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Part 1. Measure Theory

1. Outer Measure: 9/23/14

“The most important thing about this class is, there’s no class Thursday.”

Most books on real analysis are very boring, since the subject is kind of dry. Terry Tao’s books (the course books) are
more verbose, but they’re nicer to read. Don’t treat them as textbooks per se, but if you’re ever on a beach and need
something to read, try these books.1 The books are Introduction to Measure Theory and An Epsilon of Room, both
by Terry Tao.2 Another book to look into is Evans and Gariepy, Measure Theory and Fine Properties of Functions;
this is astoundingly precise and concise, with no motivation. Finally, on Fourier analysis, refer to the book Fourier
Analysis, by Duoandikoetxea, and to M. Pinsky’s Introduction to Fourier Analysis and Wavelets. There are misprints,
but a wealth of useful information and interesting things.

In this class, we will spend a lot of time on measure and integration, then a small amount of Fourier analysis.
Finally, we’ll discuss a small amount of Brownian motion.

Now let’s start talking about the Lesbegue measure. We want to extend the notion of the length of an interval to
other sets. In two dimensions, for example, we calculated the area of a circle in elementary geometry by approximating
it by refining the areas of polygons until we believed the limit existed. This is approximately what we’ll do with the
Lesbegue measure.

1The professor learned undergrad complex analysis this way, apparently.
2“Buy them, find them on a Chinese website, whatever.”
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We want the measure to meet the following four requirements:

(0) The measure of any set is defined.
(1) If I is an interval, then its measure m(I) = `(I), its length.
(2) If E1, E2, . . . are disjoint, then

m

( ∞⋃
i=1

Ei

)
=

n∑
i=1

m(Ei).

(3) If E ⊆ R and x ∈ R, then define E + x = {y ∈ R : y = e + x, e ∈ E}. Then, we would like to have
m(E + x) = m(E), so that m is translation-invariant.

This turns out to be impossible. Oops.
Let’s look at the half-open interval [0, 1) as if it were the circle: define

x⊕ y =

{
x+ y, if x+ y < 1
x+ y − 1, if x+ y ≥ 1

Claim. Assuming postulates (0) – (3), then m(E ⊕ x) = m(E).

Proof. Let E1 = {y ∈ E : y < 1 − x} and E2 = {y ∈ E : 1 − x ≤ y < 1}, so that E ⊕ x = (E1 ⊕ x) ∪ (E2 ⊕ x),
E1⊕x = E1 +x, and E2⊕x = E1 + (x− 1). Furthermore, (E1⊕x)∩ (E2⊕x) = ∅, and therefore using the postulates
we laid out,

m(E ⊕ x) = m((E1 + x) ∪ (E2 + x− 1))

= m(E1) +m(E2) = m(E). �

Define x ∈ y if x = y ⊕ q for some q ∈ Q; it’s easy to prove this is an equivalence relation, and partitions [0, 1) into
equivalence classes. Then, use the axiom of choice to choose one element from each equivalence class (this doesn’t
work without the axiom of choice), and call the set of these elements P , and let Pj = P ⊕ qj for qj ∈ Q; these Pj are
all disjoint, because if y ∈ Pj ∩ Pk, then y = pj ⊕ qj = pk ⊕ qk, so pj ∼ pk, and therefore j = k (since there’s exactly
one element from each equivalence class).

Thus, [0, 1) is decomposed into a countable collection of Pj (indexed by Q), which are all translations of each
other! Thus,

m([0, 1]) = m

( ∞⋃
j=1

Pj

)

=

∞∑
j=1

m(Pj)

=

∞∑
j=1

m(P ).

Thus, the sum is either 0 or ∞, depending on whether P has zero or positive measure. But we want it to be equal to
1, which means our postulates are wrong. We’ll throw out postulate (0); the other three come from physics, so it
would be strange to throw them out.

That means we restrict the measure to good sets, which will be called measurable.

Definition. An outer measure m∗(A) is defined on any set A as

m∗(A) = inf

{ ∞∑
j=1

|Ij | | A ⊂
∞⋃
j=1

Ij

}
,

such that each Ij is an open3 interval. It is allowed that m∗(A) =∞.

It is thus pretty clear that m∗(∅) = 0 and if A ⊆ B, then m∗(A) ≤ m∗(B).

Exercise 1. What changes if we only allow finite covers, rather than countable covers?

Terry Tao devotes a few pages to this idea.

Proposition 1.1. If I is an interval (open or closed), then m∗(I) = |I|.

3It doesn’t matter whether you choose open or closed intervals, since one can add any ε of length and go between the two. It comes

down to personal preference.
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Proof. Let I = [a, b], so that I ⊂ (a− ε, b+ ε) for any ε > 0. Thus, m∗(I) ≤ b− a+ 2ε, so m∗([a, b]) ≤ b− a.
In the other direction, take Ij open such that [a, b] ⊆

⋃
Ij ; then, use the Heine-Borel lemma to choose I1, . . . , IN

such that [a, b] ⊆
⋃N
j=1 Ij , and therefore (which is a bit of a laborious exercise)

∑n
j=1|Ij | ≥ b− a.

Thus, b− a ≤ m∗([a, b]) ≤ b− a, so m∗([b− a]) = b− a.
For the open interval, it’s clear that m∗((a, b)) ≤ m∗([a, b]) = b− a, but also that m∗((a, b)) ≥ m∗([a+ ε, b− ε]) =

b− a− 2ε for any ε > 0, so m∗(a, b) = b− a as well. �

Proposition 1.2 (Countable sub-additivity).

m∗

( ∞⋃
j=1

Ej

)
≤
∞∑
j=1

m∗(Ej).

Proof. Let A =
⋃∞
j=1Ej and take Ijk to be such that

Ej ⊆
∞⋃
k=1

Ijk

and

m∗(Ej) ≤
∞∑
j=1

|Ijk|+
ε

2j
.

Since A ⊂
⋃
j,k Ijk, then

m∗(A) ≤
∞∑

j,k=1

|Ijk|

=

∞∑
j=1

( ∞∑
k=1

|Ijk|

)

≤
∞∑
j=1

(
m∗(Ej) +

ε

2j

)
= ε+

∞∑
j=1

m∗(Ej). �

Corollary 1.3. The outer measure of a countable set is zero.

Define the distance between two sets E and F to be

dist(E,F ) = inf{|x− y| : x ∈ E, y ∈ F}.

Proposition 1.4. Assume dist(E,F ) > 0; then, m∗(E ∪ F ) = m∗(E) +m∗(F ).

Proof. We already know that m∗(E ∪ F ) ≤ m∗(E) +m∗(F ), so we need to check that m∗(E) +m∗(F ) ≤ m∗(E ∪ F ).
Choose Ij such that

m∗(E ∪ F ) ≥
∞∑
j=1

|Ij | − ε and E ∪ F ⊆
∞⋃
j=1

Ij .

Exercise 2. Show that we can take

|Ij | ≤
dist(E,F )

24
.

Then, each Ij intersects one of E or F ; call those that intersect E the I ′j , and those that intersect F as I ′′j . Thus,
E is covered by the I ′j , and F by the I ′′j . Now

m∗(E) ≤
∑
|I ′j |

m∗(F ) ≤
∑
|I ′′j |

m∗(E) +m∗(F ) ≤
∑

(|I ′j |+ |I ′′j |)
≤ m∗(E ∪ F ) + ε. �
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Note that if the assumption that dist(E,F ) > 0 is relaxed, the proposition is not true; for example, consider the
sets P and P + 1/2 that we constructed earlier today.

We want to generalize this to higher dimensions, so we’ll consider open boxes4 B = {a1 < x1 < a′1, a2 < x2 <
a′2, . . . , an < x < a′′n}. Then, we define the outer measure of a set E ⊆ Rn to be

m∗(E) = inf

{ ∞∑
j=1

|Bj | : E ⊂
∞⋃
j=1

Bj

}
.

Exercise 3. The results we saw in the one-dimensional case pass almost identically to the case of Rn; redo these
arguments for this case.

Exercise 4. If B1, . . . .BN is a finite collection of disjoint boxes, then show that

m∗

(
N⋃
j=1

Bj

)
=

N∑
j=1

|Bj |.

This generalizes trivially to countable collections.

Proposition 1.5. Let {Bj} be a countable collection of disjoint boxes; then,

m∗

( ∞⋃
j=1

Bj

)
=

∞∑
j=1

|Bj |.

Proof. Let E =
⋃∞
j=1Bj , so that m∗(E) ≤

∑∞
j=1|Bj |. But for any N , E ⊇

⋃N
j=1Bj , and so

∑N
j=1|Bj | ≤ m∗(E).

Thus, take n→∞, and equality holds. �

Now, we want to extend this to more general open sets.

Exercise 5. Any open set in R is an at most countable collection of disjoint open intervals.

The idea is to try to find the maximal interval(s), and then induct.
The generalization in higher dimensions is much more useful. Consider the lattice Zn, and scale it by 2k, for any

k ∈ Z; call this lattice Qk. Thus, |Q| = 1/2nk for Q ∈ Qk. These cubes are known as closed dyadic cubes, and are
useful in many places in measure theory, as well as image processing and electrical engineering, because each cube is
contained in a cube of the next level, and doesn’t intersect any of the cubes on the previous level.

Take a nonempty open bounded5 U ⊆ Rn; any point in U is covered by a closed dyadic cube contained in U ; these
cubes will not be disjoint. Let C be the collection C of all closed dyadic cubes which are contained in U and CM
be the collection of maximal dyadic cubes in C, those not contained in any other dyadic cube in C. These cubes’
interiors cannot intersect, since they’re both maximal, so neither can contain the other, and any point lives in a
maximal cube. Thus U is the union of the dyadic cubes in CM , which have non-overlapping interiors.

Terry Tao gives a nice, intuitive definition for Lesbegue measure, which is not the standard definition. We’ll be
given both, and then later show that they’re equivalence.

Proposition 1.6. Given any A ⊆ Rn and any ε > 0, there exists an open set U such that A ⊆ U and m∗(A) ≥
m∗(U)− ε.

This follows directly from the definition (give the right covering).

Proposition 1.7. m∗(A) = inf{m∗(U) : A ⊆ U and U is open}.

Philosophically, this means that U approximates A well; it’s contained in U , and the measures are very similar.
But this is only true in some cases; there are some sets A and opens U ⊃ A such that the measure of U is very close
to that of A, but the measure of U \A is not small. This is counterintuitive.

However, we can just take the measureable sets to be those that are well approximated by open sets; this is exactly
what Terry Tao does.

Definition. A set A is Lesbegue measurable if for all ε > 0 there exists an open set U ⊇ A such that m∗(U \A) < ε.

4Once again, it doesn’t matter whether they’re closed or open.
5To generalize to the unbounded case, consider only dyadic cubes up to a certain level, and then the same argument works. We’re

worrying about the small cubes, not the large ones.
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2. The Lesbegue Measure: 9/30/14

“A lot of this is improvisation which is not necessarily correct.”

Suppose A ⊆ Rn; then, we defined the outer measure of A as

m∗(A) = inf

∞∑
j=1

|Dj |,

where the infimum is over all countable collections {Dj} of open boxes that cover A; we then proved that:

(1) if E and F are such that dist(E,F ) > 0, then m∗(E ∪ F ) = m∗(E) +m∗(F ),
(2) there is no countable collection of disjoint sets Ei such that

m∗

( ∞⋃
j=1

Ej

)
=

∞∑
j=1

m∗(Ej),

and
(3) any open set in Rn is an at most countable union of almost disjoint (i.e. except on the boundary) closed

boxes.

Finally, we defined a set E to be Lesbegue measurable if for any ε > 0 there is an open set U ⊃ E such that
m∗(U \ E) < ε.

Fact. Any open set is measurable.

This is pretty much by definition. We also have another fact:

Observation 2.1. Any set of measure zero is measurable.

Proof. Suppose m∗(E) = 0, and for any ε > 0 let {Dj} be a countable collections of boxes covering E and such that∑
|Dj | < ε. Then, let U =

⋃∞
j=1Dj ; then m∗(U \ E) ≤ m∗(U) < ε. �

Observation 2.2. A countable union of measurable sets is measurable.

Proof. Let E1, E2, . . . be measurable and E =
⋃∞
j=1Ej . Let Uj be open sets such that Uj ⊇ Ej and m∗(Uj\Ej) < ε/2j ;

then, setting

U =

∞⋃
j=1

Uj ⊃ E,

one can sum the individual inqualities and check the definition. �

Observation 2.3. Every closed set is measurable.

Proof. We can assume without loss of generality that E is a closed, bounded set (writing it as the union of disjoint,
measurable sets and using countable additivity). Then, take a bounded open set U such that m∗(U) < m∗(E) + ε.
Then, U \ E is an open set, so there’s a countable union of disjoint closed boxes Qj such that dist(Qj , E) > 0 (since
E is closed) and such that

m∗

(
E ∪

m⋃
j=1

Qj

)
= m∗

(
m⋃
j=1

Qj

)
+m∗(E)

≥ m∗
(

m⋃
j=1

Qj

)
+m∗(U)− ε,

so

m∗(U) <

∞∑
j=1

|Qj | < ε.

Notice that boundedness is necessary because m∗(U) cannot be infinite. �

Observation 2.4. If E is measurable, then so is its complement Ec = Rn \ E.

Proof. For each n ∈ N, let Un be an open set containing E such that m∗(Un \E) < 1/n. Then, let Fn = U cn, which is
closed. Then, Fn ⊆ Ecn and Ec \ Fn = Un \ E, so m∗(Ec \ Fn) < 1/n.

Write

Ec =

( ∞⋃
n=1

Fn

)
∪ S,
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so that S is everything else, so to speak. Then, S ⊆ Ec \Fn for each n, so m∗(S) < m∗(Ec \Fn) = 1/n for each n, and
therefore m∗(S) = 0. Thus, Ec is a union of countably many measurable sets (S and the Fn), so it is measurable. �

Observation 2.5. A countable intersection of measurable sets is measurable.

Proof. A countable intersection is the complement of a countable union of complements of measurable sets, and each
of these operations preserves measurability, so countable intersections must as well. �

Now we can speak a little more generally.

Definition. A collection of sets F is an algebra if:

(1) ∅ ∈ F .
(2) Whenever A1, A2 ∈ F , then A1 ∪A2 ∈ F .
(3) If A ∈ F , then Ac ∈ F .

If in addition we have

(4) If A1, A2, · · · ∈ F , then
∞⋃
j=1

Aj ∈ F ,

then F is also called a σ-algebra.

Thus, the observations above establish the following theorem.

Theorem 2.6. The collection of all Lesbegue measurable sets in Rn forms a σ-algebra.

Definition. The Borel σ-algebra B is the smallest σ-algebra that contains all open sets. A set is called Borel if it is
in B.

Exercise 6. Show that not every Lesbegue-measurable set is Borel.

This is a hard exercise which will eventually be easier.
Though we have seen Tao’s definition of measurability, it isn’t the standard one. We will present this definition as

well, and prove the two are equivalent.

Definition. A set E is Carathéodory measurable or C-measurable if for every set A ⊆ Rn, m∗(A) = m∗(A ∩ E) +
m∗(A ∩ Ec).

Now, Observation 2.4 becomes a triviality in the case of C-measurability.

Observation 2.7. It is always true that m∗(A) ≤ m∗(A ∩ E) +m∗(A ∩ Ec), so to show that A is measurable it is
sufficient to show that m∗(A) ≥ m∗(A ∩ E) +m∗(A ∩ Ec).
Observation 2.8. If m∗(E) = 0, then E is C-measurable.

Proof. Since m∗(A ∩ E) = 0, since A ∩ E ⊆ A for all A, and m∗(A ∩ Ec) ≤ m∗(A), then m∗(A) ≥ m∗(A ∩ Ec) +
m∗(A ∩ E). �

Observation 2.9. Any open corner

E = {x1 > a1, x2 > a2, . . . , xn > an}
is C-measurable.

Proof. Take any A ⊆ Rn and cover it with boxes Dn such that

m∗(A) + ε ≥
∞∑
n=1

|Dn|,

and let

En =
{
x1 ≥ a1 +

ε

2n
, x2 ≥ a2 +

ε

2n
, . . . , xn ≥ an +

ε

2n

}
,

which is a slightly smaller corner. We also define D′j = Dj ∩ E and D′′j = Dj ∩ Ecn, which is a finite union of boxes.
Finally, define

A1 = A ∩ E ⊆
∞⋃
j=1

D′j , and

A2 = A ∩ Ec ⊆
∞⋃
j=1

D′′j .
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Thus, m∗(A1) ≤
∑
|D′j | and m∗(A2) ≤

∑
|D′′j |, so

m∗(A1) +m∗(A2) ≤
∞∑
j=1

(
|D′j |+ |D′′j |

)
.

We’d like to be done here, but there’s some extra that is counted twice. We can account for it in the inequality:

≤
∞∑
j=1

(
|Dj |+

Cε

2j

)
≤ m∗(A) + ε+ Cε.

Since ε > 0 is arbitrary, then m∗(A ∩ E) +m∗(A ∩ Ec) ≤ m∗(A). �

Observation 2.10. If E1 and E2 are C-measurable, then so is E1 ∪ E2.

Proof.

m∗(A) = m∗(A ∩ E1) +m∗(A ∩ Ec1) = m∗(A ∩ E1) +m∗((A ∩ Ec1) ∩ E2) +m∗(A ∩ Ec1 ∩ Ec2),

but Ec1 ∩ Ec2 = (E1 ∪ E2)c, and thus (A ∩ E1) ∪ ((A ∩ Ec1) ∩ E2) = A ∩ (E1 ∪ E2), so plugging these back into the
above inequality shows the union is measurable. �

It seems like we’re closely studying trivialities over and over in order to gain insights. The Hebrew word for this is
pilpul.

Observation 2.11. If E1 and E2 are C-measurable, then so is E1 ∩ E2.

This is because (E1 ∩ E2)c = Ec1 ∪ Ec2, and we know unions and complements are measurable.

Lemma 2.12. Let A be any set and E1, . . . , En be pairwise disjoint, C-measurable sets. Then,

m∗

(
A ∩

n⋃
j=1

Ej

)
=

n∑
j=1

m∗(A ∩ Ej).

Proof sketch. Prove by induction on n, which makes it pretty straightforward.

Theorem 2.13. The collection of C-measurable sets is a σ-algebra.

Proof. We’ve already done a lot of the proof, but we need to check that countable unions of C-measurable sets are
C-measurable.

Let E1, E2, . . . be a countable collection of C-measurable sets, and let Ẽ1 = E1, Ẽ2 = E2 \ E1, and so on; in
general,

Ẽn =

(
n⋃
j=1

Ej

)
\

(
n−1⋃
j=1

Ẽj

)
.

Then,

E =

∞⋃
n=1

En =

∞⋃
n=1

Ẽn,

but the Ẽn are pairwise disjoint.

We know that Fn =
⋃n
j=1 Ẽn is C-measurable, and

m∗(A) = m∗(A ∩ Fn) +m∗(A ∩ F cn)

≥ m∗(A ∩ Fn) +m∗(A ∩ Ec)

=

n∑
j=1

m∗(A ∩ Ẽj) +m∗(A ∩ Ec).

Letting n→∞,

m∗(A) ≥
∞∑
j=1

m∗(A ∩ Ẽj) +m∗(A ∩ Ec)

and
∞⋃
j=1

(A ∩ Ẽj) = A ∩
∞⋃
j=1

Ej = A ∩ E,

so m∗(A) ≥ m∗(A ∩ E) +m∗(A ∩ Ec). �
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Corollary 2.14.

(1) All open boxes are C-measurable.
(2) All closed boxes are C-measurable (since they’re complements).
(3) All open sets and closed sets are countable unions of open or closed boxes, and are therefore measurable.
(4) All Borel sets are C-measurable, since they’re generated by open and closed sets.

Now we can show that the two notions of measurability are the same.

Proposition 2.15. A set is Lesbegue measurable iff it is C-measurable.

Proof. Let E be a Lesbegue-measurable set and A be any set. We want that m∗(A) ≥ m∗(A ∩ E) + m∗(A ∩ Ec).
Take U ⊇ E such that m∗(U \ E) < ε; then,

m∗(A) = m∗(A ∩ U) +m∗(A ∩ Uc)
≥ m∗(A ∩ E) +m∗(A ∩ Uc).

Since Ec = (U \ E) ∪ Uc, then m∗(A ∩ Uc) ≥ m∗(A ∩ Ec)−m∗(U \ E) ≥ m∗A ∩ Ec)− ε.
Thus, m∗(A) ≥ m∗(A ∩ E) +m∗(A ∩ Ec)− ε, so E is C-measurable.
Conversely, if E is C-measurable, then there is an open set U such that U ⊇ E, and m∗(U) ≤ m∗(E) + ε

(difference of measure, not measure of differences), and U \ E = U ∩ Ec, so since U ∩ Ec and E are disjoint, then
m∗(U) = m∗(U \ E) +m∗(E), so m∗(U \ E) < ε; thus, E is Lesbegue measurable. �

Thus, we’ll just use the term “Lesbegue measurable” to describe these two equivalent notions; sometimes, the
Carathéodory notion is more convenient.

But we can speak yet more generally about measures.

Definition. A mapping µ∗ : 2X → R+ ∪ {∞} is an outer measure6 on X if:

(1) µ∗(∅) = 0 and
(2) whenever A ⊆

⋃∞
k=1Ak,

µ∗(A) ≤
∞∑
k=1

µ∗(Ak).

If µ∗(X) is finite, then µ∗ is also called finite.

Definition. If µ∗ is an outer measure on X, then for any A ⊆ X, the outer measure restricted to A is µ∗|A(B) =
µ∗(A ∩B).

Example 2.16.

(1) The Lesbegue measure is an outer measure, as we have shown.
(2) µ#(A) = #A (the number of elements of A), the counting measure.
(3) The δ-measure on Rn:

µ(A) =

{
1, if 0 ∈ A
0, if 0 6∈ A.

Definition. A set E is measurable if for any set A ⊆ X, µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec).

If E is measurable, we write µ(E) = µ∗(E).

Theorem 2.17. The collection of measurable sets forms a σ-algebra.

The proof is exactly the same as we did above, since that didn’t depend on the specifics of the Lesbegue measure;
the words are all the same.

3. Borel and Radon Measures: 10/2/14

Last time, we defined an outer measure on a set X to be a function f : 2X → R+ ∪ {∞} such that µ∗(∅) = 0 and
for all countable collections E1, · · · ⊆ X,

µ∗

( ∞⋃
j=1

Ej

)
≤
∞∑
j=1

µ∗(Ej).

6This is not the best name for it; there’s nothing outer about an outer measure. But it’s used to connote that it’s not truly a measure

yet.
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The idea is that we only defined the measure on some sets, called (very creatively) measurable sets ; these were defined
to be the sets A ⊆ X such that for all B ⊆ X, µ∗(B) = µ∗(B ∩A) + µ∗(B ∩Ac), and proved that the collection of
measurable sets forms a σ-algebra (Theorem 2.17).

We’ll continue on this path today, talking about relatively abstract measures.

Proposition 3.1 (Countable additivity). Let E1, E2, . . . be a countable collection of disjoint, measurable sets; then,

µ

( ∞∑
j=1

Ej

)
=

∞∑
j=

µ(Ej).

Proof. By countable subadditivity,

µ

( ∞∑
j=1

Ej

)
≤
∞∑
j=

µ(Ej),

so we just need to go in the other direction. For any m,

µ

( ∞⋃
j=1

Ej

)
≥ µ

(
m⋃
j=1

Ej

)
=

m∑
j=1

µ(Ej),

since the measure is finitely additive; thus, we can let m→∞. �

We can also talk about nested sequences of measurable sets.

Proposition 3.2. Let E1 ⊇ E2 ⊇ E3 ⊇ · · · be measurable and such that µ(E1) is finite, then

lim
j→∞

µ(Ej) = µ

( ∞⋂
j=1

Ej

)
.

Proof. Let Fj = Ej \ Ej+1; then, all of the Fj are disjoint, and
⋃∞
j=1 Fj = E1 \ E (where E is the intersection of all

of the Ej), µ(E1 \ E) = µ(E1)− µ(E). Then,

µ

( ∞⋃
j=1

Fj

)
=

∞∑
j=1

µ(Fj) =

∞∑
j=1

(µ(Ej)− µ(Ej+1)).

This is a telescoping sequence, so it’s easier to evaluate.

= lim
n→∞

(µ(E1)− µ(En+1))

= µ(E1)− lim
n→∞

µ(En).

Thus, µ(E) = limn→∞ µ(En). (Here, all of the subtractions work because we have real numbers, not infinities.) �

Notice that the finite hypothesis is necessary: if En = (n,∞), then each has infinite measure on Rn, but their
intersection is empty.

There’s a corresponding result for increasing sequences of sets.

Proposition 3.3. Let E1 ⊆ E2 ⊆ · · · be an increasing sequence of measurable sets. Then,

µ

( ∞⋃
j=1

Ej

)
= lim
j→∞

µ(Ej).

Proof. We can assume the measures are finite, because if any set has infinite measure, then of course their union does.

µ(Ek+1) = µ(E1) +

k∑
j=1

(µ(Ej+1)− µ(Ej))

= µ(E1) +

k∑
j=1

µ(Ej+1 \ Ej .

Thus, when we pass to the limit,

lim
n→∞

µ(Ek) = lim
k→∞

k∑
j=1

µ(Ej+1 \ Ej),

and since these are disjoint sets, then countable additivity can be used to pass to the union. �

Note that these proofs are often simplifications of things that appear in print, and as a result could be wrong.
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Borel and Radon measures. Borel and Radon measures are notion of measure that are almost like the Lesbegue
measure, but not quite (e.g. Radon measures might not have translation-invariance).

Definition.

(1) A measure µ on Rn is Borel if every Borel set is measurable.
(2) A Borel measure is Borel regular if every set can be approximated by Borel sets: for every set A, there exists

a Borel set B such that A ⊆ B and µ∗(A) = µ(B).
(3) A Borel measure is Radon if for every compact set K, the measure of K is finite.

The Lesbegue measure is a good example of all of these notions.
It’s pretty easy to construct a counterexample to the notion of Borel measure; we’ll have to carefully construct the

Lesbegue integral later, but we can see that

µ(A) =

ˆ
A

dx

x

on R is not Radon (and the measure of any set containing 0 is infinite). Radon probability measures include those
with densities, e.g. µ(A) =

´
A
f(x) dx for f ≥ 0; then, f is the density function. The δ-measure (recall Example 2.16)

is not like that, but it is Radon.
In chemistry (and medicine), the Radon transform is a process akin to the Fourier transform. You’d think it’s

about the element, but apparently not. Clearly Radon was a broad scholar.
We’ll be able to show that every Radon measure is an outer and an inner measure, which means measurable sets

can be well approximated by open and by closed sets.

Theorem 3.4. Let µ be a Radon measure. Then,

(1) for each set A ⊆ Rn we have

µ∗(A) = inf{µ(U) : A ⊆ U,U open},

(2) and for each µ-measurable set A,

µ(A) = sup{µ(K) : A ⊇ K,K compact}.

This says that the Radon measure, like the Lesbegue measure, is an outer measure and an inner measure.

Exercise 7. Show that (2) may fail for a non-measurable set.

Lemma 3.5. Let B be a Borel set and µ a Borel measure.

(1) If µ(B) is finite, then for any ε > 0 there exists a closed set C ⊆ B such that µ(B \ C) < ε.
(2) If µ is Radon, then for any ε > 0 there exists an open set U ⊇ B such that µ(U \B) < ε.

Proof. This proof is terrible, because the concrete statement is proved by abstract nonsense, but such is life.
For part (1), set ν = µ|B .

Exercise 8. Let µ be a regular Borel measure and µ(A) be finite for some µ-measurable set A. Then ν = µ|A (i.e.
ν(B) = µ(A ∩B)) is a Radon measure.

This exercise is Theorem 1.35 in the lecture notes, but isn’t too difficult or interesting. All that needs to be checked
(which is nontrivial) is that we don’t lose Borel regularity, which makes sense: we gain finiteness, but don’t lose the
goodness of the measure.

Thus, ν in our proof is a finite Radon measure.

Claim. If ν is a finite Radon measure, then for any Borel set B′ and any ε > 0, there exists a closed set C ⊆ B′ such
that ν(B′ \ C) < ε.

Proof. When you want to prove something true for all Borel sets, show it for open sets and then use the fact that the
things satisfying the claim form a σ-algebra. In this case, we need to start with closed sets, which is unusual.

Let F be the collection of measurable sets A such that, for all ε > 0, there exists a closed set C such that
ν(A \ C) < ε. Then:

(1) Clearly, F contains all closed sets.
10



(2) We’ll show that F contains countable intersections. Let A1, A2, · · · ∈ F , and for each j, choose a closed set
Cj ⊆ Aj such that ν(Aj \ Cj) < ε/2j , and let C =

⋂∞
j=1 Cj . Then,

ν(A \ C) ≤ ν

( ∞⋃
j=1

(Aj \ Cj)

)

≤
∞∑
j=1

ν(Aj \ Cj) < ε.

(3) We want to do this for countable unions, but the same trick doesn’t work: a countable union of closed sets is
not always closed. Nonetheless, let A1, A2, · · · ∈ F and take Cj ⊆ Aj to be closed, with ν(Aj \ Cj) < ε/2j .

lim
m→∞

ν

(
A \

( ∞⋃
j=1

Cj

))
= ν

(
A \

∞⋃
j=1

Cj

)

= ν

( ∞⋃
j=1

Aj \
∞⋃
j=1

Cj

)

≤ ν

 ∞⋃
j=1

(Aj \ Cj)


≤
∞∑
j=

ν(Aj \ Cj) < ε.

Thus, there exists an N such that

ν

(
A \

N⋃
j=1

Cj

)
< ε;

Let Cε =
⋃N
j=1 Cj , which is closed, and thus F has infinite unions.

(4) Let G be the collection of all sets A such that A ∈ F and Ac ∈ F (so G ⊆ F); then, we’ll show that G contains
all open sets.

If U is open, then U c ∈ F , and U is a countable union of closed boxes (as we showed a couple lectures
ago), so U ∈ F . Thus, U ∈ G.7

(5) Next, we’ll show that G is a σ-algebra.
(a) Of course, complements come for free: if A ∈ G, then Ac ∈ G.8

(b) Countable unions are in G: if A1, A2, · · · ∈ G, then their union is in F by 3, and the complement is the
intersection of Ac1, A

c
2, . . . , which are all in F (since A ∈ G), and thus their intersection is as well. Thus,

the union is in G.
Thus, G is a σ-algebra containing all open sets, so it contains all Borel sets. Thus, so does F , so the one Borel
set we’re looking for has the right property. �

Now, on to part 2: that a Borel set can be well approximated from the outside by an open set. Let B be a Borel
set. It seems natural to pass to complements, and use things we’ve already proven in part 1, but this only works
if µ(Bc) is finite. In this case, though, we can pick a C ⊆ Bc such that µ(Bc \ C) < ε, and let U = Cc, so that
µ(U \B) = µ(Bc \ C) < ε.

Thus, let’s restrict to balls: for every m ∈ N, let Um = U(0,m) be the ball of radius m around the origin. Then,
µ(Um \B) is finite, so there is a closed set Cm ⊆ Um \B and such that µ((Um \B) \ Cm) < ε/2m. Then, let

U =

∞⋃
m=1

(Um \ Cm)

B =

∞⋃
m=1

(Um ∩B) ⊆ U.

Whenever we do this argument by restricting to both, the argument is the same, so do it as an exercise, or see the
lecture notes. �

Now, we (finally!) have the lemma, so let’s prove the theorem.

7This might seem like a bit of silly extra detail, but it’s nice to make sure nobody’s missing it.
8I saw a sign in White Plaza once that said, “Free Compliments!” — is this what they meant?
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Proof of Theorem 3.4. First, for part (1), if µ∗(A) is infinite, then there is nothing to prove (just take U = Rn); thus,
without loss of generality, assume µ∗(A) is finite.

Since µ is Borel regular, then we can find a Borel set B ⊇ A such that µ∗(A) = µ(B), and by the definition of the
outer measure,

µ(B) = inf{µ(U) : U ⊇ B is open}.
We have a similar construction for µ∗(A), but since more sets contain A than contain B, then the infimum for A is at
most that for the infimum for B, which is what we wanted for the theorem.

For part (2), first assume that µ(A) is finite. Then, ν = µ|A is Radon, so apply part (1) to Ac, which has measure
zero. Thus, there exists an open set U such that ν(U) < ε and U ⊇ Ac, i.e. µ(U ∩ A) < ε. Let C = U c, so that
C ⊆ A and µ(A \ C) = µ(U ∩A) < ε. Thus, the theorem is true for closed sets, though we’ll need to do some kind of
diagonal argument (outlined in the lecture notes) to show that it also works for compact sets.

If instead A has infinite measure under µ, then look at the annuli

Dk = {x : k − 1 ≤ |x| ≤ k},
so that A =

⋃
k(A ∩ Dk) and

∞ = µ(A) =

∞∑
k=1

µ(A ∩ Dk).

Since µ is Radon, then µ(A ∩ Dk) is finite for each k. Then, choose Ck ⊆ A ∩ Dk such that µ((A ∩ Dk) \ Ck) < ε. If
Gn =

⋃n
k=1 Ck, then

µ(Gn) =

n∑
k=1

µ(Ck) ≥
n∑
k=1

(
µ(A ∩Dk)− 1

2k

)
.

But the latter series diverges, since µ(A) is infinite, and thus µ(Gn) → ∞ as n → ∞, and A ⊇ Gn with each Gn
closed and bounded (and therefore compact), so we’re done. �

4. Measurable Functions: 10/7/14

Recall Theorem 3.4, which demonstrates that Radon measures are those that can be well approximated on open
sets containing a given A ⊆ Rn and by compact sets within A.

Today we’ll talk about measurable functions. These are basically only ever used for integration, but everyone
except for Terry Tao decided to talk about them separately for some reason.

Proposition 4.1. The following are equivalent:

(1) For all α ∈ R, the set {f(x) > α} is measurable.
(2) For all α ∈ R, the set {f(x) ≥ α} is measurable.
(3) For all α ∈ R, the set {f(x) < α} is measurable.
(4) For all α ∈ R, the set {f(x) ≤ α} is measurable.

Proof. Clearly, (1) ⇐⇒ (4) and (2) ⇐⇒ (3). Since

{f(x) > α} =

∞⋃
m=1

{
f(x) ≥ α+

1

m

}
,

then (2) =⇒ (1). Similarly,

{f(x) < α} =

∞⋃
m=1

{
f(x) < α− 1

m

}
,

so (4) =⇒ (3). �

Now, we can define measurable functions (those which will be integrable). In some sense, they generalize continuous
functions, which can be helpful for intuition but isn’t everything.

Definition. Let X be a space with a measure µ, and Y be a topological space. Then, f : X → Y is measurable if for
any open set U ⊆ Y , its preimage f−1(U) is µ-measurable.

Notice that for a continuous f , the preimage of an open set is open (so for Borel measures, continuous functions
are measurable).

Here’s a bureaucratic proposition.

Proposition 4.2. If f and g are real-valued measurable functions and c ∈ R, then cf , c+ f , f2, f + g, and fg are
all measurable.
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Proof. Without loss of generality assume c > 0; then, {cf > α} = {f > α/c} and {c+ f > α} = {f > α− c}, so we
get sets with measurable preimage.

If f + g < α, then f < α− g(x), so there’s a p ∈ Q such that f(x) < p < α− g(x), so

{f + g < α} =
⋃
p∈Q
{x : f(x) < p, g(X) < α− p},

so it’s a countable union of measurable sets.
For f2, we have {

f2 > α
}

=
{
f >
√
α
}
∪
{
f < −

√
α
}

if α > 0 (and if not, it’s trivial). Thus, this is once again a union of measurable sets.
For fg, it’s possible to write this in terms of a sum of (f + g)2 and (f − g)2, so it follows from the previous

results. �

Theorem 4.3. Suppose {fn} is a sequence of measurable functions. Then, so are the following:

• gn(x) = sup1≤j≤n fj(x), and g(x) = supj fj(x).
• qn(x) = inf1≤j≤n fj(x), and q(x) = infj fj(x).
• s(x) = lim supn→∞ fn(x) and w(x) = lim infn→∞ fn(x).

Notice this is completely false for continuous functions; the limit is not expected to be continuous! For example,
continuous functions can converge to step functions; there are many examples.

Proof. Once again, we’ll write the sets that should be measurable in terms of sets that are already measurable.
Specificallly,

{gn(x) > α} =

b⋃
j=1

{fj(x) > α}

{g(x) > α} =

∞⋃
j=1

{fj(x) > α}.

Then, qn and q are very similar, and for s (and w, which is similar), we have

lim sup
n→∞

fn(x) = inf
n

(sup
k≥n

fk(x)),

so it follows from the first part of the proof. �

Definition. A measurable function f(x) is simple if it takes at most countably many values.

Any simple function can be expressed as the form

f(x) =

∞∑
k=1

αkχAk(x),

where

χA(x) =

{
1, x ∈ A
0, x 6∈ A,

where the Ak are measurable and disjoint.
If we drop the requirement that the Ak are disjoint, then we obtain many, many more functions.

Theorem 4.4. Any nonnegative measurable function f can be written

f(x) =

∞∑
k=1

1

k
χAk(x),

where the Ak are measurable, though not necessarily disjoint.

Proof. Begin by taking A1 = {f(x) > 1/1} (taking everything above the line y = 1), and so forth, so that in general

Aj+1 =

{
x : f(x) ≥ 1

j + 1
+

j∑
k=1

1

k
χAk(x)

}
.

13



Then, f(x) =
∑∞
k=1

1
kχAk(x), because if f(x) is infinite, then x ∈ Ak for all k, and the sum diverges, so we’re good.

If f(x) is finite, then x 6∈ Ak for infinitely many Ak (or the series would diverge, implying f(x) does also). Thus,
there are infinitely many j such that

j∑
k=1

1

k
χAk(x) ≤ f(x) ≤ 1

j + 1
+

j∑
k=1

1

k
χAk(x)

=⇒

∣∣∣∣∣f(x)−
j∑

k=1

1

k
χAk(x)

∣∣∣∣∣ < 1

j
.

Since this is true for infinitely many j, then the two must be equal. �

Of course, functions that have negative values can still be approximated with simple functions.
Lusin’s theorem tells us that any measurable function is identical to a continuous function on a very large set (a

set of full measure). This set may be very complicated, e.g. if f(x) = χQ(x): this is equal to the continuous f(x) = 0
on a set of full measure, but that set isn’t so well-behaved.

In analysis, there are some notions of extensions and restrictions. Since measurable functions are often defined
only up to a set of measure zero, then restricting to a set of measure zero is pretty unhelpful. We also have a theorem
for extension of continuous functions.

Theorem 4.5. Let K be compact and f : K → Rm be continuous; then, there is a function f : Rn → Rm such that f
is continuous on Rn and supy∈Rn |f(y)| = supx∈K |f(x)|.

Proof. Without loss of generality, assume m = 1 (if not, it’s just componentwise).
Let U = Rn \K; for every x ∈ U , we’d like to assign f(x) to be a weighted average of points near it in K. First,

define

us(x) = max

(
2− |x− s|

dist(x,K)
, 0

)
.

First, 0 ≤ us(x) ≤ 1, and if s is fixed, then us(x)→ 1 as |x| → ∞, since the weights look more or less the same. For
a fixed x close to K, us(x) = 0 unless s is close to a point sx ∈ K such that dist(x, sk) = dist(x,K).

We would want to integrate this, but we don’t have that yet, so take a dense subset {sj} ⊂ K and set

σ(x) =

∞∑
j=1

usj (x)

2j
,

where x ∈ U = Rn \K. By the Weierstrauss test, σ(x) can be bounded termwise by 1/2j , so it’s continuous. Thus,
for every x ∈ U , there exists an sj such that |x− sj | ≤ |0|dist(x,K), so usj (x) > 0. Thus, σ(x) > 0. This will be
very useful; it means we can divide by it.

The weights are now pretty simple: let

vj(x) =
usj (x)

2jσ(x)
.

Then,
∑
vj(x) = 1 everywhere, and the weight functions vj are 1 far away from K.

Now, set

f(x) =

{
f(x), x ∈ K∑∞
j=1 f(sj)vsj (x), x 6∈ K.

On U ,

f(x) =
1

σ(x)

∞∑
j=1

f(sj)
usj(x)

2j
.

Since f is continuous on a compact set, it’s bounded by some M , and |f(sj)| ≤M , so by the Weierstrass test, f is
continuous on U .

On K, let ε > 0 and choose a δ such that |f(x)− f(x′)| < ε if |x− x′| < δ and x, x′ ∈ K. Fix a y ∈ K and take x
such that |x− y| < δ/4. Without loss of generality, assume x ∈ U , and choose an sj such that |y − sj | > δ, so that

δ < |y − sj | < |y − x|+ |x− sj |,
14



so |x− sj | > 3δ/4 and |x− y| < δ/4, so |x− sj | > 3 dist(x,K), which means usj (x) = 0. Thus,

|f(x)− f(y)| =

∣∣∣∣∣
∞∑
j=1

(f(sj)− f(y))vsj (x)

∣∣∣∣∣
≤ ε

∞∑
j=1

vsj (x) = ε.

Thus, f is continuous on K as well. �

This doesn’t use much about Rn, so it can be generalized a bit.

Exercise 9. If f has nicer properties, what happens to f? Specifically, determine what happens when f is Lipschitz
or Holder continuous.

Now let’s state Lusin’s theorem about extensions.9

Theorem 4.6 (Lusin). Let µ be a Borel regular measure on Rn and f : Rn → Rm be µ-measurable. If A ⊆ Rn has a
finite µ-measure, then for any > 0 there exists a compact Kε ⊆ A such that µ(A \Kε) < ε and f is continuous on
Kε.

Proof. We’ll construct a compact set Kε and a sequence of continuous functions gn(x) such that gn(x) → f(x)
uniformly on Kε. Let’s start with the mesh Bpj = [j/2p, (j + 1)/2p) for j ∈ N, and let Apj = f−1(Upj).

Since µ is Borel regular and µ(A) is finite, then there exist compact Kpj ⊆ Apj such that µ(Apj \Kpj) < ε/2p+j .
This is a sort of coarse splitting of A into subsets, with p controlling the size of the refinement.

Thus,

µ

(
A \

∞⋃
j=1

Kpj

)
<

ε

2p
.

This can’t be our K, since the infinite union of compact sets may not be compact, so we can cut it off: there must be

an N(p) such that µ(A \ Dp) < ε/2p, where Dp =
⋃N(p)
j=1 Kpj .

All of the Kpj are at a finite distance from each other, so define gp(x) = j/2p for x ∈ Kpj . This is continuous on Dp
(since it’s constant on each connected component), and |f(x)− gp(x)| < 1/2p. Finally, take Kε =

⋂∞
p=1Dp, so that

µ(A \Kε) <

∞∑
k=1

µ(A \ Dk) <

∞∑
k=1

ε

2k
= ε.

Furthermore, Kε is compact, and f(x) = limp→∞ gp(x) on Kε; since each gp is continuous and the limit is uniform,
then f is also continuous. �

Corollary 4.7. Let f and A be as above; then, there exists a continuous function f : Rn → Rm such that
µ({x ∈ A : f(x) 6= f(x)}) < ε.

This is proven by combining the previous two theorems.
We’ll eventually want to discuss the convergence of integrals, so let’s formulate a convergence theorem. The man

behind this theorem, Dmitri Egorov, was Lusin’s advisor.

Theorem 4.8 (Egorov). Let µ be a measure and f : Rn → R be µ-measurable. Let A be a set with finite µ-measure,
and suppose fk → g almost everywhere on A. Then, for any ε > 0, there exists a measurable set B − ε such that
µ(A \Bε) < ε and fk → g uniformly on Bε.

Proof. We’ll construct some “not good-by-j sets:”

Ci,j =

∞⋃
k=j

{
x ∈ A : |fk(x)− g(x)| > 1

2i

}
.

Then, Ci,j+1 ⊆ Ci,j and
⋂∞
j=1 Ci,j = ∅. Thus, there exists an Ni such that µ(Ci, Ni) < ε/2i. If x 6∈ Ci,Ni , then

|fk(x)− g(x)| < 1/2i for all k ≥ Ni.

9Lusin had a very interesting personal history. Recall that in the 1930s in the Soviet Union, there were purges, in which people had to

confess to crimes they probably didn’t do. Lusin was forced to condemn publicly at Moscow State University, for apparently producing

bad papers in Russian and better papers abroad , in order to destroy Russian mathematics. Everyone was forced to condemn him, but he
was never arrested. . . and none of the people who condemned him ever made it to the academy before he died (since he was a member).

There were probably religious factors in his denouncement, since he was very religious.
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Set

Bε = A \
∞⋃
i=1

Ci,Ni .

Then, µ(Bε) ≤
∑
i ε/2

i = ε and |fk(x)− g(x)| < 1/2i for all k > Ni and x ∈ Bε; thus, fk → g uniformly on Bε. �

Being able to throw away a set of arbitrary small measure to achieve uniform convergence will be very useful when
we discuss difference of integrals.

Convergence in probability was supposed to be discussed today, but we ran out of time.

5. Convergence in Probability: 10/9/14

“The idea [of the homeworks] is not to kill you. Just have fun with it.”

Definition. A sequence fn(x) converges in probability to f(x) if for all ε > 0 there exists an N such that for any
n ≥ N we have µ({x : |fn(x)− f(x)| > ε} < ε.

This does not imply convergence: let fn be the step function on [0, 1) seen as the circle, with starting point∑n−1
j=1 1/j mod 1 and width 1/n. Then, the support of each fn is 1/n and shifts by 1/n, so fn converges to probability

in convergence, but at no point converges to zero.

Proposition 5.1. Let fn → f in probability on a set E. Then, there exists a subsequence fnk → f almost everywhere
on E.

Proof. Choose N such that

µ

{
x : |f(x)− fn(x)| > 1

2j

}
<

1

2j
,

and look at fNj (x): let Ej = {x : |fNj (x) − f(x)| > 1/2j}, so if Dk =
⋃∞
j=k Ej and x 6∈ Dk for all k, then

fNj (x)→ f(x). However,

µ(Dk) ≤
∞∑
j=k

µ(Ej) ≤
1

2k
,

so as more and more k are considered, in the limit the set has measure zero. �

To see why convergence in probability can be established computationally, we’ll need to define the integral.
Let f be a simple function, i.e. f can be written

f(x) =

∞∑
k=1

ykχAk(x),

where the Ak are disjoint measurable sets. If f is a nonnegative simple function, we set
ˆ
E

f dµ =

∞∑
k=1

ykµ(Ak ∩ E).

In general, if f is simple, write f = f+ − f− for nonnegative f+ and f−, and define f to be integrable if one of´
f+ dµ and

´
f− dµ is finite; in this case, we setˆ

E

f dµ =

ˆ
E

f+ dµ−
ˆ
E

f− dµ.

We’ll gradually extend this to more complicated functions; first, bounded functions on sets of bounded measure.

Definition. Let f be a bounded function defined on a set E of finite measure. Then, define the upper integral to beˆ ∗
f dµ = inf

f≤ψ
ψ simple

ˆ
ψ dµ

and the lower integral to be ˆ
∗
f dµ = sup

f≥ψ
ψ simple

ˆ
ψ dµ.

Proposition 5.2. The upper and lower integrals agree iff f is measurable.
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Proof. First, assume f is measurable, and set

Bnk =

{
x :

k − 1

n
≤ f(x) ≤ k

n

}
and

ψn(x) =
∑
k

k

n
χBnk(x)

ϕn(x) =
∑
k

k − 1

n
χBnk(x).

Thus, ψn(x) ≥ f(x) ≥ φn(x), and ψn and φn are simple. However,ˆ
E

ψn dµ−
ˆ
E

ϕn dµ =
∑
k

1

n
µ(Bnk) ≤ µ(E)

n
,

so it goes to 0 as n→∞.
Conversely, suppose

´ ∗
f dµ =

´
∗ f dµ. We’ll squish f between measurable functions, and thus conclude that it is

also measurable. Choose ψn ≥ f and ϕn ≥ f such thatˆ
ψn dµ ≤

ˆ
ϕn dµ+

1

n
.

Set ψ∗(x) = lim infn→∞ ψn(x) and ϕ∗(x) = lim supn→∞ ϕn(x), so that ψ∗(x) ≥ ϕ∗(x). Let A = {x : ψ∗(x) ≥ ϕ∗(x)},
which means that if

A+ k =

{
x : ψ∗(x) > ϕ∗(x) +

1

k

}
,

then A =
⋃∞
k=1Ak.

For large enough n, ψn(x) > ϕn(x) + 1/k on Ak, soˆ
E

ψn −
ˆ
E

ϕn ≥
ˆ
Ak

(ψn − ϕn) >
µ(Ak)

k
.

As n → ∞, µ(Ak) → 0, so µ(A) = 0. Thus, ψ∗(x) = f(x) = ϕ∗(x) almost everywhere on E, and thus, since ψ∗ is
measurable, then so is f . �

Now, we can extend this a bit more. There are three more definitions, which are equivalent on the intersection of
sets where they’re defined.

Definition 1. If f is a bounded measurable function defined on a set E of finite measure, then setˆ
E

f dµ = inf
ψ≥f

ψ simple

ˆ
E

ψ dµ.

Now, we generalize to sets of possibly infinite measure.

Definition 2. If f ≥ 0 is measurable, set ˆ
E

f dµ = sup
h∈H

ˆ
E

hdµ,

where H is the set of bounded measurable functions which vanish outside of a set of finite measure.

Now, f doesn’t even have to be bounded.

Definition 3. A measurable function is integrable if
´
|f |dµ is finite.

The Markov and Chebyshev Inequalities. These inequalities are somewhat silly to prove, but very useful.

Theorem 5.3 (Markov inequality). Let f ≥ 0 be measurable. Then, for any λ > 0,

µ({x : f(x) ≥ λ}) < 1

λ

ˆ
f dµ.

Proof. f(x) ≥ λχEλ(x), where Eλ = {x : f(x) ≥ λ}. Then, integrate. �

Theorem 5.4 (Chebyshev inequality). With the same conditions on f as in Theorem 5.3,

µ({x : f(x) ≥ λ}) ≤ 1

λ2

ˆ
f2 dµ.
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The proof is essentially the same. In probability theory, Theorem 5.4 means that if P is a probability distribution,
P (|X| ≥ λ) ≤ (1/λ2)E(X2).

One quick application of this is the Law of Large Numbers.

Proposition 5.5 (Law of Large Numbers). Suppose Xn are independently and identically distributed, E(xk) = 0,
and E(X2

k) is finite. Then, if SN = (X1 + · · ·+Xn)/N , then Sn → 0.

The Strong Law of Large Numbers requires this to be true almost everywhere; the Weak Law merely requires
convergence in probability.

Proof. We know that E(SN ) = 0 and

E(S2
N ) =

1

N2
E

(
N∑

i,j=1

XiXj

)

=
1

N2p

N∑
i,j=1

E(XiXj) =
1

N2

N∑
i=1

E(X2
i )

=
mN

N2p
,

which goes to 0 as N →∞ so long as p > 1/2. For the strong law, a little more work is needed. �

Similar proofs allow one to prove the Central Limit Theorem, and so forth.

Convergence Theorems. The goal of the convergence theorems is to understand, given a sequence fn → f , when´
fn →

´
f . This does not hold true in general.

Example 5.6. Let fn = χ[n,n+1]. Then, fn converges to 0 everywhere, but
´
fn = 1 for all n. This fails, in some

sense, because fn “floats away to infinity” horizontally.

Example 5.7. Let fn = nχ[−1/n,1/n]; then fn → 0 everywhere but 0, but
´
fn = 2 for all n. This leads to the Dirac

delta “function,” and fails because it floats vertically off to infinity.

Example 5.8. Consider fn = (1/n)χ[−n,n]. This also floats to infinity horizontally, has fn → 0 everywhere, and´
fn = 2 for all n.

The first reasonable idea is to prevent the sequence from floating away to infinity.

Theorem 5.9 (Bounded Convergence Theorem). Assume fn → f almost everywhere on E, |fn| ≤M , and µ(E) is
finite. Then, ˆ

E

fn dµ −→
ˆ
E

f dµ.

Proof. If fn → f uniformly on E, then for all ε > 0 there’s an N such that when n < N , then |fn − f | < ε, and thus∣∣∣∣ˆ
E

fn dµ−
ˆ
E

f dµ

∣∣∣∣ ≤ ˆ
E

|fn − f |dµ < εµ(E).

By Egorov’s Theorem, for all ε > 0 there’s an Aε ⊆ E such that fn ⇒ f (i.e. uniformly) on Aε and µ(E \Aε) < ε.
Then, choose an N such that |fn − f | < ε on Aε when n ≥ N , and∣∣∣∣ˆ

E

fn dµ−
ˆ
E

f dµ

∣∣∣∣ ≤ ˆ
Aε

|fn − f |dµ+

ˆ
E\Aε

|fn − f |dµ

≤ εµ(Aε) + 2Mµ(E \Aε)
≤ (2M + 1)εµ(E),

which goes to 0 as ε→ 0. �

This is very pretty, but it’s too good to be true: not everything is bounded this nicely. Fatou’s lemma, however, is
used daily by millions of mathematicians.

Theorem 5.10 (Fatou’s lemma). Let fn ≥ 0 and fn → f almost everywhere on E. Then,ˆ
E

f dµ ≤ lim inf
n→∞

ˆ
E

fn dµ.
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Proof. Let h, such that 0 ≤ h ≤ f be a bounded simple function which vanishes outside of a set of finite measure,
and set hn(x) = min(h(x), fn(x)), so that hn → h and h is bounded and vanishes outside a fixed set of finite measure.
Thus, Theorem 5.9 implies that ˆ

E

hdµ = lim
n→∞

ˆ
hn dµ

≤ lim inf
n→∞

ˆ
fn dµ.

Take the supremum over h, which implies thatˆ
f dµ ≤ lim inf

n→∞

ˆ
fn dµ. �.

The nonnegativity of f is used to construct h; if f isn’t nonnegative, negative parts may cause it to lose mass, and
the theorem isn’t always true.

Theorem 5.11 (Monotone Convergence Theorem). Suppose fn(x) is an increasing sequence and fn → f almost
everywhere on E. Then,

lim
n→∞

ˆ
E

fn dµ =

ˆ
E

f dµ.

Proof. Apply Fatou’s lemma (Theorem 5.10) to the differences fn+1 − fn, which are nonnegative because the fn are
an increasing sequence. �

Corollary 5.12. If un(x) ≥ 0 for each n and S(x) =
∑∞
n=1 un(x), then

ˆ
E

S(x) dµ =

∞∑
n=1

ˆ
E

un(x) dµ.

The idea is that nonnegative functions can more or less be integrated pointwise. This will relate to an analogue of
Fubini’s theorem.

The Lesbegue Dominated Convergence Theorem is a more adult version of the Bounded Convergence Theorem: it
provides a slightly more sophisticated bound that is used all the time. Basically, if we can bound fn by a nice bump
function, then it can’t go completely wrong.

Theorem 5.13 (Lesbegue Dominated Convergence Theorem). Let fn be a sequence of measurable functions defined
on a measurable set E. Assume that fn(x) → f(x) and that there exists a g(x) such that

´
E
g(x) dµ is finite and

|fn(x)| ≤ g(x) almost everywhere on E. Then,ˆ
E

fn(x) dµ −→
ˆ
E

f dµ

as n→∞.

The most general statement has to do with uniform integrability, which will (of course) appear on the homework.

Proof. g − fn ≥ 0 almost everywhere on E, and g − fn → g − f , so by Fatou’s lemma,ˆ
(g − f) dµ ≤ lim inf

n→∞

(ˆ
(g − fn) dµ

)
.

Since |f | ≤ g, then f is integrable, soˆ
g dµ−

ˆ
f dµ ≤

ˆ
g dµ− lim sup

n→∞

ˆ
fn dµ.

Thus,

lim sup
n→∞

ˆ
fn dµ ≤

ˆ
f dµ.

That’s one direction; the other is given by taking g + fn, which is nonnegative almost everywhere on E, so by Fatou’s
lemma we have ˆ

(g + f) dµ ≤ lim inf
n→∞

ˆ
(g + fn) dµ.

Thus, just as before, f is integrable andˆ
g dµ+

ˆ
f dµ ≤

ˆ
g dµ+ lim inf

n→∞

ˆ
fn dµ.
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Thus, ˆ
f dµ ≤ lim inf

n→∞

ˆ
fn dµ.

Thus, both sides hold, so ˆ
f dµ = lim

n→∞

ˆ
fn dµ. �

In the case where g is a constant function, one recovers Theorem 5.9.
It seems funny to have one lecture on Chebyshev’s inequality, Fatou’s lemma, and the Lesbegue Dominated

Convergence Theorem, but we have still five minutes left, so let’s talk about the absolute continuity of the integral.
The idea of this theorem is that δ-functions don’t actually exist. These are functions defined physically as supported

at 0 and with total integral 1.

Theorem 5.14 (Absolute Continuity of the Integral). Let f ≥ 0 and assume
´
E
f dµ is finite. Then, for all ε > 0,

there’s a δ > 0 such that if µ(A) < δ, then
´
A
f dµ < ε.

Proof. Assume not; then, there exists an Ak such that µ(Ak) < 1/2k but
´
Ak
f dµ > ε0. Then, restrict fn to An, via

gn(x) = f(x)χAn(x). Then, gn(x)→ 0 except for

x ∈ A =

∞⋂
n=1

( ∞⋃
k=n

Ak

)
.

Then, for any n,

µ(A) ≤ µ

( ∞⋃
k=n

Ak

)
≤
∞∑
k=n

1

2k
=

1

2n
.

Thus, µ(A) = 0 and gn(x)→ 0 almost everywhere on E. By Fatou’s lemma,

lim inf
n→∞

ˆ
E

(f − gn) dµ ≥
ˆ
E

f dµ,

so
´
E

(f − gn) dµ ≤
´
E
f − ε0. �

Of course, this doesn’t mean that δ-functions don’t exist, just that they’re not integrable.
Next time: differentiation theorems and, relatedly, the covering lemma.

6. Back to Calculus: The Newton-Leibniz Formula: 10/14/14

“Does anyone know an elementary proof of this? I mean — a more elementary proof?”

Today, we’ll ask two calculus-like questions related to the Newton-Leibniz10 formula. These are,

(1) Is it true that

d

dx

ˆ b

a

f(t) dt = f(x)?

(2) Is it true that

F (b)− F (a) =

ˆ b

a

F ′(x) dx?

This is the Newton-Leibniz formula.

If we go back to real calculus,11 so f ∈ C1([a, b]), then both of these are true. But to answer these questions in
generality, we need to know what the derivative of a measurable function is.

10We had a hard time spelling “Leibniz” in class. Praise be to the Internet.
11Relevant song lyrics: “So I thought back to Calculus. Way back to Newton and to Leibniz, and to problems just like this.”

https://www.youtube.com/watch?v=P9dpTTpjymE
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First, there are the upper and lower derivatives, which lead to four pieces of notation.

D+f(x) = lim sup
h↓0

f(x+ h)− f(x)

h

D+f(x) = lim inf
h↓0

f(x+ h)− f(x)

h

D−f(x) = lim sup
h↓0

f(x)− f(x− h)

h

D−f(x) = lim inf
h↓0

f(x)− f(x− h)

h
.

Definition. f is differentiable if these are equal: D+f(x) = D+f(x) = D−f(x) = D−f(x).

Theorem 6.1. Let f ∈ L1([a, b]) and set F (x) =
´ x
a
f(t) dt. Then, F ′(x) exists and F ′(x) = f(x) almost everywhere.

Definition. A function f is absolutely continuous on [a, b] if for all ε > 0 there exists a δ > 0 such that for any finite

collection of intervals (xi, yi) such that
∑N
i=1|yi − xi| < δ, we have

∑N
i=1|f(xi)− f(yi)| < ε.

A typical example of a continuous function that’s not absolutely continuous is sin(1/x) on (0, 1); it’s not even
uniformly continuous, so it can’t be absolutely continuous. Absolute continuity is stronger than uniform continuty;
Lipschitz continuity is stronger still.

Theorem 6.2. A function F (x) has the form F (x) = F (a) +
´ x
a
f(t) dt with f ∈ L1([a, b]) iff F (x) is absolutely

continuous on [a, b], and then F ′(x) = f(x) almost everywhere.

Remark. If f ∈ L1([a, b]), then F (x) =
´ x
a
f(t) dt is absolutely continuous by what we proved last time, since

N∑
j=1

|F (xi)− F (yi)| ≤
ˆ
⋃
[xi,yi]

|f(t)|dt < ε

when m
(⋃N

j=1[xi, yi]
)
< δ. Thus, one direction is pretty straightforward.

The proofs of differentiation theorems are all quite related, and use covering lemmas. Here’s an example.

Theorem 6.3. If f is continuous at x, then

lim
h→0

1

h

ˆ x+h

x

f(t) dt = f(x).

This actually will generalize to f ∈ L1([a, b]), but we’ll address that later. Onto12 the covering lemma.

Definition. A cover J of a set A by closed balls is fine if for every x ∈ A and ε > 0 there exists a ball B ∈ J such
that diam(B) < ε and x ∈ B.

Now, we’ll cover Vitali’s lemma.

Lemma 6.4 (Vitali). Let E ⊆ R with m∗(E) finite, and let J be a fine covering of E. Then, for any ε > 0, there
exists a finite subcollection of disjoint intervals I1, . . . .IN ∈ J such that

m∗

(
E \

N⋃
j=1

Ij

)
< ε.

This generalizes pretty easily to Rn; the proof is very similar. The idea is that in the Lesbegue measure, if onw
increases the volume of a ball slightly, the measure increases slightly, and we cover everything. In other measures, it
might not work, as the measure could blow up.

This is related to one of our homework problems, which requires rewriting a fine cover into two countable disjoint
sets that collectively cover the required set in R. As the dimension grows, the number of sets needed increases; in R2,
it’s 19 sets!

Proof of Lemma 6.4. Take another open set U ⊇ E such that m∗(U) is finite. Then, without loss of generality, all
intervals in J are contained in U (or just ignore them, since we only need to care about these intervals).

12No pun intended.
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Choose I1 as you please, and then inductively choose the rest: if we have already chosen I1, . . . , In disjoint, then set

kn = sup

{
|I| : I ∈ J , I ∩

n⋃
j=1

Ij = ∅

}
.

Then, if kn = 0, E ⊆
⋃n
j=1 Ij , so we’re done. If kn > 0, then choose In+1 disjoint from I1, . . . , Ik−1 such that

|In+1| ≥ kn/2.
If we stop, then we win, so let’s assume we continue forever. Then, since these are disjoint intervals contained in U ,

then
∞∑
j=1

|Ij | ≤ m(U),

which is finite, so |Ij | → 0. Given an ε > 0, choose an N such that

∞∑
i=N+1

|Ij | <
ε

5
.

Claim. Given an Ij , define Îj to be the interval with the same center as Ij , but with five times the width. Then,

E \
N⋃
j=1

Ij ⊆
∞⋃

j=N+1

Îj .

Proof. Choose an x 6∈
⋃N
j=1 Ij ; then, there exists an I with x ∈ I and

I ∩
N⋃
j=1

Ij 6= ∅.

As long as I is disjoint from I1, . . . , In, then |I| ≤ kn, because |I| ≤ 2|In+1|, which goes to 0 as n→∞ (because the
next In+1 is chosen to reduce the amount of area not covered). Thus, there exists an n0 > N such that I intersects one
of I1, . . . , In0 . If we take the smallest such n0, then I doesn’t intersect I1, . . . , In0−1, and also |I| ≤ kn, |In0 | ≥ kn0/2,
and I ∩ In0 6= ∅, so |In0 | ≥ |I|/2 and they intersect.

If we have intersecting intervals with comparable length and they intersect, and we blow one of them up by a factor

of 5, then we certainly consume the other one. Thus, I ⊆ În0
, so

E \
N⋃
j=1

Ij ⊆
∞⋃

j=N+1

Îj . �

This allows us to finish the overall proof:

m∗

(
E \

N⋃
j=1

Ij

)
≤ 5

∞∑
j=N+1

|Ij | < ε. �

Corollary 6.5. Let U ⊆ Rn be open and have finite measnre, and δ > 0. Then, there exists a countable collection of
disjoint closed balls B1, B2, . . . ⊆ U such that diam(Bj) < δ for all j and

m

(
U \

∞⋃
j=1

Bj

)
= 0.

Proof. Take a fine cover of U by balls of diameter less than δ. Then, choose from it any B1, and inductively construct
the rest: if B1, . . . , BN already exist, then set U ′ = U \

⋃n
j=1Bj , and repeat. �

Now we can go back to differentiation. A lot of what we need to say can be discussed using monotone functions as
a start.

Theorem 6.6. Let f be increasing on [a, b]; then, f ′(x) exists almost everywhere (with respect to the Lesbegue
measure) on [a, b], and f ′(x) is measurable.

Proof. Consider, for instance, the set E = {x : D+f(x) > D−f(x)}. (The other examples will be very similar.) If
Ers = {x : D+f(x) > r > s > D−f(x)}, then E =

⋃
r,s∈QErs. We’ll show that m(Ers) = 0 for all r, s ∈ Q.
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Let ` = m∗(Ers) and given an ε > 0, enclose E in an open set U such that m∗(U) < `+ ε. Then, for each x ∈ Ers,
there exist hn ↓ 0 such that f(x+ hn)− f(xn) < shn. Then, E is covered by such intervals, and in fact this is a fine
covering. Thus, by Lemma 6.4, one can choose a finite subcollection I1, . . . , IN such that if

A =

(
N⋃
j=1

I0j

)
∩ E,

then `− ε < m∗(A) < `+ ε, and also

N∑
j=1

(f(xj + hj)− f(xj)) < s(`+ ε).

For each x ∈ A, choose hn such that (x, x+ hn) is inside one of the Ik. In this case, f(x+ hn)− f(x) > rhn. Now,
choose a finite subcollection of those intervals I ′p (there will be N ′ of them); each I ′p is contained in one of the Ik and
f(xp + hp)− f(xp) > rhp and

m∗

(
A \

N ′⋃
j=1

I ′j

)
< ε.

Thus, the total drop over all I ′j is greater than r(`− 2ε), and the total drop over Ij is less than s(`+ ε), but since ε is
arbitrary, this can force r ≤ s, which is a contradiction unless ` = 0.

Thus, D+f(x) = D−f(x) almost everywhere, and the other
(
4
2

)
− 1 cases are pretty much identical. Thus, f ′(x)

exists almost everywhere.
The second part of the claim is that f ′ is measurable. If

qn(x) =
f(x+ 1/n)− f(x)

1/n
,

where f(x) = f(b) for some x > b, then qn(x)→ f ′(x) almost everywhere as n→∞, so f ′(x) is measurable. �

Now, we want to determine if the Newton-Leibniz formula holds. In mathematics, it seems often that if a formula
is true on a nice class of functions and both sides make sense on a larger class of functions, then it generalizes nicely.

A good counterexample to the Newton-Leibniz formula for general monotone functions, however, is a step function
with a single jump; the Cantor function is a more interesting counterexample.

Theorem 6.7 (Newton-Leibniz formula for monotone functions). If F (x) is increasing on [a, b], then F ′(x) is finite
almost everywhere, and

F (b)− F (a) ≥
ˆ b

a

F ′(x) dx.

Proof. We already know F ′(x) is measurable by Theorem 6.6, so set

gn(x) =
F (x+ 1/n)− F (x)

1/n
,

where F (x) = F (b) for some x > b (or this is an easier special case). Then, gn(x) ≥ 0 and gn(x) → F ′(x) almost
everywhere, so by Fatou’s lemma,

ˆ b

a

F ′(x) dx ≤ lim inf
n→∞

ˆ b

a

gn(x) dx

= lim inf
n→∞

n

ˆ b

a

(
F

(
x+

1

n

)
− F (x)

)
dx

= lim inf
n→∞

n

(ˆ b+1/n

b

F (x) dx−
ˆ a+1/n

a

F (x) dx

)
≤ F (b)− F (a). �

23



Functions of Bounded Variation. The notion of a function of bounded variation is a slight generalization of that
of a monotonic function.

Definition. Let f be a real-valued function on [a, b], and let P be the set of partitions of [a, b]. Then for any partition
P = {a = x0 < x1 < · · · < xn < xn+1 = b}, define

t =

n∑
k=0

|f(xk+1)− f(xk)|

p =

n∑
k=0

(f(xk+1)− f(xk))+

n =

n∑
k=0

(f(xk+1)− f(xk))−.

Then, f has bounded variation, denoted f ∈ BV(a, b), if T ba [f ] = supP∈P t is finite.

Similarly, define N b
a[f ] = supP∈P n, and P ba [f ] = supP∈P p.

Theorem 6.8. f ∈ BV(a, b) iff f = g1 − g2, where g1 and g2 are increasing.

Proof. f(x)− f(a) = p− n, so
p = n+ f(x)− f(a) ≤ Nx

a (f) + f(x)− f(a).

Similarly, P xa (f) ≤ Nx
a (f) + f(x)− f(a). Similarly,

n = p− f(x) + f(a) ≤ P xa [f ] + f(a)− f(x),

so Nx
a [f ] ≤ P xa [f ] + f(a)− f(x). Thus

P xa [f ]−Nx
a [f ] ≤ f(x)− f(a) ≤ P xa −Nx

a [f ],

so f(x) = f(a) + P xa [f ]−Nx
a [f ], and the last two terms are increasing functions. �

This is a very romantic notion, which belies a kind of sad proof; all the functions that were looked at in the
eighteenth century were of bounded variation.

Corollary 6.9. If f ∈ BV(a, b), then f is differentiable almost everywhere (with respect to the Lesbegue measure).

7. Two Integration Theorems and Product Measures: 10/16/14

“Even when I was at Chicago, I had no idea who was understanding well, because all the first-year
graduate students would have identical scores, because they worked together, and everyone else did less
well, because they didn’t work together.”

Recall that a function is absolutely continuous on [a, b] if for all ε > 0 there’s a δ > 0 such that any finite collection

of disjoint intervals I1, . . . , IN , with Ij = (xj , yj), if
∑
|Ij | < δ, then

∑N
j=1|f(xi)− f(yi)| < ε.

We wanted to prove theorems about differentiation and integration, specifically Theorems 6.1 and 6.2. We did prove
that a monotonic function is differentiable almost everywhere, however, as well as Vitali’s lemma, which states that any
fine covering J of a set E of finite measure contains a disjoint finite subcollection capturing at meast m(E)− ε for any
ε > 0. Finally, we defined a function to have bounded variation on [a, b] if, for a partition P = (x0 = a, x1, . . . , xn = b)
and t(P ) =

∑n
i=1|f(xi)− f(xi−1)|, then the supremum of this over all partitions is finite. We saw that if a function

has bounded variation, then it’s the difference of two nondecreasing functions, and therefore is differentiable almost
everywhere.

Now, we can return to proving Theorems 6.1 and 6.2.

Proof of Theorem 6.1. First of all, observe that F (x) has bounded variation, because for any partition a = x0 < x1 <
· · · < xn = b, then

n∑
i=1

|F (xi)− F (xi−1)| =
n∑
i=1

∣∣∣∣∣
ˆ xi

xi−1

f(t) dt

∣∣∣∣∣
≤

n∑
i=1

ˆ xi

xi−1

|f(t)|dt

=

ˆ b

a

|f(t)|dt,

which is finite. Thus, F ∈ BV([a, b]), so F ′(x) exists almost everywhere.
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Lemma 7.1. Let f ∈ L1([a, b]) and
´ x
a
f(t) dt = 0 for all x. Then, f(x) = 0 almost everywhere.

Proof. This is one of those obvious things, so it’s a little tricky to prove. Let E = {f(x) > 0}, and asume m(E) > 0.
Thus, as we’ve proven somewhere in the past, there’s a compact set K ⊆ E such that m(K) > 0, and U = [a, b] \K is
open. Thus,

0 =

ˆ b

a

f dx =

ˆ
K

f +

ˆ
U
f,

so
´
U f must be negative (since f is positive K, so its integral must also be positive there). Thus, since U is a

countable union of open intervals, there’s an interval I on which
´
I
f(x) dx 6= 0. This is a contradiction. �

First, assume f is bounded, so that |f | ≤ K. Let

fn(x) =
F (x+ 1/n)− F (x)

1/n
= n

ˆ x+1/n

x

f(t) dt.

Thus, fn(x) → F ′(x) almost everywhere, and |fn(x)| < n(1/n)K = K, so we can apply the Bounded Convergene
Theorem, and get that ˆ x

a

F ′(x) dx = lim
n→∞

ˆ x

a

fn(t) dt

= lim
n→∞

n

ˆ x

a

(
F

(
x+

1

n

)
− F (x)

)
dt

= lim
n→∞

n

(ˆ x+1/n

x

F (t) dt−
ˆ a+1/n

a

F (t) dt

)
= F (x)− F (a) = F (x),

since F (a) = 0 and F (x) is continuous, so the second-to-last step is just like in your first calculus class. Then, since f
is bounded and in L1([a, b]), then it’s integrable, soˆ x

a

F (t) dt =

ˆ x

a

f(t) dt,

so by Lemma 7.1, F ′(t) = f(t) almost everywhere.
So now we ned to generalize to where f might not be bounded on [a, b]. Assume without loss of generality that

f ≥ 0 (if not, write it as the difference of its positive part and negative part); then, let gn(x) = min(f(x), n), so that
f − gn ≥ 0, so Gn(x) =

´ x
a

(f − gn) dt is a non-decreasing function, so G′n exists almost everywhere and

F ′(x) = G′n(x) +
d

dx

ˆ x

a

gn(t) dt = G′n + gn,

since gn is bounded. But since Gn is non-decreasing, then G′n ≥ 0, so F ′(x) ≥ gn(x) for any n almost everywhere,
and thus F ′(x) ≥ f(x) almost everywhere. Since F (x) is increasing, thenˆ x

a

F ′(x) dx ≥
ˆ x

a

f(t) dt = F (x),

and on the other hand, ˆ x

a

F ′(x) dx ≤ F (x)− F (a) = F (x).

Thus, F (x) =
´ x
a
F ′(x) dx, so we once again invoke Lemma 7.1. �

Proof of Theorem 6.2. One direction is obvious: if F (x) = F (a) +
´ x
a
f(t) dt, so by absolute continuity of the integral,

F (x) is absolutely continuous.
In the other direction, let F (x) be absolutely continuous, so that F (x) = F1(x) − F2(x), where F1 and F2 are

nondecreasing. Additionally, F ′(x) = F ′1(x)− F ′2(x), so |F ′(x)| ≤ F ′1(x) + F ′2(x). Thus,ˆ b

a

|F ′(x)|dx ≤
ˆ b

a

F ′1(x) dx+

ˆ b

a

F ′2(x) dx

≤ F1(b)− F1(a) + F2(b)− F2(a),

which is finite, so F ′ ∈ L1([a, b]) (we can make these transformations on F ′1 and F ′2 using the previous theorem!).
Let G(x) =

´ x
a
F ′(x) dx, so that G′(x) = F ′(x) and G is absolutely continuous (by the absolute continuity of the

integral), and thus R(x) = F (x)−G(x) is absolutely continuous, but R′(x) = 0 almost everywhere.
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Lemma 7.2. If f(x) is absolutely continuous and f ′(x) = 0 almost everywhere, then f(x) = f(a) for all x ∈ [a, b].

Notice that this is not true of continuous functions: on the homework, we constructed a function that has derivative
0 almost everywhere, but is not globally constant. The idea is that the places where f can jump are restricted to
smaller and smaller sets.

Proof of Lemma 7.2. Let A ⊆ [a, b] be the set {x : f ′(x) = 0}, so m(A) = b− a. For each x ∈ A, choose hn(x) < 1/n
such that |f(x+ hn(x))− f(x)| < εhn.

This is a fine cover of A, so chose a subcollection I1, . . . , IN such that

m

(
A \

N⋃
j=1

Ij

)
< δ,

so it’s also true that

m

(
[a, b] \

N⋃
j=1

Ij

)
< δ.

Write [a.b] \
⋃N
j=1 Ij =

⋃N+1
k=1 Jk with

∑N+1
k=1 |Jk| < δ, so if Ij = (xj , xj + hj) and Jk = (xk + hk, xk+1), we get a

partition, so ∑
j

|f(xj + hj)− f(xj)| < ε
∑

hj < ε(b− a).

Thus, we can get this less than ε if δ is chosen according to the definition of absolute continuity of f . �

Returning to the outermost proof, R(x) = F (x)−G(x) is absolutely continuous and R′(x) = 0 almost everywhere,
so F (x) = G(x). �

Thus, the answer to the question, when does the Newton-Leibniz formula hold? is for absolutely continuous
functions.

Now, let’s go back to Italy and talk about Fubini’s Theorem.
The notion of product measure goes back to Archimedes and such, thousands of years ago. The more recent notion

backed by integration was first analyzed in Italy, with Cavalieri,13 in the first half of the 17th century. Not just the
English and Germans cared about integration! Fubini came around later, so was carrying on a tradition: analysis is
really an Italian subject.

We’ve probably all seen or done the following exercise in a multivariable calculus class, and it’s useful to remember.

Exercise 10. Find a function f(x, y) on [−1, 1]× [−1, 1] such thatˆ 1

−1

(ˆ 1

−1
f(x, y) dy

)
dx and

ˆ 1

−1

(ˆ 1

−1
f(x, y) dx

)
dy

exist, but are not equal.

Now, Cavalieri would be offended by such a thing, because these are both ways of measuring volume, and thus
they ought not to be different.

This exercise leads to the more general question of when one can change the order of integration in general
measure-theoretic integration. But to do this, we must make precise the notion of a product measure.14

Definition. Let µ be a measure on X and ν be a measure on Y . Then, the product measure is

(µ× ν)∗(S) = inf

{ ∞∑
j=1

µ(Aj)ν(Bj) : S ⊆
∞⋃
j=1

Aj ×Bj

}
.

Next, for which sets can the iterated integral be defined? Say that S ∈ F if S(y) =
´
X
χS(x, y) dµx is defined and

measurable for almost all y ∈ Y . If S ∈ F , then define ρ(S) =
´
Y
s(y) dνy.

What comes next is a bunch of tautologies, thankfully only ten minutes (leading to a proof of Fubini’s Theorem),
but it may still put you to sleep. Science has discovered the cure to insomnia, I guess, and it’s the road to Fubini’s
Theorem.

If U ⊆ V and U, V ∈ F , then ρ(U) ≤ ρ(V ), simply because χU (x, y) ≤ χV (x, y).

Fact. If S = A×B ∈ F for A and B measurable, then ρ(A×B) = µ(A)× ν(B).

That is, every rectangle is “Cavalierizable.”

13There’s a Piazza Cavalieri in Pisa, but sadly it’s not named after this Cavalieri.
14“Recall your geometry days in high school, or middle school. . . or elementary school, or kindergarten. . . ”
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Fact. Let

P1 =

{ ∞⋃
j=1

Aj ×Bj : Aj ⊂ X is µ-measurable, Bj ⊂ Y is ν-measurable

}
.

Then, P1 ⊆ F .

This is true because if S ∈ P1, then it can be written as a pairwise disjoint union of these Aj ×Bj , so

ρ(S) =

∞∑
j=1

µ(Aj)ν(Bj).

Fact. For every S ⊂ X × Y ,
(µ× ν)∗(S) = inf{ρ(R) : R ∈ P1, S ⊆ R}.

Proof. If S ⊆ R =
⋃∞
j=1Aj ×Bj and R ∈ P1, then

ρ(R) =

ˆ
Y

(ˆ
X

χR(x, y) dµx

)
dµY

≤
ˆ
Y

ˆ
X

∑
j

χAj×Bj (x, y) dµx

 dνY

=

∞∑
j=1

µ(Ai)ν(Bi).

Thus, we can replace the sum in the definition of the product measure with ρ, i.e.

inf
R′
ρ(R′) ≤

∞∑
j=1

µ(Aj)ν(Bj)

=⇒ inf
R⊃S

ρ(R) ≤ (µ× ν)∗(S)

=⇒ inf
R⊃S

ρ(R) = (µ× ν)∗(S). �

The last thing we’ll say today will be a result on measurability.

Proposition 7.3. Let A be µ-measurable and B be ν-measurable. Then, A×B is (µ× ν)-measurable.

Proof. Let S = A×B and T be any set. Let R ⊇ T with R ∈ P1; then,

(µ× ν)∗(T ∩ (A×B)c) + (µ× ν)∗(T ∩ (A×B)) ≤ ρ(R ∩ (A×B)c) + ρ(R ∩ (A×B))

= ρ((R ∩ (A×B)c ∪ (R ∩ (A×B))) = ρ(R).

Thus, this is bounded above by (µ× ν)∗(T ), so A×B is (µ× ν)-measurable. �

8. Product Measures and Fubini’s Theorem: 10/21/14

“This proof used techniques that wouldn’t be unfamiliar in sixth grade. Now, in sixth grade, the
theorem may have looked a little more nontrivial. . . ”

Recall that when we’re talking about product measures, µ is a measure on a space X, ν is a measure on a space Y ,
and we defined the product measure on X × Y by

(µ× ν)∗(S) = inf

{ ∞∑
j=1

µ(Aj)ν(Bj) : S ⊆
∞⋃
j=1

Aj ×Bj

}
.

This is a generalization of a trick used in high school geometry: to divide a region into a lot of rectangles that closely
approximate the region, and add them up.

We want to have a simpler formula, i.e.

(µ× ν)(S) =

ˆ
Y

(ˆ
X

χS(x, y) dµx

)
dνy. (1)

If S is measurable, we first want to show that the right-hand side is even defined; last time, we let F be the collection
of sets S such that the right-hand side of (1) is defined, i.e. χS(x, y) is measurable for all y ∈ Y and

´
X
χS(x, y) dµx

is ν-measurable.
Next, we proved several facts about these collections.
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(1) Let P0 = {A×B : A is µ-measurable and B is ν-measurable}. Then, if S ∈ P0, then S ∈ F and ρ(S) =
µ(A)ν(B).

(2) If P1 is the set of countable unions of elements of P0, then if S ∈ P1, then S ∈ F and if its components are
disjoint, then

ρ(S) =

∞∑
j=1

µ(Aj)ν(Bj).

(3) Let P2 be the set of countable intersections of sets in P1. Then, P2 ⊆ F .

Then, we had several propositions about these, in particular that (1) makes sense for and holds in P2.
Now, we’ll prove Fubini’s Theorem.

Definition. A set A is σ-finite with respect to a measure µ if A is the union of a countable collection of sets each
with finite measure.

Theorem 8.1 (Fubini). Let S be σ-finite with respect to the product measure µ × ν. Then, the cross-section
Sy = {x : (x, y) ∈ S} is µ-measurable for almost all (with respect to ν) y, and the cross-section Sx = {y : (x, y) ∈ S}
is ν-measurable for almost all (with respect to µ) x ∈ X. Moreover, ν(Sx) is a µ-measurable function of X, µ(Sy) is
a ν-measurable function of y, and in addition,

(µ× ν)(S) =

ˆ
X

ν(Sx) dx =

ˆ
Y

µ(Sy) dy.

Proof. If (µ× ν)(S) = 0, then take an R ∈ P2 such that S ⊆ R and ρ(R) = 0 (which we proved last time we can do).
Then, χS(x, y) ≤ χR(x, y), so µ(Sy) ≤ µ(Ry) = 0 for ν-almost all y, and thus

ˆ
Y

µ(Sy) dνy = 0 = (µ× ν)(S).

If (µ× ν)(S) is finite, then instead take an R ∈ P2 such that (µ× ν)(S) = ρ(R). Thus (since ρ coincides with µ× ν
on P2), (µ× ν)(R \ S) = 0. Thus, by what we just did, 0 =

´
Y
µ((R \ S)y) dνy, so µ((R \ S)y) = 0 for ν-almost all

y ∈ Y . Thus, for ν-almost all y, µ(Ry) = µ(Sy), so µ(Sy) is ν-measurable and
ˆ
Y

µ(Sy) dνy =

ˆ
Y

µ(Ry) dνy = ρ(R) = (µ× ν)(S).

Finallt, if (µ× ν)(S) is infinite, then we use that S is σ-finite: write S =
⋃∞
k=1, where each Bk is (µ× ν)-measurable

and has a finite measure, and the Bk are disjoint. Then,

(µ× ν)(S) =

∞∑
j=1

(µ× ν)(Bj)

=

∞∑
j=1

ˆ
Y

µ({x : (x, y) ∈ Bj}) dν.

Recall that we had a remarkable theorem that allowed integrals to commute with positive series.

=

ˆ
Y

∞∑
j=1

µ({x : (x, y) ∈ Bj}) dµy

=

ˆ
Y

µ

({
x : (x, y) ∈

∞⋃
j=1

Bj

})
dν =

ˆ
Y

µ(Sy) dνy. �

Notice that this is just a reasonably straightforward application of definitions; there’s little creativity here. The
proof can sort of be ground out.

The following corollary is sometimes also called Fubini’s Theorem.

Corollary 8.2. Let X × Y be σ-finite and f be (µ × ν)-integrable. Then, p(y) =
´
X
f(x, y) dy is ν-integrable,

q(x) =
´
Y
f(x, y) dνy is µ-measurable, and

ˆ
X×Y

f(x, y) d(µ× ν) =

ˆ
Y

p(y) dνy =

ˆ
X

q(x) dµx.
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Proof. Without loss of generality, assume f ≥ 0 (if not, it’s the difference of two nonnegative functions, so we’re OK).
If f(x, y) = χS(x, y) for some (µ× ν)-measurable set S, then we’re done; otherwise, write

f(x, y) =

∞∑
k=1

1

k
χSk(x, y),

so that ˆ
X×Y

f(x, y) d(µ× ν) =

∞∑
k=1

ˆ
X

1

k
ν({y : (x, y) ∈ Sk}) dµx

=

ˆ
X

(ˆ
Y

f(x, y) dνy

)
dµx. �

The assumption that rules out the counterexamples is that f ≥ 0 (or is the difference of two finite nonnegative
functions), which implicitly relies on the measurability of f .

The Besikovitch Theorem. Besikovitch was a Soviet mathematician in the 1920s, who proved the theorem with
his name that we’re about to talk about. It’s a covering theorem, sort of like Vitali’s Theorem.

Theorem 8.3 (Besikovitch). There exists a constant N(n) depending only on the dimension, such that the following
property: if F is any collection of closed balls in Rn,

D = sup{diam(B) : B ∈ F}
is finite, and A is the set of centers of the balls, then there exists J1, . . . ,JN(n) such that each Jj is a countable
collection of disjoint balls in F and

A ⊂
N(n)⋃
j=1

⋃
B∈Jj

B.

This looks like a problem on our problem set, and the corollary should also look familiar.

Corollary 8.4. Let µ be a Borel measure on Rn and F be any collection of non-degenerate closed balls. Let A be the
set of centers of the balls in F , and assume µ(A) is finite and inf{r : B(a, r) ∈ F} = 0 for all a ∈ A. Then, for each
open U ⊆ Rn, there exists a countable collection J of disjoint balls in F such that

⋃
B∈J

B ⊆ U and µ

(A ∩ U) \
⋃
B∈J

B

 = 0.

Note that, unlike Vitali’s lemma, there’s no doubling assumption on µ, and so this will be quite useful for various
things, more so than Besikovitch’s theorem itself.

Proof of Corollary 8.4. Let N(n) be as in Theorem 8.3, and take a countable disjoint collection J of disjoint balls in
F such that

µ

(A ∩ U) \
⋃
B∈J

B

 ≥ µ(A ∩ U)

N(n)
.

One of these must exist, because we’ve put A ∩ U into N(n) baskets, so one must contain at least as much as
µ(A ∩ U)/N(n) of the measure. Then, choose M1 such that

µ

(
(A ∩ U) \

M1⋃
j=1

B

)
≥
(

1− 1

2N(n)

)
µ(A ∩ U).

Set

U2 = (A ∩ U) \
M1⋃
j=1

Bj

and repeat: find BM1
+ 1, . . . , BM2

such that

µ

(
(A ∩ U2) \

M2⋃
j=M1+1

B

)
≥
(

1− 1

2N(n)

)
µ(A ∩ U2).

Then, we keep repeating; all of the chosen balls are disjoint, and so forth. �
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Proof sketch of Theorem 8.3. The first step is to reduce to a bounded set of centers. Choose very large annuli (i.e. a
set of points lying between two circles); then, since the sizes of the balls are bounded, then this can be done such that
each set intersects at most two of the annuli; then, we can partition into even and odd parts, and at each step, that
part of A is bounded.

The next step is to choose the balls to include in J ; this is similar to, but not the same, as in Vitali’s lemma. The
third step is to show that these balls cover A, and then, the last step is to count the balls that intersect.

Let’s choose a collection of balls B1, B2, . . . which cover all of A and such that each Bm intersects at most N(n)
balls out of B1, B2, . . . , Bm−1. The reason for this is a middle-school problem: we can put the balls in baskets
depending on which things they intersect, and since we’re just dealing with closed balls, they can’t intersect too many
other balls.

Let’s expand on why it’s sufficient to consider bounded sets of centers. Assume that the theorem is proven for
bounded sets, and let D be as in the problem statement, so it’s finite. Let’s take layers

Aj = {x ∈ A : 25Dj ≤ |x| < 25D(j + 1)},
where j = 0, 1, . . . : we’re taking layers of thickness 25D. Now, we cover each Aj with Jj1 , . . . ,JjN(n)

, so if B1 ∈ Jj+k
and B2 ∈ Jj+2,m (i.e. it hits three annuli), then B1 = B(a1, r1) and B2 = (a2, r2), so |a1 − a2| ≥ 50D ≥ r1 + r2, so
B1 ∩ B2 = ∅. Thus, the even and odd layers can be mixed however we want, and disjointness is still kept intact;
specifically,

Jk =

∞⋃
j=1

⋃
B∈J2j,k

B and J ′k =

∞⋃
j=0

⋃
B∈J2j+1,k

B

are both pairwise disjoint collections of balls. Thus, if N(n) works for bounded sets of centers, then 2N(n) works for
arbitrary sets of centers, so we can reduce.

Returning to the bounded case, which we still have to prove, assume A is bounded; now, how do we choose the
balls? One again, take D as in the problem statement, and choose B1(a, r1) such that r1 ≥ (3/4)D/2.15

Assume B1, . . . , Bj−1 are chosen, and let

Aj = A \
j−1⋃
k=1

Bk.

One possibility is that Aj is empty, in which case we’ve covered everything. In this case, let J = j and stop. Otherwise,
set

Dj = sup{diam(B(a, r)) : B(a, r) ∈ F , a ∈ Aj}.
Choose Bj = B(aj , rj) such that a ∈ Aj and rj ≥ (3/4)Dj/2, an continue.

Even when J is finite, we’re not done, since the balls may intersect; if J is not finite, set J = +∞. Intuitively,
balls that come later can’t be too much larger than those that came before them, because they were considered at
each step. Thus, it’s not true that the radii of the balls decreases, but it’s almost true. Using this, one can show
that rj → 0. Then, blowing the radii of the balls up or scaling them ha nice properties with regards to covering or
disjointness, and so forth. �

This is a typical argument in analysis: there are sets of two kinds, small and large, and each kind is dealt with
differently.

9. Besikovitch’s Theorem: 10/23/14

“Whenever you take a shortcut, it comes back to bite you, but you won’t know when.”

There’s a shorter statement of Besikovitch’s theorem, Theorem 8.3.

Theorem (Besikovitch). Let F be a collection of non-degenerate closed balls B such that

(1) supB∈F diamB is finite, and
(2) if A is the set of centers of the balls in F , then for any a ∈ A and ε > 0, there exists a B(a, r) ∈ F with

0 < r < ε.

Then, there exist Nn countable subcollections of balls J1, . . . ,JNn of F such that if B1, B2 ∈ Jk, then B1 ∩B2 = ∅
and

A ⊂
Nn⋃
k=1

⋃
B∈Jk

B.

The constant Nn depends only in the dimension n.

15“Of course, real men choose 99/100, but then more real men choose 999/1000, and so on until World War III. So we’ll stay out of

this and choose 3/4.”
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Recall also Corollary 8.4, which we proved last time; but this required assuming that we know that the set of
centers is measurable. We’ll be able to get around it, and will soon, and allow the set of centers to be unmeasurable,
but this forces µ to be Borel regular for the corollary to hold.

Suppose A1 ⊆ A2 ⊆ · · · and µ is a regular measure; then, take a measurable Ck ⊇ Ak such that µ∗(Ak) = µ(Ck).
This may not be an increasing sequence of sets, but Bk =

⋂
j≥k Cj , and Ak ⊆ Bk. Thus, µ(Bk) ≤ µ(Ck) = µ∗(Ak),

so we can reduce to the case of these Bk.

Proof of Theorem 8.3. The proof will go in several steps. Here’s an outline.

Step 1. It is enough to find a sequence {Bj} such that A ⊆
⋃∞
j=1Bj and each Bj intersects at most Nn − 1 balls

amongst B1, . . . , Bk−1.
Step 2. As discussed last time, we can reduce to the case where A is a bounded set.

Step 3. Choose B(a, r1) such that r1 ≥ (3/8) supB∈F (diamB). After choosing B1, . . . , Bk, set Ak = A \
⋃k
j=1Bk.

Then, take B(ak, rk), where ak ∈ Ak and

rk ≥ (3/8) sup{diamB(a, r) : B(a, r) ∈ F, a ∈ Ak}.
if rk = 0, then stop; otherwise, continue.

Step 4. Finally, verify this collection satisfies the theorem, specifically the bound on the number of sets.

This construction has a few nice properties.

Fact 1. If j > i, then rj > (3/4)ri.
Fact 2. If we shrink the balls by a factor of 3, they become pairwise disjoint, i.e. the balls B(aj , 2rj/3) are pairwise

disjoint.

Why is the second fact true? Let j > i, so that aj 6∈ B(ai, ri). For the two balls to be disjoint, we would need
|aj − ai| > ri > (ri + rj)/3, but this is equivalent to 2ri > rj , which is true.

Fact 3. If we never stop choosing B(ak, rk), then limj→∞ rj = 0.

This is because if S = {x : dist(x,A) < D}, then
∞⋃
j=1

B
(
aj ,

rj
3

)
⊆ S,

and since A is bounded, this is too. Thus,
∑
rj is finite, so limj→∞ rj = 0.

Fact 4.

A ⊆
J⋃
j=1

Bj ,

where J is the number of B(ak, rk) we considered in this process.

If J is finite, this is obvious, and if not, then assume there exists an a ∈ A such that a 6∈
⋃∞
j=1Bk; then, there exists

a ball B(a, r) ∈ F which was a candidate at some point (since rk → 0), so had to have been chosen.
Now, we can move to the last step, counting the intersections of the balls.

Proposition 9.1. There exists a number Nn such that each ball Bk intersects at most Nn−1 balls out of B1, . . . , Bk−1.

We’ll define three sets:

• Im = {1 ≤ j < m : Bj ∩Bm 6= ∅}, which is the set of bad balls, so to speak.
• Km = {j ∈ Im : rj ≤ 3rm}, so the small bad balls.
• Pm = {j ∈ Im : rj > 3rm}, the big bad balls.

Lemma 9.2. |Kn| < 20n.

Proof. This is a very coarse estimate, but does the job for us.
We’ll see that B(am, 5rm) ⊇ B(aj , rj/3) for each j ∈ Km. Specifically, take an x ∈ B(aj , rj/3), so

|x− am| ≤ |x+ aj |+ |aj − am| ≤
rj
3

+ rj + rm

≤ 4

3
rj + rm ≤ 4rm + rm = 5m.

Thus, B(aj .rj/3) ⊆ B(am, 5rm), and by the construction of Km, all of the B(aj , rj/3) are disjoint. Thus, we can
conclude that

5nrnm ≥ |Km|
(

1

3
· 3

4
rm

)n
,

so |Km| < 20n. �
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Lemma 9.3. Let i, j ∈ Pm; then, the angle θ between aj − am and ai − am is larger than arccos(61/64).

Let r0 be so small that if x, y lie on the unit sphere in Rn and |x− y| < r0, then the angle between them is smaller
than arccos(61/64); then, if we can cover the unit sphere with Ln balls of radius r0, then |Pn| ≤ Ln.

Lemma 9.4. If |ai| ≤ |aj | and cos θ > 5/6, then ai ∈ Bj.

Lemma 9.5. If ai ∈ Bj and |ai| ≤ |aj |, then cos θ < 61/64 (where θ is as in Lemma 9.3).

Proof of Lemma 9.3. Set am = 0. Then, ri < |ai| and rj ≤ |aj |, since m > i, j. Since Bm ∩Bj 6= ∅ and similarly with
Bi, then |ai| < ri + rm and |aj | < rj + rm, so ri > 3ri and rj > 3rm, because i, j ∈ Pm.

Putting this all together, 3rm < ri < |ai| < ri + rm, and similarly with j. So we want to show that if cos θ > 5/6,
then |ai − aj | ≤ |aj |. Assuming |ai − aj | ≥ |aj |, then

cos θ =
|ai|2 + |aj |2 − |ai − aj |2

2|ai||aj |
≤ |ai|2

2|ai||aj |
≤ 1

2
,

which is a contradiction. �

Proof of Lemma 9.4. Assume ai ∈ Bj , so rj < |ai − aj |. Thus,

cos θ =
|ai|2 + |aj |2 − |ai − aj |2

2|ai||aj |

=
|ai|

2|aj |
+

(|aj | − |ai − aj |)(|aj |+ |ai − aj |)
2|ai||aj |

≤ 1

2
+

(|ai| − |ai − aj |)2|aj |
2|ai||aj |

≤ 1

2
+
|aj | − |ai − aj |

2|ai|
.

Here, we actually use the assumption on ai ∈ Bj , though there are a few other places it’s used. After this point,
plugging in rj causes 5/6 to fall out, albeit somewhat magically, and the needed contradiction is reached. �

Proof. We want to show that if ai ∈ Bj , then cos θ < 61/64. We do have that

|aj |
8
≤ |ai − aj |+ |ai| − |aj | ≤

8

3
|aj |(1− cos θ).

First, |ai − aj |+ |ai| − |aj | ≥ ri + ri − rj + rm. Since ai ∈ Bj , then i < j and ai ∈ Bi, so this value is also

|ai − aj |+ |ai| − |aj | ≥ 2ri − rj − rm

≥ 2 · 3

4
rj − rj −

1

3
rj ≥

rj + rm
8

≥ |aj |
8
.

Now, the other direction. The Triangle Inequality implies that

0 ≤ |ai − aj |+ |ai| − |aj |
|aj |

≤ |ai − aj |+ |ai| − |aj |
|aj |

· |ai − aj |+ |aj | − |ai|
|ai − aj |

=
|ai − aj |2 − (|ai| − |aj |)2

|aj ||ai − aj |

=
2|ai||aj |(1− cos θ)

|aj ||ai − aj |

=
2|ai|(1− cos θ)

|ai − aj |

=
2(ri + rm)(1 + cos θ)

ri

≤ 2(ri + ri/3)(1− cos θ)

ri
=

8

3
(1− cos θ). �

Phew. . . I think we’re finished now. �
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This will be the longest proof in the class. Since it took a lecture and a half to prove this, we’re going to milk it for
whatever we can, e.g. the Radon-Nikodym Theorem in Rn (though it does also hold in infinite-dimensional spaces,
which has a longer proof that doesn’t depend on the Besikovitch Theorem) and a wealth of other things.

10. Differentiation of Measures: 10/28/14

“I’ve taught the Radon-Nikodym theorem many times, and still know nothing about Nikodym.”

Differentiation of measures is a way of looking at local properties of measures, specifically their relative sizes.
If µ and ν are two Radon measures, we can compute ν(A) by Riemann integration with respect to ν: dividing A

into many small boxes B1, . . . , BN ; then,

ν(A) ≈
N∑
j=1

ν(Bj)

µ(Bj)
µ(Bj).

ν(Bj)/µ(Bj) is really a local property, so call that ratio f(x). Thus, this can further be approximated by

≈
N∑
j=1

f(x)µ(Bj) ≈
ˆ
A

f dµ,

where the integral is in the sense of Riemann.
This is all fine in theory, but there are some issues with it that we’ll address.

(1) Do we have any reason to believe the limit exists? This applies both to defining f to be a local property and
to the limit as N →∞.

(2) What if µ(Bj) = 0?

First perhaps we should formally define what we’re talking about. In today’s lecture, all balls are closed.

Definition. Given two Radon measures µ and ν, the upper and lower Radon-Nikodym derivatives of µ and ν are
respectively

Dµν(x) =

 lim sup
r→0

ν(B(x, r))

µ(B(x, r))
, if µ(B(x, r)) > 0 for all r > 0

+∞, if µ(B(x, r)) = 0 for some r > 0;

Dµν(x) =

 lim inf
r→0

ν(B(x, r))

µ(B(x, r))
, if µ(B(x, r)) > 0 for all r > 0

+∞, if µ(B(x, r)) = 0 for some r > 0.

If Dµν = Dµν, then ν is said to be differentiable with respect to µ, and Dµν is the Radon-Nikodym derivative or
density of ν with respect to µ.

Example 10.1.

(1) Suppose µ is the Lesbegue measure on Rn and ν(A) =
´
A
f(x) dµ, where f is continuous. Then, Dµν(x) = f(x)

and

ν(A) =

ˆ
A

Dµν(x) dµ.

(2) Suppose µ(A) = m(A ∩ [0, 1]) and ν(A) = m(A ∩ [2, 3]), so that Dµν(x) = 0 on [0, 1]. Thus, Dµν = 0 for
µ-almost everywhere x, and therefore

´
A
Dµν(x) dµ = 0 for all A. In particular,

ν(A) 6=
ˆ
A

Dµν dµ

whenever ν(A) is positive.

This leads to two important questions:

(0) Even before the first question, when is it possible to integrate Dµν(x) with respect to µ?
(1) Then, for what µ and ν is the following true?

ν(A) =

ˆ
A

Dµν(x) dµ.

Theorem 10.2. Let µ and ν be Radon measures on Rn. Then, Dµν exists for µ-almost everywhere x, is a nonnegative,
µ-measurable function, and is finite µ-almost everywhere.

Proof. Dµν(x) is a local quantity, so it doesn’t change if we restrict µ and ν to B(x,R) for some R > 0. Therefore,
assume without loss of generality therefore that ν(Rn) and µ(Rn) are finite.
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Lemma 10.3. Let µ and ν be finite Radon measures on Rn; then,

(1) A ⊆ {Dµν ≤ s} implies that ν(A) ≤ sµ(A).

(2) A ⊆ {Dµν ≥ s} implies that ν(A) ≥ sµ(A).

Proof. We’ll prove (1); then, (2) is almost exactly the same. Notice also that A doesn’t need to be µ- or ν-measurable
(in which case the measures should be replaced with outer measures µ∗ and ν∗).

Take an open set U ⊃ A and cover each x ∈ A by a ball of radius rn(x) ≤ 1/n such that

ν(B(x, rn(x))) ≤ (s+ ε)µ(B(x, rn(x))),

and, by the magical corollary to the Besikovitch Theorem, we can chooe a countable collection of disjoint balls Bj
such that

ν

(
A \

∞⋃
j=1

Bj

)
= 0.

Then,

ν∗(A) ≤ ν∗
(
A \

∞⋃
j=1

Bj

)
+ ν

( ∞⋃
j=1

Bj

)

=

∞∑
j=1

ν(Bj)

≤
∞∑
j=1

(s+ ε)µ(Bj)

= (s+ ε)

∞∑
j=1

µ(Bj) ≤ (s+ ε)µ(U).

If we proceed to take the infimum over all such open sets U , then since µ and ν are Radon, then ν∗(A) ≤ (s+ε)µ∗(A). �

Now, armed with the lemma, let’s look at the set where Dµν > Dµν, as well as the set where Dµν is infinite (at
positive infinity).

(1) Let I = {x : Dµν = +∞}, so that ν∗(I) ≥ sµ∗(I) for all s > 0; since ν(Rn) is finite, then µ(I) = 0.

(2) Let Rab = {Dµν(x) ≤ a < b ≤ Dµν(x)}. Then, since Dµν ≤ a, then ν(Rab) ≤ aµ(Rab) and Dµν ≥ b, so
ν(Rab) ≥ bµ(Rab) (both by Lemma 10.3), so µ(Rab) = 0.

Thus, Dµν exists and is finite µ-almost everywhere. �

Since the Radon-Nikodym derivative is a local quantity, the restriction to small balls is a very useful trick; this isn’t
the last time we’ll see it today.

Lemma 10.4. Let µ and ν be Radon measures; then, for each x ∈ Rn and r > 0,

lim sup
y→x

µ(B(y, r)) ≤ µ(B(x, r)), and

lim sup
y→x

ν(B(y, r)) ≤ ν(B(x, r)).

Proof. Let yk → x, and set fk(z) = χBk(z). The idea is to relate moving small amounts with now much the mass of
the measure can change.

Claim. lim supk→∞ fk(z) ≤ χB(x,r)(z).

Proof. For the claim, we only need to check that if χB(x,r)(z) = 0, then fk(z) = 0 for large k (otherwise, it’s

immediate). But lim infk→∞(1− fk(z)) ≥ 1− χB(x,r)(z), so we can integrate and apply Fatou’s lemma:
ˆ
B(x,2r)

(1− χB(x,r)(z)) dµ ≤ lim inf
k→∞

ˆ
B(x,2r)

(1− fk(z)) dµ.

TODO I didn’t get to write down this either. . . what is this? �

�

But we still need to deal with the counterexample in Example 10.1. In fact, let’s just exclude it.
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Definition. A Borel measure ν is absolutely continuous with respect to another Borel measure µ, written ν � µ, if
for any set A such that µ(A) = 0, we have ν(A) = 0.

Theorem 10.5 (Radon-Nikodym). If ν � µ, then for any µ-measurable set A we have that

ν(A) =

ˆ
A

Dµν dµ.

For this to even make sense, we have to show that µ-measurability implies ν-measurability.

Claim. If ν � µ, then any µ-measurable set is ν-measurable.

Proof. Take a µ-measurable set A and a Borel set B such that A ⊆ B and µ(A) = µ(B), and therefore µ(B \A) = 0,
so ν(B \A) = 0; in partciular, B \A is ν-measurable, and so is A = B \ (B \A). �

Proof of Theorem 10.5. Set Z = {Dµν = 0} and I = {Dµν is infinite}. Then, by Theorem 10.2, µ(I) = 0.
For any R > 0, set ZR = Z ∩ B(0, R), so that for all s > 0, ν(ZR) ≤ s · µ(ZR), and therefore ν(ZR) = 0 for all

R > 0. In particular, ν(Z) = 0. Thus,

ν(Z) =

ˆ
Z

Dµν dµ and ν(I) =

ˆ
I

Dµν dµ.

Take any set A, so that

A = (A ∩ Z) ∪ (A ∩ I) ∪
∞⋃

m=−∞
Am,

where Am = {x ∈ A : tm ≤ Dµν(x) < tm+1} for some t > 1. Then,

ν(A) =

∞∑
m=−∞

ν(Am)

≤
∞∑

m=−∞
tm+1µ(Am) ≤ t

∞∑
m=−∞

tmµ(Am)

≤ t
∞∑

m=−∞

ˆ
Am

Dµν dµ ≤ t
ˆ
A

Dµν dµ.

Thus, ν(A) ≤
´
A
Dµν dµ.

The proof in the other direction is not complicated; see the lecture notes. �

But what if ν isn’t absolutely continuous with respect to µ? Maybe we can try to make it as bad as possible, and
then throw that part away.

Definition. If µ and ν are Borel measures, then they are said to be mutually singular if there exists a Borel set B
such that µ(Rn \B) = ν(B) = 0 (i.e. their supports are split by a Borel set). This is written µ ⊥ ν.

Theorem 10.6. Let µ and ν be Radon measures; then, it is possible to write ν = νa + νs, where νa � µ, νs ⊥ µ,
and Dµν = Dµνa for µ-almost all x, and for each Borel set A we have

ν(A) =

ˆ
A

Dµν dµ+ νs(A).

Proof. The hardest part of this proof is splitting ν; once this is done, the rest follows fairly quickly.
Once again, we can assume without loss of generality that µ(Rn) and ν(Rn) are finite. The goal is to find a Borel

set B such that ν|B � µ and ν|Bc ⊥ µ. We’ll want to pick B such that µ(Bc) = 0.
Let’s look at candidates for B, collected in F = {A : A is Borel and µ(Ac) = 0}. Given a A ∈ F , ν|Ac is certainly

mutually singular with µ, since ν|Ac is 0 on A, where µ takes measure. But we also have to get ν|A � µ. But if we
chose A too large, there may be a subset of it on which µ is 0, but ν is positive; we have to address this part, by
choosing B such that this isn’t possible.

Take a Bk ∈ F such that ν(B − k) ≤ infA∈F ν(A) + 1/k, and set B =
⋂∞
k=1Bk. Then,

µ(Bc) ≤
∞∑
k=1

µ(Bck) = 0,

so B ∈ F and ν(B) = infA∈F ν(A), and once again we get ν|Bc ⊥ µ.
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Now, we need to show that ν|B � µ. Assume not, so that there is a set A ⊆ B such that µ(A) = 0 but ν(A) is
positive. Pick a Borel set A′ ⊇ A such that ν(A′) = 0 and ν|B(A′) = 0. Set B′ = B \A′, so that µ(B′c) ≤ µ(Bc) = 0
and ν(B′) < ν(B), but this is a contradiction to ν(B) = infA∈F ν(A) for B Borel. Thus, ν|B � µ.

Now, we can write νa = ν|B and νs = νBc , so that ν = νa + νs, νa � µ, and νs ⊥ µ. We just need to check that
Dµνs = 0 µ-almost everywhere.

Let Cz = {x : Dµνs(x) ≥ S} for an S > 0. Then, Cz = (Cz ∩ B) ∪ (Cz ∪ Bc), but µ(Cz ∩ Bc) = 0 by choice
of B, so Sµ(Cz ∩ B) ≤ νs(Cz ∩ B) = 0, and so µ(Cz ∩ B) = 0 as well; thus, µ(Cz) = 0, so Dµν = Dµνa µ-almost
everywhere. �

Next time, we’ll prove a much cuter theorem.

Theorem 10.7. Let E be a measurable set. Then,

m(E ∩B(x, r))

m(B(x, r))
−→

{
1, if x ∈ E
0, if x 6∈ E

µ-almost everywhere.

It is a nice high-school problem, which, unfortunately, uses the Besikovitch theorem.

11. Local Averages and Signed Measures: 10/30/14

“Of course, the way mathematicians are brought up is to think of horrible counterexamples.”

Recall that last time, we defined the derivative of a Radon measure ν with respect to another Radon measure µ is

Dµν =

{
limr→0 ν(B(x, r))/µ(B(x, r)), if µ(B(x, r)) > 0 for all r > 0

+∞, otherwise,

provided the limit exists. We showed this exists and is finite µ-almost everywhere, and that it is a µ-measurable
function. Then, we asked when it’s true that ν(A) =

´
A
Dµν(x) dµ, and saw this was true when ν is absolutely

continuous with respect to µ, denoted ν � µ (i.e. if A is such that µ(A) = 0, then ν(A) = 0). Then, we defined
ν ⊥ µ, i.e. mutual singularity, as when ν and µ take on zero measure on sets that are complements of each other, and
proved the Lesbegue decomposition of any ν into an absolutely continuous part and a mutually singular part.

Today, we’re going to milk this to talk about local averages, where we average the value of a function f over a
small ball.

Definition. The average of a measurable function f over a measurable set E is 
E

f dµ =
1

µ(E)

ˆ
E

f dµ.

So in general, how close is
ffl
B(x,r)

f dµ to f(x)? One answer might be “as far as you want,” since there are all sorts

of monstrosities and counterexamples that come out on Halloween night. Yet if f is continuous, then of course the
average converges to f(x) as r → 0. But what if f is not continuous?16

To make sense of the question, we need f ∈ L1(Rn,dµ). But L1 functions aren’t that weird, and in fact despite
their discontinuities, they’re very well-behaved.

Theorem 11.1. Let f ∈ L1(Rn,dµ) and µ be a Radon measure; then,

lim
r↓0

 
B(x,r)

f dµ = f(x)

µ-almost everywhere.

Proof. Unfortunately, said the professor, the proof is very easy.
For a Borel set B, define two measures by

ν±(B) =

ˆ
B

f± dµ,

where f+ = max(f, 0) and f− = f+ − f . If µ is Radon and f ∈ L1, then these measures are Radon and ν+, ν− � µ.
Then, we’ll extend ν± to all sets as an outer measure as usual.

16This is an excellent question to ask, say, eleventh-graders who have reasonable ideas what functions and continuity are. The professor

did this with a friend once, but with Fermat’s Last Theorem!
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The absolute continuity implies that

ν+(A) =

ˆ
A

Dµν dµ, and

ν−(A) =

ˆ
A

Dµν− dµ.

But we can show that Dµν± = f± almost everywhere. Specifically, let Sq = {f+ −Dµν+ > q} for q > 0 and q ∈ Q.
Then,

0 =

ˆ
Sq

(f+ −Dµν+) dµ ≥ qµ(Sq),

and therefore µ(Sq) = 0. Thus,

f(x) = Dµν+(x)−Dµν−(x) = lim
r→0

1

µ(B(x, r))

ˆ
B(x,r)

f dµ. �

Definition. A point x ∈ Rn is a Lesbegue point for f ∈ Lp(Rn,dµ) if the oscillation of f around x vanishes, i.e.

lim
r→0

 
B(x,r)

|f(y)− f(x)|p dµ = 0.

Corollary 11.2. If µ is a Radon measure and f ∈ Lp(Rn,dµ), then µ-almost all x ∈ Rn are Lesbegue points of f .

Proof. Take a countable dense set S ⊂ R, and for each ξi ∈ S, the function f(y)− ξi ∈ Lp(Rn, dµ). Thus, there exists
a set Aj ⊆ Rn such that µ(Aj) = 0 and for all x 6∈ Aj ,

lim
r↓0

 
B(x,r)

|f(y)− ξj |p dµy = |f(x)− ξj |p.

Let A =
⋃∞
j=1Aj and G = Ac, so that µ(Gc) = 0.

For all x ∈ G, we have that

lim
r→0

 
B(x,r)

|f(y)− ξj |p dµy = |f(x)− ξj |p

for all j. Thus, take ξj such that |f(x)− ξj | < ε, so that 
B(x,r)

|f(y)− f(x)|p dµ ≤ Cp
 
B(x,r)

|f(y)− ξj |p dµy + Cp

 
B(x,r)

|ξj − f(x)|p dµy

≤ I(r, ξj) + Cεp,

when the ξj are such that |f(x)− ξj | < ε. Thus, the proof is finished when r is chosen such that∣∣∣∣∣
 
B(x,r)

|f(y)− ξj |p dµy − |f(x)− ξj |p
∣∣∣∣∣ < ε. �

This corollary states that integrable functions don’t oscillate too much locally, which is actually quite nice.
Now, we’ll also be able to prove Theorem 10.7.

Proof of Theorem 10.7. Apply the Lesbegue-Besicovitch theorem to χE(x); then, the theorem statement is just that
when we average this function on small balls, it converges to the function itself. �

This requires knowing very little, even if the buildup to it is a little involved.

Signed Measures and the Riesz Representation Theorems.

Definition. A signed measure on a σ-algebra F is a function ν : F → R such that:

(1) ν(∅) = 0.
(2) For pairwise disjoint sets E1, E2, . . . ∈ F ,

ν

( ∞⋃
j=1

Ej

)
=

∞∑
j=1

ν(Ej),

and the series converges absolutely.
(3) ν takes on only one value out of +∞ and −∞.

A typical example of a signed measure is the difference of two unsigned measures. The restriction on convergence
are so that the infinite sum is well-defined.
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Definition. If ν is a signed measure, then a set A is positive if ν(E) ≥ 0 for any subset E of A. Negative sets are
defined in the analogous way.

Proposition 11.3. If E is a measurable set such that ν(E) > 0, but is finite, then there exists a positive subset
A ⊆ E with ν(A) > 0.

Proof. If E is not positive, choose n1 to be the smallest integer such that E contains a subset A1 such that
ν(A1) < −1/n1, and let E1 = E \A1, and keep going: we get an A1 ⊆ E2 with E2 = E1 \A2, and so on.

If this process stops, then we’re done, but if it doesn’t stop, then look at

E′ = E \

( ∞⋃
j=1

Aj

)
.

Note that
∑
|ν(Aj)| is finite, because ν(A) = 0, so nk → 0 as k → +∞.

Suppose that E′ contains a subset S such that ν(S) < 0; then, for k large enough, ν(S) < −1/(nk − 1), so why did
we pick nk and not nk − 1? Contradiction. �

Theorem 11.4. Let ν be a signed measure on a space X; then, X = A ∪ B, where A is a positive set and B is a
negative set.

Proof. Assume ν omits +∞ and define λ = sup{ν(A) : A is a positive set}. Then, for each j choose a positive Aj
such that ν(Aj) ≥ λ− 1/2j , and define A =

⋃∞
j=1Aj . Then:

• A must be positive.
• ν(A) ≥ ν(Aj) for all j, and thus ν(A) ≥ λ, so ν(A) = λ.

If B = Ac, then B cannot contain a subset E of positive measure, because if ν(E) > 0 and we have a positive E′ ⊆ B
with nonzero measure, then E′ ∪A is a positive set with µ(E′ ∪A) > λ, which is a contradiction. �

This means that every signed measure is a difference of two measures.

Corollary 11.5. Any signed measure µ = µ+ − µ−, where µ± are two measures and µ+ ⊥ µ−.

Definition.

• The total variation of a signed measure ν is |ν| = ν+ + ν−.
• If ν is a signed measure and µ is an unsigned measure, then ν is absolutely continuous with respect to µ,

denoted ν � µ, if ν+, ν− � µ.

The Radon-Nikodym Theorem holds for signed measures as well: if ν � µ and µ, ν are Radon, then ν(A) =
´
A
f dµ,

where f = f+ − f− is given by f+ = Dµν+ and f− = Dµν−.
The Riesz Representation Theorem classifies all bounded linear functionals on Lp(Rn, dµ) (except for L∞), where

µ is a Radon measure. First recall the following definition.

Definition. If X is a normed vector space, F : X → R is a bounded linear functional if |F (x)| ≤ C‖x‖X . Then, the
norm of F is ‖F‖ = sup‖x‖X=1|F (x)|.

Recall also Hölder’s inequality: that if 1/p+ 1/q = 1, then∣∣∣∣ˆ fg dµ

∣∣∣∣ ≤ (ˆ |f |p)1/p(ˆ
|g|q
)1/q

.

We want to know what the bounded linear functionals are on Lp(Rn,dµ).

Example 11.6. Suppose g ∈ Lq(Rn,dµ), where 1/p+ 1/q = 1, and define

F (f) =

ˆ
Rn
fg dµ.

Then, |F (f)| ≤ ‖f‖p‖g‖q, so it’s bounded, and ‖F‖ ≤ ‖g‖q.

The Riesz representation theorem says in some sense that these are the only bounded linear functionals.

Theorem 11.7 (Riesz Representation). Let µ be a Radon measure, 1 ≤ p <∞, and F be a bounded linear functional
on Lp(Rn,dµ). Then, there exists a g ∈ Lq(Rn,dµ) such that F (f) =

´
Rn fg dµ for all f ∈ Lp(Rn,dµ), and

‖F‖ = ‖g‖Lq .
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Proof. First, we’ll want to try to guess what g is, and then show it’s in Lq; then, the last step is to compute the norm
of F .

Assume that µ is a finite measure, so that χE ∈ Lp(Rn,dµ) for any measurable set E. If g exists, then
F (χE) =

´
E
g dµ, so define ν(E) = F (χE), which is a signed measure; in particular because µ is finite, so sums of

characteristic functions converge:

ν

( ∞⋃
j=1

Ej

)
= F

( ∞∑
j=1

χEj

)
=

∞∑
j=1

F (χEj ).

Thus, |ν(E)| ≤ ‖F‖‖χE‖p = ‖F‖(µ(E))1/p, so ν � µ. Thus, set g = Dµν, since we’ve just shown this is the only
option.

Thus, if f(x) =
∑N
j=1 ajχEj (x) with the Ej pairwise disjoint, then

F (f) =

N∑
j=1

ajf(χEj ) =

ˆ
E

f(x)g(x) dµ.

Take ψ to be a simple function of the form

ψ(x) =

∞∑
j=1

ajχAj (x),

where the Aj are pairwise disjoint, and let ψN be the N th partial sum. Thus,

‖ψ − ψN‖pLp =

∞∑
i=N+1

|aj |pµ(Aj), and

‖ψ‖pLp =

∞∑
j=1

|aj |pµ(Aj),

and the latter is finite, since the series converges. Thus, ‖ψ − ψN‖Lp → 0 as N →∞. Thus, F acts as f 7→
´
fg dµ

for all f ∈ Lp(Rn,dµ).
The next step is to show that g ∈ Lq(Rn,dµ). We’ll approximate it by simple functions; let ψn be a pointwise

non-decreasing sequence of simple functions such that ψ
1/q
n χB(0,n) → |g|, and let ϕn = ψ

1/p
n sign(g). Then, ‖ϕn‖Lp =´

ψn dµ, and ˆ
ψn dµ =

ˆ
ψ1/p
n ψ1/q

n dµ =

ˆ
|ψn|1/q|ϕn|dµ

≤
ˆ
|g|χB(0,n)|ϕn|dµ =

ˆ
gχB(0,n)ϕn dµ

= F (ϕnχB(0,n))

≤ ‖F‖‖ϕnχB(0,n)‖p.

Sadly, we ran out of time here, but will continue next lecture.

12. The Riesz Representation Theorem: 11/4/14

“I don’t know, I’m just making this up, but Franz Riesz’s brother was proving theorems that are much
more fun.”

Last time, we defined signed measures, i.e. measures ν such that ν = ν+ − ν− for unsigned, mutually singular
measures ν+ and ν−, such that at most one of ν+ and ν− takes on infinite values. (This wasn’t the definition, but we
were able to prove it.) Furthermore, if ν is a signed measure on X, then X = A ∪B, such that ν+ is supported on A
and ν− is supported on B.

Then, we turned to the Riesz representation theorem, Theorem 11.7, which states that any bounded linear functional
F : Lp(Rn,dµ)→ R, with 1 ≤ p <∞, is given by a g ∈  Lq(Rn,dµ), where 1/p+ 1/q = 1, i.e. L(f) =

´
fg dµ for all

f .

Continuation of the proof of Theorem 11.7. First, we assumed that µ is a finite Radon measure, so that χE ∈
Lp(Rn, dµ) for any µ-measurable set E. Then, we defined ν(E) = F (χE); so we want to show that F (χE) =

´
E
g dµ,

so that g would be equal to Dµν.
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Note that ν is a signed measure, which is fairly easy to check (countable additivity, for example, follows from F
being a continuous function), and

|ν(E)| = |F (χE)| ≤ ‖F‖‖χE‖p = ‖F‖(µ(E))1/p,

i.e. ν is absolutely continuous with respect to µ. Thus, there’s a measurable g such that ν(E) =
´
g dµ, Dµν+ = g+,

and Dµν− = g−.

Since |ν(E)| ≤ ‖F‖(µ(Rn))1/p (which makes sense because µ is finite), then ν+(Rn)+ν−(Rn) ≤ ‖F‖(µ(Rn))1/p, i.e.
‖g‖L1 ≤ ‖F‖(µ(Rn))1/p. Thus, g ∈ L1(dµ), which is nice, but we need to bootstrap this to showing g ∈ Lq(Rn,dµ)
and that ‖g‖Lq = ‖F‖.

So far, we know that F (ψ) =
´
ψg dµ for any simple function ψ which takes on finitely many values. We want to

do calculations in Lq to show that ‖F‖ = ‖g‖Lq , but since we don’t know that g ∈ Lq(dµ), we can’t do that yet, so
we’ll have to approximate g. Specifically, approximate |g|q by simple functions ψn as follows:

ψn(x) =


j

2n
, if |x| ≤ n and

j

2n
≤ |g|q < j + 1

2n
, 0 ≤ j ≤ 22n−1

0, if |x| ≥ n or |g|q ≥ 2n.

Thus, ψ
1/q
n approach g from below, but they’re compactly supported, simple functions taking on finitely many values.

ψn(x) lies in all Lp(Rn,dµ), with 1 ≤ p ≤ ∞, so set ϕn = ψ
1/p
n sign(g). Then, ϕn is also a simple function taking

on finitely many values and

‖ϕn‖Lp =

(ˆ
ψn dµ

)1/p

.

Thus, ˆ
ψn dµ =

ˆ
ψ1/p+1/q
n dµ =

ˆ
|ψn|1/q|ϕn|dµ

≤
ˆ
|g||ϕn|dµ =

ˆ
gϕn

≤ ‖F‖‖ϕn‖p = ‖F‖
(ˆ

ψn dµ

)1/p

.

Thus,
´
ψn dµ ≤ ‖F‖q, so

´
|g|q dµ ≤ ‖F‖q, so g ∈ Lq(dµ) and ‖g‖Lq ≤ ‖F‖.

Since g ∈ Lq(dµ), then the linear functional G(f) =
´
fg dµ is bounded on Lp by |G(f)| ≤ ‖g‖q‖f‖p, and

G(ψ) = F (ψ) for all simple functions which take on finitely many values. Since these are dense in Lp when
1 ≤ p <∞,17 then G(f) = F (f) on a dense set and therefore for all f ∈ Lp.

If µ is not finite and 1 < p <∞, then look at FR(f) = F (fχR), where χR(x) = χB(0,R)(x). The above argument

applied to µR = µ|B(0,R) shows that FR(f) =
´
gRf dµ, where gR(x) = g(x)χR(x).

Additionally, ‖fχR − f‖Lp → 0 as R → +∞ and gR(x) = gR′(x) if R > R′ and |x| < R′, so there exists a g(x)
such that gR(x) = g(x) for |x| ≤ R. Since ‖gR‖Lq ≤ ‖FR‖, then ‖gR‖Lq ≤ ‖F‖, and we know that

|FR(f)| = |F (fχR)| ≤ ‖F‖‖fχR‖p ≤ ‖F‖‖f‖p,

and therefore ‖g‖Lq ≤ ‖F‖.
Next,

F (f) = lim
R→+∞

F (fχR) = lim
R→+∞

ˆ
fgχR dµ =

ˆ
fg dµ,

because F ∈ Lp and g ∈ Lq. Thus, by Hölder’s inequality, |F (f)| ≤ ‖f‖p‖g‖q, so ‖F‖ ≤ ‖g‖Lq , so ‖F‖ = ‖g‖Lq .
Now we’re done in the case p > 1. If p = 1 and µ is a finite measure, then F (ψ) =

´
ψg dµ for any simple ψ that

takes on only finitely many values, and therefore for any measurable E,∣∣∣∣ˆ
E

g dµ

∣∣∣∣ ≤ ‖F‖µ(E). (2)

Take E = {x : g(x) ≥ ‖F‖ + ε}; then, (2) implies that µ(E) = 0, and the same argument works to show that
E′ = {x : g(x) ≤ −‖F‖ − ε} has measure zero. Thus, ‖g‖L∞ ≤ ‖F‖. Now, we can show that F (f) =

´
fg dµ for all

f ∈ L1(dµ), so ‖F‖ ≤ ‖g‖∞, and thus the two are equal. Then, generalizing to µ having infinite measure is exactly
the same. �

17Pay particular attention to this statement, because it’s the reason the Riesz Representation Theorem doesn’t hold in L∞, though

when we set ϕn = ψ
1/p
n sign(g), the calculations made with ϕ also require p > 1.
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For L∞, it used to be top secret, but nowadays anybody can go on Wikipedia and learn that the dual space to L∞

is the space of finitely additive measures, which is pretty weird.
Instead, we’ll talk about the Riesz Representation Theorem for compactly supported continuous functions, denoted

Cc(Rn,Rm). The reason we would do this is because the trick in the proof is to approximate by simple functions,
which are dense in Lp. They’re not dense in Cc(Rn,Rm), since they’re not even members of that space, but they can
still approximate continuous functions arbitrarily well.
Cc(Rn,Rm) is a nice linear space (i.e. vector space), but it’s not complete, which is a little annoying.

Theorem 12.1. Let L : Cc(Rn,Rm)→ R be a linear functional such that for any compact set K ⊆ Rn,

sup{L(f) : f ∈ Cc(Rn,Rm), |f | ≤ 1, supp f ⊆ K}

is finite. Then, there exists a Radon measure µ and a µ-measurable function σ : Rn → Rm such that |σ| = 1 µ-almost
everywhere and for any f ∈ Cc(Rn,Rm), L(f) =

´
fσ dµ.

Proof. Notice that when m = 1, this implies that σ = ±1 and therefore L(f) =
´
f dν for a signed measure ν.

Specifically, in this case, we want the signed measure to be ν(E) = L(χE), but this can’t be done yet, because
χE 6∈ Cc(Rn,Rm). Since this fails, we’ll define for any open set V

µ∗(V ) = sup{L(f) : |f | ≤ 1, supp f ⊆ V, f ∈ Cc(Rn,Rm)}.

Thus, for any set A, µ∗(A) = inf{µ∗(V ) : V open , A ⊆ V }.
Now, we need to show that this µ and some σ work.

(1) First, we’ll show that µ is a Radon measure, which is relatively straightforward.
(2) Then, for any f ∈ C+

c (Rn,Rm), let

λ(f) = sup{L(g) : g ∈ Cc(Rn,Rm), |g| ≤ f}.

We’ll need to show that λ is a bounded linear functional and λ(f) =
´
f dµ.

(3) Finally, to get σ, let λe(f) = L(fe), with f ∈ Cc(Rn,Rm); then, we’ll see that λe(f) =
´
fσe dµ, so let

σ =
∑
σejej for some choice of ej we’ll explain when we get to this point in the proof.

For part 1, take any open set V and open sets Vj such that

V ⊆
∞⋃
j=1

Vj .

Then, choose a g ∈ Cc(Rn,Rm) such that ‖g‖ ≤ 1; let Kg = supp g ⊆ V . Since Kg is a compact set, then

Kg ⊆
⋃R
j=1 Vj .

Exercise 11. Show that there exists a partition of unity for g, i.e. ζj for 1 ≤ j ≤ k such that:

(1) supp ζj ⊆ Vj ,
∑
ζj = 1 on Kg,

(2)
k∑
j=1

ζj = 1 on Kg,

(3)

g =

k∑
j=1

gζj ,

(4) and |gζj | ≤ 1 on Vj .

Armed with this partition of unity, we see that

|L(g)| ≤
k∑
j=1

|L(gζj)| ≤
k∑
j=1

µ∗(Vj) ≤
∞∑
j=1

µ∗(Vj).

Thus,

µ∗(V ) ≤
∞∑
j=1

µ∗(Vj).

Now, for any A ⊆∞j=1 Aj , with A and Aj not necessarily open, choose open Vj ⊃ Aj such that µ∗(Aj) ≥ µ∗(Vj)− ε/2j .
Thus, approximating the Aj by the Vj shows that countable subadditivity holds for all sets.

To go further, we’ll need a purely measure-theoretic lemma, which we’ll state now and prove later.
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Lemma 12.2 (The Carathéodory Criterion). Let µ be a measure. If µ∗(A ∪B) = µ ∗ (A) + µ∗(B) for all sets A and
B such that dist(A,B) > 0, then µ is a Borel measure.

First, we should check that this criterion actually applies to µ. Let U1 and U2 be open sets such that dist(U1, U2) > 0;
then, µ∗(U1 ∪ U2) = µ∗(U1) + µ∗(U2), so for any A1 and A2 such that dist(A1, A2) > 0, take open sets V1 ⊇ A1 and
V2 ⊇ A2 such that dist(V1, V2) > 0. Choose V ⊇ A1 ∪A2 and let U1 = V ∩ V1 and U2 = V ∩ V2. Thus,

µ∗(V ) ≥ µ∗(U − 1 ∪ U2) = µ∗(U1) + µ∗(U2) ≥ µ∗(A1) + µ∗(A2).

Thus, µ∗(A1 ∩A2) = µ∗(A1) + µ∗(A2), so Lemma 12.2 applies, and µ is a Borel measure.
For part 2, suppose f ∈ C+

c (Rn) and define λ as above. First, we want to show that λ is linear: if f1, f2 ∈ Cc(Rn),
choose g1 and g2 such that |g1| ≤ f1 and |g2| ≤ f2. Then, let g′1 = g1 sign(L(g1)) and g′2 = g2 sign(L(g2)).

Thus, |g′1 + g′2| ≤ f1 + f2, so |L(g1)| < |L(g2)| = L(g′1) + L(g′2), and in particular L(g′1 + g′2) ≤ λ(f1 + f2), so
λ(f1) + λ(f2) ≤ λ(f1 + f2) (i.e. it’s superlinear).

To show that it’s also sublinear, take a g ∈ Cc(Rn,Rm) such that |g| ≤ f1 + f2, and let

g1 =

{
f1g/(f1 + f2), f1(x) + f2(x) > 0

0, f1 + f2 = 0,

and define g2 in the analogous way. Then, |g1| ≤ f1, |g2| ≤ f2, and g1, g2 ∈ Cc(Rn,Rm), so |L(g)| ≤ |L(g1)|+ |L(g2)| ≤
λ(f1) + λ(f2). Thus, λ(f1 + f2) ≤ λ(f1) + λ(f2).

We’ll finish the proof on Thursday.

13. The Riesz Representation Theorem for Cc(Rn,Rm): 11/6/14

“The Fourier transform on the circle is like playing the piano, but the Fourier transform for the whole
space is like a modern symphony. There are a finite number of strings on the piano, but composers can
do more or less what they want, and most functions can be approximated by those 88 trigonometric
polynomials. On the line, though, we have more frequencies, and so we can approximate any function,
and if you listen to modern music, you’ve probably noticed every function being approximated.”

Recall that last time we proved the Riesz Representation Theorem (Theorem 11.7) for Lp, 1 ≤ p < ∞, i.e. that
if f : Lp → R is a bounded linear functional, then there exists a g ∈ Lq(Rn,dµ) with 1/p + 1/q = 1 such that
L(f) =

´
fg dµ for all f ∈ Lp(Rn,dµ).

For the L∞ case, we are proving another theorem (Theorem 12.1), that if L : Cc(Rn,Rm)→ R is a linear functional
such that sup{|L(g)| : g ∈ Cc(Rn,Rm), supp g ∈ K} is finite on compact sets K ⊆ Rn, then there exists a Borel
measure µ and µ-measurable function σ such that |σ| = 1 µ-almost everywhere, such that L(f) =

´
f · σ dµ for all

f ∈ Cc(Rn,Rm).

Continuation of the proof of Theorem 12.1. First, we defined the variation measure on open sets V as

µ(V ) = sup{|L(g)| : supp g ⊆ V, |g| ≤ 1}

and then extending as an outer measure µ∗ everywhere else. We have yet to show that µ is Borel.
Then, we defined a functional λ, and showed that it is linear. We want to show that λ(f) =

´
f dµ. The idea is

this would be true for characteristic functions, but they’re not in Cc(Rn,Rm), even though they well approximate
these functions.

Choose a partition 0 = t0 < t1 < · · · < tN = 2‖f‖∞ such that tj − tj−1 < ε for each j and µ({f−1(tj)}) = 0. Let
Vj = f−1(tj−1, tj), so that these are open and bounded sets, so µ(Vj) is finite. We’ll choose hj such that supphj ⊂ Vj
and µ(Vj) − ε/N ≤ λ(hj) ≤ µ(Uj); specifically, to do that, choose a compact Kj such that µ(Uj \K) < ε/N and
choose a gj such that L(gj) ≥ µ(Uj)− ε/N and supp gj ⊆ Uj . We also have that ‖gj‖ = 1.

Then, take hj such that hj = 1 on Kj ∪ supp gj and supphj ⊆ Uj , and such that 0 ≤ hj ≤ 1 (akin to a partition
of unity). Then,

µ(Uj) ≥ λ(hj) ≥ L(gj) ≥ µ(Uj)−
ε

N
.

Now, consider the set

A =

{
f(x)

(
1−

N∑
j=1

hj

)
> 0

}
.

Then,

µ(A) ≤
N∑
j=1

µ(Uj −Kj) ≤ N
ε

N
= ε.
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Now, let’s evaluate λ:

λ

(
f − f

N∑
j=1

hj

)
= sup

{
|L(g)| : |g| ≤ f − f

N∑
j=1

hj

}
= sup{|L(g)| : |g| ≤ ‖f‖∞χA}
= ‖f‖∞µ(A) ≤ ε‖f‖∞.

Thus, as we let ε→ 0, we can approximate

λ(f) ≈ λ
(
f
∑

hj

)
=
∑

λ(fhj)

≈
∑

tjλ(hj) ≈
∑

tjµ(Uj)

≈
ˆ
f dµ.

That is, we approximated f by piecewise constant functions, which made calculating λ nicer. This wasn’t rigorous,
but it ca be made so by sprinking around some epsilons.

For the next step in this proof, take an f ∈ Cc(Rn) and fix an e ∈ Sn−1 (i.e. |e| = 1). Set λe(f) = L(fe). Thus,

λe(f) ≤ sup{|L(g)|, g ∈ Cc(Rn,Rm), |g| ≤ |f |}

= λ(|f |) =

ˆ
|f |dµ.

Thus, λe can be extended to a bounded linear functional on L1(Rn,dµ), because Cc(Rn) is dense in L1.18 Thus,19

there exists a σe such that λe(f) =
´

(f · σe) dµ. Now, let {ej} be an orthonormal basis for Rm and

σ =

m∑
j=1

σejej .

This means that

L(f) = L

(
m∑
j=1

(f · ej)ej

)

=

m∑
j=1

λej (f · ej)

=

m∑
j=1

ˆ
(f · ej)σej dµ =

ˆ
f

(
m∑
j=1

σejej

)
dµ

=

ˆ
(f · σ) dµ.

Now we need to calculate |σ|:

|λe(f)| =
∣∣∣∣ˆ fσe dµ

∣∣∣∣ ≤ ˆ
|f |dµ,

so ‖λe‖ = ‖σe‖∞ ≤ 1, so ‖σ‖ ≤ m.
Now, we’ll prove that |σ| = 1 µ-almost everywhere. Let U be an open set and σ′ = σ/|σ| when σ 6= 0, and σ′ = 0

if σ = 0. Choose a compact K ⊆ U such that µ(U \Kj) ≤ 1/j and σ′ is continuous on K. Thus, this extends σ′ to a
continuous function fj on Rn such that |fj | ≤ 1.

Now, take a cutoff function hj such that 0 ≤ hj ≤ 1, hj = 1 on Kj and |supphj ⊆ U . Define gj = hjfj , so that
|gj | ≤ 1, supp gj ⊂ U , and gj · σ → |σ| in probability, since gj · σ = |σ| on Kj .

But convergence in probability implies there exists a subsequence jk →∞ such that gjk → |σ| µ-almost everywhere.
Thus, by the Bounded Convergence Theorem,ˆ

U

|σ|dµ = lim
k→+∞

ˆ
(gjk · σ) dµ = lim

k→+∞
L(gjk) ≤ µ(U).

18This is true for every Lp with p finite, but not L∞.
19Technically, we didn’t prove this result for vector-valued functions, but it still holds, just with a little more work.
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If f ∈ Cc(Rn,Rm), then L(f) =
´

(f · σ) dµ, so if supp f ⊂ I and |f | ≤ 1, then |L(f)| ≤
´
U
|σ|dµ. Thus,

µ(U) ≤
´
U
|σ|dµ, and so µ(U) =

´
U
|σ|dµ for all open sets U with finite µ-measure, and so |σ| = 1 µ-almost

everywhere. �

Here is a very natural break in the class material, since we’ll be switching to the Fourier transform soon. If a fire
alarm had to go off today, we might as well put it here. But it didn’t. In any case, we’ll prove the Carathéodory
criterion, Theorem 12.2, though we really could have done so back in September.

Proof of Theorem 12.2. Take a closed set C and any set A, so we need to show that µ∗(A) ≥ µ∗(A \C) + µ∗(A ∩C).
Assume µ∗(A) is finite (if not, then we’re done), and let

Cm =

{
x ∈ R : dist(x,C) ≤ 1

m

}
,

which is sort a tube around C. Now,

µ∗(A \ Cn) + µ∗(A ∩ C) = µ∗((A \ Cn) ∪ (A ∩ C)) ≤ µ∗(A).

Now, we want that limn→∞ µ(A \ Cn) = µ(A \ C), so let’s look at the annuli

Rk =

{
x ∈ A :

1

k + 1
< dist(x,C) ≤ 1

k

}
.

The idea is, if we look only at the even layers or at the odd layers, things work nicely.

∞∑
k=1

µ∗(R2k) = µ∗

( ∞⋃
k=1

R2k

)
≤ µ∗(A)

In the same way,

∞∑
k=1

µ∗(R2k−1) ≤ µ∗(A).

Now, write

A \ C = (A \ Cn) ∪

( ∞⋃
k=n

Rk

)
,

and therefore

µ∗(A \ Cn) ≤ µ∗(A \ C)

≤ µ∗(A \ Cn) +

∞∑
k=n

µ∗(Rk),

so µ∗(A \ Cn)→ µ∗(C), since the sum of the measures of the Rk is at most 2µ∗(A), which is finite. �

Part 2. The Fourier Transform

First, we will consider the Fourier transform on a circle, and then on the whole space.20

Definition. The Fourier transform of a 2π-periodic, integrable function (i.e. a function on the sphere) f is

F(f) = f̂ =

ˆ 1

0

f(x)e−2πikx dx.

Then, |f̂(k)| ≤ ‖f‖L1 , and therefore F : L1(S1)→ L∞(Z).
The following lemma, that the Fourier coefficients decay, is reasonably immediate, though for some reason follows

the tradition that the most important results in mathematics are so often called lemmas. If f is Riemann integrable,
there’s a very nice proof using only elementary calculus, but we’ll have to be more creative.

Lemma 13.1 (Riemann-Lesbegue). If f ∈ L1(S1), then limk→∞ f̂(k) = 0.

20The fire alarm went off right about now. Talk about convenient timing.
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Proof.

f̂(k) =

ˆ 1

0

f(x)e−2πik(x+1/2k) dx = −
ˆ 1

0

f

(
x− 1

2k

)
e−2πikx dx

=
1

2

ˆ 1

0

(
f(x)− f

(
x− 1

2k

))
e−2πikx dx.

Thus

|f̂(k)| ≤ 1

2

ˆ 1

0

∣∣∣∣f(x)−
(
x+

1

2k

)∣∣∣∣ dx,
and we showed on a problem set this goes to 0 as k →∞. �

Corollary 13.2. If f ∈ L1(S1),

lim
m→∞

ˆ 1

0

f(x) sin(πmx) dx = 0.

This leads to a couple questions.

(1) When is the following true?

f(x) =

∞∑
k=−∞

f̂(k)e−2πikx.

(2) The set {e2πikx} is orthonormal in L1(S1). Is it a basis for L1(S1)?
(3) When does convergence hold pointwise or in some other sense?

To clean up the notation, let

SNf(x) =

N∑
k=−N

f̂(k)e−2πikx.

Thus, this looks like a convolution with a kernel, which is pretty nicely behaved:

SNf(x) =

N∑
k=−N

(ˆ 1

0

f(y)e−2πiky dy

)
e2πikx =

ˆ 1

0

f(t)DN (x− t) dt,

where the kernel is

DN (t) =

N∑
k=−N

e2πikt = e−2πiNt
2N∑
k=0

e2πikt

= e−2πiNt
1− e2πi(2N+1)t

1− e2πit

=
e2πi(N+1)t − e−2πiNt

e2πit − 1

=
e−2πi(N+1/2)t − e−2πi(N+1/2)t

eπit − e−πit

=
sin((2N + 1)πt)

sinπt
.

This kernel DN is called the Dini kernel. Lots of Italians in this branch of mathematics! Let’s restate some facts:

SNf(x) =

ˆ 1

0

Dn(x− t)f(t) dt

DN (t) =
sin((2N + 1)πt)

sin(πt)
.

ˆ 1

0

DN (t) dt = 1.

Furthermore, if |t| ≥ δ, then |DN (t)| ≤ 1/ sin(πδ).
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Next, let’s move the bounds a bit.

LN =

ˆ 1/2

−1/2
|DN (t)|dt = 2

ˆ 1/2

0

|sin((2N + 1)πt)|
|sin(πt)|

dt

≥ 2

ˆ 1/2

0

|sin((2N + 1)πt)|
πt

dt− 2

ˆ 1

0

|sin((2N + 1)πt)|
∣∣∣∣ 1

πt
− 1

sinπt

∣∣∣∣ dt.
The second term is bounded above by a constant, and the first part can be bounded below.

ˆ 1/2

0

|sin((2N + 1)πt)|
πt

dt =

ˆ (N+1/2)π

0

sin t

πt
dt ≥ C

N+1/2∑
k=1

1

k
≥ c logN,

and thus ‖DN‖L1 ≥ c logN for some constant c.

14. The Fourier Transform and Convergence Criteria: 11/13/14

“Steinhaus later told Ulam that the happiest day of his life was the day the Germans retreated from
Lvov and the Russians hadn’t gotten there yet. But I am not sure if such a day existed.”

Recall that we defined the Fourier transform for f ∈ L1(S1) as

f̂k =

ˆ 1

0

e−2πikxf(x) dx

SNf(x) =

N∑
k=−N

f̂ke
2πikx.

We want to know when it’s true that SNf(x)→ f(x), and proved two results: the Riemann-Lesebgue lemma that

f̂k → 0, and that

SNf(x) =

ˆ 1/2

−1/2
DN (x− t)f(t) dt,

where DN (T ) = sin((2N + 1)πt)/ sin(πt) is the Dini kernel, and
´ 1/2

−1/2DN (t) dt = 1. Thus, SN acts as convolution by

this kernel, which is very useful for studying it.
If one uses this to obtain a bound, then

LN =

ˆ 1/2

−1/2
|DN (t)|dt −→ +∞

as N →∞, but it grows logarithmically, so unless there’s some oscillation this won’t converge.

Theorem 14.1 (Dini’s criterion). If f ∈ L1(S1) and there’s a δ > 0 such thatˆ δ

−δ

∣∣∣∣f(x+ t)− f(x)

t

∣∣∣∣dt (3)

is finite, then SNf(x)→ f(x) as N →∞.

Proof. The idea is that the condition on (3) imposes regularity conditions on SNf(x)− f(x). More specifically,

SNf(x)− f(x) =

ˆ 1/2

−1/2
(f(x− t)− f(x))DN (t) dt =

ˆ 1/2

−1/2

f(x− t)− f(x)

sinπt
sin((2N + 1)πt) dt

=

ˆ
|t|≤δ

f(x− t)− f(x)

sinπt
sin((2N + 1)πt) dt︸ ︷︷ ︸

AN

+

ˆ
|t|≥δ

f(x− t)− f(x)

sinπt
sin((2N + 1)πt) dt︸ ︷︷ ︸

BN

.

This is as far as we’re able to go, so now use the assumption: AN =
´ 1/2

−1/2 sin((2N + 1)πt) dt, so if

gx(t) =
f(x− t)− f(x)

sinπt
χ{|t|≤δ}(t),

then gx ∈ L1(dt), so by the Riemann-Lesbegue lemma, AN → 0 as N →∞.

For BN , we can write BN =
´ 1/2

−1/2 qx(t) sin((2N + 1)πt) dt, where

qx(t) =
f(x− t)− f(x)

sinπt
χ{|t|≥δ},
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and qx ∈ L1(S1,dt), so the same argument works here. �

Note that if f is Lipschitz or Hölder, this is automatically true.

Theorem 14.2 (Jordan). Let f ∈ BV([x− δ, x+ δ]); then, SNf(x)→ (1/2)(f(x+) + f(x−)).

Proof. We’ll make the following assumptions.

(0) f ∈ BV(S1), rather than just on intervals. This can be dealt with by choosing a δ as in the proof of
Theorem 14.1 and dealing with the exceptions in the same way.

(1) Without loss of generality, we may assume that f is increasing, x = 0, and f(0+) = 0 (by the theorems we
had on functions of bounded variation).

However, since f has bounded variation, it’s the difference of two monotonic functions, so f(x+) and f(x−) certainly
exist. Then,

SNf(0) =

ˆ 1/2

−1/2
DN (−t)f(t) dt =

ˆ 1/2

0

DN (t)(f(−t) + f(t)) dt.

We will show that
´ 1/2

0
DN (t)f(t) dt→ 0.

Choose a δ > 0 such that 0 ≤ f(t) ≤ ε for t ∈ (0, δ), so we can writeˆ 1/2

0

f(t)DN (t) dt =

ˆ δ

0

f(t)DN (t) dt︸ ︷︷ ︸
IN

+

ˆ 1/2

δ

f(t)DN (t) dt︸ ︷︷ ︸
IIN

.

Then,

IIN =

ˆ 1/2

0

f(t)

sinπt
χ{|t|≥δ}(t) sin((2N1)πt) dt,

which goes to 0 as N →∞ for a fixed δ, as this function is in L1(S1).
IN doesn’t converge quite as easily:

IN =

ˆ δ

0

f(t)DN (t) dt ≤ ε
ˆ δ

0

|DN (t)|dt ≈ ε logN.

We can approximate DN with another function of the same order: if α, β ∈ [0, 1/2], thenˆ β

α

sin((2N + 1)πt)

sinπt
dt ≈

ˆ β

α

sin((2N + 1)πt)

πt
dt.

But we can bound this puppy. ˆ β

α

sin((2N + 1)πt)

πt
dt =

ˆ (2N+1)πβ

(2N+1)πα

sin t

πt
dt,

which is bounded above by some M , which can be shown by integration by parts; it’s a standard calculus exercise.
If h is an increasing function, we can approximate it by underestimating it for a while and then overestimating.

More precisely, there exists a c ∈ (a, b) such thatˆ b

a

h(y)g(y) dy = h(a+)

ˆ c

a

g(y) dy + h(b−)

ˆ b

c

g(y) dy.

Thus, applying this to IN ,

IN = f(0+)

ˆ c

0

DN (t) dt+ f(δ−)

ˆ δ

c

DN (t) dt = f(δ−)

ˆ δ

c

DN (t) dt.

Thus, |IN | ≤ εM , so IN → 0. �

The last elementary property we’ll prove is a localization principle. This is a bit of a surprise, because the Fourier
series is at least on first glance a very global phenomenon.

Theorem 14.3 (Localization principle). If f(x) = 0 in (x − δ, x + δ) for some f ∈ L1(S1), then SNf(x) → 0 as
N →∞.

Proof. We can write

SNf(x) =

ˆ 1/2

−1/2
DN (t)f(x− t) dt =

ˆ
|t|≥δ

sin((2N + 1)πt)
f(x− t)

sinπt
χ{|t|≥δ}(t) dt,

so we can apply the Riemann-Lesbegue lemma. �
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For a while in the 19th Century, Fourier transforms were a large focus of activity. One famous open problem was
to prove that the Fourier series of a continuous function converges. This ended up not being true, proven in 1873 by
du Bois-Raymond. A lot of this was formalized in Poland in the 1930s, as part of the Lvov School of Mathematics,
e.g. Banach, Steinhaus, Ulam, Schauder and so forth.21 In order to get this example, we’ll need to detour through
the following example.

Theorem 14.4 (Banach-Steinhaus). Let X be a Banach space and Y a normed vector space. Let Tα be a family
of bounded linear operators Tα : X → Y . Then, either supα‖Tα‖ is finite, or there exists an x ∈ X such that
supα‖Tαx‖Y =∞.

Proof. Define ϕα(x) = ‖Tαx‖Y , which is a continuous function on X because |ϕα(x)− ϕα(x′)| ≤ ‖Tα(x− x′)‖Y ≤
‖Tα‖‖x− x′‖.

Set ϕ(x) = supα ϕα(x) and

Vn = {ϕ(x) > n} =
⋃
α

{x : ϕα(x) > n}.

Each Vn is therefore open. Additionally, either one of the Vn isn’t dense in X, or they’re all dense in X.
Suppose VN isn’t dense in X, so that there exists an x0 and a ρ > 0 such that B(x0, ρ)∩VN = ∅. Thus, ϕα(x) ≤ N

for all x ∈ B(x0, ρ), and therefore ‖Tα(x+ x0)‖ ≤ N if ‖x‖ ≤ ρ, so if x ∈ B(0, 2ρ), ‖Tα(x)‖ ≤ ‖Tα(x0)‖+N ≤ 2N ,
and in partiuclar for all α, ‖Tα‖ ≤ 2N/ρ.

Instead, if all of the VN are dense in X and are open, then V =
⋂
n Vn is nonempty. Take an x ∈ V , so x ∈ Vn for

all n. Thus, there exists an αn such that ‖Tαnx‖ ≥ n for any n, and therefore the supremum is infinite. �

The idea is that if things don’t converge, it’s not that they just oscillate; the norms have to be unbounded too. But
like every proof using the Baer Category Theorem, it’s beautifully simple and completely non-instructive. It takes
much more time to find a continuous, everywhere non-differentiable function than to prove almost all continuous
functions are non-differentiable! But we can show there’s a continuous function whose Fourier series diverges.

Theorem 14.5. There exists an f ∈ C(S1) such that the Fourier series of f diverges at 0.

Proof. Define TN : C(S1)→ C by TN (f) = SNf(0) =
´ 1/2

−1/2 f(t)DN (t) dt. Then, |TN (f)| ≤ ‖DN‖, which goes to ∞
as N →∞. Additionally, there exist fj ∈ C(S1) such that |fj | ≤ 1 and fj → signDN almost everywhere as j →∞
(in some sense, a limit of continuous functions that becomes a step function).

Now, we know that |TN (fj)| →
´ 1/2

−1/2|DN | dt, and therefore ‖TN‖ = ‖DN‖1, which is unbounded above. Thus, by

Theorem 14.4, there exists an f ∈ C(S1) such that supN |TNf(0)| =∞, so SNf(0) doesn’t converge. �

Approximation by Trigonometric Polynomials. If the Fourier series doesn’t converge, we may be able to
improve it by averaging.

Definition. Define the Cesaro averages of SNf to be

σNf(x) =
1

N + 1

N∑
j=0

Sjf(x) =
1

N + 1

ˆ 1/2

−1/2
f(x− t)

N∑
j=0

Dj(t) dt.

Let’s see if we can simplify this.

N∑
j=0

Dj(t) =

N∑
j=0

sin((2j + 1)πt)

sinπt
=

1

sin2(πt)

N∑
j=0

sin((2j + 1)πt) sinπt

=
1

2 sin2(πt)

N∑
j=0

cos((2j + 1)πt− πt)− cos((2j + 1)πt+ πt)

=
1

2 sin2(πt)

N∑
j=0

(cos(2jπt)− cos((2j + 2)πt))

=
sin2((N + 1)πt)

sin2(πt)
.

21Of course, the whole school was destroyed by the war; Steinhaus hid from the Nazis, for example. But he was able to get access to
Polish newspapers and make impressively accurate calculations about the German war losses, and he survived the war. Ulam emigrated to

the States and Banach wasn’t Jewish, so he survived. Schauder ended up dying in a concentration camp.
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Thus, the kernel we get is

FN (t) =
1

N + 1

sin2((N + 1)πt)

sin2 πt
,

which is called the Fejér kernel. This is much better behaved than the Dini kernel, because it’s positive and more
easily bounded. Specifically, for any δ > 0, FN (t) ≤ C(δ)/N for |t| ≥ δ and some constant C, and since

´
DN = 1

and we’re averaging it, then
´ 1/2

−1/2 FN (t) dt = 1 as well.

Now that we’ve done all this work, we can restate the Cesaro coefficients as

σNf(x) =

ˆ 1/2

−1/2
FN (x− t)f(t) dt.

Theorem 14.6.

(1) Let f ∈ Lp(S1) for 1 ≤ p <∞; then, ‖σNf − f‖p → 0 as N →∞.

(2) If f ∈ C(S1), then supx|σNf(x)− f(x)| → 0 as N →∞.

Proof. We’ll prove (1); the other case is pretty similar.
Write

‖σNf − f‖p ≤
ˆ 1/2

−1/2
FN (t)‖f(x− ·)− f(·)‖p dt

=

ˆ
|t|≤δ

FN (t)‖f(x− ·)− f(·)‖p dt︸ ︷︷ ︸
IN

+

ˆ
|t|≥δ

FN (t)‖f(x− ·)− f(·)‖p dt︸ ︷︷ ︸
IIN

.

Now, given an ε > 0, there exists a δ > 0 such that ‖f(x− ·)− f(·)‖p ≤ ε for all |x| < δ, and using this shows that
IN , IIN → 0. �

Corollary 14.7. Trigonometric polynomials are dense in Lp(S1), 1 ≤ p <∞.

This is because the Cesaro partial sums are trigonometric polynomials.

Corollary 14.8. The Fourier transform is an isometry L2(S1)→ `2, i.e.∑
k∈Z
|f̂k|2 =

ˆ 1/2

−1/2
|f(x)|2 dx.

Proof. {e2πikx} are orthonormal and span a dense set, so they must be a basis for L2(S1). Thus, by Corollary 14.7,

‖f‖L2 =
∑
k∈Z
|fke2πikx|2. �

Corollary 14.9. If f ∈ L1(S1) and f̂(k) = 0 for all k ∈ Z, then f = 0.

Next, let’s discuss the ergodicity of irrational rotations of the circle. What are the invariant sets of Tα(e2πix) =
e2πi(x+α), i.e. the sets R ⊂ S1 such that Tα(R) = R?

Claim. If α 6∈ Q and R is a measurable, Tα-invariant set, then either m(R) = 1 or m(R) = 0.

Proof. Let R be an invariant set and χR(x) be its characteristic function, so that χR(x+ α) = χR(x). Then, define
χα(x) = χR(x+ α). Its Fourier coefficients are

χ̂α(k) =

ˆ 1

0

e2πikxχR(x+ α) dx

= e−2πikα
ˆ 1

0

e2πikxχR(x) dx

= e−2πikαχ̂R,k.

But χα = χR, so χ̂α(k) = χ̂R(k), and thus e2πikαχ̂R(k) = χ̂R(k). Thus, either χ̂R = 0, so χR = 0 and m(R) = 0, or
χ̂R(0) 6= 0, in which case χR(x) = χR(0), so m(R) = 1. �

There are other proofs of this, but the Fourier series-flavored one is among the cleanest.
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15. The Fourier Transform in Rn: 11/18/14

“I should talk much less.”

Definition. Given an f ∈ L1(Rn), we can define the Fourier transform of f as

f̂(ξ) =

ˆ
Rn
f(x)e−2πix·ξ dx.

This is really more like the orchestra: there is a continuous set of frequencies, not just a discrete set. One can think
of x as time and ξ as the frequency, though this is a bit weirder outside of R1.

Two facts are immediately apparent.

(1) ‖f̂‖L∞ ≤ ‖f‖L1 .
(2)

f̂(ξ)− f̂(ξ′) =

ˆ
Rn
f(x)

(
e−2πix·ξ − e−2πix·ξ

′
)

dx,

which goes to 0 as ξ → ξ′, and therefore f̂ is continuous.

Suppose f ∈ C∞c (Rn) (i.e. bounded, continuous, compactly supported). Then, one can calculate that

∂

∂ξj
f̂(ξ) = −2πix̂jff(ξ)

∂̂f

∂xj
(ξ) = 2πiξj f̂(ξ).

See the professor’s lecture notes for full derivations.

Definition. Let

pαβ(ϕ) = sup
x∈Rn
|x|α

∣∣∣∣Dβϕ

∂xβ

∣∣∣∣ = sup
x∈Rn
|x1|α1 |x2|α2 · · · |xn|αn

∣∣∣∣∣∂β1
x1
∂β2
x2
· · · ∂βnxnϕ

∂xβ1

1 · · · ∂x
βn
n

∣∣∣∣∣.
Then, pαβ is finite for all α and β iff pβα is; a function ϕ with this property is said to be in the Schwarz class S(Rn).

This is the class of smooth functions which decrease faster than polynomially and whose derivatives also decrease
faster than polynomially.

One says that ϕk → 0 in S(Rn) if pαβ(ϕk)→ 0 for all α and β.

Proposition 15.1. If ϕk → 0 in S(Rn), then ϕk → 0 in Lp(Rn) for 1 ≤ p ≤ +∞.

Proof. ˆ
|ϕ|m dx =

ˆ
|x|≤1

|ϕ|m +

ˆ
|x|≥1

|ϕ|m

≤ Cn|p0,0|m + 2

ˆ
|x|≥1

|x|n+1|ϕ|m

1 + |x|n+1 dx

≤ Cn|p0,0|m + C ′n|p(n+1)/m,0|
m
. �

Here’s the main theorem, which is why we care about Schwarz functions.

Theorem 15.2. The Fourier transform is a continuous map S(Rn)→ S(Rn) such that for all f, g ∈ S(Rn),ˆ
Rn
f(x)ĝ(x) dx =

ˆ
Rn
f̂(x)g(x) dx, (4)

and

f(x) =

ˆ
Rn
f̂(ξ)e2πix·ξ dξ. (5)

(5) is of particular note as the inversion formula for recovering f from f̂ .

Proof. Continuity follows from the relationship between the Fourier transform, differentiation, and multiplication by
x. The rest of the proof follows from the next lemma.

Lemma 15.3. Let f(x) = e−π|x|
2

; then, f̂(ξ) = f(ξ).

50



Proof. One could do a five-page contour integration, but instead notice that

f̂(ξ) =

ˆ
Rn
e−π|x|

2+2πix·ξ dx =

ˆ ∞
−∞

e−πx
2
1+2πix1ξ1 dx1 ·

ˆ ∞
−∞

e−πx
2
2+2πix2ξ2 dx2 · · · .

Notice that f ′ + 2πxf = 0, f(0) = 1, but also f̂ ′ + 2πξf̂ = 0 and f̂(0) = 1. Thus, f and f̂ are smooth functions
satisfying the same ODE with the same initial condition, so they must be the same. �

This lemma is vital in probability theory, since Gaussians are ubiquitous there.
Now, for (4), we see that ˆ

f(x)ĝ(x) dx =

ˆ
f(x)g(ξ)e−2πiξ·x dξ dx =

ˆ
f̂(ξ)g(ξ) dξ.

The proof of the inversion formula is somewhat magical and not very instructive. Let λ > 0. Then,ˆ
f(x)ĝ(x) dx =

ˆ
f(x)g(ξ)e−2πiλx·ξ dξ dx =

ˆ
f̂(λξ)g(ξ) dξ

=
1

λn

ˆ
f̂(ξ)g

(
ξ

λ

)
dξ.

Thus,

λn
ˆ
f(x)ĝ(λx) dx =

ˆ
f̂(ξ)g

(
ξ

λ

)
dξ

=⇒
ˆ
f
(x
λ

)
ĝ(x) dx =

ˆ
f̂(ξ)g

(
ξ

λ

)
dξ.

Let λ→∞; then,

f(0)

ˆ
ĝ(x) dx = g(0)

ˆ
f̂(ξ) dξ,

so if we take g(x) = e−π|x|
2

, so g = ĝ, then we conclude that f(0) =
´
f̂(ξ) dξ. For a general x ∈ Rn set fx(y) = f(x+y),

so that

f̂x(ξ) =

ˆ
f(x+ y)e−2πiξ·y dy = e2πiξ·xf̂(ξ). �

We can also talk about Schwarz distributions, though they’ll be covered much more thoroughly in 205B.

Definition. A Schwarz distribution T is a continuous linear functional on S(Rn): T (fk) → 0 if fk → 0 in S(Rn).
The space of Schwarz distributions is called S ′(Rn).

For example, we have δ0(f) = f(0). However, g(x) = e|x| 6∈ S ′(Rn). Many such distributions are given by
T (f) =

´
fg for some g, though δ0 isn’t.

Definition. If T ∈ S ′(Rn), then define its Fourier transform to be T̂ (f) = T (f̂).

This is motivated by (4), because in the case where T (f) =
´
fg, they end up saying the same thing. As an

example, δ̂0(f) = δ0(f̂) = f̂(0) =
´
f(x) dx. Thus, δ̂0(ξ) = 1.

Exercise 12. Compute the Fourier transform of 1/(1 + x2).

Distributions aren’t always Rn-valued functions, but they can be differentiated. If T (f) =
´
gf for some g ∈ S(Rn),

then

T

(
∂f

∂xj

)
=

ˆ
g
∂f

∂xj
dx = −

ˆ
∂g

∂xj
f dx.

Thus, we make the following definition.

Definition. If T ∈ S ′(Rn), its derivative acts by

∂T

∂xj
(f) = −T

(
∂f

∂xj

)
.

Example 15.4. Suppose g(x) = sgn(x) on R. Then,

∂g

∂x
(f) = −g

(
∂f

∂x

)
=

ˆ 0

−∞

∂f

∂x
dx−

ˆ ∞
0

∂f

∂x
dx

= f(0) + f(0) = 2δ0(f).

Thus, d
dx sgn(x) = 2δ0(x).
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It turns out that probabilistic statements such as the Law of Large Numbers and the Central Limit Theorem use
the Fourier Transform.

Let x1, . . . , xn be independent, identically distributed random variables, and let sn = x1 + · · ·xn. For example, a
particle moving randomly and continuously can be considered in several independent increments, where the motion in
the ith increment is xi; then, the total motion is sn. One can normalize the distribution such that E(x1) = 0, and
suppose D = E(x21) is finite.

Let zn = sn/n; we want to understand how this behaves as n → ∞. If xi = x1, then this is very easy, but in
general they’re independent.

In the simplest case n = 2, let X and Y be independent and Z = X + Y . Let pX and pY be the density functions
for X and Y , so that

pZ = pXpY =

ˆ
pX(x− y)pY (y) dy.

In general, psn(x) = (px ∗ px ∗ · · · ∗ px)(x), since the densities are all the same.
For a λ > 0, let xλ = x/λ, so that

P (xλ ∈ A) = P (x ∈ λA) =

ˆ
A

pλ(x) dx = λ

ˆ
A

p(λz) dz.

Thus, pxλ(x) = λp(λx). In particular, pzn(x) = n(px ∗ px ∗ · · · ∗ px)(nx).
Since there are convolutions floating around, we should use the Fourier transform, which handles these much more

nicely:

f̂ ∗ g(ξ) =

ˆ
dx e−2πiξ·x

ˆ
dy f(x− y)g(y)

=

ˆ
dxdy e−2πiξ·(x−y)−2πiξ·yf(x− y)g(y)

= f̂(ξ)ĝ(ξ).

Thus, if qn(x) = (px ∗ px ∗ · · · ∗ px)(x), then q̂n(ξ) = (p̂(ξ))n, or p̂zn(ξ) = (p̂(ξ/n))n, and

p̂(0) =

ˆ
p(x) dx = 1.

p̂′(0) =

ˆ
2πixp(x) dx = 0.

p̂′′(0) =

ˆ
(2πix)2p(x) dx = −4π2D.

Hence, for a fixed ξ,

p̂zn(ξ) =

(
p̂

(
ξ

n

))n
'

(
1− 2π2D|ξ|

2

n2

)n
,

which goes to 0 as n→∞.
This implies that

E(f(zn)) =

ˆ
f(x)pzn(x) dx =

ˆ
f̂(ξ)p̂zn(ξ) dξ,

and therefore as n→∞, this approaches
´
f̂(ξ) dξ = f(0).

Corollary 15.5 (Weak Law of Large Numbers).

lim
n→∞

E(f(zn)) = f(0).

That is, zn → 0 in expectation. One can think of doing a large number of experiments; this law says that as more
and more experiments are conducted, the true value does eventually approach the mean.
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Sometimes, we might want to consider Rn = Sn/n
α for some α (if zn doesn’t converge fast enough, I guess). Then,

E(R2
n) =

1

n2α
E(x1 + x2 + · · ·+ xn)2

=
1

n2α
E

(
n∑
k=1

X2
k +

∑
i 6=j

xixj

)

=
nD

n2α
+

1

n2α

∑
i 6=j

E(xi, xj)

=
nD

n2α
.

This is O(1) iff α = 1/2, so we conclude sn ∼
√
n.

Thus, let’s consider Rn = (x1 + · · ·+ xn)/
√
n, so for compactly supported ξ,

p̂Rn(ξ) =

(
p̂

(
ξ√
n

))n
'

(
1− 2π2D|ξ|2

n

)n
,

and this approaches e−2π
2D|ξ|2 , so

E(f(Rn)) =

ˆ
f(y)pRn(y) dy =

ˆ
f̂(ξ)p̂Rn(ξ) dξ,

which converges to ˆ
f̂(ξ)e−2π

2D|ξ|2 dξ =

ˆ
f(x)

e−|x|
2/2D

√
2πD

dx.

That is:

Corollary 15.6 (Central Limit Theorem). As n → ∞, Rn convegses to a Gaussian with the probability density

p(x) = e−|x|
2/2D/

√
2πD.

16. Interpolation in Lp Spaces: 11/20/14

“These days, most math majors don’t take any physics, so going from quantum mechanics, which
you don’t know, to classical mechanics, which you don’t know, is the most absurd thing ever.”

Consider the spaces Lp(Rn), for 1 ≤ p ≤ +∞; we want to talk about functions in multiple Lp spaces; specifically,
consider p0, p1 and f ∈ Lp0(Rn) ∩ Lp1(Rn). Let pt = (1− t)p0 + tp1; then,

ˆ
|f |pt dx =

ˆ
|f |(1−t)p0 |f |tp1 dt ≤

(ˆ
|f |p0

)1−t(ˆ
|f |p1

)t
.

In particular, the quick corollary is that if f ∈ Lp0(Rn) ∩ Lp1(Rn), then also f ∈ Lp(Rn) for all p0 ≤ p ≤ p1.
This is a nice result, but we will wish to generalize it to any measure spaces.

Theorem 16.1 (Riesz22-Thorin). Let (M,µ) and (N, ν) be measure spaces and 1 ≤ p, q ≤ +∞. Then, for any
t ∈ [0, 1], there exists a bounded linear operator At : Lpt(M)→ Lqt(N), where

1

pt
=

1− t
p0

+
t

p1
and

1

qt
=

1− t
q0

+
t

q1
,

such that it coincides with A : Lp0(M) ∩ Lp1(M) → Lp0(N) ∩ Lp1(N) and ‖A‖Lpt→Lqt ≤ k1−t0 kt1, where k0 =
‖A‖Lp0→Lq0 and k1 = ‖A‖Lp1→Lq1 .

This is an essentially compelx-analytic theorem, and we’ll prove it that way.

Example 16.2 (Hausdorff-Young Inequality). If f ∈ Lp(Rn) and 1 ≤ p ≤ 2, then f̂ ∈ Lp(Rn) with ‖f̂‖Lp′ ≤ ‖f‖Lp
when 1/p′ + 1/p = 1.

Example 16.3. ‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq , where 1 + 1/r = 1/p+ 1/q.

22This is a scientific result, not a fun one, so it’s by F. Riesz, not M. Riesz.
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Proof. Since (f ∗ g)(x) =
´
f(y)g(x − y) dy, then fix g and let f → f ∗ g. Then, ‖f ∗ g‖L∞ ≤ ‖g‖L1‖f‖L∞ and

‖f ∗ g‖L1 ≤ ‖g‖L1‖f‖L1 , so therefore interpolating between p and 1, ‖f ∗ g‖Lp ≤ ‖g‖L1‖f‖Lp . Furthermore, for the
L∞ norm, if 1/p+ 1/p′ = 1, then

|f ∗ g(x)| ≤
(ˆ
|f |p dx

)1/p(ˆ
|g(x− y)|p

′
dy

)1/p′

≤ ‖f‖Lp‖g‖Lp′ .

Thus, ‖f ∗ g‖L∞ ≤ ‖f‖Lp‖g‖Lp′ .
Now, we interpolate between Lp and L∞, giving the desired result. �

Example 16.4. Suppose a ∈ S(Rn × Rn) and ε ∈ (0, 1). Define

(a(x, εD)f)(x) =

ˆ
e2πix·ξa(x, εξ)f̂(ξ) dξ.

This seems like a silly function, but the idea is to capture very fine oscillations of f on a certain scale ε. How should
one get bounds on this operator? Rewrite it as

(a(x, εD)f)(x) =

ˆ
e2πix·ξã(x, y)e−2πiy·ξ f̂(ξ) dξ,

where ã(x, y) is the Fourier transform of a with respect to y.

=

ˆ
ã(x, y)f(x+ εy) dy.

Since a ∈ S(Rn × Rn), then so is ã, so we can take suprema to get the bounds

‖a(x, εD)f‖L∞ ≤ C(a)‖f‖∞
‖a(x, εD)f‖L1 ≤ C(a)‖f‖L1 .

Thus, after interpolating, we conclude that

‖a(x, eD)f‖Lp ≤ C(a)‖f‖Lp .

We care particularly about p = 2, especially in the context of differential equations; there are plenty of familites of
non-dissipative systems (i.e. those that preserve the L2-norm over all time) but that don’t preserve the L1-norm or
the L∞-norm.

For example, consider the Schrödinger equation

ih
∂ψ

∂t
+
h2

2
∆ψ − V (x)ψ = 0,

where h is the Planck constant. This is by no means Schwarz, but if one lets p(x, ξ) = |ξ|2/2 + B(x), then the
Schrödinger equation is

ih
∂ψ

∂t
+ p(x, hD)ψ = 0.

Note that as ε→ 0, 〈a(x, εD)ψ,ψ〉 → 〈a,W 〉 for some W ≥ 0 (which is particularly nontrivial) satisfying the equation

∂W

∂t
+ {p,W} = 0,

where the braces denote the Poisson bracket

{p,W} =
∑ ∂p

∂xi

∂W

∂ξi
− ∂p

∂ξi

∂W

∂xi
.

Thus, one can conclude that
∂W

∂t
+ ξ · ∇xW −∇V · ∇ξW = 0,

and from this one recovers Newton’s law of motion: d2x
dt2 = −∇V (x), since ∂ξ

∂t = −∇V and ∂x
∂t = ξ. Thus, we’ve gone

from quantum to classical.

This next theorem is not an example of the use of the Riesz-Thorin Theorem, but rather an ingredient in its proof.
It comes from the neighboring nation of complex analysis.

Theorem 16.5 (The Three-Lines Theorem). Let F (z) be a bounded analytic function in {0 ≤ Re(z) ≤ 1} with
|F (iy)| ≤ m0 and |F (1 + iy)| ≤ m1. Then, |F (x+ iy)| ≤ m1−x

0 mx
1 .
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Proof. Let F1(z) = F (z)/(m1−z
0 mz

1). Then,

|F1(iy)| ≤ m0

|m1−iy
0 ||miy

1 |
= 1

|F1(1 + iy)| ≤ m1

|m−iy0 ||m1|1+iy
= 1,

and |F (z)| ≤ m1−x
0 mx

1 |F1(z)|. Thus, it only remains to show |F1(x+ iy)| ≤ 1.

(1) If |F (x+ iy)| → 0 as |y| → ∞ uniformly in x, then choose an M such that if |y| ≥M , |F1|(z) ≤ 1/2; then, on
the sides of this window, |F1| ≤ 1, so by the maximum modulus princile, |F1(z)| ≤ 1 in {0 ≤ Rex ≤ 1}.

(2) If otherwise, set

Gn(z) = F1(z)e(z
2−1)/n = F1(z)e(x

2−y2+2ixy−1)/n.

For a fixed n, |Gn(z)| → 0 as |y| → ∞, and furthermore, |Gn(iy)| ≤ |F1(iy)|e(−y2−1)/n ≤ 1, and in a similar
way, the other bound can be checked, so Gn satisfies the conditions needed for the previous case. Thus, it
satisfies the theorem, and when n→∞, this also holds true for f . �

Basically, we can relax slightly to allow a little bit of growth in the second case.

Proof of Theorem 16.1. First, we need to define A on Lpt . This is even a useful exercise on its own.
Take an f ∈ Lpt , and write it as f = f1 + f2, where f1(x) = f(x)χ{|f |≤1}(x) and f2(x) = f(x)χ{|f |≥1}(x). Thus,

|f1|pt ≤ |f |p0 , |f2|pt ≤ |f |p1 , |f1|p1 ≤ |f |pt , and |f2|p0 ≤ |f |pt , so we conclude that f1 ∈ Lp1 and f2 ∈ Lp0 . In
particular, we can thus define Af = Af1 +Af2 (since A was already defined on the tw starting spaces), and thus it
clearly agrees with that definition.

Next, we will want to bound A. Given a g ∈ Lp¡ define Lg : Lp
′ → R by Lg(f) =

´
gf (where 1/p + 1/p′ = 1).

Thus, ‖g‖Lp = ‖Lg‖. Then, we want to calculate the operator norm

‖A‖Lpt→Lqt = sup
‖f‖Lpt=1

‖Af‖Lqt = sup
‖f‖Lpt=1
‖g‖

L
q′t

=1

ˆ
(Af)g dν.

(Here, g denotes the complex conjugate.) This is what we want to estimate.
Now, we want to take “simple functions” f and g; in the real case, we just approximated the values of these

functions, but here we’ll approximate the absolute value and leave the argument alone. In particular, take

f(x) =

n∑
j=1

aje
iαj(x)χAj (x)

g(y) =

m∑
j=1

bje
iβj(x)χBj (x).

Notice that since we’re in between the endpoints, these don’t live in L∞(M) or L∞(N); thus, Aj and Bj have finite

measure. But f ∈ Lpt(M) and g ∈ Lq′t(N).23

Now, let’s extend pt, qt, and q′t to the strip {0 ≤ Re(ζ) ≤ 1}, as

1

p(ζ)
=

1− ζ
p0

+
ζ

p1
1

q(ζ)
=

1− ζ
q0

+
ζ

q1
1

q′(ζ)
=

1− ζ
q′0

+
ζ

q′1
.

Thus, p(t) = pt if ζ = t is real, and the same holds for q and q′.
Define two more functions

u(x, ζ) =

n∑
j=1

a
pt/p(ζ)
j eiαj(x)χAj (x)

v(y, ζ) =

m∑
j=1

b
q′t/q

′(ζ)
j eiβj(x)χBj (y).

23This proof originally came from a book full of misprints; this proof in particular hadn’t a single completely correct sentence. Caveat

emptor (though the professor did the proof slowly and carefully to be sure).
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Thus, u(x, t) = f(x) and v(y, t) = g(y) when ζ = t is real. Finally, define

F (ζ) =

ˆ
Au(y, ζ)v(y, ζ) dy =

n∑
j=1

m∑
k=1

a
pt/p(ζ)
j b

q′t/q
′(ζ)

k

ˆ
(Aψj(y))eiβk(y)χBk(y) dν.

Thus, we want to show that 〈Af, g〉 ≤ k1−t0 kt1, or |F (t)| ≤ k1−t0 kt1. We can see the silhouette of Theorem 16.5 becoming
more distinct. . .

Suppose ζ = iξ, where ξ ∈ R; then, 1/p(ζ) = (1− iξ)/p0 + iξ/p1, so |aj |pt/p(iξ) = |a− j|pt/p0 . Then,

‖u(x, iξ)‖Lp0 ≤
(ˆ (∑

|aj |pt/p0χAj (x)
)p0)1/p0

=

(ˆ ∑
|aj |ptχAj

)1/p0

= ‖f‖pt/p0Lpt = 1.

‖v(x, iξ)‖
Lq
′
0
≤
(ˆ (∑

|bj |q
′
t/q
′
0χBj (x)

)q′0)1/q0

=

(ˆ ∑
|bj |q

′
tχBj

)1/q0

= ‖f‖q
′
t/q
′
0

Lq
′
t

= 1.

Thus, we have a bound |F (iξ)| ≤ k0, and an absolutely identical proof shows that |F (1 + iξ)| ≤ k1. Thus,

|F (η + iξ)| ≤ k1−η0 kη1 , and thus |F (t)| ≤ k1−t0 kt1. �

There is great power and beauty to complexifying the problem; though this looks kind of ugly, it’s nowhere near as
bad as a brute-force approach would be; the beauty is there, but hidden.

17. The Hilbert Transform: 12/2/14

Today, we’ve had a break from the course for over a week, so we will discuss things that aren’t unrelated to the
rest of the course, but stand on their own, as things in themselves (ding an sich).

The Hilbert Transform. The Hilbert transform was related to things done in Hilbert’s thesis, and motivated by
questions on integrable systems.

Suppose we have an f ∈ S(R); is there a way to extend it to an analytic function on C? Well, we can write

f(x) =

ˆ
R
f̂(ξ)e2πix·ξ dξ,

and there’s no reason we can’t write

f(z) =

ˆ ∞
−∞

f̂(ξ)e2πz·ξ dξ. (6)

Then, the derivatives are still Schwarz, and f̂ ∈ S as well. But sometimes it’s infinite: if z = x+it, then zξ = −tξ+ixξ,
so if t and ξ have opposite signs, the integral (6) might be infinite: f might not decrease exponentially.

Nonetheless, if f̂ is compactly supported, then f(z) is well-defined, and if |f̂(z)| ≤ e−α|ξ|, then f(x) is well-defined
when |Im(z)| < α. However, this f(z) grows to infinity, which is still suboptimal.

Maybe we just want to be modest and require f to be bounded, but extended as a harmonic function, and maybe
we just want to extend to the upper half-plane. This we can do, according to the formula

g(x, t) =

ˆ
e−2πt|ξ|+3πixξ f̂(ξ) dξ

for t > 0. Then, |g(x, t)| ≤ ‖f̂‖L1 . Furthermore, we can calculate ∂2g
∂x2 + ∂2g

∂t2 = 0, and g(x, t)→ f(x) as t→ 0. This is
unique, since it determines its boundary value, and it’s a convolution with the Poisson kernel, as we’ve mostly all

56



seen in complex analysis courses. Specifically,

g(x, t) =

ˆ
e−2pit|ξ|+2πxξf(y)e−2πiyξ dy dξ

=

ˆ ∞
−∞

f(y)

(ˆ 0

−∞
e2πtξ+2πi(x−y)ξ dξ +

ˆ ∞
0

e−2πtξ+2πi(x−y)ξ dξ

)
dy

=

ˆ ∞
−∞

f(y)

(
1

2πt+ 2πi(x− y)
+

1

2πt− 2πi(x− y)

)
dy

=
1

π

ˆ ∞
−∞

f(y)
t

t2 + (x− y)2
dy.

Thus, g(x, t) = Pt ? f(x), where

Pt(x) =
1

π

t

t2 + x2
=

1

tπ

1

1 + (x/t)2
=

1

t
P1

(x
t

)
.

Since
´
|P1|dx = 1, then this is an approximation of identity (as t→ 0, this approaches f(x)).

Returning to the Hilbert problem, what is the harmonic conjugate to g(x, t) = Pt ? f(x)? We can write

g(x, t) =

ˆ ∞
0

f̂(ξ)e−2πtξe2πixξ dξ︸ ︷︷ ︸
q(x)

+

ˆ 0

−∞
f̂(ξ)e2πtξ+2πixξ dξ.

Now, since i(x + it)ξ = −tξ + ixξ when ξ > 0, then q(z) =
´∞
0
f̂(ξ)e2πizξ dξ is analytic in the upper half-plane.

Furthermore, let

iv(x, t) =

ˆ ∞
0

f̂(ξ)e−2πtξ+2πixξ dξ −
ˆ ∞
0

f̂(ξ)e2πitξ+2πixξ dξ

=

ˆ ∞
−∞

sgn(ξ)e−2πt|ξ|+2πixξ f̂(ξ) dξ.

Then, g(z) + iv(z) = 2
´∞
0
f̂(ξ)e2πizξ dξ is analytic on the upper half-plane.

So we’re trying to raise f onto the upper half-plane and then take its harmonic conjugate, sending f(x)→ g(x, t)→
v(x, t)→ v(x, 0).

Definition. v(x, 0) constructed in the above way is the Hilbert transform of f(x).

Let’s take its Fourier transform:

v̂(ξ, t) = −i sgn(ξ)f̂(ξ)e−2πt|ξ|.

In particular, v(x, t) = (Qt ? f)(x), where Q̂t(ξ) = −i sgn(t)e−2πt|ξ|, so therefore Q̂0(ξ) = −i sgn(ξ). Thus,

v(x, 0) =

ˆ
(−i sgn(ξ))f̂(ξ)e2πixξ dξ.

We want to know how slowly this decays; if f is discontinuous, we’ll need lots of high frequencies to account for the
jumps, so it decays more slowly.

Definition. The principal value of 1/x is a Schwarz distribution PV(1/x) ∈ S ′(R) given by

PV

(
1

x

)
(ϕ) = lim

ε→0

ˆ
|x|>ε

ϕ(x)

x
dx.

Since ϕ is Schwarz, this is well-defined at infinity, but why is it bounded as ε→ 0? It turns out that

PV

(
1

x

)
(ϕ) =

ˆ
|x|>1

ϕ(x) dx

x
+ lim
ε→0

ˆ
ε<|x|<1

ϕ(x)− ϕ(0)

x
dx =

ˆ
|x|>1

ϕ(x) dx

x
+

ˆ 1

−1

ϕ(x)− ϕ(0)

x
dx.

Thus, it is in fact bounded.

Proposition 17.1. Let Qt(x) = (1/π)(x/(t2 + x2)); then, limt→0Qt(x) = (1/π) PV(1/x).

Proof. Let ψt(x) = (1/t)χt<|x|, so that

PV

(
1

x

)
(ϕ) = lim

t→0

ˆ ∞
−∞

ψt(x)ϕ(x) dx.
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Then, ˆ
(πQt(x)− ψt(x))ϕ(x) dx =

ˆ ∞
−∞

xϕ(x)

x2 + t2
dx−

ˆ
|x|>t

ϕ(x)

x
dx

=

ˆ
|x|<t

xϕ(x) dx

x2 + t2
+

ˆ
|x|>t

(
x

x2 + t2
− 1

x

)
ϕ(x) dx

=

ˆ
|z|<1

zϕ(zt)

z2 + 1
dz −

ˆ
|x|>t

t2

x(x2 + t2)
ϕ(x) dx

=

ˆ
|z|<1

zϕ(zt) dz

z2 + 1
+

ˆ
|z|>1

ϕ(tz)

z(z2 + 1)
dz.

As t → 0, this goes to 0 (the limit works because these are bounded, so we can use the Lesbegue Dominated
Convergence Theorem). �

The fact that 1/x cancels is very important — it’s an odd function, so the average over any sphere is 0, and we
couldn’t do this with 1/|x|. These can be generalized to other functions which are 0 averaged over spheres, leading to
a class of operators called Calderón-Zygmund operators.

Now, we know the Hilbert transform is the convolution with the principal value of 1/x:

Hf(x) = lim
t→0+

Qt ? f(x) =
1

π
lim
ε→0

ˆ
|y|>ε

f(x− y) dy

y
.

Then, Ĥf(ξ) = −i sgn(ξ)f̂(ξ), so if f ∈ S(R), then ‖Ĥf‖L2 = ‖f̂‖L2 , and in particular H : L2 → L2 is well-defined.
Another useful property is that this is skew-symmetric on L2: (Hf, g) = −(f,Hg), and in particular H(Hf) = −f .

There’s more than one way to see this, but since Hf(x) =
´
f(y)/(x− y) dy, then H∗f(x) =

´
(1/(y − x))f(y) dy =

−Hf .
We wish to generalize this to other Lp spaces, and we’ll be able to use Theorem 16.1 to do this.

Definition. The space of weak L1 functions L1
w is the space of functions f such that m({x : |f(x)| > λ}) < c/λ for

some c. Similarly, a weak Lp function is one such that fp ∈ L1
w.

Theorem 17.2 (Kolmogorov (1925)). The Hilbert transform satisfies m({x : |Hf(x)| > λ}) ≤ c‖f‖L1/λ.

This says it’s weak L1, which is a nice bound. We can do better sometimes, though; the Riesz-Thorin interpolation
theorem allowed interpolation between operators Lp1 → Lq1 and Lp2 → Lq2 ; then, a theorem of Marcinkiewiecz24

allows interpolation between operators Lp1 → Lq1w and Lp2 → Lq2w . The proof is elementary, but takes a while, so will
be omitted.

If p 6= 1, we can do better. (It’s a nice exercise to see why this doesn’t work in L1.)

Theorem 17.3 (M. Riesz (1928)). For 1 < p <∞, the Hilbert transform is a bounded linear operator Lp(R)→ Lp(R).

Proof. Let

u(z) =

ˆ ∞
0

e2πizξ f̂(ξ) dξ =

ˆ ∞
0

e2πizξ
(
f̂(ξ) + iĤf(ξ)

)
dξ.

We’ll look at ξ = 0 and z → +∞.

Let S0 = {f ∈ S : there exists ε > 0 such that f̂(ξ) = 0 for |ξ| < ε}; then, if f ∈ S0, then Ĥf(ξ) = −i sgn(ξ)f̂(ξ) ∈
S(R), so Hf ∈ S(R), which is nice.

Claim. S0 is dense in Lp(R).

Proof. Given an f ∈ S and p = 2, take

χ(ξ) =

{
1, |ξ| > 1
0, |ξ| ≤ 1/2.

Then, set gn(ξ) = f(ξ)χ(nξ) ∈ S0, since gn(ξ) = 0 for |ξ| ≤ 1/2n, and so

‖gn − f‖L2 = ‖ĝn − f̂‖L2 ≤ 2

ˆ 1/n

−1/n
|f̂(ξ)|2 dξ,

24Like several Eastern European mathematicians at around the time of the Second World War, Marcinkieviecz’s work was interrupted

by the Soviet invasion of Poland; since he served as an officer, he eventually died in a Soviet concentration camp.
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which goes to 0 as n→∞. Thus, it converges in L2, and we can also show it converges in L∞: if p =∞, then

‖gn − f‖L∞ ≤ ‖ĝn − f̂‖L1 ≤ 2

ˆ 1/n

−1/n
|f̂(ξ)|dξ,

which also goes to 0 as n→ +∞.
Thus, gn → f in all Lp for 2 ≤ p ≤ ∞. �

Now, define p(x) = f(x) + iHf(x), and its analytic continuation is

p(z) = 2

ˆ ∞
0

e2πizξ f̂(ξ) dξ.

Assume f ∈ S0(R) and |f̂(ξ)| = 0 for |ξ| ≤ ε. Then, |p(z)| ≤ 2‖f̂‖L1e−2πε|y|, if z = x+ iy, and so we can integrate
along the semicircle CR around 0 with radius R in the upper half-plane. By Cauchy’s theorem,

¸
CR

p(z)4 dz = 0,25 so´∞
−∞(f + iHf)4 dx = 0. Taking the real part,

´
(f4 − 6f2(Hf)2 + (Hf)4) dx = 0, and thereforeˆ

(Hf)4 dx = 6

ˆ
(f2)(Hf)2 −

ˆ
f4 dx ≤ 6 · 1000

ˆ
f4 +

6

1000

ˆ
(Hf)4 −

ˆ
f4.

Thus, Hf is L4! Now we see why the fourth power was used: because we remember the coefficients. One can do this
with any power, so we know ‖Hf‖p ≤ C‖f‖p for 2 ≤ p <∞.26

Now, to get 1 < p < 2, we rely on science, not tricks. Specifically, since ‖Hf‖Lp ≤ C‖f‖Lp , then the joint operator

H∗f satisfies the dual bound: ‖H8f‖Lp′ ≤ C‖f‖Lp′ , where Lp
′

is the dual to Lp, which by the Riesz Representation
Theorem is when 1/p+ 1/p′ = 1. But we know H∗ = −H, so ‖Hf‖p ≤ C‖f‖p for all 1 < p <∞. �

This is good for the Hilbert transform, but for more general integral linear operators the proof doesn’t work quite
as well.

18. Brownian Motion: 12/4/14

“We pretend it is continuous. You ask too many questions.”

First, let’s talk about what Brownian motion really is; then, we can construct it. This is advantageous because the
formal construction is somewhat abstract.

Start with a random walk on Z; at the starting position x, jump to the right with probability 1/2 and the left
with probability 1/2; then, do the same thing (going forwards and backwards, each equally likely at each step). This
creates a path from integers to integers, or a piecewise linear function R → R. We want to rescale this so that it
becomes a continuous time-space curve; specifically, send the spatial step h = δx→ 0 and the time step τ = δt→ 0.
How should we do this?

Before rescaling, X(n) = Y1 + · · ·+ Yn for Yi independent random variables equal to each of ±1 with probability
1/2. The right tools to deal with this will be the Central Limit Theorem and the Law of Large Numbers. Recall that
the latter states that

X(n)

n
=
Y1 + Y2 + · · ·+ Yn

b
−→ 0

as n→∞, so X(n)/n = (1/n)(Y1 + Y2 + · · ·+ Yn) = Y1/n+ · · ·+ Yn/n→ 0, which now has spatial step h = 1/n.
However, the Central Limit Theorem tells us this stays near zero with very high probability, so we need to do more
jumps, in some sense; thus, we need a shorter timestamp.

The Central Limit Theorem tells us that X(n)/
√
n goes to a Gaussian with mean zero and variance 1, so that if

the spatial step is h = 1/
√
n and τ = 1, then Y1/

√
n+ · · ·+ Yn/

√
n converges to a Gaussian, which has mean zero,

but is not identically zero. This is an interesting example, because the steps one takes get larger and larger; the hope
is that when one passes to the limit as n→∞, the result is a continuous time-space process.

The reason this works is a little bit of abstract nonsense: the probability describes a measure on the space of
continuous functions that is only supported on these piecewise linear functions, and since they have a modulus of
continuity, one can prove that the limit point must exist.27

Now, we want to understand why (δx)2 = δt. Let τab denote the time spent within the interval [a, b] (where
x ∈ [a, b]). We want to know g(x) = Ex[τab]; if x = a or x = b, then g(x) = 0. In particular,

g(x) =
1

2
g(x+ δx) +

1

2
g(x− δx) + δt.

25Why the 4th power? May the fourth be with you!
26This is much nicer than the standard proof, if a little dependent on trickery.
27See Billingsley, Weak Convergence of Probability Measures.
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This is an exact equation.28 Recall that we’ve all taken calculus classes, so let’s expand out along a Taylor series (the
analyticity works out, but is a little painful to prove):

g(x) =
1

2

(
g(x) + g′(x)δx+

g′′(x)

2
(δx)2 + · · ·

)
+

1

2

(
g(x)− g′(x)δx+

g′′(x)

2
(δx)2 − · · ·

)
+ δt.

Thus, −g′′(x)/2 = δt/(δx2)+ · · · , so we must have a relation similar to δt = (δx)2. Now we have an informal argument
along with this scientific argument. When Brownian motion is done in higher dimensions, we get an elliptic partial
differential equation, which is reasonably nice: −∆g/2 = 1 in Ω, and g = 0 on ∂Ω.

We will constrct the Brownian motion using Haar functions. Let

ψ(x) =

 1, 0 ≤ x < 1/2
−1, 1/2 ≤ x < 1,

0, otherwise.

Then, we’ll generate lots of different functions by scaling and translating these: we want ψjk to have scale j and

location k; specifically, let ψjk(x) = 2j/2(2jx − k), which is located around x = k/2j . Additionally, the ψjk are
normalized: ˆ ∞

−∞
ψ2
jk(x) dx = 2j

ˆ
ψ2(2jx− k) dx =

ˆ
ψ2(y − k) d = 1.

Intuitively, to preserve the L2 norm for things which are scaled, they have to be compressed a lot (this is what the 2j

is doing). There are also two more normalization properties:ˆ
ψjk(x) dx = 2j/2

ˆ
ψ(2jx− k) dx =

1

2j/2

ˆ
ψ(y − k) dy = 0.

ˆ
|ψjk|dx =

1

2j/2
.

Finally, a calculation in the lecture notes (though there is some intuition behind it) shows thatˆ
ψjk(x)ψj′k′(x) dx = δjj′δkk′ .

Thus, the ψjk are orthonormal! Thus, for an f ∈ L2(R), we can obtain Fourier coefficients for them: let

cjk =

ˆ ∞
−∞

f(x)ψjk(x) dx.

Since 〈ψjk, ψj′k′〉 = δjj′δkk′ , then
∑
c2jk ≤ ‖f‖

2
.

Claim. {ψjk(x) : j, k ∈ Z} forms a basis for L2(R).

Proof. Let Imk = ((m− 1)/2k,m/2k) (dyadic intervals). We want to approximate the function on these intervals:
the best approximation is

Pmf(x) =
1

|Imk|

ˆ
Imk

f dy.

Thus, in probabilistic terms this corresponds to the conditional expectation of f !
We want to show that

Pn+1f − Pnf =
∑
k∈Z

cnkψnk(x).

If one refines the dyadic intervals, this corresponds to splitting each interval into two. The averaging property means
that

´
Ink

Pn+1f =
´
Ink

Pnf , and there’s a coefficient αnk such that Pn+1f − Pnf = αnkψnk.

Exercise 13. Show that αnk =
´
fψnk = cnk.

Then,

Pn+1f − P−mf =

m∑
j=−m

∑
k

cjkψjk

28“You can explain it to your sibling, though you may need to pick a sibling based on age. I probably can’t explain it to my daughter

until she is 24.”
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and

ˆ
R
|Pnf |2 dx =

∑
k∈Z

ˆ
Ink

|Pnf |2

=
∑

2−n22n
∣∣∣∣ˆ
Ink

f(y) dy

∣∣∣∣2
≤
∑

2n2−n
ˆ
Ink

|f(y)|2 dy = ‖f‖22,

so these are all bounded linear operators. Then (this requires some care about which norms one uses), if f ∈ Cc(R),
then averaging it on a very large interval makes it very small (since it’s compactly supported): as m → ∞,
P−mf ≤ (1/2m)

´
|f | → 0, and additionally, Pnf → f . Thus, letting m,n→∞, we see that

f(x) =
∑
j,k∈Z

cjkψjk. �

Now, we will relate this back to Brownian motion, which will be constructed in terms of these Haar functions.
First, though, what do we want from Brownian motion B(t)?

(1) B(t) should be a continuous process almost surely.
(2) Increments of B(t) should be independent: specifically, B(t1)−B(t2) should be independent of B(t3)−B(t4)

when t1 > t2 > t3 > t4.
(3) The increments B(t)−B(s) (with 0 ≤ s < t) should be Gaussian.
(4) We would want the variance to be E((B(t)−B(s))2) = t− s. This comes from the idea that

E((Y1 + · · ·+ Yn)(Y1 + · · ·+ Yn)) =
∑
i,j

E(YiYj) =

n∑
j=1

E(Y 2
i ) = n.

Now we’ll be able to set up the measure-theoretic construction. For 0 ≤ t < 1¡ consider ψjk(x) where j ≥ 0,
k = 0, 2j − 1. Specifically, let ϕ2j+k(t) = ψjk(t). These are piecewise linear “hat functions:” first they go up, then
they go down. The result is a triangle.

Next, let zn(ω) be independently and identically distributed random Gaussian variables such that E(zn) = 0,
E(z2n) = 1, so that

P (zn > y) =

ˆ ∞
y

e−y
2 dy√

2π
.

Claim. The function

X(t, ω) =

∞∑
n=1

zn(ω)

ˆ t

0

ϕn(s) ds

is the Brownian motion, i.e. it satisfies the constraints outlined above.

Proof. First, we need to check that this series even converges in L2(Ω) (where ω ∈ Ω, which is the probability space),
since the sum of Gaussians could diverge. Let’s take the Cauchy tail of this:

E

(
m∑
k=1

zn(ω)

ˆ t

0

ϕk(s) ds

)2

=

m∑
k=n

m∑
k′=n

E(zkzk′)

ˆ t

0

ϕk

ˆ t

0

ϕk′

=

m∑
k=n

(ˆ t

0

ϕk(s) ds

)2

=

m∑
k=n

〈χ[0,t], ϕk〉
2
,

which is just the sum of the wavelet coefficients. Thus, this goes to 0 as m,n→∞.
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Now, we can do the same thing with the increments. Let s < t; then,

E(X(t, ω)−X(s, ω)) =

∞∑
k=1

∞∑
k′=1

E(zkzk′)

ˆ t

s

ϕk(τ) dτ

ˆ t

s

ϕk′(τ
′) dτ ′

=

∞∑
k=1

(ˆ t

s

ϕk(τ) dτ

)2

=

∞∑
k=1

〈χ[s,t], ϕk〉
2

= ‖χ[s,t]‖
2

= t− s.
Thus, the increments have the right variance. Let’s show they’re independent. We know that all of the finite sums
are Gaussians, and the limit of Gaussians is Gaussian, so the increments are all Gaussian. Thus, to check their
independence, it suffices to check that the covariance matrix is diagonal. Let’s check it. Suppose t1 < t2 < t3 < t4;
then,

E((Xt4 −Xt3)(Xt2 −Xt1)) =

∞∑
k=1

(ˆ t4

t3

ϕk(s) ds

ˆ t2

t1

ϕk(s) ds

)
= 〈χ[t3,t4], χ[t1,t2]〉 = 0.

Now, we want to show that B(t) is a continuous process almost surely. We won’t be able to get uniform continuity in
ω, but that’s all right. Here’s a useful fact about Gaussian variables.

Claim. The random variable

M(ω) = sup
n

|zn(ω)|√
log n

is finite almost surely.

Proof. We can calculate

P
(
|zn(ω)| ≥ 2

√
log n

)
≤ e−(2

√
logn)2/2 =

1

n2
.

Thus, the sum of all of these probabilities is finite, so by the Borel-Cantelli lemma, almost surely only a finite number
of them happen. In particular, almost surely we have that |zn(ω)| ≥ 2

√
log n only finitely many times.29 �

This is useful outside of this proof, since sequences of i.i.d. Gaussians tend to be useful.
Here, though, we use it to say that there exists an M(ω) such that |zn(ω)| ≤ M(ω)

√
log n almost surely. In

particular, for each j,
´ t
0
ϕ2j+k(s) ds is nonzero for exactly one k (which does have a little intuition for how ϕ2j+k

looks like triangular hats with height (1/2j/2)). Thus, in the left-hand side of the following equation, there’s only one
term to really sum over: ∣∣∣∣∣∣

2j−1∑
k=0

z2j+k(ω)

ˆ t

0

ϕ2j+k(s) ds

∣∣∣∣∣∣ ≤ 1

2j/2
M(ω)

√
log(2j + 2j)

≤ M(ω)
√
j
√

log 2

2j/2
.

Thus, if one looks at the series

X(t, ω) =

∞∑
n=1

zn(ω)

ˆ t

0

ϕn(s) ds,

it’s bounded above, and therefore uniformly convergent in t for each fixed ω! Since each term is continuous, this
implies that X(t, ω) is almost surely continuous. �

Though we ran out of time, one can also prove that there’s no control over the modulus of continuity, and therefore
that X(t, ω) is nowhere differentiable almost surely. (See the lecture notes for a proof.) In particular, this relatively
explicit series gives a nice example of a continuous, but nowhere differentiable function. And it’s not even much
harder to show that it’s Hölder with exponent less than 1/2, but is not Hölder with exponent 1/2 or more. These are
somewhat useful functions, but people quested for them for a long time in the 19th Century (which makes one wonder
why we study it in the 21th Century, but we digress).

29The number of times it happens is random, but the important point is that it’s finite almost surely.
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