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Lecture 1.

Ramsey Theory and Tournament Graphs: 1/6/14

“There is no homework, but there is also homework. How can this be?”

This course is assumed to be a second course in probability, i.e. that you have already taken a probability class
at the level of Stats 116 or Math 151. The course website is http://www-stat.stanford.edu/~adembo/

math-159/, and the textbook is Alon & Spencer, with a few supplements.
This material is at once elementary and very deep, so giving tests or homework on it is difficult; you won’t

finish it.1 Instead, the grading is based on student presentations in class in the last two weeks of the quarter.
Each student is to give a twenty-minute presentation, e.g. an example or a subsection of the book, understood
and then explained to the rest of the class. Students are also required to attend almost all of the lectures.

1No kidding: the professor doesn’t know how to solve some of the harder exercises in the book, and there’s a good chance a

few are open problems.
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This course is about an idea pioneered by Erdős: to use probability to construct, find, or show the
existence of certain discrete objects with a desired property. These objects could be graphs, hypergraphs,
directed graphs, vectors, subsets with a given property, and so on. This is done by assigning a probability
distribution to the finite set (so there’s no need to invoke analysis or measure theory), and then showing that
the probability of something happening is positive. The methods and tools may be crude, but the will be
used in clever ways.

The basic principle: if S is a finite set and P is a probability measure on S such that P(A) > 0 for some
A ⊆ S, then A 6= ∅. (Equivalently, P(Ac) < 1.)

One could also take a random variable X taking non-negative integer values, and let A = {X ≥ 1}.
Markov’s inequality states that P(X ≥ 1) ≤ E[X], which is true because P(X ≥ 1) = E[f(X)], where

f(X) = 1 if X ≥ 1 and is 0 otherwise. Since X ≥ f(X) and expectation is an integral, then this inequality
follows. Then, if E[X] < 1, then there exists an ω ∈ S such that X(ω) = 0. In some sense, we count the
average number of violations of some property; if it is less than 1 and is positive-integer-valued, it must be
zero somewhere.

Expectation is particularly useful because it is linear: if X =
∑n
i=1 ciXi, then

E[X] =

n∑
i=1

ciE[Xi],

and, most importantly, this holds true no matter the relationships between the Xi. Thus, as long as you can
get the E[Xi], then you’re in very good shape.

These are the ideas that underlie the first two chapters of the text; but of course, the trick lies in putting
them to use.

Example 1.1. The first example comes from Ramsey theory, on the subject of graphs with non-monochromatic
cliques. Specifically, if one wishes to two-color the edges of the complete graph on n vertices, Kn.2 Thus,

there are 2(n2) such 2-colorings. Then, R(k, `) is the smallest n such that any 2-coloring of the edges of Kn

contains either a red Kk or a bleu K`.
For example, K3 is just a triangle. Thus, for very large graphs, it is impossible to find a coloring that

avoids triangles, and the smallest such number would be R(3, 3). A lower bound for R(k, k) can be found
with the probabilistic method:

Proposition 1.2. If
(
n
k

)
21−(k2) < 1, then R(k, k) > n, and therefore R(k, k) ≥ b2k/2c.

Proof. The thing we want to prove is that if
(
n
k

)
21−(k2) < 1, then there exists a two-coloring with no

monochromatic Kk. Call this property A, so that Ac is the property that a two-coloring does have a
monochromatic Kk. Thus, the goal is to prove that P(Ac) < 1 under some probability distribution.

Let P be the uniform distribution on colorings of Kn: randomly color each edge with probability 1/2.
There are exactly

(
n
k

)
ways to embed Kk in Kn, since every possible subset of k vertices out of the n forms a

Kk. More interestingly, the probability that a specific Kk is monochromatic is 2/(2(k2)) = 21−(k2), because
there are two choices (all red and all blue) out of all possible options for the colorings. Then, let Ei be

the event that the ith coloring of Kk is monochromatic. Then, Ac =
⋃(nk)
i=1Ei. Using the union bound from

probability,

P(Ac) = P

((nk)⋃
i=1

Ei

)
≤

(n2)∑
i=1

P(Ei) =

(
n

k

)
21−(k2) < 1. (

One could try to do something more clever with the distribution, but the result is useful enough already. (

Definition 1.3. A tournament of size n is a directed graph G = (V,E) that is an orientation of Kn (i.e. for
every two vertices v and w, there is either an edge v → w or an edge w → v; the intuition that there is a
tournament for some game, and every two players played each other, and someone won).

2The complete graph on n vertices is the graph where there is exactly one edge between vi and vj for all 1 ≤ i < j ≤ n.

Then, one assigns each edge to either the color red or blue.
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There are 2(n2) tournaments of size n, because there are n edges, and each has two possibilities. These can
be thought of as colorings, where one color corresponds to an edge going one way, and blue to the edge going
the other way.

Definition 1.4. A Hamiltonian path on some directed graph G is a directed path visiting each vertex in G
exactly once.

Theorem 1.5 (1943, Szele). For any n, there exists a tournament on n players with at least n!2−(n−1)

Hamiltonian paths.

Proof. The clever part is to restate this in a way amenable to probabilistic methods: a Hamiltonian path in
a tournament is associated with a permutation σ of vertices {1, . . . , n} with Xσ = 1 if σ is a Hamiltonian
path in the tournament T and Xσ = 0 otherwise. In other words, Xσ = 1 iff (σ(i), σ(i + 1)) ∈ E for all
i = 1, . . . , n− 1: σ is a suggestion for a tournament and X indicates whether it is one.

The number of Hamiltonian paths on T is X =
∑
σXσ, so E[X] =

∑
σ E[Xσ], thanks to linearity

of expectation. Take this expectation under the random uniform probability distribution again. Then,
E[Xσ] = P (Xσ) = 1 = 2/2n = 2−(n−1), so E[X] = n!2−(n−1).

If X is a uniformly distributed random variable, then it is a fact that there exist ω1, ω2 such that
X(ω1) ≥ E[X] and X(ω2) ≤ E[X]. Thus, there is a tournament with at least that many Hamiltonian
paths. �

These proofs tend to be existence proofs, though without construction. Sometimes this is not as helpful
as one might like, but it still says useful things. However, sometimes you get an algorithm: notice that for
Proposition 1.2 the odds that a given coloring doesn’t contain a monochromatic Kk is very small as n gets
large; thus, one good algorithm is just to randomly choose a graph and check!

The next example has an elegant and short non-probabilistic proof, but there is also a nice proof by
probabilistic methods.

Theorem 1.6 (Balancing Vectors). Let v1, . . . ,vn ∈ Rn such that |vi| = 1 for all I = 1, . . . , n. Then, there
exist εi ∈ {±1} such that |

∑n
i=1 εivi| ≤

√
n , and there exist εi ∈ {±1} such that |

∑n
i=1 εivi| ≥

√
n .

Proof. Assign εi to 1 or −1 with equal probability (so once again the uniform distribution is used). Then, let
X = |

∑n
i=1 εivi|2. Thus,

E[X] = E

[
|
n∑
i=1

εivi|2
]

= E

[
n∑
i=1

n∑
j=1

εiεj(vi,vj)

]

=

n∑
i=1

n∑
j=1

(vi,vj)E(εiεj).

=

n∑
i=1

(vi,vi)E[εiεi] =

n∑
i=1

|vi| = n.

Then, take the square root and apply the fact that, since E[X] = n, then there exists ε such that X(ε) ≤ n
and ε such that X(ε) ≥ n. �

There are lots of applications of these methods, but in a lot of cases they require a more intimate
understanding of the application, e.g. group theory, where one needs a better understanding of the structure
of groups, or elsewhere with Fourier analysis, and so on. But these involve much less obvious things than
taking the norm as above.

Lecture 2.

Expectation and Variance: 1/8/14

“Blah, blah, blah. . . analysis. . . blah, blah, blah. . . ”

Theorem 2.1 (Alon & Spencer, Theorem 2.2.1). Suppose G = (V,E) is a graph with n vertices and e edges.
Then, there exists a partition of V into T and B = V \ T such that there are at least e/2 (i.e. at least half)
of the edges between T and V .
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Though this isn’t optimal for all graphs, it’s a sharp bound: if G = Kn, then e = n(n− 1)/2; if |T | = `, then
there are (n− ell)` edges in the bipartite subgraph, which is maximal when ` = n/2, yielding (n− 1)(n+ 1)/4
when n is odd and (n/2)2 when n is even. These are very close to e/2, so it’s not possible to do better. Of
course, in more complicated graphs, finding the optimal partition, which might be better than e/2, can be
much harder.

Proof of Theorem 2.1. Let S = 2|V | with T a random subset given by P(x ∈ T ) = 1/2, independently and
identically distributed. Then, let

X{x,y} =

{
1, if x ∈ T and y ∈ B or x ∈ B and y ∈ T , and
0 otherwise.

Then, let X =
∑
{x,y}∈E X{x,y}. Then,

E[X] =
∑

{x,y}∈E

E[X{x,y}] =
∑
E

1

2
=
e

2
,

so there exists a T such that X(T ) ≥ e/2. �

This suggests an algorithm for obtaining such a partition by just picking a random partition and checking,
but how effective it is depends on the variance of such a distribution.

Theorem 2.2 (Alon & Spencer, Theorem 2.3.1). There exists a two-coloring of the edges of Kn with at most(
n
k

)
21−(k2) monochromatic subgraphs Kk.

Proof. Take a random coloring, where each edge is colored red or blue with i.i.d. probability 1/2, and let X

be the number of monochromatic Kk in this graph. In Proposition 1.2, we saw that E[X] =
(
n
k

)
21−(k2), so

there must exist an ω such that X(ω) ≥ E[X]. �

The above bound might be non-optimal.

Remark 2.3. In the example of Szele’s theorem of tournaments with p(n) Hamiltonian paths, it was seen
that p(n) ≥ n!21−n. Another argument shows that p(n) ≤ cn3/2n!21−n, so the bound is actually pretty good.
However, this bound was found non-probabilistically. Often, the probabilistic method only works well for one
of the upper or lower bounds. (

Now, it’s worth understanding how far values on the distribution can be from the expectation. This
involves using the second moment (variance), which is unsurprisingly known as the second moment method.
The principle involves the following observations:

(1) Chebyshev’s or Markov’s inequality: P(|X − µ| ≥ λσ) ≤ 1/λ2, where σ2 = Var(X) and µ = E[X].
The proof of this involves constructing f(x) = (x− µ)2/(λσ)2, which is necessarily greater than the
indicator function g(x) = 1|x−µ|≥λσ, so E[f ] ≥ E[g].

(2) If X =
∑m
i=1 1Ai , where the Ai are events, then

Var(X) ≤ E[X] +
∑
i∼j

P(Ai ∩Aj),

where i ∼ j means that i 6= j and Ai and Aj aren’t independent. This is because

Var(X) =

m∑
i=1

m∑
j=1

Cov(1Ai ,1Aj ),

and if Ai and Aj are independent, then their covariance is zero. Furthermore, E[1Ai1Aj ] −
E[1Ai ]E[1Aj ] ≤ P (Ai ∩Aj).

The consequence is that if Xn ≥ 0 is integer-valued and E[Xn]→∞ as n→∞ and Var(Xn)/(E[Xn])2 → 0,
then P(Xn = 0)→ 0 and Xn/E[Xn]→ 1. These follow from (1) with λ = µ/σ and λ = εµ/σ, respectively.

Anothr consequence is that by rearranging the sum in the second item: let

∆ =
∑
i

P(Ai)
∑
{j:j∼i}

P(Aj | Ai).
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This involves summing over the dependency graph of these variables, in which two variables are connected if
they aren’t independent. Then, X1, . . . , Xn are called symmetric if these probabilities are invariant under
permutations. Then, the quantity ∆∗ =

∑
{j:j∼i} P(Aj | Ai) is independent of i.

Corollary 2.4. ∆n = (E[Xn])∆∗n, so if ∆∗n/E(Xn)→ 0, then Var(Xn)/(E[Xn])→ 0 as well.

From number theory, ν(n) is the number of primes that divide n for an n ∈ N. The following theorem
wasn’t originally proven with the probabilistic method, but admits a nice, short proof using it. that is not
the original proof of Hardy and Ramanjuan.

Theorem 2.5 (Hardy & Ramanjaun, 1920). For all functions ω(n)→∞, (1/n)(the number of x such that |ν(x)−
ln lnn| ≥ ω(n)

√
ln lnn )→ 0 as n→∞.

Proof. The proof, due to Tuvan in 1934, depends on the following facts from elementary number theory: first,
that ∑

p≤n
p prime

1

p
= ln lnn+ o(1),

and second, that π(n) ≈ n/ lnn, where π(n) is the number of primes less than n. The first follows from
Abel’s summation formula and the Stirling approximation, but this isn’t a number theory class; the point is
probability.

For all prime p ≤ n, define Xp to be the indicator for p | x, where x is uniformly chosen from {1, . . . , n}.
Then, ν(x) = X =

∑
pXp, so one wants to show that as n→∞, P(|X − ln lnn| > ω(n)

√
ln lnn )→ 0, which

involves computing the mean and variance of X.
Using the two observations established above, the mean is

E[X] =
∑
p

E[Xp] =
∑
p≤n

p prime

1

n

⌊
n

p

⌋
=

∑
p≤n

p prime

(
1

p
+O

(
1

n

))
= ln lnn+ o(1),

and the variance satisfies

VarX ≤ E[X] +
∑
p 6=q

{
E[XpXq]−

bn/pc
n
· bn/qc

n

}

= E[X] +
∑
p6=q

(
bn/(pq)c

n
− bn/pcbn/qc

n2

)
≤ E[X] +

2

n

∑
p≤n

1

p
π(n) = E[X](1 + 2π(n)/n) = lg lg n+ o(1).

This is because bn/(pq)cn − bn/pcbn/qcn2 a ≤ 1
pq −

(
1
p −

1
n

)(
1
q −

1
n

)
and some various other number-theoretic

magic. �

As it happens, a better result can be obtained with judicious use of the Central Limit Theorem and a
bunch of unpleasant calculation. To wit:

Theorem 2.6 (Erdős-Kac, 1940). (X − E[X]/
√

VarX )→ N(0, 1), where X is as in the previous proof.

The proof idea is to replace Xp by Yp, independent Bernoulli random variables with probability 1/p, and

then use the Central imit Theorem, if Y =
∑
Yp and Ŷ = (Y −E[Y ])/(

√
VarY ), then one can check that all

of the moments of X̂ and Ŷ converse to the same limit as n→∞.
The way in which probability theory got its hand into the metaphorical number-theoretic cookie jar is in

the averaging in the result; not all results in number theory admit such an interpretation.

Definition 2.7. The Erdős-Rényi random graph, denoted G(n, p), is the random graph on n vertices, where
each edge is present independently with probability p.

Denote ω(G) to be the size of the maximal clique in G (i.e. the maximal complete graph that is a subgraph

of G). The expected number of k-cliques is f(k) = E[k-cliques] =
(
n
k

)
p(
k
2).
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Theorem 2.8. If p = 1/2 and k(n) ∼ 2 log2 n is such that f(k)→∞, then P[ω(G) < k(n)]→ 0.

The proof will be given next time, and involves computing the variance.

Lecture 3.

More Uses of Variance: 1/10/14

Proof of Theorem 2.8. The proof uses the second moment method. For every k-set S (i.e. subset of V of
size k), assign XS = 1S is a clique, and let X =

∑
|S|=kXS , which counts the number of k-cliques in G. Then,

ω(0) ≥ k iff X > 0, since X is integer-valued.
We already computed E[X] = f(k)→∞ last lecture, so it suffices to show that ∆∗ = o(E[X]), where

∆∗ =
∑
T 6=S

XT 6tXS

P(XT | XS) =
∑
T∼S

P(XT | XS).

FIx S; then T ∼ S iff |T ∩ S| = i, for 2 ≤ i ≤ k − 1. Then,

∆∗ =

k−1∑
i=1

(
k

i

)(
n− k
k − i

)
︸ ︷︷ ︸

number of choices of such T

2−(k2)+(i2).

Thus, ∆∗/E[X] =
∑k−1
i=2 g(i), where g(i) = (

(
k
i

)(
n−k
k−i
)
/
(
n
k

)
)2(i2).

Supposing k is constant, g(2) = 2
(
k
2

)(
n−k
k−2

)
/
(
n
k

)
∼ k, and if k grows slowly this is still k < nε for some not

terribly large ε, and

g(k − 1) =
k
(
n−k

1

)
2(k−1

2 )(
n
k

) ≈ 2(k−1)2/2

nk−1
=

(2k−1)(k−1)/2

nk−1
=
n(k−1)/2

nk−1
→ 0,

and so on. The point is that k doesn’t grow too quickly, log2 n is about as fast as it can grow for this to
work. �

Remark 3.1. This is a good bound, but not optimal; thanks to Boll-Erdős and Matura in 1976, there exists
a formula k(n) such that P(ω(G) = k or ω(G) = k + 1) → 1 as n → ∞. Though we don’t know what the
numbers are, the clique numbers stay extremely concentrated as n becomes large. (

The second moment method also has applications to the k-SAT problem in theoretical computer science,
which involves determining whether some Boolean functions can be satisfied. After some threshold, this
becomes very difficult, and a recent paper established a bound for such a threshold using the second moment
method. The method also pops up in random walks, and trees, and so on.

Theorem 3.2 (Bollobas, 1965). Let F be a collection of subsets F = {(Ai, Bi)}hi=1, where Ai, Bi ⊂ X for
some finite set X. F is called a (k, `)-system if:

(1) |Ai| = k and |Bi| = `, and
(2) Ai ∩Bi = ∅, but Ai ∩B 6= ∅ if i 6= j.

Then, in a (k, `)-system, h ≤
(
k+`
k

)
.

Notice that the bound has nothing to do with |X|, which is pretty impressive.
For an example of such a (k, `)-system, consider F = {(A,X \A) : A ⊂ X, |A| = k}, where X = {1, . . . , k}.

Here, h =
(
k+`
k

)
. Thus, the bound is tight.

Proof of Theorem 3.2. Without loss of generality, let X =
⋃h
i=1(Ai ∪Bi), since we don’t need to worry about

anything else. Then, put on X a random order π, uniformly chosen (really a permutation over the entries of
X). For all i, let

Ei = {all elements of Ai precede all elements of Bi in the order π}.

Thus, P(Ei) = 1/
(
k+`
k

)
, since the goal is to make sure out of the k + ` elements of Ai ∪Bi, the k in Ai come

first.
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More interestingly, P (Ei ∩ Ej) = 0 whenever i 6= j: suppose without loss of generality that the last element
of Ai doesn’t appear after the last element of Aj (if not, then switch them); if this is true, then Ai precedes
Bi and therefore Bj as well. But recall that Ai ∩Bj is nonempty, so this event cannot happen.

Now,

1 ≥ P

(⋃
i

Ei

)
=

h∑
i=1

P(Ei) =
h(
k+`
k

) . �

This is one of the cleverest elementary proofs anyone in the class has seen in a long time. Where did the
last line come from? Proof often have a level of novelty or depth (how surprising it is), and how comptuational
or cumbersome it is. These two proofs illustrate some of the grave differences between the two!

Theorem 3.3 (Erdős-Ko-Rado). A family F of sets is called intersecting if all of its elements are pairwise
intersecting, i.e. for all A < B ∈ F , A ∩ B 6= ∅. Then, if F is an intersecting family of k-subsets of
{0, . . . , n− 1} and n ≥ 2k, then |F| ≤

(
n−1
k−1

)
.3

Proof. This proof is due to Katona, in 1972. It depends on a small result in number theory: for n ≥ 2k and
0 ≤ s ≤ n− 1, let AS = {s, . . . , (s+ k − 1) mod n}, then such an F as discussed in the theorem statments
contains at most k of the sets As. The proof will be given in just a bit.

For the theorem statement, choose a permutation σ of {0, . . . , n − 1} uniformly, and choose an i ∈
{0, . . . , n−1} uniformly and independently from σ. Consider the set A = {σ(i), σ(i+1), . . . , σ(i+k−1 mod n)}.
This is like As, but after the permutation has been applied. By the result claimed above, P(A ∈ F | σ) ≤ k/n,
and therefore that P (A ∈ F) ≤ k/n, by averaging over the σ. Thus, A has been obtained as a uniformly
chosen k-subset of F . But this simplifies to k/n ≥ |F|/

(
n
k

)
, and then you’re done.

The first claim admits a simple geometric proof: suppose A` ∈ F ; then, of the sets As, only those that
intersect A` can be in F . But these can be arranged into disjoint pairs, e.g. if A1 ∩A`, then pair A1 the set
A2 given by A2 ∩A` = A` \A1; thus, A1 and A2 are disjoint. Thus, one can only pick at most one from each
pair, giving k − 1, plus the original, giving k. This part doesn’t depend on k. �

Once again, the proof is really short, but really clever. It’s not exactly something one would cook up on a
problem set.

One way to refine this method is to use alterations; this technique combines probabilistic and non-
probabilistic ideas to construct a probability measure P and a random variable X on a discrete set S, as in
the classical probabilistic method, but it’s difficult to coerce X into being large enough to make the property
work. if it “almost works,” in some sense that only a few constraints are violated, then one might be able to
alter X a little bit to obtain the needed structure. The loss that results might be nonzero, but not large
enough to be important.

As an example, an alternate formulation of the idea of Ramsey number is that for all graphs G of R(k, k)
vertices, either ω(G) ≥ k, or α(G) ≥ k, where ω(G) is the size of the largest clique and α(G) is the size of its
largest independent set (a set of vertices which have no edges between any of them). This can be shown
by taking a given graph G and coloring Kn such that an edge is blue if it’s in G and red if it isn’t. Then,
cliques and independent sets correspond to monochromatic subgraphs Kk. We have seen that in a random

two-coloring, the expected number of monochromatic Kk is s =
(
n
k

)
21−(k2). Thus, we saw that if s < 1, then

there exists a two-coloring with no monochromatic Kk, so R(k, k) > n.

Theorem 3.4 (Alon & Spencer, Theorem 3.1.1). For all n, R(k, k) > n− s, even if s > 1.

Proof. Fix n and by the basic methods, there exists a two-coloring of Kn with at most s monochromatic
subgraphs Kk. Then, remove from Kn one vertex from each such monochromatic Kk. Now, this graph has
at least n− s vertices and no monochromatic Kk. �

While this illustrates the general principle, the actual improvement was not large. Yet it was pretty easy
to follow.

3This is also a tight bound: take all of the sets containing 0, which are clearly intersecting, and there are
(n−1
k−1

)
of them.

Once again, the simplest construction is optimal.
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Lecture 4.

Alterations: 1/13/14

Not everything in this class is discrete or random; sometimes the examples are more interesting.
Let C ⊆ Rd be a bounded, convex, centrally symmetric set centered at the origin (i.e. if c ∈ C,

then −c ∈ C as well), and let µ(C) denote the volume (or Lebesgue measure) of C. Let B(x) = [0, x]d.
Then, the packing problem is to fit as many copies of C into B(x) by translation. In other words, let
f(x) = max{N : x1, . . . ,xN with xi +C ⊆ B(x) and (xi +C)∩ (xj +C) = ∅, i 6= j}, and define the packing
constant to be δ(C) = µ(C) lim infx→∞ f(x)x−d, which is the fraction of volume occupied by the pakcing,
and represents the efficiency of the packing, and is always at most 1.

Impressively, the following result admits a probabilistic proof.

Theorem 4.1. δ(C) ≥ 2−(d+1).

Proof. The standard probabilistic method will cause there to be some overlapping copies of C, so they will
be removed; this is an example of alterations.

Choose P and Q independently uniformly on B(x). Then, (C +P )∩ (C +Q) 6= ∅ iff there exist c1, c2 ∈ C
such that P −Q = c1 − c2, and therefore P −Q = 2((c1 − c2/2)) ∈ 2C (since c1, c2 ∈ C and C is convex, so
their midpoint is in C). Thus, P((C + P ) ∩ (C +Q) 6= ∅) ≤ P(P ∈ Q+ 2C) ≤ µ(2C)/xd.

Choose P1, . . . , Pn i.i.d. and uniformly at random in B(x). Then, compue the expected number of
intersections: let X = #{i < j : (Pi + C) ∩ (Pj + C) 6= ∅}. By linearity of expectation,

E[X] ≤
(
n

2

)
µ(2C)x−d ≤ n2

2
2dµ(C)x−d.

Thus, there exists a choice of n points x1, . . . , xn having no more than n2µ(C)2d−1x−d intersections among
{(Xi+C)}ni=1. Thus, by removing exactly this number of points, one obtains a packing of n−n2µ(C)2d−1x−d.
However, the centers are in the packing, but the edges of C might not be; it’s a packing of B(x+ 2w), where
w = max1≤i≤d

∣∣ith coordinate of a point in C
∣∣. Thus, f(x+ 2w) ≥ n = (n2/2)µ(C)2dx−d.

This can be explicitly solved for the optimal n: n∗ = xd2−d/µ(C), so f(x+ 2w) ≥ xd2−(d+1)/µ(C). And
since ((x+ 2w)/x)d → 1 as x→∞, then in the limit this is correct. �

Unfortunately, this proof doesn’t provide an algorithm other than the standard one (i.e. choose a random
set of points and see what happens). Moreover, it’s not at all optimal; the textbook gives an easy improvement
to 2−d and a much harder improvement to 2−(d−1) (eleven chapters later!); it is not clear what can be said
beyond that. Interestingly, though, this proof doesn’t require too much cleverness.

The following theorem is in a similar spirit.

Theorem 4.2 (Erdős). If n is prime, then there exist n points on [0, 1]2 such that any triangle drawn between
three points chosen from these n is of area at least 1/(2(n− 1)2).

The probabilistic proof is easy enough to be given in the textbook, though it requires some number
theory, but a non-probabilistic proof is much harder, was only seen in 1982, and isn’t even that much better:
(c lg n)/n2. There’s also an even simpler probabilistic proof which gives a bound of 1/Cn2, even when n is
not prime. This is once again of the form that in the average case, something happens, and then there must
be something better than average.

Definition 4.3. χ(G) denotes the chromatic number of a graph G, the minimum number of colors of vertices
of the graph such that no two vertices of the same color are connected. Then, girth(G), known as the girth of
the graph, is the length of the minimal circuit.

Intuitively, though the chromatic number is complicated, it ought to be related to girth somehow.
Unfortunately, the truth isn’t as nice.

Theorem 4.4 (Erdős, 1959). For all k, ` there exists a graph G with girth(G) ≥ ` and χ(G) ≥ k.

Proof. This proof depends on the following graph-theoretic inequality, which is not hard to show: that
χ(G)α(G) ≥ |V |, where α(G) is again the size of the maximal independent set.
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This is because one can make a proper coloring of the graph using at least χ(G) colors, such that no edge
connects vertices of the same color. Then, every set of vertices of the same color is independent, so if αci is
the number of vertices of color i, then αci ≤ α(G) and

|V | =
χ(G)∑
i=1

αci ≤
χ(G)∑
i=1

α(G) = χ(G)α(G).

The idea of the general proof is to construct G with n vertices and less than n/2 cycles of length at most
`, with α(G) = o(n). Then, one can remove up to n/2 vertices, each from such cycles, to obtain a slightly
smaller graph G∗ with at least n/2 vertices and such that girth(G∗) > ` and α(G∗) ≤ α(G) = o(n). Now,
use the given inequality to show that χ(G∗) ≥ |G∗|/α(G∗)→∞ as n→∞. Thus, all one has to do is pick n
large enough. In some sense, dealing with independent sets is easier than dealing with the chromatic number,
so the inequality is used to translate between them.

The construction is as follows: take G = G(n, p), the Erdős-Rényi random graph, where p = n−(1−θ),
where θ < 1/`. It will become clear in the proof why p and θ are as given. Then, it happens (though
it has to be shown) that if X is the number of cycles with length at most `, then E[X] = o(n), and
P(α(G) ≥ (3/p) lnn+ 1) < 1/2.

To show the first, sum over the lengths of all possible cycles, the choice of the vertices in the cycle, and
the choices of the cycle ordering. Thus,

E[X] =
∑̀
i=3

(
n

i

)
i!

2i
pi ≤

∑̀
i=3

(np)i

2i
= o(n),

because (np)` = nθ` for θ < 1. Thus, by the Markov inequality, if X ≥ 0, then P(X ≥ n/2) ≤ E[X]/(n/2),
which goes to zero as n→∞. Using the union bound over all possible choices of y vertices out of n,

P(α(G) ≥ X) ≤
(
n

y

)
(1− p)(

y
2) ≤

[
n(1− p)(y−1)/2

]y
≤
[
ne−p(y−1)/2

]y
= o(1),

because 1− p ≤ e−p. The asymptotic bound uses the fact that y = (3/p) lnn+ 1, so in the end the factor of
n is dwarfed by n−3/2. �

This proof was difficult, but the trickiness wasn’t in the probabilistic part! The trickery is in being as
clever as Erdős in reasoning about graphs, though the probabilistic part could even be assigned as an exercise.

Another graph-theoretic example of alterations is Turán’s theorem.

Theorem 4.5 (Turán). If G is a graph on n vertices with nd/2 edges and d ≥ 1, then α(G) ≥ n/2d.

To motivate this theorem, take n/d disjoint copies of Kd; then α(G) = n/d, which is a factor of two off.
Then, the proof is by alterations.

Lecture 5.

The Lovász Local Lemma I: 1/15/14

Lemma 5.1 (Lovász Local Lemma). Suppose that X1, . . . , Xn are indicator random variables and W =∑n
i=1Xi. Suppose that for every i, there exists a subset Bi ⊂ {1, . . . , n} such that sup{P(Xi = 1 |

{Xk}k 6∈Bi)} = pi.
4 We are interested in when these Ai don’t happen; specifically, if there exist xi ∈ [0, 1)

such that for all i,

pi ≤ xi
∏
j∈Bi

(1− xj),

then

P(W = 0) ≥
n∏
j=1

(1− xj).

4The textbook deals with a special case in which Xi = 1Ai , pi = P(Xi = 1), and i ∼ j if j ∈ Bi and Ai is independent of

{Aj}j 6∈Bi .
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Proof. The proof consists of two parts, the first of which is non-obvious (and deferred), and the second of
which is more obvious. Thus, assume for now that for all S ⊆ {1, . . . , n} with i 6∈ S,

(5.2) P

(
Xi = 1 |

∑
j∈S

Xj = 0

)
≤ xi.

Thus, assuming this, one can write

P (W = 0) = P (X1 = 0)P (X1 = 0 | X1 = 0) · · ·

(
P

(
Xi = 1 |

∑
j∈S

Xj = 0

))
≥ (1− x1)(1− x2) · · · (1− xj).

To prove (5.2), proceed by induction on the size of S. If |S| = 0, then it’s trivial, because the probabilities are
unconditional: since pi is the supremum of the conditional probabilities, then it’s certainly true that xj 6= 1.

Otherwise, use Bayes’ rule. Let T =
∑
j∈S∩Bci

Xj = 0, which intuitively represents a part of Bi over which

we have some control. Then,

P

(
Xi = 1 |

∑
j∈S

Xj = 0

)
=

P
(
Xi = 1,

∑
j∈S∩Bi Xj = 0 | T

)
P
(∑

j∈S∩Bi Xj = 0 | T
)

≤ P(Xi = 1 | T )

(1− P(Xj1 = 1 | T ))(1− P(Xj2 = 1 | Xj1 , T )) · · · (1− P(Xjr = 1 | Xj1 , . . . , Xjr , T ))
,

where S ∩Bi = {j1, . . . , jr}. The case of r = 0 is trivial, since pi ≤ xi. Thus, more generally, by the inductive
hypothesis,

≤
xi
∏
j∈Bi(1 = xj)∏

j∈S∩Bi(1− xj)
≤ xi.

The last step follows because there are more terms in the product in the denominator than in the numerator. �

One special case is given when the probabilities are symmetric.

Corollary 5.3. Let p = maxni=1{pi} and d = maxni=1|Bi|; then, P(W = 0) ≥ (1 − 1/(d + 1))n whenever
p ≤ (1/(d+ 1))(1− 1/(d+ 1))d ≤ 1/e(d+ 1) for all d ≥ 1.

Proof. Take xi = x = 1/(d+ 1), and the conditions to check from the lemma are satisfied. �

This is pretty nice in that it doesn’t even mention n.
Intuitively, this lemma says that when computing the probabilities of intersections of events, even if they’re

not independent, as long as they aren’t “too” dependent, then they are approximately independent.
Interestingly, there was a more recent constructive proof of Lemma 5.1, which actually provides an

algorithm for constructing the specified objects. But it’s much longer than this proof.
For an example, consider two-coloring hypergraphs.

Definition 5.4. A hypergraph is a set H = (V,E), where V is some finite set and E is a set of subsets of V .
A hypergraph is 2-colorable is there exists a two-coloring of V such that no (hyper)-edge is monochromatic.

The edges are now allowed to connect more than two vertices; if this requirement is imposed, one obtains
a regular graph. Notice that the coloring condition is not that any two vertices connected by a hyperedge
must be different colors, but that in some hyperedge there must be some two vertices with different colors.

Theorem 5.5 (Alon & Spencer, Theorem 5.2.1). If H = (V,E) is a hypergraph with e hyperedges, then each
edge has at least k elements and intersects (as sets) at most d other edges, such that e(d+ 1) ≤ 2k−1, then
there exists a 2-coloring of V with non-monochromatic edges.

Proof. Color V by assigning each vertex to each color randomly with probability 1/2 (Bernoulli distribution).
Let Xf = 1 if the edge f is monochromatic, so that P(Xf ) = 2/2|f | ≤ 2−(k−1). Let p = 2−(k−1), and note
that Xf and Xg are independent when f ∩ g = ∅, so we have the condition of the symmetric version of the
local lemma. �
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Theorem 5.6 (Erdős & Lovász). A function c : R→ {1, . . . , k} is called a k-coloring, and T ⊆ R is called
multicolored if c(T ) = {1, 2, . . . , k}. Then, let m, k ∈ N such that e(m(m− 1) + 1)k(1− 1/k)m ≤ 1, and let
d = m(m− 1) and p = k(1− 1/k)m. Then, for all S ⊆ R of cardinality m, there exists a k-coloring such that
for all x ∈ R, x+ S is multicolored.

This is impressive in that it works even despite uncountably many shifts. It doesn’t seem like it should at
all be possible to tackle with a finiteness condition.

Remark 5.7. The condition e(m(m − 1) + 1)k(1 − 1/k)m ≤ 1 seems arbitrary, but the point is that it’s
sufficient to have m > (3 + o(1))k lg k. (

Proof of Theorem 5.6. First, take X ⊆ R to be a finite set of arbitrary size. Then, the theorem will be shown
for {x + S}x∈X by using the symmetric version of Lemma 5.1. Then, let Y =

⋃
x∈X (x + S), and choose

c : Y → {1, . . . , k} at random choosing c(y) i.i.d. and uniformly in {1, . . . , k}.
Define Xx = 1 iff |c(x+ S)| < k; then, p = P(Xx = 1) ≤ k(1− 1/k)m. Then, Xx is indepednent of {Xy}

for all Y such that (x+ S)∩ (y + S) = ∅, so there are at most d = m(m− 1) numbers y such that x− y ∈ S.
Then, apply the symmetric version of Lemma 5.1, which shows the theorem for X .

To extend this to R, some analysis is needed, but no probability. {1, . . . , k} is a compact space,
and by Tychonov’s theorem, the space of functions {c : R → {1, . . . , k}} is also compact, with re-
spect to the topology of pointwise convergence. Thirdly, for any fixed x ∈ R, the set Cx = {c : R →
{1, . . . , k} such that x+ S is multicolored} is closed with respect to the topology of pointwise convergence
(since if it converges to something, then the colors ought to stabilize too).

Thus, the Cx are compact, since they’re closed subsets of a compact space. But
⋂
x∈X Cx 6= ∅ for any finite

collection X , which was the point of the probabilistic argument. Thus, by compactness,
⋂
x∈R Cx 6= ∅.5 �

Lecture 6.

The Lovász Local Lemma II: 1/17/14

Recall the symmetric version of the Lovász local lemma: that if W =
∑
iXi where the Xi are independent

variables, then if P(Xi = 2) ≤ p for all I, then P(W = 0) > 0, provided Xi

∐
{Xj}j 6∈Bi for all i, and for all j

|Bj | ≤ d such that e(d+ 1)p ≤ 1.

Theorem 6.1 (Alon & Linial, 1989). If D is a simple (i.e. no multiple edges) directed graph with a minimum
outdegree δ and maximum indegree ∆ such that e(∆δ+ 1)(1− 1/k)δ ≤ 1. Then, there exists a directed, simple
cycle in D (i.e. there are no subcycles) of length 0 (mod k).

Proof. Without loss of generality, assume that every outdegree is δ, because this only makes it harder to find
cycles. Now, we put a k-coloring of the vertices of the graph D, uniformly at random (and i.i.d., and so on);
call this coloring f(v) for v ∈ V , i.e. f : V → {1, . . . , k}, where V is the set of vertices of D.

For v ∈ V , let Xv be an indicator for the event that for all u ∈ V such that v → u is an edge in D, we
have f(u) 6= (f(v) + 1) (mod k). By the local lemma, there exists a coloring f with W = 0, i.e. Xv = 0 for
all v. Thus, for all v ∈ V , there exists a u ∈ V such that v → u ∈ D and f(u) = f(v) + 1 (mod k). Explore
D along these edges;given a v0 ∈ V , there exists a v1 with f(v1) = f(v0) + 1 mod k, and then a v2 with that
property for v1, and so on. Since D is finite, eventually this will create a cycle vi, vi+1, . . . , vi+n = vi, which
is simple. But since f(vi) increments by 1 mod k each time, but ends up at the same place mod k, so k | n,
or the length of the cycle is 0 (mod k).

Now, we need to actually invoke the probabilistic argument, which requires somewhat less cleverness.
Firstly, P(Xv = 2) = (1− 1/k)δ, because there are δ edges out of v leading to different vertices, so this is the
probability that a given u has f(u) 6= f(v) + 1 (mod k) given f(v).

Then, Xv is independent from {Xu}u6∈Bv , because Bv consists of all of all u such that u→ w and v → w
as well as all u such that v → u. Its size is at most δ∆, where δ comes from the outdegree of v and ∆ the
indegrees of the possible u. Then, the conditions placed in the theorem allow one to invoke the Lovász local
lemma. �

5This uses a theorem that if {Ai}i∈I is a family of compact subsets of X such that for any finite collection J ⊂ I,
⋂

j∈J Aj 6= ∅,

then
⋂

i∈I Ai 6= ∅ as well.
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Definition 6.2. A family F of open unit balls in R3 is called a k-fold covering (of R3) if for all x ∈ R3, there
exist at least k balls in F which x belongs to. F is decmomposable if ther exist disjoint subsets F1,F2 of F
such that each Fi is a covering of R3.

Theorem 6.3 (Mani-Levitska & Pach, 1988). For all k ≥ 1, there exists a non-decomposable k-fold covering
of R3.

This is hard to prove, but they also proved the following theorem, which can be attacked with the local
lemma in a completely non-obvious way. The result itself is also somewhat counterintuitive.

Theorem 6.4. If no point in R3 is contained in more than t balls of the k-fold covering of F and et218 ≤ 2k−1,
then F is decomposable.

Proof. Let {Cj}j∈J be the set of connected components obtained when removing the boundaries of the balls
from R3, or, in other words, subsets not separated by the boundary of any of the balls. Then, construct an
infinite hypergraph H = (V,E), where V = {Bi}i∈I is the original F, and an edge Ej(H) = {Bi : i ∈ I, Cj ⊆
Bi}. Several edges are connected if they contain some common Cj . Then, because F is a k-fold covering,
each hyperedge Ej contains at least k vertices.

Claim 6.5. The statement that no point in R3 is contained in more than t balls implies that each Ej
intersects at most t3218 other E`.

The proof will be deferred and isn’t probabilistic anyways.
Consider any finite sub-hypergraph L of H (i.e. there are only finitely many edges). Then, each edge

of L has at least k vertices, and intersects at most d < t3218 other edges. Thus, e(d1) ≤ 2k−1, and we saw
in Theorem 5.5 that this means there exists a 2-coloring of L in which no edge is monochromatic. Then,
the same compactness argument used in the packing problem for Theorem 5.6 allows us to claim that H is
2-colorable. Let F1 be the set of blue balls and F2 the set of red balls; then, each Fi covers every connected
component Ci (if not, the corresponding edge in the hypergraph would be monochromatic), and since the
balls in question are open, then they must also cover the boundaries, so F is decomposable.

Now, for the claim check. Fix an edge E` corresponding to the connected component C`. Let Ej be any
other edge of H (for the component Cj) that intersects E`. Thus, there exists a Bi such that Bi ⊇ C` and
Bi ⊇ Cj . Thus, any ball containing Cj must intersect Bi, so all closed unit balls that contain or touch Cj
must intersect Bi. All of them have to be included within a fixed ball of radius 4, and no point of this ball is
covered more than t times, to by a volume argument there are at most t43 such balls. Then, there are at
most m = t26 such balls, so one can cut R3 into at most m3 connected components, and each Cj must be
one of them. Thus, #Cj ≤ (t26)3 = t3218. �

The more diverse tricks you need to prove such statements like this one, the fewer people are able to
discover it. . .

Lecture 7.

Poisson Approximation: Jensen’s Inequality: 1/22/14

Suppose X1, . . . , Xn are indicator random variables (so that they take values 0 or 1) and come with a
neighborhood of dependences B1, . . . , Bn, which is to say that Xi is independent of {Xj}j 6∈Bi (so if the Xi

are all independent, each Bi = ∅). Then, for any J ⊆ I, write Xj =
∑
i∈J Xi.

The idea behind the following theorem is to have a result not too unlike independence in the case of
variables that aren’t too strongly dependent. ∆ represents how dependent they are, and is ideally not too
large. M̃ represents the independent case.

Theorem 7.1. If

M̃ = −
∑
i∈I

log(1− P(Xi = 1)),

then

(7.2) M̃ ≥ − logP(XI = 0) ≥ sup
θ∈[0,1]

(θM̃ − θ2∆/2(1− ε)),
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where

∆ =
∑
i∈I

P(Xi = 1)
∑
j∈Bi
j 6=i

P(Xj = 1 | Xi = 1)

and ε = maxi∈I{P(Xi = 1)}, under the conditions of positive dependence, i.e. that for all J ⊆ I and i 6∈ J ,
P(XJ = 0 | Xi = 1) ≤ P(XJ ≤ 0), and that (another kind of positive dependence) for every j ∈ Bci and any
k 6= i such that k ∈ Bi, but k 6∈ J , then P(Xj = 0 | Xi, Xk = 1) ≤ P(Xj = 0 | Xk = 1).

(7.2) is known as Jesen’s inequality. Notice that the local lemma just showed that the middle term is
positive; this states that with a little more information, one can obtain a nicer bound. It’s also useful to
observe that this is approximately a Poisson distribution, e.g. if XI is Poission as |P (Xi = 0) = e−λ = M̃ ,

then λ = − log M̃ . Then, using linearity of expectation,

µ = E[XI ] =
∑
i∈I

P(Xi = 1),

and we expect λ = µ. The point of Poisson approximation is that since − lg(1− x) ' x when x is small, one
can approximate P(XI = k) ≈ e−λλk/k! for k = 1, 2, . . .

Proof of Theorem 7.1. For the left-side inequality, it’s equivalent to showing that

P(XI = 0) ≥
∏
i∈I

P(Xi = 0) = e−M̃ .

Well, P (XI = 0) = P (X1 = 0)P (X2 = 0 | X1 = 0)P (X3 = 0 | X1 + X2 = 0) · · · , and so on. Let J1 = {1},
J2 = {1, 2}, up to Jn−1 = {1, . . . , n− 1}. Then, rewrite this as

P(XI = 0) =
∏
i∈I

P(Xi = 0)

(
n−1∏
i=1

P(Xi+1 = 0 | XJi = 0)

P(Xi+1 = 0)

)
,

so it’s sufficient to show that P(Xi+1 = 0 | XJi = 0) ≥ P(Xi+1 ≥ 0) for i = 1, 2, . . . , n − 1. Rewriting
the left-hand side as P(XJi = 0 | Xi+1 = 0)P(Xi+1 = 0)/P(XJi = 0), this is equivalent to P(XJi = 0 |
Xi+1 = 0) ≥ P(XJi = 0), and therefore that P(XJi = 0 | Xi+1 = 1) ≤ P(XJi = 0), which is true by the first
positive-correlation assumption.

Now, write

(7.3) M̃ + logP(XI = 0) =

n−1∑
i=1

log

(
P(Xi+1 = 0 | XJ = 0)

P(Xi+1 = 0)

)
≥ 0,

so separate Ji into J+
i = Ji∩Bi+1 and J−i = Ji \J+

i . Then, by the obvious inequality P(A | B,C) ≥ P(A,B |
C) = P(B | C)P(A | B,C), then

P(Xi = 1 | XJi = 0) ≥ P(Xi+1 = 1, XJ+
i

= 0 | XJ−i
= 0)

= P(Xi+1 = 1 | XJ−i
= 0)P(XJ+

i
= 0 | Xi+1 = 1, XJ−i

= 0).

Since J−i ∩Bi+1 = ∅, then P(Xi+1 = 0 | XJ−i
= 0) = P(Xi+1 = 1), and so

= P(Xi+1 = 1)

(
1−

∑
j∈J+

i

P(Xj = 1 | Xi+1 = 1, XJi− = 0)

)
.

By the second positive-correlation condition P(Xj = 1 | Xi+1 = 1, XJi− = 0) ≤ P(Xj = 1 | Xi+1 = 1, because
the conditions work with J = J+

i , k = i+ 1, and ` = j ∈ J+
i . Thus, P(Xj−i

= 0 | Xi+1Xj = 1) ≤ P(XJ−i
=

0 | Xi+1 = 1), and the result follows because P(A | B,C) ≤ P(A | B) iff P(C | A,B) ≤ P(C | B)¡ and then,
dividing, P(A,B,C)/P(B,C) ≤ P(A,B)/P(B) iff P(C,A,B)/P(A,B) ≤ P(C,B)/P(B).

Then, we see

P(Xi+1 = 1 | XJi = 0) ≥ P(Xi+1 = 1)−
∑
j∈J+

i

P(Xi+1Xj = 1),
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so taking 1 minus the above,

P(Xi+! = 0 | XJi = 0) ≤ P(Xi+1 = 0) +
∑
j∈J+

i

P(Xi+1Xj = 1),

and therefore by (7.3),

M̃ + lgP(XI = 0) ≤
n−1∑
i=1

log

(
1 +

∑
j∈J+

i

P(Xi+1Xj = 1)

1− P(Xi+1 = 1)

)
.

Then, since log(1 + x) ≤ x,

≤
n−1∑
i=1

P(Xi+1 = 1)
∑

j∈J+
i ⊆Bi+1

j≤i+1

P(Xj = 1 | Xi+1 = 1)

1− P(Xi+1 = 1)
≤ ∆

2(1− ε)
.

This was frighteningly computational, but doesn’t require too much thinking or insight. The next part is a
little more clever. Clearly, − lgP(XI = 0) ≥ supS⊆I{− lgP(XS = 0)} (since the probability that all of them
are zero cannot be greater than the probability that some subset of them are zero), and this is greater than or
equal to ES [− lgP(XS = 0)] over any distribution over subsets S of I which is independent of the Xi. Then,

for every such S, by the same proof, − lgP(XS = 0) ≥ M̃S −∆S/(1− ε), where

MS =
∑
i∈S

lg(1− P(Xi = 1))

and

∆s =
∑
i∈S

∑
j∈Bi,j∈S

j 6=1

P(XiXj = 1).

Let {i ∈ S} be i.i.d Bernoulli random variables parameterized by θ. Then,

ES [− logP(XS = 0)] ≥ ES [M̃S ]− 1

2(1− ε)
E[∆S ].

Since this works for any θ ∈ [0, 1], one can take their supremum. �

Note that one could instead improve the bound slightly by taking i ∈ S to be Bernoulli with probability θi
to get the lower bound

sup
1≥θ1,...,θn≥0

{∑
i

θidi −
∑
i,j

θiθjdij

}
.

This is a complicated expression, but it’s quadratic, so you can at least solve it. The given lower bound is
less complicated, however.

Lecture 8.

Poisson Approximation to the Binomial: 1/24/14

Let Xi be i.i.d. random variables and N � 1 and p � 1, so that np = λ. Then, let XI =
∑
i∈I Xi ∼

Binomial(n, p), and thus P(XI = s) =
(
n
s

)
ps(1− p)n−s for s = 0, 1, 2, . . . , n.

Then, as n→∞ and λ, s are fixed, then this is approximately e−λλs/s!, and, as a specia case where s = 0,
P(XI = 0) ≈ e−λ. This also applies with independent variables Bernoulli(pi), where i = 1, . . . , n, as long as
ε = maxni=1{pi} → 0 and µ =

∑
pi is fixed.
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To see why Poisson approximation works (where µ is used to denote λ, to be consistent with the previous
lecture),

P(XI = S) =

(
n

s

)
ps(1− p)n−s

=
n!

(n− s)!s!

(µ
n

)s(
1− µ

n

)n−s
= 1

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− s− 1

n

)
µs

s!

(
1− µ

n

)n 1

(1− µ/n)s
,

but everything goes to 1 except µs

s!

(
1− µ

n

)n
, which goes to the Poisson formula.

The point of Jensen’s inequality was to use this approximation:

P(XI = 0) ≈ M̃ =

n∏
i=1

(1− pi) = e
∑n
i=1 lg(1−pi).

It also used the first-order Taylor approximation x− x2/2 ≤ log(1− x) ≤ x when x→ 0.
Then, the bound on P(XI = 0) is e−µ+∆/2 ≤ P(XI = 0) ≤ e−µ, where ∆ is roughly the sum of the squares

of the pi, and the overall bounds are e−M̃ and for a lower bound, esupθ∈[0,1](θM̃−θ
2∆/2(1−ε). Note that in Alon

and Spencer, the positive dependence conditions we gave aren’t mentioned, and they use a special case which
we haven’t discussed yet.

A lot of classical approximations (e.g. the Central Limit theorem) depend on the random variables being
independent, but many problems are time-ordered, so the dependencies are nontrivial, but simple. This lends
itself to approximation by independent variables. In other applications, such as graph theory, the dependence
network might be much more complicated, so these sorts of approximations (such as the ones developed in
these few lectures) are better if they aren’t time-dependent.

Take Xi = 1Ai⊆R for i ∈ I, where Ai ⊆ Ω are non-random subsets and the random set R is obtained
by putting each r ∈ Ω inside R independently with probability pr ∈ [0, 1] (hopefully farther away from 1,
because the maximal value appears in the bound). Then, require the following conditions:

(1) P(XJ = 0 | Xi =) ≤ P(XJ = 0), or equivalently, P(XI = 1 | XJ = 0)εP(Xi = 1) for all J ⊆ I and
i 6∈ J .

(2) P(XJ = 0 | XiXk = 1) ≤ P(XJ = 0 | Xk = 1) for any i 6= j not in J . Equivalently, one has
P(Xi = 1 | XJ = 0, Xk = 1) ≤ P(Xi = 1 | Xk = 1).

These equivalences are shown by moving conditional probabilities around and doing algebra.
These follow from something called the FKG property: that if one has two increasing functions, the

expectation of their product is greater than the product of their expectations. This is applied here where the
function just increases from 0 to 1, since the Xi are indicators. In Greek letters, the inequality states that

E[f(ξ1, . . . , ξn)g(ξ1, . . . , ξn)] ≥ E[f(ξ1, . . . , ξn)]E[g(ξ1, . . . , ξn)],

where f and g are monotone and the ξi are independent. Alon & Spencer prove this in Chapter 6. Another
way of understanding this inequality is that monotone functions over independent variables are positively
correlated.

Then, one can show (1) from this inequality: using the definition of conditional probability, P(Xi =
1, XJ = 0) ≤ P(Xi = 1)P(XJ = 0). Then, E[1Ai⊆R1Aj 6⊆R for all j∈J ] ≤ E[1Ai⊆R]E[1Aj 6⊆R for all j∈J ], where
f(ξ) = 1Ai⊆R, g(ξ) = 1Aj 6⊆R for all j∈J , and ξ = 1{r ∈ R}. This makes the proof easier, but showing the FKG
property is nontrivial, and it’s quite possibly easier to just assume the result of the property as a condition.

Definition 8.1. A set J ⊆ I is a disjoint family if for all i, j ∈ J , i 6∈ Bj , so that Xi and {Xj}j∈J are
indepedent for all i ∈ I.

Lemma 8.2. P(there exists a disjoint family J with XJ ≥ s) ≤ µs/s!

Lemma 8.3. The probabiity that there exists a disjoint family J with XJ = s, and if Xi = 1 for some i /∈ J ,
then J ∪ {i} is not disjoint is at most (µse−µ/s!)esre∆/(2(1−ε)).
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The whole reason for taking a disjoint family is that one can take points outside of a given point’s
neighborhood of dependence. This is easier than carrying around a lot of words about whether it’s possible
to have counterexamples or multiples.

Proof of Lemma 8.2. Notice that if J is joint and J̃ ⊆ J , then J̃ doesn’t have any new dependence relations,
so it’s also disjoint. Thus,

P(there exists a disjoint J such that XJ ≥ s) ≤
∑
|J|=s

J disjoint

P(XJ = s) =
∑
|J|=s

J disjoint

∏
i∈J

P(Xi = 1),

because the Xi are independent on {Xj | j 6= i}. But since there are s! possible permutations of {j1, . . . , js},
then this is

≤ 1

s!

∑
j1 6=j2 6=···6=js

s∏
`=1

P(Xj` = 1)

≤ 1

s!

(∑
r

P(Xr = 1)

)s
=
µs

s!
. �

Notice that the e−µ term vanishes into the union bound, and in some cases this is fine, but in others
it causes the bound to be greater than 1, which is less useful. This is why Lemma 8.3 exists, though its
derivation is slightly more involved.

Proof of Lemma 8.3. Continuing with the reasoning from the proof of Lemma 8.2,

P(there exists a disjoint J such that XJ = s) ≤
∑
|J|=s

J disjoint

s∏
i=1

P(Xji = 1)P(XI\
⋃
i∈J Bi

= 0).

Then, the rightmost term, not present in the previous proof, is what we want to end up in a term like e−µ.
Then, applying Jensen’s inequality,

≤ e−
∑
θ∈[0,1](θM̃J−θ2∆J/(2(1−ε))).

Here, M̃J and ∆J are given by replacing I with I \
⋃
i∈J Bi. It then happens that ∆J ≤ ∆ and M̃j ≥ M̃ − sr,

so once this is shown take θ = 1. For ∆ it is at least clear: ∆ is formed of sums of pairs of positive things, so
removing some terms makes it smaller, or at least not larger. �

Lecture 9.

The Chen-Stein Method: 1/27/14

Let Zλ = Po(λ), i.e. Zλ is a Poisson random variable, so that P(Zλ = k) = e−λλ−k/k! Then, let W be
a random variable on Z+ coming from some other application (e.g. graph theory) which is believed to be
close to Zλ (or some sequence Wn that approaches Zλ). Then, one can use the Chen-Stein method (also
the Stein-Chen method) to approximate W with a Poisson distribution, which is a special case of the more
general Stein method for approximating one distribution with another.

Claim 9.1. For any f : Z+ → R, let (Tf)(w) = wf(w)− λf(w + 1). Then, if

∞∑
w=0

(wf(w)− λf(w + 1))p(w) = 0

for all f : Z+ → R, then p(w) = e−λλw/w!

This is an interesting way to show that a function has a particular distribution, and if one can show this is
close to zero, then the distribution can be approximated by a Poisson distribution. Interestingly, this was
discovered only 30 years ago, but is no longer a subject of active research; it’s been dealt with.

It’s fairly easy to check that the Poisson distribution satisfies the claim, but showing that anything else
doesn’t is a little harder.
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Let S be any linear operator such that TS = I (where I is the identity), and consider the family of
functons H = {h : Z+ → {0, 1}} and F = {f : f = S(h − h)}, where h = E[h(Zλ)]. Then, E[Tf(W )] =
E[h(W )]− E[h(Zλ)] for all f ∈ F. Then, there is a quantity called the total variation distance

d(W,Zλ) = ‖W − Zλ‖t,v, = sup
f∈F

E[Tf(W )] = sup
h∈H

E[h(W )]− E[h(Zλ)] = sup
A⊆Z+

{P(W ∈ A)− P(Zλ ∈ A)}.

Now, one can define two constants that only depend on λ:

c1 =
1

λ
(1− e−λ) ≥ sup

f∈F
‖f(·+ 1)− f(·)‖∞

c2 = min

(
1,

√
2

λ

)
≥ sup

f∈F
‖f‖∞.

Now, the goal is to bound the total variation distance in terms of c1, c2, and some conditions on W . This will
allow one to make a Poisson approximation. Specifically, assume W =

∑
α∈I Xα and λ =

∑
α∈I pα = E[W ],

where Xα ∈ {0, 1} an pα = P(Xα = 1).6 Then, we want the following to be small:

E[Tf(W )] = E

[∑
α∈I

(Xαf(W )− pαf(W + 1))

]
=
∑
α∈I

E[Xαf(W )− pαf(W + 1)]

Let aα = E[Xαf(W )−pαf(W +1)] for any α ∈ I, so the above sum becomes
∑
α aα. Let also W = Xα+Wα,

so that Wα =
∑
β 6=αXβ . Then,

aα = E[Xαf(W )− pαf(W + 1)]

= pαE[f(Wα + 1) | Xα = 1]− p2
αE[f(Wα + 2) | Xα = 1]− (1− pα)pαE[f(Wα + 1) | Xα = 0]

= pα(1− pα)(E[f(Wα + 1) | Xα = 1]− E[f(Wα + 1) | Xα = 0)]) + p2
αE[(f(Wα + 1)− f(Wα + 2)) | Xα = 1].

Notice that if Xα and Wα are indepedent, then the first term vanishes and the second is bounded above by
c1. Thus, one might want a random variable Vα in the same probability space which is “more independent”
of Xα and “not too far from” Wα. In this case,

aα = pα(1− pα)(E[f(Wα + 1)− f(Vα + 1) | Xα = 1]− E[f(Wα + 1)− f(Vα + 1)])

+ pα(1− pα)(E[f(Vα + 1) | Xα = 1]− E[f(Vα + 1) | Xα = 0])

+ p2
αE[f(Wα + 2)− f(Wα + 1) | Xα = 0]

Let I denote the first term, II the second term, and III denote the third term. Then, since |f(x)− f(y)| ≤
c1|x− y| (the Lipschitz norm of f is at most c1),

I ≤ c1pα(1− pα)(E[|Wα − Vα| | Xα = 1] + E[|Wα − Vα| | Xα = 0]),

III ≤ c1p2
α, and

II = pα(1− pα)|
∞∑
k=0

f(k + 1)(P(Vα = k | Xα = 1)− P(Vα = k | Xα = 0))|

≤ c2pα(1− pα)dtv(Vα|Xα=1, Vα|Xα=0).

This last inequality follows because for any distributions P and Q,
∞∑
k=0

|P(k)−Q(k)| = 2 sup
A⊆Z+

(P(A)−Q(A)) = 2(P(A∗)−Q(A∗)),

where A∗ = {k : P(k) ≥ Q(k)}. Thus, one has the following theorem.

6A lot of this will be the same in the case of a normal distribution, i.e. for the Central Limit theorem. However, this means

that the high-level ideas, including that of Taylor approximation, are the same, but the equations and constants are different.
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Theorem 9.2. For all random variables Vα,

dtv(W,Zλ) ≤ c1
∑
α∈I

p2
α + c1

∑
α∈I

pα(1− pα)(E[|Wα − Vα| | Xα = 1] + E[|Wα − Vα| | Xα = 0])

+ 2c2
∑
α∈I

pα(1− pα)dtv(Vα|Xα=1, Vα|Xα=0).

Thus, the idea that Vα should be not too far fromWα is refined into a condition on the L1-norm. For example,
if Xα and Vα are independent for all α, the Poisson approximation if for all α, E[|Wα − Vα| | Xα = 1]→ 0
and E[|Wα − Vα|]→ 0. In general, there may be neighborhoods of dependence, but in relatively small ways,
which makes approximation nicer.

Another interesting case is the symmetric one, where for all α, pα = λ/n. Then,

d(W,Zλ) ≤ (1− e−λ)
λ

n
+ (1− e−λ)

(
1− 1

n

)
(E[|W1 − V1| | X1]1] + E[|W1 − V1| | X1 = 0])

+ 2 min

(
1,

√
2

λ

)(
1− λ

n

)
λdtv(V1|X1=1, V1|X1=0).

In this sense, you only need one of the α to know all of them.
If X ∼ Bernoulli(p) and Γ is any random variable, then one has the identity

E(p+ (1− 2p)X)Γ] = p(1− p)E[Γ | X = 0] + p(1− p)E[Γ | X = 1],

so one can use a slightly different bound in Theorem 9.2:∑
α∈I

pα(1−pα)(E[|Wα−Vα| | Xα = 1]+E[|Wα−Vα| | Xα = 0]) =
∑
α

pαE[|Wα−Vα|]+(1−2pα)E[Xα|Wα−Vα|].

Then, if Vα =
∑
γ 6∈Bα Xγ and Xα is independent to the Xγ where γ 6∈ Bα, then

I =
∑
α

pαE[Wα − Vα] + (1− 2pα)E[(Wα − Vα)Xα]

=
∑
α

pα

∑
β∈Bα

pβ + (1− 2pα)
∑
β∈Bα

pαβ

,
where pαβ = P(Xα = Xβ = 1), their correlation. Hopefully this is on the order of 1/n2, so that the
approximation is easier: I ≈ |Bα|/n+ n|Bα|pαβ . If pαβ ≈ c/n1+γ , the second term is just |Bα|/n1−γ .

If all one wants is
∣∣P(W = 0)− e−λ

∣∣, one doesn’t need all of this; it evaluates as
∣∣P(W = 0)− e−λ

∣∣ ≤ c1.

Lecture 10.

The Probabilistic and Coupling Methods: 1/29/14

Recall the Chen-Stein method introduced last lecture, and in chapter 1 of [2]. Interestingly enough, this
was done in Chen’s PhD thesis while he was a graduate student at Stanford!

Let W =
∑
αXα, where Xα ∈ {0, 1}, pα = P(Xα) = 1, and λ = E[W ] =

∑
α pα. Then, Zλ ∼ Po(λ). The

total variation distance was shown to be

dtv(W,Zλ) ≤
(

1− e−λ

λ

)∑
α

(b(1)
α + b(2)

α ) + min

(
1,

√
2

λ

)∑
α

b(3)
α

and ∣∣P(W = 0)− e−λ
∣∣ ≤ (1− e−λ

λ

)∑
α

(b(1)
α + b(2)

α + b(3)
α ),
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where

b(1)
α = p2

α + pαE[|Wα − Vα|]

b(2)
α = (1− 2pα)E[Xα|Wα − Vα|]

b(3)
α = 2pα(1− pα)dtv(Vα|Xα=0, Vα|Xα=1)

= E[|E[Xα − pα | Vα]|].

It’s also convenient to write b1 =
∑
b
(1)
α , and so on.

Example 10.1. Let Y1, . . . , Yn be i.i.d., nonnegative random variables. Set X1 = 1 iff Y1 + · · ·+ Yr ≤ εn,r,
X2 = 1 iff Y2 + · · ·+ Yr+1 ≤ en,r, and so on up to Xn−r+1 = 1 iff Yn−r+1 + · · ·+ Yn ≤ εn,r. This has a nice
small neighborhood of dependence, and in effect counts how often these sums are very small.

Let W =
∑n−r+1
i=1 Xi and λ = (n− r + 1)P(Y1, . . . , Yr ≤ εn,r). Then, the neighborhood of dependence is

Bi = {i− (r − 1), . . . , i+ (r − 1)} and thus b3 = 0, |Bi \ i| = 2(r − 1), |Bi| = 2r − 1, and pi = λ/(r − r + 1).
Thus, one can compute b1 = p2

i |Bi|(n− r + 1) = λ2(2r − 1)/(n− r + 1).
Then, calculating b2 is a little harder:

b2 ≤ λ(2r − 1) axs=1,...,r−1P(Ys+1 + · · ·+ Ys+r ≤ εn,r | Y1, . . . , Yr ≤ εn,r).

Since the Yi are nonnegative, one has the upper bound

b2 ≤ P(Yr+1 + · · ·+ Yr+s ≤ εn,r) ≤ P(Y1 ≤ εn,r).

Thus, b1 → 0 as long as r/n→ 0, so as long as εn,r → 0, then b2 → 0 and r is bounded, making this Poisson
approximation possible. For example, if these are independent arrivals given by some Poisson process, then
Yi ∼ Exp(1) and Y1 + · · ·+ Yr ∼ Γ(r, 1). Here,

pi = 1− e−εn,r
r−1∑
k=0

εkn,r
k!

= e−εn,r
∞∑
k=r

εkn,r
k!

.

Then, one can calculate that ε = εn,r ≈ r
√
λr!/n , and thus that P(Y1 ≤ ε) ≈ ε, with error about O(n−1/r). (

A more elaborate version of that: let X1, . . . , Xn be i.i.d U [0, 1] (i.e. uniformly distributed on [0, 1])
random variables. Then, the goal is to generate order statistics 0 ≤ X∗1 ≤ X∗2 ≤ · · · ≤ X∗n ≤ 1.

A known result from classical probability states that

(X∗1 , X
∗
2 −X∗1 , X∗3 −X∗2 , . . . , X∗n −X∗n−1, 1−X∗n) =

(
Y1

Xn+1
,
Y2

Sn+1
, . . . ,

Yn
Sn+1

,
Yn+1

Sn+1

)
,

where Sn+1 =
∑n+1
i=1 Yi, where the Yi are i.i.d. with distribution Exp(1). This seems kind of magical — what

doe the uniform and exponential distributions have to do with each other?
Let

W ∗ =

n+1−r∑
i=0

1{Xi+r∗−X∗i ≤εn,r/n},

so that W ∗ counts how many groups of r samples are within an interval of size εn,r/n. Thus, it can be
rewritten as

W ∗ =

n+1−r∑
i=0

1{(Yi+···+Yi+r−1)≤εn,r(Sn+1/n}).

So since Sn+1/n → 1 as n → ∞ quite rapidly, then in approximation dtv(W ∗, Zλ) ≤ dtv(W,Zλ) +
P(|Sn+1/n− 1|) ≥ δn.

This local method lends itself to some of the examples from [1], e.g. the graph theoretic examples. But
there’s another way, called the coupling method, which chooses Vα =

∑
β 6=α Jβα and Wα =

∑
β 6=αXβ for

some Jβα ∈ {0, 1}. Here, Vα = [Wα | Xα = 1].
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Then, define

aα = E[X − αf(W )− pαf(W + 1)]

= pαE[f(W ) | Xα = 1]− pαE[f(W + 1)]

= pαE[f(Vα + 1)]− pαE[f(Wα +Xα + 1)]

= pαE[f(Vα + 1)0f(Wα +Xα + 1)]

|aα| ≤ c1pα(pα + E[|Vα −Wα|]).

if it’s possible to choose Jβα ≤ Xβ , which is called a monotone coupling. Then,∑
α

|aα| ≤ c1
∑
α

pαE[Wα +Xα − Vα]

= c1

(∑
α

p2
α +

∑
a∈I
β 6=α

pαpβ −
∑
α∈I
β 6=α

pαβ

)
.

In this case, the Poisson approximation is particularly nice, iff we have the nice bound on V and W . . . but
this doesn’t work in the regular case.

Theorem 10.2 (Theorem 2C of [2]). Partition I \ α as follows: if Jβα ≥ Xβ, let β ∈ I+
α ; if Jβα ≤ Xβ, then

β ∈ I−α ; and if neither, then β ∈ I0
α.

Then, b
(1)
α = p2

α,

b(2)
α =

∑
β 6∈I0

α

|Cov(Xα, Xβ)|,

and

b(3)
α =

∑
β∈I0

α

(pαpβ + pαβ).

Proof.

E

|∑
β 6=α

(Xβ − Jβα)|

 ≤ E

∑
β∈I−α

(Xβ − Jβα)

− E

∑
β∈I+

α

(Xβ − Jβα)

+ E

∑
β∈I0

α

(Xβ − Jβα)

 .
Thus, pαE[Xα + Jβα] = pαpβ + pαβ and

Cov(Xα, Xβ) = E[XαXβ − pαpβ ] = pα(E[Xβ | Xα = 1]− E[Xβ ]) = pαE(Jαβ −Xβ),

which is nonnegative in I+
α and nonpositive in I−α . �

let σ be a uniformly random permutation of {1, . . . , n} and X(i,j) = 1 if σ(i) = j snd 0 otherwise. Let
c(i, j) ∈ {0, 1} be nonrandom, and let

W =

n∑
i=1

c(i, j)X(i,j).

For example, one might take c(i, j) = 1 iff j ∈ F (i) for some function F . Finally, define

πi =
1

n

n∑
j=1

cij

ρj =
1

n

n∑
i=1

cij ,

so that πi is the number of c(i, j) = 1 over n, and similarly with ρj .

Theorem 10.3 (Theorem 4A in [2]).

dtv(W,Zλ) ≤ 3

2
c1

 n∑
i=1

π2
i +

n∑
j=1

ρ2
j −

2

3

λ

n

.
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Proof. Let

λ =
1

n

n∑
i,j=1

c(i, j) =
∑
i

πi =
∑
j

ρj ,

and then take the coupling α = (i, j) and I = {(i, j) : i, j = 1, . . . , n}. If Xα = 1, set Jβα = Xβ , and if
Xα = 0, then modify σ to σ∗ by transposing j and σi, i.e. σ∗i = j and letting Jβα = Xβ(σ∗).

Then, the rest of the proof is computation, and will be computed next time. �

Lecture 11.

More on the Coupling Method: 1/31/14

Recall that last time we derived the coupling approach to Poisson approximation: if W =
∑
αXα,

λ =
∑
α pα, and Zλ ∼ Po(λ), where pα = E[Xα] and pαβ = E[XαXβ ], with the Xα ∈ {0, 1}. Then, et

k2 = (1− e−λ)/λ. The idea is to couple these in some space with a set of {Xβ}, with β 6= α and lying in I+
α

if Jβα ≥ Xβ , and so on. und derived was

(11.1) dtv(W,Zλ) ≤ k2

∑
α

p2
α +

∑
α6=β 6∈I0

α

|Cov(Xα, Xβ)|+
∑

α6=β∈I0
α

(pαpβ + pαβ)

.
Looking back at Theorem 10.3 from last time, there is still some computation left in order to finish the proof.
The coupling was to choose σ uniformly at random, and if Xα = 1 (i.e. σ(i) = j), then let Jαβ = Xα, and if
Xα = 0, then let σ∗ be obtained from σ by adding an extra transposition between σ(i) and j, forcing Xα = 1
(which bubbles back to the first case). This means that I0

α = ∅, and I−α = {(i, `), (k, j) : ` 6= j, k 6= i}. Then,
I+
α = {(k, `) : k 6= i, ` 6= j}. Thus, the last term in (11.1) drops out, and one has that pα = 1/n, so if β ∈ I−α ,

then Jβα = 0, because E[XαXβ ] = E[XαJβα] = 0. Then, Cov(Xα, Xβ) = −1/n2 if β ∈ I−α , and if β ∈ I+
α ,

then E[XαXβ ] = 1/(n(n− 1)), so Cov(Xα, Xβ) = 1/(n2(n− 1)). Thus, (11.1) becomes

dtv(W,Zλ) ≤ k2

λ
n

+
∑
α 6=β

cαcβ |Cov(Xα, Xβ)|


≤ k2

λ
n

+
∑
α 6=β

cαcβ

(
1

n− 1
1β∈I+

α
+ 1β 6∈I+

α

).
Notice this is different than the Chen-Stein method, in which everything eventually (after a bunch of algebra)
goes to zero.

LetKn,p = Gn,p be the Erdős-Rényi random graph on n vertices, i.e. where each edge is added independently
with probability p. Let Γ be some collection of subgraphs of Kn, e.g. all of the triangles. In this question,
one wants to count how many elements of Γ are present. Let α be a specific subgraph, and W =

∑
α∈ΓXα,

where Xα = 1 if α ⊆ Gn,p and 0 otherwise.

Thus, one can compute pα = E[Xα] = p|α|. Let Jβα = Xβ(Gn,p∪{α}), so that Jβα ≥ Xβ and I−α = I0
α = ∅.

Thus, the total variation is

dtv(W,Zλ) ≤ k2

(∑
α∈Γ

p2|α| +
∑
α6=β
α,β∈Γ
α∩β 6=∅

(
p|α∪β| − p|α|+|β|

))
.

Special choices of Gamma make these bounds simpler or more explicit; for example, if Γ is the set of triangles
in the graph,

Moving into the ideas of large deviations and concentration of measure, let X1, . . . , Xn be i.i.d. random
variables in Rd, and let Sn =

∑n
i=1Xi. Then, the goal is to provide an upper bound P(Sn/n ∈ K) for some

closed, convex set K and large n. In some sense, this will go to zero, but what matters is how quickly it does
this.

Claim 11.2.

P
(
Sn
n
∈ K

)
≤ e−n inf

x∈K
Λ∗(x),
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where

Λ∗(x) = sup
λ∈Rd

(
〈λ, x〉 − logE[e〈λ,X〉1 ]

)
.

In some special cases, one can explicitly solve this optimization problem and determine Λ∗(x).

Proof. The idea is to use Markov’s inequality, albeit in an unusual way. First, we have the bound that if
Sn/n ∈ K, then there is a point θ in K at least the size of the infimum (in 〈θ, Sn/n〉):

P
(
Sn
n
∈ K

)
≤ E

[
e〈θ,Sn/n〉−infx∈K〈θ,x〉

]
= e−n infx∈K〈λ,x〉E

[
e〈λ,

∑n
i=1 Xi〉

]
= e−n infx∈K〈λ,x〉E

[
n∏
i=1

eλ,Xi

]
.

Since these Xi are i.i.d., the expectation and product commute:

= e−n infx∈K〈λ,x〉
n∏
i=1

E
[
eλ,Xi

]︸ ︷︷ ︸
eΛ(λ)

= exp(−n inf
x∈K
〈λ, x〉+ nΛ(λ)).

This uses the fact that f(y) = (〈θ, y〉 − infx∈K〈θ, x〉) ≥ 0 for any y ∈ K, so

P
(
Sn
n
∈ K

)
= E[1{Sn/n∈K}] ≤ E[ef(Sn/n)].

Now, one can take the best possible bound:

P
(
Sn
n
∈ K

)
≤ exp

(
−n sup

λ∈Rd
( inf
x∈K
〈λ, x〉 − Λ(λ))

)
.

In order to progress further, one needs the following result from analysis, invoking it where g(θ, y) =
〈θ, y〉 − Λ(θ). Then, θ 7→ logE[e〈θ,x〉] can be shown to be convex (just differentiate it twice) and lower
semicontinuous.

Definition 11.3. A continous function is one for which g(θn) log(θ) when θn → θ. To generalize this, a
lower semicontinuous function is one for which lim infθn→θ g(θn) ≥ θ, and upper semicontinuous is defined in
the analogous way.

An intreresting example, related to the exponential distribution is

Λ(θ) = log

∫ ∞
0

e−xeθx dx =

{
log(1/(1− θ)), θ < 1
∞, θ ≥ 1.

Theorem 11.4 (Min-Max). If C is a convex, compact set, g(y, θ) is lower semicontinuous convex in y and
upper semicontinuous in θ, then

inf
y∈C

sup
θ
g(θ, y) = sup

θ
inf
y∈C

g(θ, y).

Now, using this theorem (with C = K ∩ Hp, where Hp is a hypercube of size p in order to guarantee
compactness), the intended bound has been shown. �

This theorem statement has not very much regularity, but strong notions of convexity and compactness.
Notice also that almost all of the proof works in any topolgical vector space.

As an example, if X ∼ Po(θ), then Λ∗(x) = θ − x+ x lg(x/θ) if x > 0 (and is infinite when x < 0), and if

X ∼ Bernoulli(p), then Λ∗(x) = x lg x/p + (1 − x) lg((1 − x)/(1 − p)) , H(x | p) when 0 ≤ x ≤ 1. If X is
normally distributed with mean 0 and variance σ2, Λ∗(x) = x2/(2σ2). For more on this, see [3], though this
is just calculus to find the optimal solution. Yet in the more intricate cases, it can be much harer to find a
solution.
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It’s useful to have the Hoeffding bound for this, where we have a ≤ X ≤ b and x = E[X], but no idea
what the actual distribution is. Some general bounds can be given based on this information, relying on the
general fact that

logE[eλx] ≤ log

(
b− x
b− a

eλa +
x− a
b− a

eλb
)
,

where P(X = b) = p and P(X = a) = q, where p = (x− a)/(b− a) and q = (b− x)/(b− a. Then, the goal is
to find pb+ qa = x and p+ q = 1.

Lecture 12.

Large Deviations: 2/3/14

First, some notes about the student presentations:

• Plan for 60 minutes per group of 3, split up as 3 twenty-minute presentations per person.
• Focus on the probabilistic part of the material; technical aspects of economics or discrete mathematics

or such should be minimized, or stated with reference to a location for the proof.
• Coordinate the presentations, so that it comes across as one presentation, rather than three. Coordi-

nate notation and content; practice on each other.
• Provide one page of essentials in writing. This is what you believe people might not remember.
• Aim the presentation at our peers, not too high-level nor too basic.
• Of course, make sure to understand the proof before you present it.

The grading is based on two things: clarity and command of the material. Know more than strictly what is
presented, in case someone asks a question.

Now, on to concentration inequalities and large deviations, from Chapter 7 of [1] and Chapters 2.4 and
2.1 of [3]. Recall that if K is closed and convex and {Xi} are i.i.d Rd-valued random variables, then let
Λ(λ) = lgE[e〈λ,X1〉] and Λ∗(x) = supλ∈Rd(〈λ, x〉−Λ(λ)). Then, P(Sn/n ∈ J) ≤ exp(−n infx∈K Λ∗(x)), where
Sn is the sum of the Xi.

This isn’t yet a concentration inequality, but by choosing K = [b,∞), b > E[X1], and d = 1, then
P(Sn/n ≥ b) ≤ e−nΛ∗(b), and if K = (−∞, a] and a < E[X1] (with d = 1 again), then P(Sn/n ≤ a) ≤ e−bΛ∗(a).
These can be grouped together: if x = E[X1] ∈ R, then

P
(
| 1
n
Sn − x| ≥ δ

)
≤ e−nI(s).

There are interesting things one can do with this, for example determining a Jn such that JnP(Sn/n ≥ b)→ 1
as n→∞; a delicate calculation shows that

Jn =
1√

2πn c(b)
e−nΛ∗(b).

If the Xi take values in a finite set, one can show that

lim
n→∞

1

n
lgP
(

1

n
Sn ∈ K

)
= − inf

x∈K
Λ∗(x).

The method of moment-generating differences, proven in Alon & Spencer, has that

P
(
| 1
n
Sn − x| ≥ δ

)
≤ e−nδ

2

.

Turning to the first example above, suppose a ≤ X1 ≤ b and E[X1] = x. Then, the goal is to obtain a bound
Λ∗(x) ≥ Λ∗MIN(x) and Λ(λ) ≤ ΛMAX(λ). The upper bound in particular is

ΛMAX(λ) = lg

(
b− x
b− a

eλa +
x− a
b− a

eλb
)
,

so P(X1 = b) = p and P(X1 = a) = q, because p + q = 1 and bp + aq = x. Then, Λ∗(·) is up to affine
transformation the relative entropy corresponding to Yi ∼ Bernoulli(p). Thus, Γn ∼ Binomial(n, p), where
Γn = (Sn − na)/(b− a) is the sum of the Yi = (Xi − a)/(b− a). The relaive entropy is defined as

H(y | p) = y lg
y

p
+ (1− y) lg

(
1− y
1− p

)
;



24 159 (Discrete Probabilistic Methods) Lecture Notes

then,

Λ∗MIN(x) = H

(
x− a
b− a

| x− a
b− a

)
.

One side of the bound makes sense, because we have an example, but how do we know it’s the worst case?
This can be proven by invoking a more general fact called the Tchebyceff system (from approximation theory,
in some sense an optimization across probability measures). This says that if U0, U1, . . . , Un,Ω are functions
from T ⊆ Rk → R, then,

sup
σ∈Vc

∫
T

Ω dσ = inf
x∈P+

n∑
i=0

xici.(12.1)

inf
σ∈Vc

∫
T

Ω dσ = sup
x∈P−

n∑
i=0

xici.(12.2)

where

P+ =

{
x0, . . . , xn |

n∑
i=0

XiUi ≥ Ω for all t

}
,

P− =

{
x0, . . . , xn |

n∑
i=0

XiUi ≤ Ω for all t

}
,

amd Vc is the set of all finite non-negative measures σ on T such that
∫
T
|Ui|dσ is finite or all i and∫

T
Ui dσ = ci for each i. (See [4] for a more detailed discussion on this.) If Vc+∆c 6= ∅, for all sufficiently

small ∆c and P+ and P− are both nonempty (as in the application we care about), the best or worst case
will occur when σ is atomic, with n+ 1 atoms.

This can be reduced to the specific case we care about using Jensen’s inequality and the fact that

eλx ≤
(
b− x
b− a

)
eλa +

(
x− a
b− a

)
eλb

whenever a ≤ x ≤ b, which follows because

x =

(
x− a
b− a

)
a+

(
x− a
b− a

)
b.

These are convex combiantions of a and b, or previously eλa and eλb, so Jensen’s inequality applies.
The next thing to invoke is Hoeffding’s bound. If X1, . . . , Xn are i.i.d. random variables on [a, b] where

E[X1] = x, then

P
(

1

n
Sn ≥ x

)
≤ e−nH((x−a)/(b−a)|(x−a)/(b−a))

P
(

1

n
Sn ≤ x

)
≤ e−nH((x−a)/(b−a)|(x−a)/(b−a)).

In the specific case a = −1, b = 1, and x = 0, one obtains a function

f(x) = H

(
x+ 1

2
| 1

2

)
=
x+ 1

2
lg(x+ 1) +

1− x
2

lg(1− x).

The bound is P(Sn/n ≥ x) ≤ e−nf(x). Then, using calculus, one can show that f(x) ≥ x2/2, because
f(0) = f ′(0) = 0 and f ;′ (x) = 1/(2(1 + x)) + 1/(2(1− x)) ≥ 1. Thus, the bound can be greatly simplified:

P
(

1

n
Sn ≥ x

)
≤ e−nH((x+1)/2|1/2) ≤ e−nx

2/2.

Thus, writing nx =
√
n y,

P(|Sn| ≥ nx) ≤ 2e−nx
2/2 = 2e−y

2/2.

Thus, as long as the mean is 0 and the bounds are ±1, then fluctuation in the mean decreases of order n2.
This is a concentration inequality, and is often called the Hoeffding bound.

Another observation, called the Azuma-Hoeffding inequality, shows that this also holds for martingales,
rather than just independent random variables.
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Definition 12.3. A martingale is a sequence Ym =
∑m
i=1Xi + Y0 such that E[Ym | Y0, . . . , Ym−1] = Ym−1,

or, equivalently, E[Xm | X1, . . . , Xm−1] = 0; these conditions are known as the martingale differences.

Then, the observation is that the Azuma-Hoeffding bound

P(|Yn| ≥ nx) ≤ 2−nH((x+1)/2|1/2),

or, equivalently,

P(|Yn| ≥
√
n y) ≤ 2e−y

2/2,

holds whenever {Ym} is a martingale of bounded differences and |Xi| ≤ 1.
This is shown by bounding by the expectation: if K = [x,∞), then infy∈K λy = λx whenever λ ≥ 0.

P
(

1

m
(Ym − Y0) ≥ x

)
≤ E[emλ((1/m)(Ym−Y0)−x)]

= e−mλxE[eλ
∑n
i=1 Xi ]

= E[E[eλ
∑n
i=1 Xi | X0, . . . , Xm−1]]

= E[eλ
∑m−1
i=1 XiE[eλXm | X0, . . . , Xm−1]]

But E[eλXm | X0, . . . , Xm−1] is just the conditional law of Xm given |Xm| = 1 and E[Xm | X1, . . . , Xm−1] = 0,
so

≤ 1

2
(eλ + e−λ)E[eλ

∑m−1
i=1 Xi ]

≤ e−mλx
(

1

2
(eλ + e−λ)

)m
.

In many corners of discrete mathematics, constructing these martingales is very easy, and so these bounds
aren’t hard to show, but the actual variables themselves are hard to deal with.

Lecture 13.

The Azuma-Hoeffding Bound: 2/5/14

“My notes here are a little ambitious. . . I tried to prove something which is wrong!”

Recall that last time, we proved the Azuma-Hoeffng bound: if {Ym} is a martingale of bounded differences,

i.e. |Ym − Ym−1| ≤ 1, then for all y ≥ 0 and all m, P(|Ym − y0| ≥
√
m y) ≤ 2e−y

2/2. (A martingale is a
sequence of random variables {Yn} such that E[Yn | Y0, . . . , Yn−1] = Yn−1 for all n.)

Suppose Ω = AB is the set of functions g : B → A, with some random measure assigned to Ω such that
{g|Bi+1\Bi} are independent of each other. Consider a functional L : Ω→ R and an increasing sequence of
subsets ∅ = B0 ⊆ B − 1 ⊆ B2 ⊆ · · · ⊆ Bm = B.

Definition 13.1. L is Lipschitz when |L(g) − L(g′)| ≤ 1 for any g, g′ ∈ Ω and 0 ≤ i ≤ m − 1, such that
g 6= g′ at most on Bi−1 \Bi.

Claim 13.2. If L is Lipschitz, then for any y > 0,

P(L(g)− E[L(g)] ≥ y
√
m ) ≤ e−y

2/2, and

P(L(g)− E[L(g)] ≤ −y
√
m ) ≤ e−y

2/2.

Proof. Apply the Azuma-Hoeffding inequality for Doob’s martingale of L(g), i.e. Yi(h) = E[L(g) | g =
h on Bi], so that Y0(h) = E[L(g)] and Ym(h) = L(g) (since g is uniquely determined on all of B). This is a
fairly general way to obtain martingales (conditioning on more and more information). Then, to check that it
has bounded differences,

Yi+1(h)− Yi(h) = E[L(g) | g = h on Bi+1]− E[L(g) | g = h on Bi]

= E[E[L(g′) | g′ = h on Bi+1] | g′ = h on Bi]

= E[L(g)− L(g′) | g′ = g = h on Bi and g = h on Bi+1 \Bi].
This uses a principle called the law of iterated expectation, which says that if G ⊇ H, then E[E[X | G] | H] =
E[X | H]. Then, since g′ = g on Bi, then |Yi+1 − Yi| ≤ E[|L(g) − L(g)′|] ≤ 1 by the Lipschitz condition,
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since the distribution is independent on Bj \Bj−1, so without loss of generality, one may also take g = g′ on
Bj+1 \Bj whenever j > i.

That {Yi} is in fact a martingale follows because

Yi(h) = E[L(g) | g = h on Bi]

= E[E[L(g′) | g′ = h on Bi+1] | g′ = h on Bi] = E[Yi | g|B1
, g|B2

, . . . , g|Bi−1
]. �

This has an application to randomg graphs: let G = G(n, p) = Gn,pbe the Erdős-Rényi random graph as
usual.

Definition 13.3. A functional L of Gn,p is called edge-Lipschitz if |L(g)− L(g′)| ≤ 1 whenever g 6= g′ on at
most one edge.

The assumption is that L : A→ R, where A is the set of functions out of the edges of the graph. Then,
for any edge-Lipschitz functional L and any probability p we have

(13.4) P

(
|L(Gn,p)− E[L(Gn,p)]| ≥ y

√(
n

2

))
ε2e−y

2/2.

This just says that in these contexts, the value tends to be very close to its expectation.

This is given by the construction of the edge exposure martingale: let Ω = {0, 1}(
n
2) and Bi be the set of

the first i edges (in some chosen order). let m =
(
n
2

)
; then, the idea is that one is looking at pieces of the

graph, adding one edge at a time.
There’s a related concept called the vertex exposure matringale, where m = n and Bi is the set of all edges

out of the first i vertices. This time, the new information in each step is the set of edges connected to the
next vertex. This is also a partition of the graph respecting the independence condition outlined about. In
this case, one can call L vertex-Lipschitz if the analogous idea holds: |L(g)− L(g′)| ≤ 1 whenever g 6= g′ on
at most one neighborhood of a vertex. Thus, this is a stronger condition, and it implies a stronger bound in
(13.4), where the

(
n
2

)
can be replaced with n.

Theorem 13.5 (Shamir & Spencer, 1987). Let χ(G) denote the chromatic number of G, i.e. the minimal
number of colors in a vertex coloring of G such that G has no monochromatic edge. Then, the chromatic
number is a vertex-Lipschitz functional, i.e.

P(|χ(Gn,p)− E[χ(Gn,p)]| ≥ y
√
n ) ≤ e−y

2/2.

Proof. Any single vertex can always be given a new color, so the vertex-exposing Lipschitz property holds.
Thus, the chromatic number can differ by at most 1 in the aboselce of a given vertex. �

Remark 13.6. In [1], it is shown that if p = 1/2, then E[χ(G)] ∼ n/(2 log2 n), and the deviation is about√
n . (

Theorem 13.7 (Alon & Specner, Theorem 7.3.3). Suppose p = n−α and α > 5/6 is fixed. Then, there exists
a number u(n.p) such that P(u(n, p) ≤ χ(G) ≤ u(n, p) + 3) → 1 as n → ∞.7 That is, the probability is at
least 1− 2ε for all n ≥ n0(ε, α).

Proof. Fix an ε > 0 and let u(n, p, ε) be the minimal number such that P(χ(G) ≤ u) > ε. Let Y (G) be the
minimal size of a set of vertices S such tat G \ S is u-colorable. Then, by the same argument as before, the

vertex-Lipschitz property holds, so take µ = E[Y (G)]. Choose λ such that e−λ
2/2 = ε, so that

P(Y ≤ µ−
√
n λ) ≤ e−λ

2/2

P(Y ≥ µ+
√
n λ) ≤ e−λ

2/2.

By the choice of u, it’s known that P(Y = 0) > ε = e−λ
2/2 = P(Y ≤ µ− λ

√
n ), so µ ≤ λ

√
n , or else there’s

a contradiction. By the same idea, P(Y ≥ 2µ) ≤ e−λ
2/2. Thus, with probability at least 1 − ε, there is a

u-coloring of all but at most c′
√
n vertices (here, c′ = 2λ). But by Lemma 7.4.3 of [1], then by the first

moments method, under the conditions of the theorem statement (i.e. restrictions on p and α), every c′
√
n

set of vertices in G(n, P ) are 3-colorable. finishing the proof. �

7There is a much harder proof that this is 1 rather than 3, and of course it’s not constructive.
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Theorem 13.8 (Alon & Spencer, Theorem 7.5.1). Consider functions g : {1, . . . , n} → {1, . . . , n}, with all nn

choices equally likely. Then, as in a typical coupon-collecting problem, let L(g) = |n− g({1, . . . , n})| (i.e. the
number of missing elements in the range of g). Then, E[L(g)] = nP(g(x) 6= 1 for all x) = n(1− 1/n)n ∼ n/e,
and for all λ,

P
(
|L(g)− n

(
1− 1

n

)n
| ≥ λ

√
n

)
≤ 2e−λ

2/2

(which is the Lipschitz property with respect to the Doob martingale again).

In other words, the mean is of order n, and the fluctuation is of order
√
n .

Lecture 14.

Concentration Inequalities: 2/7/14

First, there will be one more example of concentration inequalities applied to martingales, where we once

again use that P(X − E[X] ≥ λ
√
m ) ≤ e−λ

2/2 and similarly for the other side of X − E[X], as long as on
can write Doob’s martingale for X, composed of at most m differences bounded by 1.

Example 14.1 (Alon & Spencer, 7.5.2). Fix vi ∈ Rd with |vi| ≤ 1, for i = 1, . . . , n, and let εi ∈ {1,−1} be
i.i.d. random variables. If

X = X(ε) = |
n∑
i=1

εivi|,

then

P(X − E[X] ≥ λ
√
n ) ≤ e−λ

2/2, and

P(X − E[X] ≤ −λ
√
n ) ≤ e−λ

2/2.

(

Proof. Let Ω = {−1, 1}n, with a martingale defined by exposing the εi one at a time: Yi(ε) = E[X | ε1, . . . , εi].
Thus, Yn = X, Y0 = E[X], and for all ε, Y (ε) = (1/2)(Yi+1(ε) + Yi+1(ε′)), where ε′ 6= ε at only the ith

coordinate. Thus, Yi+1(ε)− Yi(ε) = (1/2)(Yi+1(ε)− Yi+1(ε′)), so

|Yi+1(ε)− Yi(ε)| =
1

2
|Eη|[|

]
i−1∑
j=1

εjvj + εivi +

n∑
j=1

ηjvj − E|[|

]∑
j = 1iεjvj − εivi +

n∑
j=i+1

ηjvj |

= Eη

1

2
|[|

]
i−1∑
j=1

εjvj + εivi +

n∑
j=1

ηjvj −
1

2
|[|

]∑
j = 1iεjvj − εivi +

n∑
j=i+1

ηjvj


≤ |vi| ≤ 1,

using the triangle inequality and the fact that |εi| = 1. Thus, we have the required martingale. �

Method of Types This part, referenced in Chapters 2.1.1 and 2.1.2 of [3]. The goal is to prove Sanov’s
theorem and Cramér’s theorem for a finite alphabet.

Suppose Y1, . . . , Yn are i.i.d. random variables taking values in a finite set Σ = {a1, . . . , aN}. Let
µ(ai) = P(Y1 = ai) ∈ M1(Σ) (i.e. µ is a measure of some sort). Assume without loss of generality that
µ(ai) > 0 for all i.

Definition 14.2. The type of a vector y = (y1, . . . , yn) ∈ Σn is the empirical law

Lyn(ai) =
1

n

n∑
j=1

1yj=ai .

Then, Lyn(·) = (Lyn(a1), . . . , Lyn(aN )) is a probability vector with N coordinates. The set Ln of all possible
types is {(

k1

n
,
k2

n
, . . . ,

kN
n

)
, 0 ≤ ki ≤ n, and

N∑
i=1

ki = n

}
.

Thus, |Ln| ≤ (n+ 1)N .



28 159 (Discrete Probabilistic Methods) Lecture Notes

Lemma 14.3 ([3]). For all ν ∈M1(Σ), there exists a ν′ ∈ Ln such that

1

2

N∑
i=1

|ν(ai)− ν′(ai)| ≤
N

2n
.

Thus, Ln is dense in M1(Σ).

Now, one can talk about type classes: Tn(ν) = {y ∈ Σn : Lyn = ν}.

Definition 14.4. The Shannon entropy of a ν ∈M1(Σ) is

H(ν) = −
N∑
i=1

ν(ai) lg ν(ai).

This measures the randomness of ν, so to speak.

Definition 14.5. The relative entropy, or K-L distance, of one measure given another is

H(ν | µ) =

n∑
i=1

ν(ai) log

(
ν(ai)

µ(ai)

)
≥ 0.

This measures the distance between µ and ν, in some sense.

Lemma 14.6. For all y ∈ Tn(r) that have the same probability of Y ,

Pµ(Y = y) = e−n(H(ν)+H(ν|µ)).

This can be proven directly by substituting in the definitions.

Lemma 14.7 (Stirling’s approximation).

(n+ 1)−|Σ|enH(r) ≤
(

n

nµ1, . . . , nµn

)
= |Tn(ν)| ≤ enH(ν).

Together, these imply the following lemma:

Lemma 14.8. For all ν ∈ Ln,

(n+ 1)−Ne−nH(ν|µ) ≤ Pµ(LYn = ν) ≤ e−nH(µ|µ).

Then, using the probabilistic method (finally!), one obtain the following theorem, which views the
probability distribution as chosen from another probability distribution. It’s the large deviation principle to
this measure-theoretic issue.

Theorem 14.9 (Sanov). For all Γ ⊂M1(Σ),

lim
n→∞

1

n
logPµ(LYn ∈ Γ) ≤ inf

ν∈Γ
{H(ν | µ)}

lim
n→∞

1

n
logPµ(LYn ∈ Γ) ≥ inf

ν∈Γ0
{H(ν | µ)},

where Γ0 is the interior of Γ.8

Proof. For the upper bound, use Lemma 14.8:

Pµ(LYn ∈ Γ) =
∑

ν∈Γ∩αn

Pµ(LYn = ν) ≤ |Ln|e−n infν∈Γ H(ν|µ),

but when n→∞, lg|Ln|/n→ 0.
For the lower bound, if ν ∈ Γ0, then there exists a νn ∈ Ln ∩ Γ such that νn → ν as n → ∞. Thus,

ν 7→ H(ν | µ) is a continuous function on M1(Σ) ⊆ Rn. Thus, using Lemma 14.8,

Pµ(LYn ∈ Γ) ≥ Pµ(LYn ∈ νn) ≥ (n+ 1)−Ne−nH(νn|µ),

but as n→∞, νn → ν. �

8This only works in the combinatorial case. In the more general case, the upper bound is the infimum over the closure of Γ,

and the definitions of the random entropy have to be updated for the infinite case, i.e. using expected values.
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This can be used to get Cramer’s theorem out of Sanov’s in the case of a finite alphabet. Let Xj = f(Yj)
for some non-random f and the Yj are i.i.d. over a finite Σ, such that µ(ai) > 0 for i = 1, . . . .|Σ| = N .

Without loss of generality, order the ai such that f(a1) < · · · < f(aN ). If Ŝn = (1/n)
∑n
j=1Xj , then there is

a large deviation principle for Ŝ Let Λ∗(x) = supλ∈|R(λx− Λ(λ)), where

Λ(λ) = logEµ
[
eλX1

]
= E

[
N∑
i=1

eλf(ai)µ(ai)

]
.

Let I(x) = inf{ν:〈f,ν〉=x}(H(ν | µ)), where the inner product is given by

〈f, ν〉 =

N∑
i=1

f(ai)ν(ai).

Then, the bounds are

lim
n→∞

1

n
P(Ŝn ∈ A) ≤ − inf

x∈A
I(x)

lim
n→∞

1

n
P(Ŝn ∈ A) ≥ − inf

x∈A0
I(x)

Proof. Note that Ŝn ∈ A iff LYn ∈ Γ = {ν : 〈ν, f〉 ∈ A}. This is because Ŝn just averages f over the Yi.

Ŝn =
1

n

n∑
j=1

f(Yj) =

N∑
i=1

f(ai)

LYn (ai)︷ ︸︸ ︷
1

n

n∑
j=1

1{Yj=ai} = 〈f, LYn 〉.

Now, take the limits; for concision, do both at once (which is what the notation “lim” will represent).

lim
1

n
logP(Ŝn ∈ A) = lim

1

n
logP(LYn ∈ Γ) ≤ − inf

Γ
H(ν | µ) = inf

x∈A
inf

{〈f,ν〉=x}
· · · I(x)

≥ − inf
Γ0
H(ν | µ) ≥ − inf

x∈A0
inf · · · �

The identity Λ∗ = I can be proven, for example by solving the finite-dimensional Lagrange multiplier
problem

min
ν

{
N∑
i=1

ν(ai) log
ν(ai)

µ(ai)
− λ

N∑
i=1

f(ai)ν(ai)

}
.

Thus, one explicitly can obtain ν∗λ(ai) = µ(ai)e
λf(ai)−Λ(λ) for some λ. Then, for any f(a1) < x < f(aN ),

there is a unique λ∗ such that Λ′(λ∗) = 〈f, νλ∗〉 = x.
There’s still stuff to be done for x 6∈ [f(a1), f(aN )], but when x = f(aN ), λ∗ →∞, and when x = f(a1),

then λ∗ → −∞. Thus, the correct bound is obtained by solving the conceptually simple but scary-looking
calculus problem.

Lecture 15.

Talagrand’s Inequality: 2/10/14

We’ve already seen the Azuma-Hoeffding inequality for large deviations of bounded i.i.d. random variables,
in which the concentration extends to a martingale of bonded differences.

Talagrand’s concentration inequality deals with product spaces; the most important case is Ω = {0, 1}, so
that the product space is {0, 1}N . Introduce the notation I(x, y) = {i ≤ N : xi 6= yi}.

The Azuma-Hoeffding inequality states that for all A ⊆ ΩN such that P(A) ≥ 1/2, P(d(·, A) ≥ u) ≤
2 exp(−u2/N), where d(x,A) = infy∈A dH(x, y) and dH(x, y) = Card(I(x, y)) (i.e. the number of points they
have different; the Huffman distance).

Definition 15.1. A subset I ⊂ {1, . . . , N} is a pattern for x,A if there exists a y ∈ A such that I(x, y) = I.
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One way to measure the distance from x to A is by looking at the set of patterns for x,A. Then, the
Azuma-Hoeffding inequality tells us that for generic x, there exists a pattern of cardinality at most O(

√
N ).

Example 15.2. The most fundamental example is

A =

{
y :

N∑
i=1

yi ≤ pN

}
,

so that P(A) ' 1/2 if µ(1) = p. Then, define an indicator X = 1J where |J | = pN +m. Then, any I ⊆ J
with |I| = m is a pattern: by the Central Limit Theorem, a generic x has m ' 10

√
pN , and there are many

patterns of size
√
pN . (

Then, one wants a new notion of distance to represent this property, so define

g(x,A) = sup
{β∈RN ||β|≤1}

inf
y∈A

[
N∑
i=1

βi1xi 6=yi

]
.

Then, g(·, A) ≥ (1/
√
N )dH(·, A). Finally, let f(x,A) = (1/2)g(x,A)2.

Theorem 15.3 (Talagrand’s Concentration Inequality). If A ⊆ Ωn and u ≥ 0, then

P(f(X,A) ≥ u)eu ≤ E
[
ef(x,A)

]
≤ 1

P(A)
.

Thus, P(A)(1− P(At)) ≤ e−t
2/4, where At = {z : g(z,A) < t}.

This makes it a little clearer why we used the second distance notion: it allows for a more general result
while still providing control over the inequality.

As an example, suppose one has a random variable ZN (x) of interest, and let A = {x : ZN (x) ≥ Med(ZN )}
(where Med(x) denotes its median). Then, P(A) ≥ 1/2 automatically, so if ZN (x) ≥ Med(ZN ) + v implies

that g(x,A) ≥ t for some t = t(v,N), then P(ZN (x) ≥ Med(Zn) + v) ≤ 2e−t
2/4.

For example, one problem that can’t be solved with just Hamming distance is the longest increasing
subsequence problem on (i.i.d. random variables on) the uniform distribution on [0, 1]. That is,

Zn(x) = max{m : xk1 < xk2 < · · · < xkm for some 1 ≤ k1 < k2 < · · · < km ≤ n}.

How much does a permutation fluctuate from the mean?
One can take A(j) = y : ZN (y) ≤ j} and suppose ZN (x) ≥ j + v for some v ∈ N. Then,

v+j∑
i=1

1xki≤yki ≥ v

for all y ∈ Aj , so g(x,Aj)) ≥ v/
√
j + v = t. Letting MN = Med(ZN (x)), one can show for all v ∈ N that

P(Zn(x) ≥MN + v) ≤ 2e−v
2/4(MN+v)

P(ZN (x) ≤MN − v) ≤ 2e−v
2/4MN .

Thus, MN = Med(ZN (X)) = O(
√
N ). The concentration is in a window of size N1/4, which is better than

we would have guessed. The true answer is conjectured to be N1/6, but this is open.
Now, one can replace means and expectations, up to this error term: |E[ZN (x)−Med(ZN (x))| = O(N1/4).

But this doesn’t require sums, so even if there isn’t a martingale lying around to help, this inequality works.

Proof of Theorem 15.3. The proof will be by induction on N ; when N = 1, it boils down to

f(x,A) =
1

4
inf
{y∈A}

{1x 6=y} =
1

4
1x 6∈A.

Then,

P(A)E
[
e(1/4)1x 6=A

]
= P(A)(e1/4P(Ac) + P(A)) = (p+ e1/4(1− p)) ≤ 1

by some not too interesting analysis.
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Now, in the general case, suppose it’s true for N , and consider N + 1. Then, let Ω = Ω′ × ΩN+1, where

Ω′ =
∏N
i=1 Ωi was the old set, and ΩN+1 is the new one. Write z = (x,w) with x ∈ Ω′ and w ∈ ΩN+1, and

define Aw = {x ∈ Ω′ : z(x,w) ∈ A} and B = {x ∈ Ω′ : z(x,w) ∈ A for some w ∈ ΩN+1} =
⋃
w Aw. Let

f(x,A) = inf
u∈V (x,A)

{
1

4

N∑
i=1

u2
i

}
,

where V (x,A) is the conve hull of U(x,A). There’s some non-probabilistic analysis here, which is encapsulated
as Theorem 7.6.2 of [1]. Now, we can induct: given z = (x,w) and an A, consider s ∈ U(x,B) and t ∈ U(x,Aw),
so that (s, 1), (t, 0) ∈ U(z,A). By convexity, λs+ (1−λ)t ∈ V (x,A), so using the Cauchy-Schwartz inequality,

f(x,A) ≤ 1

4
(1− λ)2 +

1

4
|(1− λ)s + λt|2 ≤ 1

4
(1− λ)2 +

1

4
(1− λ)|s|2 +

1

4
λ|t|2.

So now I guess we take the maximal values of s and t, which will allow one to write

z ≤ e(1/4)(1−λ)2 1

P(B)1−λ
1

P(Aw)λ
= e(1/4)(1−λ2)r−λ

1

P(B)
.

Optimizing over λ = 1 + 2 ln r, and so on. . . (here, the professor had to hand over the room to another
class). �

Lecture 16.

Correlation Inequalities: 2/12/14

The beginning of the notion of correlation inequalities comes from a result in algebra.

Definition 16.1.

• A lattice L is a partially ordered set (with x ≤ x), such that for all x, y ∈ L there exists a unique
minimal upper bound x ∨ y and a unique maximal lower bound x ∧ y (sometimes called meet and
join, respectively); that is, x ∨ y ≥ x, y, and if z ≥ x, y, then z ≤ x ∨ y, and analogously for x ∧ y.

• A lattice L is finite distributive if for all x, y, z ∈ L, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and (x ∨ y ∧ z) =
(x ∨ y) ∧ (x ∨ z), i.e. join and meet distribute.

As a matter of notation, if L is a lattice and X,Y ⊆ L, then X ∨ Y = {x ∨ y : x ∈ X, y ∈ Y } and
X ∧ Y = {x ∧ y : x ∈ X, y ∈ Y }.

Theorem 16.2 (The Four-Function Theorem; Alswede & Daykin, 1978). Suppose L is a finite distributive
lattice and α, β, γ, δ : L → R+ are such that α(x)β(y) ≤ γ(x ∨ y)δ(x ∧ y) for all x, y ∈ L. Then, for all
X,Y ⊆ L, (∑

x∈X
α(x)

)(∑
y∈Y

β(y)

)
≤

( ∑
z∈X∨Y

z

)( ∑
w∈X∧Y

w

)
.

Corollary 16.3 (Alon & Spencer, Corollary 6.1.3).

(1) Take α = β = γ = δ = 1, then, for all X,Y ⊆ L, |X||Y |le|X ∧ Y ||X ∨ Y |.
(2) If N is some finite set, L = 2N is a lattice under inclusion, ∪, and ∩ (in some sense, just round

off all of the operators). Then, if X ⊆ 2N , let Y = {Gc : G ∈ X}, so that |X ∨ Y | = |X ∧ Y | =
|{F ∪Gc : F,G ∈ X}|, so |X| ≤ |{F ∩Gc : F,G ∈ X}|.

Definition 16.4. On a finite distributive lattice L, a function µ : L→ R+ is called log-supermodular if the
condition in Theorem 16.2 holds when α = β = γ = δ = µ.

Theorem 16.5 (FKG Inequality). Let µ : L→ R+ be a log-supermodular function. Then, for all f, g : L→ R+

that are increasing with respect to the partial order,(∑
x∈L

µ(x)f(x)

)(∑
x∈L

µ(x)g(x)

)
≤

(∑
x∈L

µ(x)f(x)g(x)

)(∑
x∈L

µ(x)

)
.

Already this is starting to look more like probability! For example, if µ is a probability measure, this can
be used to say things about the expected values of f and g.
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Proof of Theorem 16.5. The proof will apply the Four-Function theorem to α = µf , β = µg, γ = µfg, and
δ = µ. Ten, since x, y ≤ x ∨ y and f and g are increasing, the conditions for it to be applicable. That is,
µ(x)µ(y) ≤ µ(x ∧ y)µ(x ∨ y) and f(x) ≤ f(x ∨ y) and g(x) ≤ g(x ∨ y), so

µ(x)f(x)µ(x)g(x) ≤ µ(x ∨ y)f(x ∨ y)g(x ∨ y)µ(x ∧ y).

Then, the general result follows from the Four-Function theorem. �

The same inequality holds when both f and g are decreasing, and when one is increasing but the other is
decreasing, the reverse inequality holds.

Then, one has that E[fg] ≥ E[f ]E[g] with respect to the probability distribution µ(x)/
∑
z∈L µ(z).

The name of the FKG theorem comes from the names of three physicists, Fortrin, Kastelan, and Ginibre,
who proved it in a more concrete context of statistican mechanics in 1971.

To discuss some more applications, the following lemma will be useful.

Lemma 16.6 (Kleitman, 1966). Let X = (X1, . . . , Xn) be n i.i.d. Bernoulli rabdom variables with probability
p.9 Then, put a partial order on coordinates, and define

• A is a monotone going-down event if for all w ∈ A and for all v ≤ w, v ∈ A, and
• A is a monotone going-up event if for all w ∈ A and for all v ≥ w, v ∈ A.

Then, let A and B be monotone going-up events and C and D be monotone going-down events. Then,
P(A | B) ≥ P (A), P(C | D) ≥ P (C), and P(A | C) ≤ P(A).

Proof. This is just the application of Theorem 16.5 with f = 1A and g = 1B, so that fg = 1A∩B. Then,
E[fg] = P(A ∩ B) and E[f ]E[g] = P(A)P(B). It remains to show that the Bernoulli product measure µ(x)
(i.e. the number of 1s in the vector) is log-supermodular, but since everything only takes values on {0, 1}n,
this is not too bad. �

Notice the dates of all of these proofs: most of them were developed independently, and then discovered to
be special cases of the more general theorem.

Example 16.7.

• Let N be a finite set, A1, . . . , Ak ⊂ N , and let A ⊆ N be a random set, where Xi = 1{i∈A} are |N |
independent Bernoulli trials with probability p. Then,

P( for all j, A ∩Aj 6= ∅) ≥
k∏
j=1

P(A ∩Aj 6= ∅).

This allows us to fill the gap earlier in the course: when stating janson’s inequality, this was exactly
the condition required.

This follows from Lemma 16.6, where

A =

{ ∑
i∈Aj

Xi 6= 0

}
and B =

{ ∑
i∈A′j

Xi 6= 0

}
.

Well, technically, this shows it in the case k = 2. For the full result, one can extend Theorem 16.5 to
the case of k sets.

• In the subject of random graphs, consider Gn,p again.
– A property Q is monotone up if whenever G has Q and G ⊆ H, then H has Q.
– A property Q is monotone down if whenever G has Q and G ⊇ H, then H has Q.

Then, for Gn,p, suppoe Q1 and Q2 are monotone up and Q3 and Q4 are monotone down. There
are many such properties, so having inequalities tend to be particularly useful. Then, by the above
theorems, P(Q3 | Q4) ≥ P(Q3), P(Q|Q2) ≥ P(Q1), and P(Q1 | Q3) ≤ P(Q1).

For example, what’s the probability of the event A, that G has a Hamiltonian circuit given C,
that G can be drawn in the plane? Then, A is monotone up and C is monotone down. Then, this is
at most P(C), which is much nicer than conditioning on C, a harder global property.

(

9The result holds if Xi ∼ Bernoulli(pi), which is more general, but this makes for harder and less enlightening notation.
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Theorem 16.8 (The XYZ Theorem; Shepp 1982). If {a1, . . . , an} is a partially ordered set, a bijecion
σ : {a1, . . . , an} → {1, . . . , n} is a linear extension if for all i, j, ai ≤ aj implies that σ(ai) ≤ σ(aj).

Consider the space of all linear extensions of {a1, . . . , an}, with each chosen equally likely. Then,

P(σ(a1) ≤ σ(a2) | σ(a1) ≤ σ(a3)) ≥ P(σ(a1) ≤ σ(a2)).

We still actually haven’t proven the Four-Function theorem, which will be fixed next lecture.

Lecture 17.

Proof of the Four-Function Theorem: 2/14/14

Proof of Theorem 16.8. The proof of the XYZ theorem will construct a distributive lattice (L,≤),∧,∨ and a
µ such that µ(x)µ(y) ≤ µ(x ∧ y)µ(x ∨ y), such that the desired relation

P(σ(a1) ≤ σ(a2) | σ(a1) ≤ σ(a3)) ≥ P(σ(a1) ≤ σ(a2)).

Fix a large integer M (eventually, M →∞), and let L be the set of all ordered n-tuples x = (x1, . . . , xn), where
xi ∈M = {1, . . . ,m}, with a somewhat mysterious partial order where x ≤ y iff x1 ≤ y1 and xi−x1 ≥ yi−y1

for all i = 2, . . . , n. Then, one can explicitly calclate that (x ∨ y)i = max(xi − x1, yi − y1) + min(x1, y1), and
similarly (x ∧ y)i = min(xi − x1, yi − y1) + max(x1, y1).

Then, one can check that (L,≤) is distributive, or read he relevant section of Alon & Spencer (i.e. §6.4).
Since the partial order is wacky, then it actually needs to be checked. Then, define a probability measure

µ(x) =

{
1, if whenever x is such that ai ≤ aj in (P,≤), then xi ≤ xj ,
0, otherwise.

Then, suppose µ(x) = 1 and µ(y) = 1. Since (x∧y)i = min(xi−x1, yi−y1)+max(x1, y1), then if ai ≤ aj ∈ P ,
then xi ≤ xj and yi ≤ yj , so

(x ∧ y)i ≤ min(xj − x1, yj − y1) + max(y1, x1) = (x ∧ y)j .

Now construct the functions

f(x) =

{
1, if x1 ≤ x2

0, otherwise.
and g(x) =

{
1, if x1 ≤ x3

0, otherwise.

f and g are both increasing functions: if f(x) = 1 and y ≥ x, then x1 ≥ y1 and x2 − x1 ≤ y2 − y1, so
y2 ≥ y1 + (x2 − x1) ≥ y1, and therefore f(y) = 1, so f is increasing. Then, g is increasing by nearly the same
argument.

Define Q(x) = µ(x)/µ(1), so that Q(x1 ≤ x2, x1 ≤ x3) ≥ Q(x1 ≤ x2)Q(x1 ≤ x3). Then, as m→∞, the
proportion of m-tuples with any xi = xj goes to zero, and so Qm → P, the probability measure of a uniform
random distribution on the linear extensions. �

Proof of Theorem 16.2. The proof of the Four-Function theorem will go in two parts.
The first step is to show that any finite distributive lattice (L,≤) is isomorphic to a sub-lattice of 2N ,⊆,∪,∩

(i.e. subsets with containment on some finite set of points).
An x ∈ L is called join-irreducible (akin to a primeness condition) if whenever x = y ∨ z, then x = y or

x = z. There is always a join-irreducible element, because L is finite.
Let x1, . . . , xn be the join-irreducible elements of L. Then, every x ∈ L is mapped to some A(x) ⊆ N =

{1, . . . , n} where x =
∨
i∈A xi and {xi : i ∈ A} are join-irreducible and less than x. Thus, it suffices to prove

the Four-Function theorem in (2N ,⊆). In this context, the statement of the theorem is that if N = {1, . . . , N}
and P(N) = 2N , then suppose ϕ : P(N)→ R+.

If A ⊆ P(N), then define ϕ(A) =
∑
A∈A ϕ(A), and define A ∪ B = {A ∪ B | A ∈ A, B ∈ B} and

A ∩ B = {A ∩B | A ∈ A, B ∈ B}. Then, if for all A,B ⊆ N we have α(A)β(B) ≤ γ(A ∪B)δ(A ∩B), then
for all A,B ⊆ P(N), α(A)β(B) ≤ γ(A ∪ B)δ(A ∩ B).

Without loss of generality, one can assume that A = B = A ∩ B = A ∪ B = P(N), because one can set
α(A) = 0 when A 6∈ A, β(B) = 0 for all B 6∈ B, γ = 0 outside of A ∪ B, and δ = 0 outside of A ∩ B. Then,
these functions still satisfy the conditions of the theorem (since one side goes to zero iff the other does).

The third (of two) parts is to induct on n. Most of the work is somehow in the base case: if n = 1, then
P(N) = {∅, N}, and let ϕ0 = ϕ(∅) and ϕ1 = ϕ(N). These are all of the possible choices for α, . . . , δ, and in
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all possible cases life works: α0β0 ≤ γ0δ0, α0β1 ≤ γ1δ0, α1β0 ≤ γ1δ0, and α1β1 ≤ γ1δ1. Then, summing and
redistributing, (α0 + α1)(β0 + β1) ≤ (γ0 + γ1)(δ0 + δ1).

If γ1 = 0 or δ0 = 0, then the required inequality follows, so assume they are nonzero. Then, γ0 ≥ α0β0/δ0
and δ1 ≥ α1β1/γ1. Then, it’s enough to substitute in these lower bounds:(

α0β0

δ0
+ γ1

)(
δ0 +

α1β1

γ1

)
.

But multiplying this back out, a lot of the same terms are in common. Then, if x = α0β1, y = α1β0, and
z = γ1δ0, then z ≥ x and z ≥ y, so after some laborious algebra, one can see that x+ y ≤ z + xy/2.

And now for the inductive step! Assume it works for n − 1, and let N ′ = {1, . . . , n − 1} and N =
N ′ ∪ {n}. Then, given ϕ on subsets of N , define ϕ′(A) = ϕ(A ∪ {n}) + ϕ(A) on subsets of N ′. Thus,
ϕ′(P(N ′)) = ϕ(P(N)). Thus, the inductive hypothesis holds for α′, β′, γ′, δ′ : P(N)→ R+, as long as they
satisfy α′(A′)β′(B′) ≤ γ′(A′ ∪B′)δ′(A′ ∩B′), but this is just the base case again, because one can define a
one-element set T and functions α(∅) = α(A′) and α(T ) = α(A′ ∪ {n}) and similarly for the other three.
But then, asking about any S,R ⊆ T boils down to the base case, a statement about the empty sets and the
α0, α1, . . . , δ0, δ1.Thus, α(P(T ))β(P(T )) ≤ γ(P(T ))δ(P(T )). �

There are more general results, including an uncreatively named Six-Function theorem, and many applica-
tions of the FKG theorem to statictical physics and such.

Lecture 18.

The Behavior of G(n, p) With Respect to Component Sizes: 2/19/14

Let G(n, p) be the Erdős-Rényi random graph, and p = c/n. Then, let C(v) denote the connected
component of a vertex v ∈ G, so that {C(v)}v∈G denotes the set of connected components. Around c ≈ 1
there is a “phase transition:” when c < 1, max|C(v)| ≈ log n � n, and these connected components look
approximately like trees. But when c > 1, there exists a unique component of size O(n), which doesn’t look
like a tree.

Let Zi ∼ Po(c) be i.i.d. and let Tc denote the first time this crosses zero:

Tc = inf

{
t : 1 +

t∑
i=1

Zi ≤ t

}
.

This aproximates computing the size of the connected component, and is much easier to analyze.

Claim 18.1. Pr(Tc <∞) = 1 for c < 1 and P(Tc <∞) < 1 for c > 1.

This follows from a general large-deviation estimate for sums of i.i.d. random variables: compare the
average and the mean. Then,

P

(
|[|

]
1

t

t∑
i=1

Zi − c ≥ ε

)
≤ K(c, ε)−t

for K(c, ε) > 1. However, a different proof by way of generating functions is more enlightening.

Proof. For 0 < x <∞, let

R(x) = E
[
xZ1
]

=

∞∑
k=0

xke−c
ck

k!
= ec(x−1)

and Q(x) = E
[
xTc
]
.

Then, I claim that

Q(x) =

∞∑
s=0

P(Z1 = s)(xQ(x))s,

which then simplifies to R(xQ(x)) = ec(xQ(x)−1)|, so then y = Q(x) satisfies y = ec(xy−1). Thus,

Q(1) =

∞∑
i=0

P(Tc = i) = P(Tc <∞) = y.

Thus, y = 1 is a solution, and if c > 1 there is an additional solution, as − ln y = c(y − 1).
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Conditioning on Z1 = s, we have Tc = 1 + τ1 + τ2 + · · ·+ τs, where each τi corresponds to
∑t
j=1 z

(i)
j − t

first hitting level −1; these τi are independent. This should be thought of as a random walk on Z where the
steps (increments) are nonnegative or −1; τi is the ith time a step of −1 is taken, until 0 is reached. Then,

E
[
xTc | Z1 = s

]
= xE

[
xτ1+···+τs

]
= xE [xτ1 ]

s
= xQ(x)s.

Then, there is a duality result: let H = (z1, . . . , zt) be the history of Z1, . . . , ZTc given that Tc = t is finite.

Then, Pλ[H = (z1, . . . , zt)] = e−λ(λe−λ)t−1/
∏t
i=1 zi! as long as this is a “legal history” (i.e. the probability

is nonnegative) and
∑t
i=1 zi = t− 1.

Now, let d < 1 < c be called a conjugate pair when de−d = ce−c. Since xe−x is increasing on [0, 1) and
decreasing on [1,∞), then any c 6= 1 has a conjugate. Since y = ec(y−1), then cye−cy = ce−c, so d = cy is
the conjugate of a c > 1. Then, the process with mean c > 1, conditioned to have T = t finite, has the
conjugate distribution of mean d < 1. In some sense, the correspondence says that if it succeeds, one ends
up with a giant component (one large connected component of the graph), and if it fails, the random graph
has many small disconnected components. The claim is shown by taking a istory H = (z1, . . . , zt); then,

Pc(H | Tc <∞) = Pc(H)/P(T <∞) = e−c)ce−c)t−1/y
∏t
i=1 zi!

Then, using the fact that ce−c = de−d, this probability also becomes Pd(H), which expands in the same
way. �

Now, one can use breadth-first search to relate this idea to connected components of random graphs. The
algorithm for finding C(v) given v looks like this: start with v live and all other nodes neutral (nodes can be
live, which are in C(v) but unchecked, dead, which have been checked, or neutral). Let t = 0 and Y0 = 1.
Then, at each time t, choose any live vertex w and check if {w,w′} ∈ E for any neutral w′ (i.e. things we
haven’t examined yet); if {w,w′} ∈ E, then make w′ live, and after all such w′,mark w as dead, and update
Y0 to be the number of live vertices. Then, if zi is the number of extra edges found, then

Yt =

t∑
i=1

zi − t+ 1.

The algorithm halts when Yt = 0, with

|C(v)| = T = inf

{
t : 1 +

t∑
i=1

zi − t+ 1

}
.

Then, Zt ∼ Binomial(n − (t − 1) − Yt−1, p), and at tme t, there are t − 1 dead and Yt−1 live, so there
are Nt−1 := n − (t − 1) − Yt−1 neutral. As all trials are independent, one can check by induction that
Yt = Yt−1 + zt − 1 ∼ Binomial(n− 1, 1− (1− p)t) + 1− t, and Nt ∼= n− t− Yt ∼ Binomial(n− 1, (1− p)t).

Theorem 18.2 (Alon & Spencer, Theorem 11.5.1). P(|C(v)| = t) ≤ P(Binomial(n− 1, (1− p)t) = n− t) or
is equal to P(Binomial(n− 1, 1− (1− p)t) = t− 1).

If p = c/n, then Z1 ∼ Binomial(n−1.c/n)→ Po(c) as n→∞. The same holds as n−Nt−1 ∼ O(n), so the
number of dead and live vertices is about o(n). Thus, |C(v)| ≈ Tc, since they’re from the same distribution.
This comes from the following derivation.

Theorem 18.3. For all fixed k,

lim
h→∞

P(|C(v)| = k in G(n, c/n)) = P(Tc = k).

Proof. First, see that

P(T po = k) =
∑
?

PP(Zpo
i = zi, 1 ≤ i ≤ k) and P(T gr = k) =

∑
?

PP(Zgr
i = zi, 1 ≤ i ≤ k),

where T po, etc., are from the Poisson model and T gr, etc., are from the graph model. Here,

? = {z = (z1, . . . , zk) | y0 = 1, yt = yt−1 + zt − 1, yt > 0, t < k, yk = 0}.
Then,

P(Zgr
i = zi, 1 ≤ i ≤ k) =

k∏
i=1

P (Binomial(Ngr
i=1, p) = zi),

but this goes to P(Po(c) = zi), as Ngr
i−1 = n− o(n). �
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Next time, we will see how a coupling argument can be used to prove Theorem 18.3 and another, related
theorem (in section 11.6 of [1]).

Lecture 19.

Branching Processes: 2/21/14

Recall that we are looking at the size |C(v)| of the connected component of a vertex v ∈ G(n, p), which
can be written using T gr = inf{t : Yt = 0}, where Yt = Yt−1 + Zt − 1 and Y0 = 1. This comes form the
breadth-first search algorithm (whihc is why it’s sometimes called a branching process, but only when the
Zi introduced below are independent): Yt is the number of live nodes at time t, n− Yt −Nt is the number
of dead nodes, and Nt the number of neutral nodes. One can also define TPo

c , which is the same with
Zi ∼ Po(c), and TBin

n,p , where Zi ∼ Binomial(n, p). If Zt is the number of neutral nodes made alive at step t,
then Zt ∼ Binomial(Nt, p).

We also had y = P(TPo
c is finite), which is y = cec(y−1). Thus, if c > 1, there exists a solution y < 1.

Theorem 19.1. P(TPo
c = k) = −eck(ck)k−1/k!

Theorem 19.2. For all u, P(TBin
n−u,p ≥ u) ≤ P(T gr

n,p ≥ u) ≤ P(TBin
n−1,p ≥ u).

Then, it will be possible to say something about the subcritical case, where p = c/n, c < 1, or the barely
critical graphs where c = 1− ε, with ε = λn−1/3.

Proof of Theorem 19.2. For the latter inequality, modify the breadth-first search algoritm by replenishing
neutral vertices so that there are always n− 1 neutral nodes. This new algorithm produces possibly larger
|C(v)|, but follow TBin

n,p .
For the first inequality, observe that all live and dead vertices are part of C(v); hence, to compute

P(T gr
n,p ≥ u), it’s enough to run the breadth-first search algorithm until Nt ≤ n − u. But here, modify

breadth-first search by keeping only n− u vertices at a time. This produces a smaller probability for |C(v)|,
and follows TBin

n−u,p. �

Now, it’s possible to analyze the subcritical case. Let p = c/n, with c < 1. Then,

P(T gr
n,p ≥ u) ≤ P(TBin

n−1,p ≥ u) ' (1 + o(1))P(TPo
c ≥ u) ≤ e−α(u)(1+o(1))

for some α > 0, so write u = K lnn for some large, fixed K. But this probability is also P(|C(v)| ≥ K lnn) ≤
n−αK(1+o(1)), so

P(L1 ≥ K lnn) ≤
n∑
v=1

P(|C(v)| ≥ K lnn)→ 0,

where L1 = maxv|C(v)|.
Then, the next step is to bound P(|C(v)| ≥ u) ≤ (1 + o(1))P(TPo

1−ε ≥ u), but P(TPo
1−ε ≥ Aε−2) ≤

εe−(1+o(1))A/2, so take u = Aε−2. Using a Taylor expansion,

P(|C(v)| ≥ u) ≤ (1 + o(1))P(TPo
1−ε ≥ u ' εe−A/2 = (λn−1/3λK/2.

Let X =
∑
v Iv, where Iv = 1{|C(v)|≥u}, and let Γ be the number of components of size at least u (so we want

to bound it above); then, Γ ≤ X/u.
Thus, P(Γ ≥ 1) ≤ R(Γ) ≤ (1/u)E[X] = (n/u)P(|C(v)| ≥ u) = λ3λ−K/2/(K lnλ), which goes to 0 as

λ, n→∞. Thus, the conclusion is that if p = 1/n− λ/n4/3 = (1− ε)/n¡ then n→∞ and λ� 1 implies that

P(L1 ≥ Kλ−2 lnλn2/3) = P(Γ ≥ 1)→ 0.

In other words, the relative size of the largest component decreases as n increases.
In some sense, there are several possible behaviors:

• Subcritical, with c < 1 and p = c/n. Here, L1 obeys the relationship seen above: L1 ≤ K lnn.
• Barely subcritical, where p = (1− ε)/n and ε = λn−1/3, so L1 = O(ε−2 lnλ) = O(n2/3), and all of

the other components are of size O(lnn). The small components are simple (i.e. not far from trees:
the number of edges and vertices are not far apart).
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• Critical, where ε ∈ [−λn−1/3, λn1/3]. There are lots of relatively large connected components (relative,
that is, to each other) Lk = ckn

2/3 and dk = (#v −#e) in Lk, so that there’s a nontrivial relation
between ck and dkk.

• Barely supercritical, where p = (1 + ε)/n and ε = λn−1/3. Here, L1 ∼ 2εn ∼ O(n2/3), and
L2 ∼ O(ε2 lnλ) = O(n2/3λ−2 lnλ).

• Very supercritical, where p = c/n, and c > 1. Then, L1 = n(1− y)(1 + o(1)), and all of the other
components are O(log n) and simple.

One can think of starting with c small and scaling it up over time. Then, one starts with many small
components, and as more edges are added, the connected components grow and merge.
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