ≤ t ≤ 1, we’re looking at
expp(t(v + sw)) = C(t, s). Now, we can apply variational principles; let Y = ∂C

∂s and T = ∂C
∂t . Then, the derivative

we want to calculate is Y (1, 0), and the goal is to solve the Jacobi equation, the linearization of the geodesic equation:

Y ′′(t) +R(Y, T )T = 0, (12)

for 0 ≤ t ≤ 1. Here, the notation is Y ′′(T ) = ∇T∇TY . The initial conditions for this are Y (0) = 0, encoding that
we’re starting at v, and Y ′(0) = w.

The motivating goal here is to use the exponential map to relate Euclidean geometry to that of a more general
metric. To compute where a vector goes, one solves (12) to obtain a solution Y (t) = Y (t, 0) (i.e. s = 0 is suppressed
from the notation) and evaluate it at t = 1. Intuitively, the curvature is used to obtain the metric by integrating it
twice, even though it’s not really possible to do this explicitly in practice. Nonetheless, it is an extremely important
tool in Riemannian and Lorentz geometry.
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We also had Theorem 14.2. The essence of this theorem is that a family of geodesics with the same initial derivative
spread linearly, so the theorem compares the Euclidean spread and that under the metric. In Euclidean space,
‖Y (t)‖2expp(tv) = t2, but more generally a fourth-order correction is given by the sectional curvature: −(1/3)K{v,w}t

4.

Thus, the sectional curvature determines how quickly the geodesics separate: positive curvature gives a focusing effect
on geodesics, and negative ones spread them.

The proof is Theorem 7.16 in the book, and is a straight calculation, taking four derivatives.

Let c(t) be some geodesic parameterized by arc length, so that ‖c′(t)‖2 = 1, and let Y be a Jacobi field along
c. Since Y is given by a solution to a second-order system with n coefficients, the Jacobi fields form a space of
dimension 2n (parameterized by the initial conditions). Notice that T = c′(t) is a Jacobi field, because T ′′(t) = 0
and R(T, T ) = 0, so (12) holds, and the same holds true for tT (t); in fact, every Jacobi field Y can be written as
Y = aT + btT + Y ⊥, where Y ⊥ is orthogonal to T . This can be done by choosing a parallel, orthonormal basis of
vector fields E0(t) = T (t), E1(t), . . . , En−1(t). Then, denote Y (t) =

∑n−1
i=0 ai(t)Ei(t), so

d2

dt2

 a0

...
an−1

+A(t)

 a0

...
an−1

 = 0

for some n× n matrix A. To understand this better, see that

0 = 〈Y ′′(t) +R(Y, T )T,Ei〉

=
d2

dt2
ai +

∑
j

aj〈R(Ej , T )T,Ei〉.

Thus, A = (aij), where aij = 〈R(Ei, T )T,Ei〉. On a general manifold, the curvature tensor is difficult to evaluate
along a curve, this is tricky to calculate, but in special cases, this is quite nice.

For example, suppose g is a metric of constant curvature κ, so that R = κR1. Then, aij can be simplified to

aij = κ(〈T, T 〉〈Ei, Ej〉 − 〈Ej , T 〉〈Ei, T 〉︸ ︷︷ ︸
〈R1(Ej ,T )T,Ei〉

).

But since 〈T, T 〉 = 1, then aij = κδij , and the overall Jacobi system is

d2ai

dt2
+ κai = 0, i = 1, . . . , n− 1.

(When i = 0, the curvature tensor vanishes.) This is a simple harmonic oscillator, giving sines and cosines, or hyperbolic

sines and cosines if the curvature is negative. Then, ai(0) = a0 and denote dai

dt (0) = αi, and let w = (α1, . . . , αn).
Thus, the overall solution is

fκ(r) =

 sin(
√
κr)/
√
κ, if κ > 0

r, if κ = 0
sinh(

√
−κr)/

√
−κ, if κ < 0.

The conclusion is that if (M, g) is a manifold with constant curvature κ, then for any p ∈ M and the normal
coordinates x1, . . . , xn, let

r =
√∑

(xi)2;

then, the metric can be explicitly written down as

g = dr2 + fκ(r)2 ds2
1,

where ds2
1 is the metric on Sn−1.

For example, if n = 2, then in normal coordinates, (r, θ) looks like g = dr2 + f2(r, θ) dθ2, where f(r, θ) → 1 as
r → 0. Then, f satisfies the Gauss equation with respect to r, for each θ, so in two dimensions it’s particularly easy to
describe. However, the curvature isn’t constant over all θ. In some sense, the distortion is given by the second term.

In the more general case, for n ≥ 3, in normal coordinates, g = dr2 + g̃(r), where g̃ is a family of metric of metrics
on Sn−1 parameterized by r, and g̃(r)/r2 approaches the standard metric ds2

1.

Corollary 15.1. Let (M1, g1) and (M2, g2) be manifolds of the same constant curvature K. Then, for any p1 ∈M1

and p2 ∈ M2 with neighborhoods U1 and U2 respectively, there is a local isometry between them, i.e. an isometry
F : U1 → U2.
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This map F is just given by expp2 ◦I ◦ exp−1
p1 , where I is any linear isometry, so that DF |p1 = I, so that we can

choose I to fit some constraint. This is the same thing as saying that the metric has the same form when written in
normal coordinates, which we saw above.

The global version isn’t true in general: R2 and the torus are locally, but globally, isometric. The following theorem
provides some more insight, though its proof requires a little bit of covering spaces.

Theorem 15.2. Let M1 and M2 be complete and simply connected manifolds of constant curvature K. Then, M1

and M2 are globally isometric.

Note that the stipulation of simple-connectedness (i.e. every curve can be contracted to a point) eliminates the
torus.

Definition. Here, completeness means that geodesics extend forever (which is a nontrivial condition, because the
geodesic equation is nonlinear). Formally, a Riemannian manifold is said to be geodesically complete if all geodesics
extend for infinite arc length.

There are other, equivalent notions of completeness defined in different ways. This rules out the possibility of
boundaries, but is satisfied by any compact manifold. An equivalent criterion to geodesic completeness is that
expp : TpM →M is globally defined (though even in these cases, it’s not necessarily a global diffeomorphism, e.g. on
Sn).

16. The Hilbert-Einstein Action: 3/4/14

“I know a lot of you are interested in physics, and the rest of you are interested in science fiction. . . ”

If M is a smooth manifold, one can assign the Hilbert-Einstein action to (Riemannian or Lorentz) metrics of M . This
is a functional given by

R(g) =

∫
M

R(g) dVg.

Then, the goal is to pick g which extremize R(·). But how does one vary metrics? Let h be a symmetric (0, 2)-tensor
with compact support. Then, for −ε < s < ε, gs = g + sh is still a metric.

Theorem 16.1.
d

ds

∣∣∣∣
s=0

R(gs) = −
∫
M

〈G, h〉dVg,

where G = Ric−(1/2)R · g is the Einstein tensor.

This inner product comes from a natural extension of the inner product to tensor spaces: if h and k are (0, 2)-tensors,
then

〈h, k〉 =
∑
i,j,k,`

gijgk`hikhj`.

Corollary 16.2. For n = 2, G = 0, so d
ds

∣∣
s=0
R(gs) = 0.

In this case, every metric is a stationary point for R, which we can use in the following.

Theorem 16.3 (Gauss-Bonnet). Let M be a sphere with γ handles. Then∫
M

K dA = 4π(1− γ).

Proof. This theorem is more typically a Math 143 result (and also can be stated in a bit more generality), and the
proof would involve triangulating the surface and using the Euler characteristic. But a more interesting proof can be
given here.

Claim. If g is a Riemannian metric on a 2-dimensional manifold M , then
∫
M
K dA is independent of g.

Proof. Given two metrics g and ĝ, let gS = (1 − s)g + sĝ for 0 ≤ s ≤ 1. Then, by Theorem 16.1, d
dsR(gs) = 0, so

R(g) = R(ĝ). �

Thus, in this case R is a topological invariant: it doesn’t depend on the metric. In particular, to calculate it, one
can pick any metric that makes computation easier. For example, in the normal metric,∫

S2

K dA = 4π,
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Figure 1. A sphere with three handles: all closed, connected, orientable 2-manifolds are homeomor-
phic to a sphere with γ handles for some γ ≥ 0. Source: http://en.wikipedia.org/wiki/Handle_
decomposition.

which has γ = 0, and for the flat torus T 2, for which γ = 1,∫
T 2

K dA = 0 = 4π(1− γ).

Now, we want to show that when one adds a handle, the integral decreases by 4π, i.e. if Mγ is a sphere with n handles
and Mγ+1 is formed by attaching a handle to Mγ , then∫

Mγ+1

K dA =

∫
Mγ

K dA− 4π = 4π(1− (γ + 1)). (13)

Given such an Mγ , one can construct an Mγ+1 in an interesting topological process. One can create a “neck” N by
revolving a curve such as y = 1− cosx on [0, π] around the x-axis, and then use it to join Mγ with T 2, which has one
handle.

Then, N has total curvature −4π: suppose it’s used to connect two spheres S1 and S2. This is topologically a
sphere again, so

4π =

∫
S1∪N∪S2

K dA =

∫
S1

K dA+

∫
S2

K dA+

∫
N

K dA = 8π +

∫
N

K dA.

Then, inductively create Mγ+1 from Mγ and T 2 by joining a neck. Then,∫
Mγ+1

K dA =

∫
Mγ

K dA− 4π + 0. �

As we’re used to proofs by metric calculations in this class, this more topological proof seems like it ought to have
holes somewhere, but it’s perfectly sound, and everything can be explicitly written out if you insist on it.

Now, we can return to the variation of R. The textbook gives a hopelessly complicated proof of Theorem 16.1, but
here’s a simpler one.

Proof of Theorem 16.1. Choose some coordinates x1, . . . , xn, so that

R(gs) dVgs =
∑
i,j

gijs Rij(gs)
√
|gs|dx,

so using • to denote derivatives with respect to s,

d

ds

∣∣∣∣
s=0

R(gs) dVgs =
∑
i,j

(gij)•Rij
√
|g|︸ ︷︷ ︸

I

+
∑
i,j

gijR•ij
√
|g|︸ ︷︷ ︸

II

+
∑
i,j

gijRij(
√
|g|)•︸ ︷︷ ︸

III

.

But we saw on the homework that (gij)• = −hij and that

(log
√
|g|)• =

(
√
|g|)•√
|g|

=
1

2

∑
k,`

gk`hk`,
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and therefore

(
√
|g|)• =

1

2
Trg(h)

√
|g|.

The key is that III is the divergence of a vector field, so the answer is given by∫
M

(I + II) dx = −
∫
M

(
〈Ric, h〉 − 1

2
R〈g, h〉

)√
|g|dx

= −
∫
M

〈G, h〉dV.

Then, we still have to deal with the third component.

Lemma. There exists a vector field X with compact support such that div(X) =
∑n
i,j=1 g

ijR•ij, and therefore∫
M
III = 0.

Proof. First, calculate Rij :

Rij = ∂kΓ̇kij − ∂jΓ̇kik + ΓΓ− ΓΓ (14)

(where the last four Christoffel symbols will go away soon enough, so their indices don’t matter). This is a (1, 2)-tensor.
For any p ∈M , one can choose normal coordinates x1, . . . , xn, so that Γkij = 0 (i.e. ∂kgij = 0) because

gij(0) =

{
δij , g is Riemannian;
ηij , g is Lorentz.

Thus, the terms quadratic in Γ in (14) do indeed go away, and so when x = 0,

gijṘij = ∂j(g
ikΓ̇jik)− ∂j(gijΓ̇kik) = ∂j(ξ

j),

where (using the summation convention) ξj = gikΓ̇jik − gijΓ̇kik. Thus, if one lets X = ξj∂j , then X has the same
support as h, so it’s a compactly supported vector field such that div(X) = III. �

This means that the third term of the integral vanishes, finishing the proof. �

Corollary 16.4. If n ≥ 3, then g is a critical point of R(·) iff g satisfies the vacuum Einstein equation G(g) = 0, or
equivalently Ric(g) = 0 (which can be shown by expanding out the definition of G and taking the trace).

Corollary 16.5. If n ≥ 3 and g is Riemannian, then g is critical for metrics of fixed volume iff Ric(g) = cg for
some constant c.

This is associated with the Euler-Lagrange functional.

Proof. Supposing that Vol(gs) = Vol(g0), then

0 =
d

ds

∫
M

√
g dx =

1

2

∫
M

Trg(ġ) dV.

Thus, when h = ġ (i.e. d
ds

∣∣
s=0

gs), then
∫
M

Tr(gh) dV = 0, so
∫
M
〈G, h〉dV = 0 for all h.

Thus, in general over the variation,

0 =

∫
M

Trg(h− cg) =

∫
M

Trg(h)− n · cVol(M),

but in the first integral, Trg(h− cg) = 〈c, h− cg〉, so∫
M

〈G− αg, h− cg〉dV = 0

for all α, and thus it holds true for the unique α for which
∫
M
〈g,G− αg〉 = 0. Then, cg = 0, so

∫
M
〈G− αg, h〉 dV = c

for a constant c. Thus, Ric−(1/2)Rg = αg, so R − (n/2)R = α, and thus R is constant and Ric = cg, so g is
Einstein. �

In relativity, this constant c is called the cosmological constant.
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17. The Schwarzschild Solution: 3/6/14

18. The Maximally Extended Schwarzschild Metric: 3/11/14

“Es ist immer angenehm, über strenge Lösungen einfacher Form zu verfügen.” [It is always pleasant
to have exact solutions in simple form at your disposal.] - Karl Schwarzschild

The Schwarzschild metric and other similar ones (e.g. the Kerr metric) are local solutions, asymptotically flat. Next
lecture, we will deal with metrics and ideas that are supposed to model the entire universe.

The idea of null coordinates is to consider the Minkowski metric ds2 = −dt2 + dx2 on R2
1. Suppose (t(s), x(s))

is null, so that −(ṫ)2 + (ẋ)2 = 0. Thus, ṫ = ±ẋ, or dt = ±dx. This can be solved by integration: t ± x = k for a
constant k. Thus, we introduce null coordinates u = t− x and v = t+ x. In these coordinates, the diagonal terms of
the metric are zero, because the curve is null, so ds2 = −dudv.

This notation might be a little unintuitive: usually, one writes gij dxi ⊗ dxj , and specifies that gij = gji (where
gij = 〈∂i, ∂j〉). But then, one could write this as gij = dxi dxj , which doesn’t have to be symmetric. Thus, it’s
necessary to symmetrize, so

dudv =
1

2
( du⊗ dv + dv ⊗ du).

Thus, 〈∂u, ∂u〉 = 〈∂v, ∂v〉 = 0 and 〈∂u, ∂v〉 = 0.
This choice of null coordinates is much more general than the Minkowski metric. In particular, we can adapt them

to the Schwarzschild metric

ds2 = −
(

1− 2m

ρ

)
dt2 +

(
1− 2m

ρ

)−1

dρ2,

defined on the surface of a sphere for −∞ < t <∞ and ρ > 2m (so that it’s nonsingular). Setting this to zero, one
needs to integrate

dt = ± dρ

1− 2m/ρ
.

Thus,

ρ∗ =

∫
1

1− 2m/ρ
dρ =

∫
ρ

ρ− 2m
dρ

=

∫ (
ρ− 2m

ρ− 2m
+

2m

ρ− 2m

)
dρ

= ρ+ 2m log
( ρ

2m
− 1
)
.

Thus, assign u = t− ρ∗ and v = t+ ρ∗. In these coordinates, the metric looks like

ds2 = −
(

1− 2m

ρ

)
dudv.

But this still has a ρ in it, so substitute in

v − u
4m

=
ρ

2m
+ log

( ρ

2m
− 1
)
.

e(v−u)/4m = eρ/2m
( ρ

2m
− 1
)

=
ρ

2m
eρ/2m

(
1− 2m

ρ

)
,

so the metric becomes

ds2 = −2m

ρ
e−ρ/2m

(
e(v−u)/4m dudv

)
= −2m

ρ
e−ρ/2m dU dV,

where U = −4me−u/4m and V = 4me−v/4m, so that

dU dV =
1

16m2
e(v−u)/4m dudv.

Now, the metric, which was previously only defined for ρ > 2m, makes sense for any ρ > 0. Plugging this back into
the metric, we realize that

ds2 = −32m3 e
−ρ/2m

ρ
dU dV
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for U, V > 0. This is defined for all U and V as long as ρ > 0. This looks somewhat like the Minkowski metric, so let
T = (U + V )/2 and X = (V − U)/2, so that U = T −X and V = T +X. Thus,( ρ

2m
− 1
)
eρ/2m = X2 − T 2

and
t

2m
= log

(
X + T

X − T

)
,

where in the second equation, X + T > 0 and X − T > 0. Now, we have −UV = X2 − T 2 > −1, so the maximally
extended Schwarzschild metric is

g =
32m3e−ρ/2m

ρ

(
−dT 2 + dX2

)
+ ρ2gS2 ,

where gS2 is the spherical metric and X2 − T 2 > −1. It’s not immediately clear why it’s maximal, but this is it.

Figure 2. Regions of the extended Schwarzschild metric (suppressing the φ and θ directions). The
horizontal axis is the X-axis, and the vertical axis is the T -axis.

Looking at Figure 2, region I is the original metric, for which ρ > 2m, and all four regions correspond to the new
metric (the hyperbola is ρ = 0, i.e. X2 − T 2 = −1. Furthermore, regions I and III are isometric, as are II and IV.
Region II is called the black hole region, and ρ = 2m is called the event horizon.

Where this gets interesting is that in the Lorentz metric, there’s causality and futures and such. Two points can
communicate if their future lightcones intersect (so that in the Minkowski metric, any two points can communicate).
But here, any point within region II cannot communicate with the outside world, and will probably end up at the
singularity! However, it is possible for a point outside of this to end up inside of it (i.e. there’s a timelike curve that
starts outside of region II, crosses the event horizon, and then is in region II). Basically, it’s a one-way gate. But
if someone traveling into the black hole emits signals to an observer outside of it at regular intervals, then to the
observer the signals seem to get farther and farther apart in time, and after a finite number they stop. But it would
probably be unpleasant to fall into the singularity — the curvature goes to infinity.

Region IV is called the “white hole,” and is the reflection of Region II. Regions III and IV are more science-fictiony;
the former is in some sense an alternate universe, and there wouldn’t be any communication between two points in
these regions unless they elected to both go into the black hole. The line t = 0 is asymptotic to Minkowski space,
becoming very flat asymptotically, and moving into region III near T = 0, it forms a wormhole or Einstein-Rosen
bridge. Again, how much of this is science fiction? Of course, though, since this is a spacelike hypersurface, you can’t
just move along it. But regions I and II should be taken seriously: if one takes some matter field and contracts it,
with everything else in a vacuum, then one ends up with the Schwarzschild metric. Interestingly, this dynamical
collapse (e.g. of a star) leads to the black hole which doesn’t change. This can be done mathematically rigorously.15

There’s a more general set of solutions corresponding to rotating systems, e.g. the Kerr metric of a stationary,
rotating black hole. If one takes a general star which might not be rotationally symmetric, but axially symmetric, it

15A lot of this depends on the assumption that the universe follows the Einstein equations and Lorentz geometry, but that’s one of the
core assumptions of relativity, and region I at least has been well tested, though the dynamics haven’t been that well tested. Inside the

black hole, there should be quantum effects too. . .
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will collapse into a rotating black hole. But it’s a general mathematical conjecture that arbitrary collapsing matter
collapses into one of these states, and it’s going to be open for some time.

19. Friedman-Robertson-Walker Spaces: 3/13/14

“Any other questions I can’t answer?”

Friedman-Robertson-Walker spaces are actually a relatively simple class of manifolds, but are very important in
cosmology and general relativity. The idea is that the metric is dictated by symmetries, and is homogeneous (i.e.
there is no special location in spacetime, or more formally there’s an isometry from any point to any other point) and
isotropic (i.e. an observer sees the same thing in all directions). Friedman-Robinson-Walker spaces are homogeneous
and isotropic spatially, i.e. S = I ×M for Riemannian manifolds M (spacelike hypersurfaces) that are homogeneous
and isotropic.

Definition. Let (M, g) be a Riemannian manifold.

• M is homogeneous if for any p, q ∈M , there is an isometry F of M such that F (p) = q.
• M is isotropic at a p ∈ M if for all v, w ∈ TpM with ‖v‖ = ‖w‖ = 1, there exists an isometry F such that
F (p) = p and DFp(v) = w.

Theorem 19.1. For n = 2 and n = 3, a homogeneous isotropic Riemannian manifold has constant curvature.

Proof. For n = 2, it’s already true that homogeneous implies constant curvature, because if F is an isometry, then
the Gauss curvature satisfies K(F (p)) = K(p), so it’s constant.

For n = 3, this isn’t true, e.g. S1 × S2 in the product metric, which is homogeneous but doesn’t have constant
curvature (it’s homogeneous because S1 and S2 are, so isometries between pairs of points are given by pairs of
isometries). And when n ≥ 4, there are homogeneous, isotropic Riemannian manifolds that aren’t of constant curvature,
which follows because there are subgroups of the orthogonal group that act isotropically (i.e. transitively), but aren’t
the whole group. For example, looking at U(2) ( SO(4), the former is the set of complex linear transformations of
C2, and the latter is the set of (generally) linear transformations that preserve the dot product. Then, one could
choose some space (e.g. CP 2) on which this leads to a counterexample.

Notice that for any n, homogeneous and isotropic implies (Riemannian) Einstein, i.e. Ric(g) = cg, because by the
Spectral Theorem, there’s an orthonormal basis e1, . . . , en in which Rij = λiδij , but since the space is isotropic, then
λi = λj (there’s a transformation preserving the Ricci tensor that sends any coordinate to any other coordinate).

But for n = 3, Einsteinian metrics have constant curvature, as we saw. �

Conveniently enough, since cosmologists are interested in four-dimensional spacetime, then S = I ×M means M
is three-dimensional. Thus, if it’s homogeneous and isotropic, then it must have constant curvature κ (which can
be scaled to 0, 1, or −1). Thus, in a Friedman-Robinson-Walker space, the metric has the frm g = −dτ2 + a2(τ)gκ,
where gκ has constant curvature κ ∈ {−1, 0, 1}.

There’s still some ambiguity as to what M looks like, but within cosmology it is often assumed that M has
no fundamental group, i.e. is simply connected. Thus, M = Mκ is one of Rn, Sn, or Hn (for κ = 1, 0, and −1,
respectively). (More generally, you might have the quotient by something.)

These aren’t vacuum solutions, so there’s a matter field, which is also induced from the symmetries of the metric.
Thus, in this case the Einstein equation is G = 8πT for the stress-energy tensor T (and where G = Ric(g)− (1/2)Rg
as usual). T encodes the density of the matter and energy fields that are present. Since energy and momentum go
together into one vector (and which is which is observer-dependent), one can use this stress-energy tensor. If an

observer is at vector v =
∑3
b=0 v

beb, and the mass density is
∑
b Tabv

bva, which represents the mass density as seen
by the observer at v, and if one took the perpendicular components, one gets the momentum density.

Some matter fields require adding more data (e.g. if one uses electromagnetism, the Maxwell equations have to be
factored in somehow). But if this isn’t the case, this is called a perfect fluid, and is akin to modeling the universe as a
fluid. In general, a fluid is determined by a velocity vector field, so let u be a unit timelike vector field, ρ be the
density, and P be pressure. Thus, in these coordinates, the stress-energy tensor has the form

Tab = ρuaub + P (gabuaub).

This is equivalent to saying that if an observer moves along a fluid path, then in the timelike direction the component
is ρ, and in the spacelike directions is P (so the identity matrix times ρ in the first entry, and P in all of the others).

Returning to the formula for the FRW metric, there are two components to the Einstein tensor, in the timelike
and spatial directions; the latter will be by symmetry a multiple of the metric. The remaining terms vanish (which
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can be a homework exercise, though wasn’t this time around). Thus,

Gττ = Rττ +
1

2
R = 3

(ȧ)2

a2
+

3K

a2
= 8πρ

Gsp = Rsp −
1

2
R = −2

ä

a
− (ȧ)2

a2
− κ

a2
= 8πP.

But this looks just like the equation for a perfect fluid, so it seems like we’d need to automatically satisfy the Euler
equations, but these follow from the Einstein ones, so it’s OK. In particular, for a perfect fluid, divG = 0, so div T = 0
as well. This latter equality is the content of the relativistic Euler equations. We want to add some physically
plausible conditions, i.e. P, ρ ≥ 0. But there are still three unknowns, a, P , and ρ, and not enough equations. So one
imposes something called the equation of state, a way of relating the pressure and the density, P = P (ρ), which takes
a specific value depending on the type of fluid. For example, a fluid with P = 0 is called dust, and P = ρ/3, which
held early on in the universe, is called radiation.

Now, we can solve the Euler equations, using this equation of state, so the system becomes

3
(ȧ)2

a2
+

3κ

a2
= 8πρ

3
ä

a
= −4π(ρ+ 3P ).

The behavior of these models depends heavily on the sign of κ; for example, if κ = 1, so that the universe is closed,
then the universe expands and then contracts in a Big Crunch; in the flat and negatively curved cases, it always lies
above, and grows (O(τ2/3) for the flat case, and faster for the hyperbolic case). Explicitly solving all of the ODEs is
not entirely pleasant; there’s a conserved quantity for the system which is not quite obvious.

When P = 0, the equation simplifies to
3ȧ2 + 3κ = 8πρa2,

so after differentiating,
6ȧä = 16πρaȧ+ 8πρ̇a2.

This further simplifies to −ȧρ = 2ρȧ + ρ̇a, so in particular ρ̇a + 3ρȧ = 0. Since a is a positive function, then this
implies that d

dt (a
3ρ) = 0, and thus that a3ρ is constant! This can be used to turn one of the above equations into a

first-order equation, which can then be integrated. (In the radiation case, it’s the same, except for a4ρ being constant
instead.) One can also argue that these are constant from physical principles; these are in some sense rest masses of
the systems.

These Friedman-Robinson-Walker models are the currently accepted models of the universe, though sometimes
there’s a cosmological constant added. They are used more for explaining data rather than predicting it, but the
data is generally consistent with this model. This is pretty impressive, given how simple this is, and how it adds
matter (unlike the Schwarzschild metric). But recently detected accelerating expansion, which isn’t completely
mathematically happy, requires adding a cosmological constant to factor in dark energy: G = 8πT + Λg, where Λ is
called the cosmological constant. There’s a lot of open research and interesting, unanswered questions here.

38


	1. Manifolds: 1/7/14
	2. Tangent and Cotangent Spaces: 1/9/14
	3. Vector Fields, One-Forms, and Riemannian Metrics: 1/14/14
	4. The Lie Bracket and Riemannian Connections: 1/16/14
	5. Existence and Uniqueness of the Riemannian Connection: 1/21/14
	6. Tensor Fields, Parallel Transport, and Holonomy: 1/23/14
	7. The Riemann Curvature Tensor: 1/28/14
	8. Flatness: 1/30/14
	9. Symmetries of the Curvature Tensor: 2/4/14
	10. Traces and Sectional Curvature: 2/6/14
	11. The Second Bianchi Identity: 2/11/14
	12. Models of Hyperbolic Space: 2/18/14
	13. The Variational Theory of Geodesics: 2/20/14
	14. The Jacobi Field Equation and the Exponential Map: 2/25/14
	15. Uniqueness of Constant-Curvature Spaces: 2/27/14
	16. The Hilbert-Einstein Action: 3/4/14
	17. The Schwarzschild Solution: 3/6/14
	18. The Maximally Extended Schwarzschild Metric: 3/11/14
	19. Friedman-Robertson-Walker Spaces: 3/13/14

