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1. SMOOTH MANIFOLDS: 4/7/15

“Are quals results out yet? I remember when I took this class, it was the day results came out, and so
everyone was paying attention to the one smartphone, since this was seven years ago.”

This class will have a take-home final, but no midterm. It’s an important subject, but there aren’t any really
awesome theorems, which is kind of sad.

Here are some goals of this class:

• Definitions: manifolds, the tangent bundle, etc.
• Basic properties of manifolds: transversality, embedding theorems (into Euclidean space).
• Differential forms, Stokes’ theorem, de Rham cohomology. Some of you may have learned this in a fancy

multivariable calculus class. If 215C has a punchline, it’s that de Rham cohomology is the same as regular
cohomology, which is elegant but not all that helpful for doing stuff.

• Intersection theory, and the idea that intersection is dual to the cup product. We’ll also talk about
characteristic classes a little bit, which is supposed to be in the last quarter of a second-year graduate
topology class, so we’ll see what happens.

• Morse theory, which is another homology theory that ends up being the same (chain complexes built out
of functions from a manifold toR), but this is useful e.g. for using algebraic topology to provide bounds
on critical points of functions.

Definition. A manifold is a paracompact Hausdorff space M such that for all x ∈M , there exists an open U ⊆M
such that x ∈U and U ∼=Rn . In this case, we say that the dimension of M is n .
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Recall that paracompact means that every open cover has a subcover such that each point has a subcover
containing only finitely many sets, and that Hausdorff means that any two points can be separated by open sets
(each has an open neighborhood not containing the other).

One may also want the manifold to be second countable, i.e. it has a countable basis; the exceptions include
things with infinitely many components. Second countability implies paracompactness, and we won’t be working
in the boundary between them much anyways.

Example 1.1. Let M =R×{0}
∐

R×{1}, where (x , 0)∼ (y , 1) if x = y and x 6= 0. Thus, M looks likeR, but has two
copies of the origin. This (topologized with the quotient topology) is locally Euclidean, but not Hausdorff.

Example 1.2. Letω be the first uncountable ordinal, and let R =ω× [0, 1), with the order topology. Then, R is
called the long ray. Let L be R without its smallest point; then, both L and R are locally Euclidean and Hausdorff,
but it’s not paracompact, which is a confusing digression into set theory (now that you mention it, what exactly is
the first uncountable ordinal?).

Later on, this will be a nice counterexample to the notion that homomorphisms of homotopy groups determine
a space up to homotopy; this is only true for nicer spaces. The higher homotopy groups vanish, but it isn’t
contractible (which is painful to make rigorous; intuitively, it would take “too long”).

In this class, though, you’ll only need to know enough logic and point-set topology to know that these issues
have been avoided.

Definition.

• Let M be a manifold; then, an atlas on M is a collection of open sets {Uα} that covers M and a collection

of homeomorphisms ϕα : Uα
∼=→Rn . The pairs (Uα,ϕα) are called charts.

• A smooth structure on a manifold M is an atlas {(Uα,ϕα)} such that whenever Uα ∩Uβ 6= ;, the map
ϕβ |Uα∩Uβ ◦ (ϕα|Uα∩Uβ )

−1 :Rn →Rn is smooth (i.e. C∞).
• Let M be an m-dimensional manifold and N be an n-dimensional manifold. Then, a continuous f : M →

N is called smooth (or C∞) if for all m ∈M , charts (Uα,ϕα) containing m , and charts (Vβ ,ϕβ ) containing
f (Uα), the map ϕβ ◦ f ◦ (ϕα|Uα )

−1 :Rm →Rn is smooth. In other words, we take ϕα(Uα), send it back using
ϕ−1
α , then apply f and ϕβ to it.

A lot of this might feel imprecise, but the basic concrete definitions eventually become second nature, so it’s
not super important which definition is used to start the whole thing off. For example, many authors require all
atlases to be maximal (ordered by inclusion). Furthermore, even if these definitions seem painful or complicated,
the idea is that smoothness is simply checked in charts: it’s a local notion inRn , so it can be checked locally on
manifolds, which locally are homeomorphic to Rn .

There may be multiple smooth structures on a given manifold, so how do we know whether they’re equivalent?

Definition. A smooth map f : M →N of manifolds is a diffeomorphism if there exists a smooth g : M →N with
f ◦ g = id and g ◦ f = id.

This is the notion of sameness (isomorphism) in the category of differentiable manifolds.

Tangent Bundles. The next reasonable thing to discuss is the tangent bundle, which is a specific example of fiber
bundles or vector bundles.

Definition. Let E , B , and F be topological spaces. Then, a continuous map P : E → B is called a fiber bundle
with fiber F if for all x ∈ B , there exist an open U containing x and a homeomorphism (sometimes called change
of coordinates)φU : P −1(U )→U × F such that the following diagram commutes.

P −1(U )

P
��

φU // U × F

π1
��

U

Here, π1 is projection onto the first component.

The idea is that a fiber bundle locally looks like a product, but there could be some twisting, e.g. the Möbius
strip locally looks like [0, 1]×S 1, but globally is not: φU rotates as one moves along S 1. See Figure 1 for a picture.

2



FIGURE 1. The Möbius strip, a nontrivial fiber bundle, since it locally looks like [0, 1]×S 1, but
not globally. Source: http://mathworld.wolfram.com/MoebiusStrip.html.

For a sillier example, one could just take E = B × F , where the homeomorphisms can be global; this is the
same sense in which Rn is a manifold.

Example 1.3. Another nontrivial example is where B = CP n and E ⊆ CP n ×Cn+1 = {(`, y) | y ∈ `}; then, let
P : E → B send P (`, y) = `, so P −1(`)∼=C. Once again, there’s some “twisting” that means the product structure
only exists locally.

Definition. Let P : E → B be a fiber bundle with fiber F , and suppose that F is a real vector space. Then, P
is called a vector bundle if the change of coordinates maps φU are linear. To be precise, there exists an open

cover Uα of B with fiberwise homeomorphisms P −1(Uα)
'→ Uα × F such that whenever Uα and Uβ intersect,

ϕβ ◦ϕ−1
α : (Uα ∩Uβ )× F induces a map F → F for each x ∈Uα ∩Uβ ; this map is required to be linear.

For example, one can imagine a fiber bundle of R on S 1 (e.g. the normal lines): then, the two copies of R that
come together to make S 1 overlap, and we have to say something on their boundary. In this case, send fibers
to each other with the identity at one point, and flipped at the other; the result is the Möbius band again (if the
identity was chosen in both cases, we would have had the trivial bundle again).

These definitions may seem unmotivated (perhaps this was deliberate; most of the class has seen some of this
stuff already). However, the way we’ll use the notion of a vector bundle is to define the tangent bundle, which
is the set of tangent vectors at points in M (i.e., each fiber at x is Tx M , the tangent space to M at x ). If M is
embedded in Euclidean spaceRN , then the tangent bundle T M = {(m , v) | v is tangent to M at m}, but we want a
definition that works for abstract manifolds and is more intrinsic.

Of course, since the intuition for the tangent bundle follows from the embedded case, the abstract definition
isn’t all that useful, but we do need it for formal arguments.

Definition. Let M be a manifold and m ∈M . Then, the set of tangent vectors at m is the set of smooth functions
γ :R→M such that γ(0) =m , modulo the equivalence relation that γ∼ γ′ if for all smooth f : M →R,

d

dt

�

�

�

�

t=0

f (γ(t )) =
d

dt

�

�

�

�

t=0

f (γ′(t )).

The intuition is that two functions (curves, in fact) are the same if they have the same derivative at m , but we
need to add f : M →R because we don’t know yet how to take derivatives on manifolds. If you’re familiar with
germs of functions, this is a similar notion. Alternatively, this can be viewed as gluing the tangent bundles of open
sets of Euclidean space together.

The goal is to have a tangent space, which means we want to turn this into a vector space somehow; tune in
next time for that.
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2. THE TANGENT BUNDLE: 4/9/15

“Most people like colimits better than limits, but we won’t poll the audience yet.”

There are several ways of defining the tangent bundle, and more interestingly putting a topolgy on it; the most
low-tech way, which builds a tangent bundle on a manifold out of the trivial bundle on Rn by gluing, is often the
best. That trivial bundle is TRn =Rn ×Rn with projection ontoRn (since the tangent space at any x ∈Rn is again
isomorphic to Rn ).

But to do this, we need to pin down the notion of gluing. Suppose {Uα} is an open cover of a space B and F is a
real vector space. Then, we would like the fiber to be F , but the transition maps need to respect its structure, i.e.
the transition functions tαβ : Uα∩Uβ →Aut(F ), i.e. GLR(F ). If F is instead a complex vector space, we would want
GLC(F ), and if it’s a differentiable manifold (which is the notion of a smooth manifold bundle), we would like
them in Diff(F ), and so on.

Now, armed with this data, we can carry out the gluing. Define

E =
∐

α

Uα× F /
�

(x ∈Uα, f )∼ (x ∈Uβ , tαβ (x )( f ))
�

.

Is this a fiber bundle? We want projection, P : E → B sending (x , f ) 7→ x to be well-defined.

Proposition 2.1. Suppose that the transition functions satisfy the following conditions for all intersecting charts α,
β , and δ:

• tαα = id.
• tαβ (x ) = tβα(x )−1.
• tαβ (x )tβδ(x ) = tαδ(x ).

Then, P : E → B is a fiber bundle.

The intuition is that in these cases, two points in different fibers will never be identified, so projection is
well-defined. The last condition is called the cocycle condition.

So now, we should use this for when B = M is a manifold. Specifically, it’s necessary to specify transition

functions Uα∩Uβ →GLn (R). Each Uα comes with aϕα : Uα
∼=→Rn . Thus, there’s a mapϕβ ◦ϕ−1

α :ϕα(Uα→Uβ )→Rn

is a map from an open subset of Rn to itself. That means we can take derivatives, and define tαβ (x ) = D (ϕβ ◦
ϕ−1
α )(ϕα(x )). Then, we can check that Proposition 2.1 holds, and sure enough, this is a tangent bundle.

On the one hand, we had to use charts which is unpleasant, but the other more intrinsic definitions aren’t as
easy to topologize.

Definition. Let M be a smooth manifold and m ∈M . Then, let

Tm M = {γ : (−ε,ε)→M | ε > 0,γis smooth, and γ(0) =m}/∼,

where γ1 ∼ γ2 if for all smooth f : M →R,

d

dt

�

�

�

�

t=0

f (γ1(t )) =
d

dt

�

�

�

�

t=0

f (γ2(t )).

Then, the tangent bundle is TM =
⋃

m∈M Tm M , and the projection is p : TM→M sending γ 7→ γ(0).

In general in this class, a function between topological spaces will be assumed to be continuous, and a function
of smooth manifolds will be assumed to be smooth (unless we’re trying to prove this, of course, or where stated
otherwise).

This second definition is a very nice definition of a set; in order to give it a topology we’ll have to appeal to
the first definition! In the case M =Rn , let L :Rn → TmRn given by L (v) :R→Rn , where L (v)(t ) =m + t v. That is,
given a vector, the result is a function whose image is that line. Then, every curve is equivalent to one of these lines,
its tangent line (which is why this is called the tangent bundle). Thus, L is a bijection, and it can be promoted
to a more general bijection L between our two notions of tangent bundle onRn , and this bijection creates the
topological structure that you’d like. Then, the same notion can be defined for a general manifold M , but it’ll
involve some futzing around with charts.

The third definition again doesn’t have an obvious natural topology, but it makes the vector-spatial structure
much clearer, and it’s sheafy, which algebraic geometers tend to like.
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Definition. Let M be a manifold and m ∈M . Then, define

G (M ,R)m = lim−→
m∈U

U open

C∞(U ,R).

That is, this colimit is the set of all such maps f : U →Rwhere U is an open neighborhood of M , but such that
f = g if there’s an open neighborhood W of m such that f |W = g |W . G (M ,R)m is called the germs of functions
at m , and C∞(U ,R) is the set of smooth functions from U to R.

Note that this colimit is in the category of vector spaces, since C∞(U ,R) is a real vector space; moreover, it’s
also a ring under pointwise addition and multiplication.

Definition. Let T ∈HomR(G (M ,R)m ,R). Then, T is called a derivation if T ( f g ) = f (m )T (g )+g (m )T ( f ). The set
of derivations for an m ∈M will be denoted Tm M .

Proposition 2.2. There is a natural linear homomorphism ev from the previous definition of Tm M to this one.

That is, if f is the germ of a function and γ : (−ε,ε)→M , then ev(γ)( f ) ∈R is given by

ev(γ)( f ) =
d

dt

�

�

�

�

t=0

f (γ(t )).

Here, f is a germ, so it’s defined on a neighborhood, so its derivative exists.
When you boil down everything, the point is that these notions of the tangent bundle are equivalent; the book

goes into more detail.

Definition. Suppose that f : M →N is a map of smooth manifolds and m ∈M . Then, let D fm : Tm M → Tm N be
defined by D f (γ) = f ◦γ (using the definition of equivalence classes of curves).

Proposition 2.3. D fm is linear, and moreover agrees with the standard (“Math 51”) definition for M , N =Rn .

Well, now that we’ve defined tangent bundles and functions between them, let’s use them.

Definition. f : M →N is called an immersion if D fm is injective for all m ∈M ; it is called a submersion if D fm

is surjective for all m ∈M .

The idea is that an immersion should have no singularities (à la y 2 = x 3), but it is allowed to intersect itself.
Submersions are generalizations of projections.

Definition. A mapφ : E1→ E2 is an isomorphism of vector bundles if it is a homeomorphism that induces linear
maps on each fiber, and the following diagram commutes.

E1
ϕ //

��

E2

��
X

Here, the arrows to X are projection.

Topological K -theory and Bott Periodicity. Many operations that we’re used to from the world of vector spaces
work just as well in vector bundles. For example, if E1→ P and E2→ P are vector bundles, then one can define
E1⊕E2→ P , E1⊗E2→ P , and Hom(E1, E2)→ P in the reasonable way (do it fiberwise, or I guess check the universal
property), Λk E1→ B , and so on.1 Furthermore, ⊕ and ⊗will allow us to define a ring structure on vector bundles.

We’ll work out one of the cases in detail.

Definition. Let E → B be a fiber bundle and f : X → B be continuous. Then, the pullback of E along f is
f ∗E = {(x , e ) | f (x ) = p (e )} ⊂ X ×E . Furthermore, there’s a natural map f ∗P : f ∗E → X given by f ∗P (x , e ) = x .

Categorically speaking, this is a fiber product.

Proposition 2.4. f ∗P : f ∗E → X is a fiber bundle.

This bundle is called the pullback fiber bundle.

1Note that when proving this, it may be necessary to refine or subdivide charts (make them smaller), which is a little annoying.
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Definition. Let E1 and E2 be fibers over B , and∆ : B → B ×B be the diagonal map, i.e. it sends x 7→ (x , x ). Then,
let E1×B E2 =∆∗((E1×E2)→ (B ×B )); if E1 and E2 are vector bundles, this is also denoted E1⊕E2.

Exercise 2.5. Show this is identical to taking the Cartesian product of the fibers over each point.

Definition.

• A monoid is a set with a binary operation × that is associative, but that may not have identity or inverses.
• If × is commutative, it’s called a abelian monoid.
• If M is a monoid where x + y = z + y implies x = z for all x , y , z ,∈ M , then M is said to have the

cancellation property.

Sometimes, this is called a semigroup, and monoids are required to have an identity.

Definition. Let M be an abelian monoid. Then, its Grothendieck group is the group GG(M ) is M ×M modulo
the equivalence relation (a , b )∼ (c , d ) if a +d + y = b + c + y for some y ∈M .

In some sense, this is the smallest group you can get out of M , by formally adding inverses and cancellation.
There’s a natural inclusion ι : M →GG(M ), which is a monoid homomorphism (i.e. the binary operation factors

through it). Then, the Grothendieck group satisfies the following universal property: for any group G and map of
monoids ϕ : M →G , there is a uniqueφ : GG(M )→G such that the following diagram commutes.

M

ι

��

ϕ // G

GG(M )
φ

;;

The intuition is thatφ(a , b ) =ϕ(a )ϕ(b )−1.
It turns out that the isomorphism classes of real vector bundles over a topological space X form a monoid,

called VecR(X ), where the binary operation is the direct sum; VecC(X ) is defined analogously.

Definition. KO(X ) =GG(VecR(X )), and K(X ) =GG(VecC(X )), called real and complex K -theory, respectively.

The idea here is that monoids are harder to do stuff with than groups, so if we’re willing to throw away some of
that information, we can do more with the rest.

For example, TSn ⊕R∼=Rn+1, which is an example of information that would be lost. The analogue is that there
exist projective modules that aren’t free.

Theorem 2.6 (Bott Periodicity).

• Z×KO(X )∼=KO(Σ8X ).
• Z×K(X )∼=K(Σ2X ).

Here, Σ denotes suspension.
For example, K(pt) =Z (generated by the trivial bundle), and K(S 2) is generated by the trivial and tautological

bundles.

3. PARALLELIZABILITY: 4/14/15

“In my thesis defense, I wrote ‘paralize’ several times instead of ‘parallelize.’ ”

Remark. Bott periodicity still sounds like the name of some character from the Harry Potter universe.

Definition. A parallelization of a smooth manifold M is a bundle isomorphismφ from TM to the trivial bundle
M ×Rn , i.e. a commutative diagram

TM
φ //

��

M ×Rn

��
M

Our goal will be to show the following two theorems.

Theorem 3.1. If M is parallelizable, then M is orientable.
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Theorem 3.2. If M is a compact, parallelizable manifold, then χ(M ), its Euler characteristic, is nonzero.

Orientability in Theorem 3.1 will be in the sense of Math 215B, i.e. for topological manifolds, though everything
in this class will be smooth. We’ll also discuss orientations of vector bundles.

Definition.

• If M is a manifold, then a local orientation at an m ∈M is a choice of generator of Hn (M , M \m )∼=Z.
• A local orientation for a k -dimensional vector bundle V →M is a choice of generator of Hk (Vm , Vm \0).

Let fM = {(m , g ) |m ∈M , g is a local orientation at m}. Similarly, let fMV = {(m , g ) |m ∈M , g is a local orientation of V at m}.
These are covering spaces, and come with projections P

fM : fM →M and P
fMV

: fMV →M .
Specifically, if B ⊂ M and B ∼= Rn , then P −1

fM
(B ) is the product of B and the generators of Hn (M , M \ B ),

and so there’s a natural bijection Hn (M , M \ B )
∼=→ Hn (M , M \ b ) for any b ∈ B . Similarly, if V is trivial over B ,

i.e. P −1
V (B )

∼= B ×Rk , then we can do the same thing with P −1
fMV
(B ): it’s the product of B with the generators of

Hk (Rk ,Rk \0).

Definition.

• M is orientable if fM →M is the trivial double cover.
• V →M is orientable if fMV →M is the trivial double cover.

Proposition 3.3. fM ∼=fMTM .

Corollary 3.4. M is orientable iff TM is.

Geometrically, if we have a metric, there’s a way of (topologically) identifying Tm M with Bε(m ) for some ε > 0;
then, excision says that Hn (M , M \m ) ∼= Hn (Bε(m ), Bε(m ) \m ). But this is Hn (TM , TM \ 0) (which does require
some geometry or thinking about the exponential map). This is the intuition, but we don’t have the machinery to
make it rigorous; it’s best to keep this one in your head.

Proof. The proof works by asking, “how do you define fM and fMTM in terms of transition functions?” Once you
write down what that actually is, they’ll end up being the same.

Pick charts (Uα,φα) for M , so theφα : Uα→Rn are homeomorphisms. We want to be able to define transition
functions t fMαβ : Uα∩Uβ →Z/2 (since fM is a double cover of M ). Why Z/2? Because it’s equal to Aut(Hn (Rn ,Rn \0))
(i.e. Aut(Z)).

Let tαβ = (ϕβ ◦ϕ−1
α )∗ (i.e. the induced map on homology), which is an automorphism. In higher-level wording,

does tαβ preserve or reverse the orientation of Rn that is present on each chart? In order to make this work, we
need a choice of orientation onRn , which induces orientations on ϕα(Uα ∩Uβ ) and ϕβ (Uα ∩Uβ ). Furthermore,

tαβ (x ) is an isomorphism Hn (Rn ,Rn \ϕα(x ))
∼→Hn (Rn ,Rn \ϕβ (x )).

Now, we can define t TM
αβ in the same way, sending Uα∩Uβ →Z/2∼=Aut(Tx M , Tx M \0), which is an isomorphism.

Lemma 3.5. Let f :Rn →Rn be a diffeomorphism with f (0) = 0. Then, f∗ : Hn (Rn ,Rn \0)→Hn (Rn ,Rn \0) is the
identity map iff (D f )∗ : Hn (T0Rn , T0Rn \0)→Hn (T0Rn , T0Rn \0) is.

Proof. Let

ft (x ) =

�

(1/t )t f (t x ), if t ∈ (0, 1]
D f (x ), if t = 0.

Then, ft is a homotopy between D f and f onRn \0 (which does require identifying TM withRn , which is fine). �

In particular, this means the double cover of one is trivial iff the other is. I think. �

Now, we’re almost done.

Proposition 3.6. If M is parallelizable, then fMTM is trivial.

This is not a hard exercise, apparently.
From that, I Theorem 3.1 follows, because fM is also trivial. Thus, we can attack Theorem 3.2.

Definition. A vector field is a section of p : TM →M , i.e. a σ such tht p ◦σ = id. If σ is smooth as a map of
manifolds, the vector is said to be smooth.
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Proposition 3.7. If M is a parallizable, n-dimensional manifold, then there exist n vector fieldsσ1, . . . ,σn such
that for all m ∈M , {σ1(m ), . . . ,σn (m )} are linearly independent.

That is, parallelizability means the maximum number of linearly independent vector fields that can exist do.
This is nicer since we’re talking about smooth manifolds; in this class, unlike 215B, we can do analysis.

Definition. A flow is a map Φ :R×M →M with Φt ◦Φs =Φt+s for all s , t ∈R and Φ0 = id.

Another way of saying this is that Φ is a homomorphism of topological groups fromR into the diffeomorphism
group of M , akin to a continuous group action.

Proposition 3.8. There is a natural bijection between the set of flows and the set of vector fields.

This can be made a homeomorphism using the compact-open topology (in the continuous case) or a Fréchet
topology (in the smooth case), but that’s not important right now. The idea is that the flow is given by integrating
along the vector field. More precisely, given a flow Φ and an m ∈M , there’s a curve t 7→Φt (m ), which lives in Tm M
by the definition of the tangent space (really, it’s d

dt

�

�

t=0
Φt (m ), but it’s the same idea); in the other direction, given

a vector fieldσ, one can write down a differential equation satisfying

σ(m ) =
d

dt

�

�

�

�

t=0

Φt (m ),

with Φ0 = id as the initial condition, implies the existence of a unique solution. (This may require M to be
compact.)

So the idea is that if one has a flow on a compact manifold, and to move for a very small length of time.

Proposition 3.9. Let M be compact, and supposeσ(m ) 6= 0 for all m ∈M . Let Φ be the flow associated withσ; then,
there exists an ε > 0 such that Φε(m ) 6=m for all m.

One way to prove this is to check in charts, possibly using the implicit function theorem.
Thus, a nowhere-vanishing vector field gives us a map homotopic to id, but has no fixed points.
Recall the following theorem from Math 215B.

Theorem 3.10 (Lefschetz fixed-point). Let Y be a finite CW complex and f : Y → Y be continuous. Then, let
T f :

⊕

k Hk (Y )→
⊕

k Hk (Y ) be given by
⊕

(−1)k f∗,k (where f∗,k is the map induced on Hk ). Then, if tr(T f ) 6= 0, then
f has a fixed point.

Corollary 3.11. If there exists a nowhere-vanishing vector fieldσ, then the Euler characteristic is equal to zero.

This is because tr T id =χ(Y ).
. . . right now, we haven’t shown that a smooth manifold is homeomorphic to a finite CW complex, and the

Lefschetz fixed point theorem doesn’t hold on infinite CW complexes.
Now, the corollary implies Theorem 3.2, because if the Euler characteristic is nonzero, no nonvanishing vector

fields can exist. Oops.
Both of these are examples of a notion called characteristic classes. There’s a space called B GLn (R), the

classifying space of vector bundles, which can apparently be though of as a moduli space for certain stacks. It’s
also equal to the Grassmanian Gr(n ,∞). A cohomology class in the Grassmanian yields a cohomology class for
every vector bundle on M ; then, orientability corresponds to a class named w1 ∈H 1(B GLn (R)), and there’s a class
called the Euler class e ∈H n (B GLn (R)). The trick is, if M is parallelizable, the classifying map M →Gr(n ,∞) is
null-homotopic, so any cohomology class pulls back, and we know what w1 and e are.

So how do you build this classifying map? Given a manifold M , one can embed it M ,→R∞.

4. THE WHITNEY EMBEDDING THEOREM: 4/16/15

“I should stick to Greek letters whose names I remember.”

Definition. A smooth map of manifolds M ,→N is called an embedding if it is an injective immersion that is a
homeomorphism onto its image.

Today our goal will be to prove the following theorem.

Theorem 4.1 (Weak Whitney embedding theorem). If M is a compact n-dimensional manifold, then there exists
an embedding M ,→R2n+1.
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Remark. It’s possible to remove the compactness assumption with a little more work (see the textbook), and get
an embedding M ,→R2n with a lot more work.

The proof will require the following ingredients, which we will not prove.

Definition. Let {Uα} be an open cover of a smooth manifold M . Then, a (smooth) partition of unity subordinate
to {Uα} is a collection of smooth functions fα : M → [0, 1] such that:

• f −1
α ((0, 1])⊂Uα.

• For all x ∈M , there exists an open Vx ⊆M containing x , such that Vx ∩ f −1
α ((0,1]) 6= ; for only finitely

many α.
•
∑

α fα(x ) = 1 for all x ∈M .

Partitions of unity are useful for turning local data or results into global ones. For example, if f : M →R is a
submersion, one might want to build a vector field on M that flows in the direction of R given by f (i.e. the flow
commutes with f ). One can do this locally with the implicit function theorem, and then use a partition of unity to
do it globally. It still has the required property, because of the condition that the fα sum to 1 everywhere. (This is
one example; we’ll use them in a different way today.)

The half-open interval in the definition arises from taking the support of f −1
α , and isn’t super critical to one’s

intuition.

Theorem 4.2. For any smooth manifold M and open cover {Uα} of M , there exists a partition of unity subordinate
to {Uα}.

This isn’t too tricky to prove, and we have all of the tools, but it would distract us from nobler goals, so check
out the textbook for the proof.

It’s also possible to define a continuous partition of unity on a more general topological space. Unlike smooth
partitions of unity on smooth manifolds, they might not always exist.

Definition. Let f : M →N be a map of smooth manifolds, where dim(M ) =m and dim(N ) = n . Then, an x ∈M
is a critical point of f if rank(D fx )< n , and f (x ) is called a critical value.

Theorem 4.3 (Sard). Let f : M → Rn be smooth. Then, its set of critical values is measure zero in the Lesbegue
measure on Rn .

More generally, one can replaceRn with any manifold N ; then, however, the measure-zero criterion is replaced
with the statement that the set of critical values is meager (related to the Baire category theorem).

We’re also not going to prove this; once again, consult the textbook.

Proposition 4.4. Let K ⊂M be closed and f : K →R. Assume that for all x ∈ K , there’s an open neighborhood Ux

(open in M ) of x and a smooth g x : Ux →R such that g x |K ∩Ux
= f |K ∩Ux

. Then, there exists a smooth h : M →Rwith
h |K = f .

Proof. Let Uα = {Ux }∪ {M \K }, and let fα be a partition of unity for Uα. Let gα = g x , except if Uα =M \K , where
we let gα = 0. Finally, let

h =
∑

α

fαgα. �

Theorem 4.5. If M is a compact manifold, then there exists some (large) N such that there’s an embedding M ,→RN .

Once we prove this, we’ll use Sard’s theorem to lower N to the desired value.

Proof. Choose two open covers {Vi }i∈I and {Ui }i∈I of M such that Vi ⊆Ui for each i ; then, since M is compact,

we can choose a finite subcover {Vi }ki=1, and the corresponding {Ui }ki=1. Letφi : Ui

∼=→Rn be the chart map for Ui .

Now we have finitely many of each and
⋃k

1 Vi =M still.2 Choose λi : M →R that are 1 on Vi supported in Ui

(i.e. 0 outside of Ui ); these can be constructed by invoking Proposition 4.4. Then, letψi : M →Rn be given by
ψi :λiφi , and let θ : M → (Rn )k ×Rk be given by their product: θ =ψ1×ψ2× · · ·×ψk ×λ1× · · ·×λk .

So, why is θ an immersion? Take an x ∈ M ; then, if x ∈ Vi , ψi = φi in a neighborhood of x , and φi is a
diffeomorphism, so near x , θ is a product of diffeomorphisms and the zero map, so it’s smooth.

2There are a couple of other ways to do this, e.g. choosing a finite cover (Ui ,φi ) first and then letting Vi be the support ofφi .
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θ is injective, because if θ (p ) = θ (q ), then p ∈Vi for some i , and therefore λi (p ) =λi (q ) = 1, i.e. q ∈Ui (and we
know p ∈Ui too). Thus,

φi (p ) =λi (p )φi (p ) =ψi (p )

=ψi (q ) =λi (q )φi (q )

=φi (q ).

However, we knowφi is injective, so p = q .
Why is θ a homeomorphism onto its image? Well, M is compact and θ (M ) is Hausdorff, which is a sufficient

condition. Thus, θ is an embedding. �

Proof of Theorem 4.1. Let θ : M →RN be an embedding, as in Theorem 4.5, and suppose there exists a w ∈RN

such that w isn’t tangent to θ (M ) and there are no x , y ∈M such that w ∈ span(θ (x )−θ (y )).
Letπw⊥ denote projection onto the orthogonal complement of w; then, we will show thatπw⊥◦θ is an embedding

M ,→ Im(πw⊥ )∼=RN−1. The idea is that the first condition (not tangent) makes it an immersion, and the second
condition guarantees embedding. (There’s more to check here, but I guess we can grind through it now without
any difficult insights.)

Since M is an open submanifold of TM , then constructσ : TM \M →RP N−1 as follows: Dθ : TM→ TRN , and
then the trivialization π : TRN →RN , but if you didn’t strt out in M , you won’t end up at 0, so (π◦Dθ ) : TM \M →
Rn \0, so it’s possible to projectivize, and composing (π◦Dθ )with this projectivization gives us the desiredσ. We
can also construct a τ : (M ×M ) \∆→RP N−1; here, ∆ ⊆M ×M is the diagonal, i.e. ∆ = {(x , x ) | x ∈M }. Thus,
sending (x , y ) 7→ θ (x )−θ (y ) doesn’t hit 0 if x 6= y , so we can send it to RP N−1; this is how τ is defined.

Observe that if N − 1 > 2n , then every point in the domain of σ or τ is a critical point, so their images are
meager (or measure zero) in RP N−1. Thus, if N > 2n +1, the w we sought above exists. �

Theorem 4.6. If M is an n-dimensional manifold and Emb(M , N ) denotes the space of embeddings M ,→N , then
πi (Emb(M ,RN )) = 0 for i ≤ k −1 and N ≥ 2(n +1+k ).

Remark. If we had the better bound of an embedding into R2n , then instead we have N ≥ 2(n +k ).

This theorem says that when N is large enough, these embeddings are connected, and in some sense clarifies
that this space of embeddings is nonempty or connected. To get our hands on it, we should talk about a relative
version of the Whitney embedding theorem.

Theorem 4.7 (Relative Whitney embedding theorem). Let M be an n-dimensional manifold and L ⊆M be a
submanifold. If f : L →RN with N ≥ 2n +1 is an embedding, then there exists an embedding g : M →RN with
g |L = f .

This says that an embedding of a submanifold intoR2N+1 can be lifted to an embedding of the whole manifold.
This applies to Theorem 4.6 as follows: if f : M ,→RN for i = 1,2 are two embeddings, then one can embed

M ×R intoRN+1, and consider L =M ×{1, 2} and use Theorem 4.7 to show there’s an embedding that extends the
fi . This isn’t entirely true (what if f1(M ) intersects f2(M )?), but Sard’s theorem means we can control those points
and fix the proof.

5. IMMERSIONS, SUBMERSIONS AND TUBULAR NEIGHBORHOODS: 4/21/15

Today, we’re going to prove some honestly kind of boring technical results about immersions and submersions.
But they’ll be useful for all sorts of cool things like Pontryagin duality.

Theorem 5.1 (Implicit function theorem). Let g : Rn ×Rm → Rn be C 1 and x ∈ Rn and y ∈ Rm be such that
g (x , y ) = 0. If ix : Rm → Rn ×Rm sends z 7→ (x , z ) and D g ◦ ix is onto at y , then there exist a , b > 0 and an
f : Ba (x )→ Bb (y ) such that {(x , f (x )) | x ∈ Ba (x )}= {(x , y ) ∈ Ba (x )×Bb (y ) | g (x , y ) = 0}. Moreover, if g is C r , then
so is f .

Basically, this says that a continuous function where the derivative matrix is well-behaved can be interpreted
as a level set in some small neighborhood. Alternatively, it says that if the derivative matrix is n-dimensional,
then the space of solutions is what you would expect.

There’s a nice way to reformulate this.

Theorem 5.2 (Inverse function theorem). Let θ : Rn → Rm be C 1 and θ (x ) = y . If Dθ is an isomorphsim at x ,
then there exist a , b > 0 and an f : Bb (y )→ Ba (x )with θ ◦ f = id. Moreover, if θ is C r , then so is f .
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These theorems are useful because they tell us what immersions and submersions look like.

Corollary 5.3. Let M be an m-dimensional manifold and N be an n-dimensional manifold, and let θ : M →N be
an immersion (resp. submersion) at a p ∈M . Then, there exist open neighborhoods U ⊆M of p and V ⊆N of f (p )

and diffeomorphismsφ : U
∼=→Rm andψ : V

∼=→Rn that make thefollowing diagram commute.

M
θ // N

U
?�

OO

θ |U //

φ∼=
��

V
?�

OO

ψ∼=
��

Rm ϑ // Rn

(5.1)

Here, ϑ(x1, . . . , xm ) = (x1, . . . , xm , 0, . . . , 0) (resp. ϑ(x1, . . . , xm ) = (x1, . . . , xn ), since if θ is a submersion, then m ≥ n).

The intuition behind the proof, which we won’t go into here, is that you use the implicit function theorem (resp.
inverse function theorem), and then rotate.

Corollary 5.4. If M and N are as in Corollary 5.3, f : M →N is smooth, and y ∈N is a regular value of f , then
f −1(y ) is an (m −n )-dimensional submanifold of M .

We haven’t actually defined the notion of submanifold: some authors define it as a subset of a manifold where
inclusion is an immersion, and others require it to have charts so that it looks like the first m coordinates in some
set of charts for the ambient manifold. In any case, Corollary 5.3 equates the two notions.

The proof of Corollary 5.4 requires both parts of Corollary 5.3 to prove, since f : M →N is a submersion at any
x ∈ f −1(y ), and then the submanifold is immersed in M .

Definition. Let N1 and N2 be submanifolds of M . Then, N1 is transverse to N2, written N1 ôN2, if for all x ∈N1∩N2,
Tx N1+Tx N2 = Tx M .

Clearly, if N1 doesn’t intersect N2, then they’re not transverse, and if you have a point and a curve in Rn , then
they can only be transverse if they don’t intersect. However, all of Rn intersects a point transversely.

Transversality is a way to make the hazy notion of “in general position” somewhat precise.

Theorem 5.5. If N1 ôN2, then N1 ∩N2 is a submanifold of dimension dim(N1) +dim(N2)−dim(M ).

The proof idea is that one can find a V ⊆M and U ⊆N1 that satisfy the diagram (5.1). Then, let π : N2 ∩V →
Rdim(M )−dim(N1) be the projection onto the last coordinates. Thus, π−1(0) =N1 ∩N2 ∩V , and π is a submersion, so
π−1(0) is a subamanifold of the required dimension.

Basically, the only reason the professor cares about submersions is the following theorem.

Theorem 5.6. Let f : M →N be a proper submersion with N connected. Then, f : M →N is a fiber bundle.

One way to think of it is that the preimages are locally diffeomorphic. Another is that if a family of manifolds
is smoothly dependent on a parameter t , it can only change topology at critical points, which are also where it
doesn’t project smoothly onto t .

Connectedness is needed because otherwise, there’s a fiber bundle over every connected component, but
there’s no reason to assume they’re the same.

Proposition 5.7. Let f : M →Rn be a proper submersion and r > 0. Then, there exists a diffeomorphism d such
that the following diagram commutes.

f −1(Br (0))
d //

f

""

f −1(0)×Br (0)
π

zz
Br (0)

We’ll end up using flows and partitions of unity to prove this.
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Proof. We can find charts Uα ⊆M and Vα ⊆Rn with f (Uα) =Vα and f |Uα fiberwise equivalent to πα : Vα×Rm−n →
Vα.

Let χi be the vector field on Rm in the i th direction; then, by an abuse of notation, since Vα ⊆Rn , we can think
of χi as a vector field on Vα. Take χαi be a vector field on Uα with D f χαi =χi |Vα .

Now, we would like to stitch these together: let gα : M →Rn be a partition of unity subordinate to the charts
{Vα}, and let

σi =
∑

α

gαχ
α
i ,

so that D f σi =χi .
Now, choose an r > 0, and let h :Rm →R be a function that is 1 on Br (0) and is compactly supported. Since f

is proper, then (h ◦ f ) does too. For a v ∈Rm , let

σv =
m
∑

i=1

aiσi (h ◦ f ),

where v = (a1, . . . , am ), and let Φv : M → M be the time-1 flow along σv. We want a map δ : f −1(0)× Br (0)→
f −1(Br (0)) (and then the required d will be δ−1); in fact, it will be given by δ(m , v) =Φv(m ). Then, we’ll be able to
prove this is a diffeomorphism, so we get the d we need. �

Tubular Neighborhoods.

Theorem 5.8 (Tubular neighborhood). Let M be a compact, n-dimensional submanifold ofRk and Nε = {(x , v) |
v ⊥ Tx M and |v| < ε} (where length and angle are measured within Rk ). Let Vε = {y ∈ Rk | there exists an x ∈
M such that |x − y |< ε}.

If θ : Nε→Vε sends (x , v) 7→ x +v, then for sufficiently small ε, θ is a diffeomorphism.

In other words, a small tubular neighborhood of M looks like M ×Rm for some m . We know Mε is homotopy
equivalent to M for all ε, but Vε might not be (e.g. if the hole in a donut is filled in, in some sense).

Proof. For x ∈M , Dθ is an isomorphism at (x , 0): the dimensions line up, since then θ (x , 0) = x . That means θ is
locally a diffeomorphism (i.e. in a neighborhood for every x ). But since M is compact, one can find an ε such
that Dθ is an isomorphism for all (x , v) ∈Nε .

Assume that θ isn’t injective for all ε; then, take xi , yi ∈ N1/i such that xi 6= yi and θ (xi ) = θ (yi ); since M is
compact, we can choose a convergent subsequence, and so eventually the sequence ends up in the manifold,
where it is injective.

To show that it’s surjective, we know that Vε ⊇ θ (Nε), so suppose y ∈Vε\θ (Nε), and let x ∈M be the nearest point
on M to it. Then, x − y ⊥ Tx M , so θ (x , x − y ) = y , which looks like the definition of our tubular neighborhood. �

There are many ways to jazz this theorem up, e.g. replacingRk with a k -dimensional manifold. This makes
it trickier to define distance, but if all you care about is topology, you could talk about the normal bundle of an
embedding of manifolds, which is diffeomorphic to a neighborhood. There’s some tricky questions about defining
the normal bundle, though it’s well-defined in K -theory.

6. COBORDISM: 4/23/15

“So I’m just going to quit while I’m losing.”

The ideas outlined today relate to some deeper ideas about classifying manifolds up to cobordism and homotopy
groups of spheres, thanks to ideas of Pontryagin and Thom.

Definition. Two smooth n-dimensional manifolds M and N are called cobordant if there exists a compact
(n +1)-dimensional manifold-with-boundary W such that ∂W is diffeomorphic to M tN .

For example, a pair of pants is a cobordism between S 1 and S 1 tS 1, as in Figure 2 More generally, any number
of circles is cobordant to any other number of circles.

Definition. Let cobn denote the set of smooth, compact n-manifolds up to cobordism.

Fact. cobn is a group with [M ]+[N ] = [M tN ]. Moreover, cob∗ =
⊕

n cobn is a graded ring, with [M ]·[N ] = [M ×N ].

Theorem 6.1 (Thom). cob∗ ∼=Z/2[zi | i 6= 2 j −1], where |xi |= i .
12



FIGURE 2. A cobordism between S 1 and S 1 tS 1, called the “pair of pants” for obvious reasons.
Source: http://en.wikipedia.org/wiki/Cobordism.

This was probably the second-best thesis in algebraic topology (after Serre’s). Both Thom and Serre won Fields
medals for basically their thesis work.

The reason everything is 2-torsion is that two copies of a manifold is cobordant to the empty set (by just
connecting them as a sort-of cylinder, so the boundary is both copies, or equivalently both copies along with the
empty set).

Corollary 6.2. If M is a compact, smooth manifold and dim(M ) = 3, then M = ∂W for some compact, smooth
manifold-with-boundary W .

Definition. Let P (m , n ) = (S m ×CP n )/τ, where τ(x , y ) = (−x , y ).

Proposition 6.3. In Theorem 6.1,

xi =

�

[P (i , 0)] = [RP i ], for i even
[P (2r −1, s 2r )], for i = 2r (2s +1)−1.

The proof has two parts, one of which is reasonable for this class and the other of which is wildly inappropriate.
The idea is to first find a space (well, actually a spectrum, which is weird and off-putting to some people) MO such
that cob∗ ∼=π∗(MO); then, the second step is to calculate π∗(MO). This is hard, because it involves calculations of
homotopy groups of spheres.

Returning to Earth, let’s prove some more technical lemmas needed to prove this stuff.

Theorem 6.4. Let M be a manifold and A, B ⊆M be closed. If f : M →Rk is continuous and smooth on A, then
there exists a g : M →Rk which is smooth on M \B , satisfies g |A∪B = f |A∪B , and g 'ht

f relA∪B , i.e there’s a homotopy
between g and f constant on A ∪B and such that for all x ∈M , |ht (x )− f (x )|< ε.

This seems kind of technical, but the point is that we can approximate continuous functions that are smooth
on some closed set with smooth functions on most of M .

Proof sketch. Let ρ be any metric on M (in the metric space sense, not Riemannian sense; we know that all
manifolds are metrizable), and let

ε(x ) = inf
b∈B
ρ(x , b ).

Since f is smooth on A, then for all x ∈ A, there exists an open neighborhood Ux of x and a smooth g :Ux →Rk

such that g |A∩Ux
= f |A∩Ux

. For more general x ∈ M , let Vx be an open neighborhood such that if x ∈ A \ B ,
Vx =Vx ∩ (M \B ); then, let hx = g x |Vx

. If x 6∈ A \B , take Vx to be an open set such that x ∈Vx and Vx ∩A = ;; then,
take hx (z ) = f (x ).

The whole point of this is that these Vx should form an open cover of M ; then, one can take these hx and stitch
them together with a partition of unity. �

There’s also a version with maps into a manifold.

Theorem 6.5. Let M and N be manifolds with N compact, and let ρ be a metric on M . Let A ⊆M be closed and
f : M →N be continuous and smooth on A. Then, for all ε > 0, there exists a family ht : M →N such that

(1) h0 = f ,
(2) ht |A = f |A ,
(3) ht is smooth for all t > 0, and
(4) ρ(ht (x ), f (x ))< ε for all t ∈ [0, 1].
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The way to prove this is to embed M ,→Rk , and then take a tubular neighborhood. The compactness of N is
used to guarantee that small distances in Rk correspond to small distances in N (using uniform continuity), so
one can use distances in Rk . Then, Theorem 6.4 gives us a smooth approximation in the tubular neighborhood,
and then it projects back down into an approximation on N .

The book has a bunch of corollaries to these.
If you’re wondering why we need so many smooth approximation theorems, remember that homotopy groups

involve continuous maps, so to use the tools we’ve developed with manifolds, we need to approximate them.

Definition. Let M , X , and Y be manifolds. Then, two smooth maps f : X →M and g : Y →M are transverse,
written f ô g , if for all points x ∈ X and y ∈ Y such that f (x ) = g (y ) = z , D f (Tx X )+D g (Ty Y ) = Tz M . If f : X →M
is an embedding and N = f (X ), then one also writes g ôN if g ô f .

In particular, if the images of f and g don’t intersect, then they’re transverse, and if one of f or g is a submersion,
then they’re transverse.

Theorem 6.6. Let f0 : M →W be smooth and N ⊆W be a compact, smooth submanifold. Then, given a tubular
neighborhood T of M , there exists a family ht : M →W such that h0 = f , h1 ôN , and ht (x ) = f (x ) for f (x ) outside
T .

Definition. Let V → B be a vector bundle, and let V +→ B be the fiberwise one-point compactification (so that
V has fiber Rk and V + has fiber S k ). It’s possible to think of this as saying that the transition functions for V + are
given by the injection GLk (R) ,→Diff(S k ). Then, the Thom space is τ(V ) =V +/∼, where x ∼ y if x and y are both
“points at infinity,” i.e. added in by the one-point compactification.

How should you think about Thom spaces? Well, the Thom space of the trivial bundle R→ E → B is just
the suspension of B : τ(E ) = ΣB . Suspensions come up as ways of generalizing R in homotopy theory (e.g. in
equivariant homotopy theory, where they correspond to, incredibly enough, group representations). Note that
this doesn’t always generalize: the trivial k -bundleRk → E → B does not satify τ(E ) =Σk B when k = 0; you get
B t{pt}, which isn’t Σ0B = B . Some of this depends on the precise definition of the one-point compactification of
zero-dimensional manifolds.

Last quarter, we learned the following isomorphism.

Proposition 6.7. eH∗(Σk B )∼= eH∗−k (B ).

Theorem 6.8 (Thom isomorphism theorem). If V is an orientable, k -dimensional vector bundle, then H∗(B )∼=
H∗+k (τ(V ))

Since all trivial bundles are orientable, this implies Proposition 6.7, and this theorem is in some sense a twisted
version of that. Since Pontryagin duality only requires orientability, this is what we’re looking for, though we don’t
need it just yet, and we’ll come back to prove it later.

An embedding M
f
,→W gives a map of homology of M to homology of W , but Theorem 6.8 gives a map in the

other direction, arising from W
g
→τ(N f ) (where N f denotes the normal bundle of f ), and therefore we can go

between
H∗(W )

g
−→H∗(τN f )

∼=−→H∗−dim W +dim M (M ).
This composition is written f !, read “ f -shriek.”

7. HOMOTOPY THEORY: 4/28/15

Definition. Let (X , x0) be a based (i.e. pointed) topological space.

• Then, ΩX =Map∗(S 1, X ); that is, the continuous maps of based topological spaces. ΩX , read “loop X ,” is
called the loop space.

• The reduced suspension ΣX is (X × I )/({0,1}×X ∪ I ×{x0}), i.e. taking the double cone and collapsing
the basepoint.

• The unreduced suspension is given by (X × I )/({0, 1}×X ).

For all reasonable spaces, the reduced and unreduced suspensions are homotopic. However, the following
adjunction is useful.

Proposition 7.1. Φ : Map∗(ΣX , Y )→Map∗(X ,ΩY ) given by Φ( f )(x )(t ) = f (t , x ) is a homeomorphism.
14



This may require some annoying point-set topological stuff, but it’s certainly a homotopy equivalence, and
categorically we’re set either way.

Corollary 7.2. ΩΩY =Map∗(S 2, Y ) (and so on with Ωn Y and S n ).

By categorical nonsense, id ∈Map∗(ΣX ,ΣX )maps to some unit in Map∗(X ,ΩΣX ), so there is a natural map
u : X →ΩΣX , and id ∈Map∗(ΩX ,ΩX ) is sent to a counit in Map∗(ΣΩX , X ), which is a canonical map ΣΩX → X
(evaluate a point on an interval as that length along a loop).

Definition. A topological space X is n-connected if πi (X ) = 0 for i ≤ n .

Definition. The Hurewicz map maps from homotopy to homology: h :πi (X )→Hi (X ) is defined by h ( f ) = f∗[S n ],
where f : S n → X .

Thus, H0(X ) is the free abelian group on π0(X ) (the connected components of X ). If X is connected, then
H1(X ) =π1(X )ab.

Theorem 7.3 (Hurewicz). If X is (n −1)-connected, then h :πn (X )→Hn (X ) is an isomorphism.

The idea is that h can be very near an isomorphism: even in lower dimensions, it does the least it can to get
from one to the other (e.g. taking the free group or abelianization).

Theorem 7.4 (Freudenthal suspension theorem). Let X be n-connected. Then, the natural map u : X → ΩΣX
induces an isomorphism on πi for i ≤ 2n, and is surjective for i = 2n +1.

We’ll return to this theorem when we discuss stable homotopy theory; in fact, it is the reason stable homotopy
groups exist. The next theorem is also relevant.

Theorem 7.5 (Bott-Samuelson). H∗(ΩΣX )∼= T ( eH∗(X )), where T denotes the tensor algebra.

We know T is the adjoint functor to the forgetful functor from graded rings to graded vector spaces, so we have
a ring, but why is H∗(ΩΣX ) a ring? It turns out to come from the concatenation map ΩY ×ΩY →ΩY , so when you
take homology, this turns into a map H∗(ΩY )⊗H∗(ΩY )→H∗(ΩY ).

This theorem can be used to reason out a proof for Theorem 7.4, if you think about it a lot: if V∗ is a graded
vector space, the natural map V∗→ T (V∗) doesn’t hit everything, and the first thing it doesn’t hit is something in
2n (the square of something), so invoking the theorem, the first place it isn’t an isomorphism wouldbe 2n +1.

Later, we’ll return to this with Morse theory, and prove that H∗(ΩS n+1) =Z[x ], where |x |= n .

Stable Homotopy Theory. The idea here is that one might want to “de-suspend” spaces, which is where spectra
come in.

Definition. A spectrumX is a sequence of based spaces Xn and maps fn :ΣXn → Xn+1.

Maps of spectra are somewhat difficult, and this model isn’t very good for them, and so on, so we won’t really
talk about them. Sometimes this definition is termed “naïve spectra” or “pre-spectra,” because the real one is yet
more complicated!

Example 7.6. If X is a based space, let Σ∞X be the spectrum with (Σ∞X )n =Σn X , with fn :ΣΣn X →Σn+1X is
the identity. Thus, Σ∞ is a functor from based spaces to spectra.

However, not all spectra come from spaces.

Example 7.7. Let G be an abelian group and K (G , n ) be the Eilenberg-MacLane space on G (i.e. the topological
space uniquely characterized by πi (K (G , n )) being 0 when i 6= n and G when i = n). Then, there’s a spectrum HG

with (HG )n = K (G , n ). Since loops lower homotopy by 1, ΩK (G , n +1)∼= K (G , n ), so adjointness guarantees us a
map ΣK (G , n )→ K (G , n +1), making HG into a spectrum.

Thus, one can think of spectra as the minimal category that contains both abelian groups and based spaces.
That’s kind of weird, but interesting!

Definition. There’s a functor Ω∞ (read “loops-infinity”) from spectra to spaces given by Ω∞X = lim−→Ω
n Xn .

Since Ω and Σ are adjoints, then Ω∞ and Σ∞ are adjoints. We also have that Ω∞HG =G , endowed with the
discrete topology.
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Definition. LetX be a spectrum; then, Σ−1X is the spectrum with (Σ−1X )n = Xn−1, and (Σ−1X )0 = pt.

We haven’t talked about homotopy equivalence of spectra, but changing any finite number of terms makes no
difference (which is a digression we do not have time for). It’s quite difficult to actually define the right category
so that everything works out cleanly.

Thus, Σ−1Σ∞ΣX =Σ∞X . Getting the direction of the shift right can be confusing. However, this means that in
the category of spectra, we’ve inverted suspension! And in particular, there are negative homotopy and homology
groups, at least as soon as we define homotopy and homology of spectra.

Definition. LetX be a spectrum. Then, Hi (X ) = lim−→Hn+i (Xn ).

Proposition 7.8. Hi (Σ∞X )∼= eHi (X ).

This is because of a fact we proved in Math 215B: if ΣXn → Xn+1, then eH j (Xn )→ eH j+1(Xn+1).

Definition. IfX is a spectrum, then πi (X ) = lim−→πn+i (Xn ).

The homotopy groups are directed with the following maps: πn+i (Xn )→πn+i (ΩXn+1) =πn+i+1(Xn+1).

Definition. If X is a topological space, its stable homotopy groups are πst
i (X ) =πi (Σ∞X ).

The following calculation tells us that homology is reasonably defined.

Proposition 7.9. πi (Ω∞X ) =πi (X ).

The following is kind of unimportant to our discussion, but it’s cool.

Theorem 7.10. Let S∞ denote the symmetric group on a countably infinite set; then, its group homology Hi (S∞) =
Hi (Ω∞Σ∞S 0).

Example 7.11. Returning to Earth (somewhat), we can discuss Thom spectra. There are two notions of these
spectra, but they’re closely related. If E → B is a vector bundle, then let (B E )n =τ(E ⊕Rn ); then, τ(E ⊕R ) =Στ(E ),
so the Thom spectrum of E is Σ∞τ(E ).

What makes these interesting is that we can define them for virtual vector bundles (i.e. formal sums of vector
bundles over a space): if E ⊕ F =RN , then B−E =Σ−NΣ∞τ(F ).

Definition.

• The Grassmanian of k -planes inRn , Grk (Rn ), is the set of k -dimensional planes inRn , with the subspace
topology from HomR(Rk ,Rn )/GLk (Rn ).

• We can also define a canonical vector bundle γn
k → Grk (Rn ) with γn

k ⊂ R
n ×Grk (Rn ): specifically, γn

k =
{(v, T ) | v ∈ Im(T )}. Then, the projection map π : γn

k →Grk (Rn ) is given by π(v, T ) = T .

Definition. The space B O(k ) (sometimes called B GLk (R)) is defined to be B O(k ) =Grk (R∞) = lim−→Grk (Rn ), where

each Rn ,→Rn+1 is fixed, and there’s a resulting vector bundle γk .

γk should be thought of as a “universal vector bundle,” because other bundles come from its pullbacks: if
f : X →B O(k), then we can send f 7→ f ∗γk .

Theorem 7.12. Let X be a finite CW complex. Then, the set of k -dimensional vector bundles on X up to isomorphism
is equal to π0(Map(X , B O(k))).

The theorem is likely true for more general X , but we won’t need that.
Now, if E is a vector bundle, pick an embedding e : E → R∞ with e affine on each fiber (the embedding

guarantees that e is injective on each fiber). This will give us data for a map X → B O(k), though using some
version of the Whitney embedding theorem for vector bundles, apparently. This map sends a point x ∈ X to
e (π−1(X )).

This is a lot easier to visualize for a manifold and its tangent bundle (since we know we can injectively and
affinely embed that into RN for some N , and therefore also into R∞).

B O(k) is called the classifying space of vector bundles because the data of a vector bundle (up to isomorphism)
is the same as a map from X into B O(k).
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8. THE PONTRYAGIN-THOM THEOREM: 4/30/15

“This should be obvious.”

Recall that we defined B O(n ) =Grn (R∞), with the canonical line bundle γn →B O(n ).

Definition. Let MO(n ) =τ(γn ).

Recall that if one has a map f : X → Y , a bundle E → Y can be pulled back to a bundle f ∗E → X . This induces
pullbacks on the Thom spaces, where the point at infinity is sent to the point at infinity, so we have τ( f ∗E )→τ(E ).

We also have an injection i : B O(i ) ,→B O(i +1): if V ⊆R∞, then V ,→R⊕V ⊆R⊕R∞ ∼=R∞. This plays nicely
with the canonical bundles: i ∗γn+1 =R⊕γn .

Definition. Let MO be the spectrum with (MO)n =MO(n ).

This is notation, I guess, but the point is that the pullback of γn+1 makes the axioms for a spectrum hold:
specificially, one can check that τ(R⊕V ) =Στ(V ). In particular, ΣMO(n ) =Στ(γn ) =τ(R⊕γn ) =τ(i ∗γn+1), and
this maps into τ(γn+1), which is just MO(n +1).

Intuitively, we would want an infinite-dimensional vector bundle over the direct limit of the B O(n ), and then
to take the Thom space of that. But we would want them to be shifted downwards somehow, and so spectra make
the whole thing somewhat cleaner.

Definition. The Pontryagin-Thom mapθ : cobn →πn (MO) is defined as follows. Given a compact n-dimensional
manifold, let e : M ,→Rn+k be an embedding. Thus, there is an induced map M →Grk (Rn+k ): since the Grass-
manian classifies vector bundles, we send each point of M to the class of its normal bundle, which is a k -
plane in Rn+k . Then, let N be a tubular neighborhood of M , and let ν be its normal bundle. There is a map
S n+k =Rn+k ∪{∞}→N /∂ N =τ(ν) =MO(k )which is the identity on N , and sending things not in N to the extra
point at infinity. We also have the map e ′ : M →B O(k ) (given from the map into the Grassmanian), and e ′∗γk = ν.

With all of this structure, this map sends the fundamental class [M ] of M into πn+k (MO(k )), and therefore into
πn (MO). This is our map θ .

There are many things to check about this definition.

• θ doesn’t depend on your choice of e .
• If M and M ′ are cobordant, then θ (M ) = θ (M ′).
• θ is an isomorphism.

Claim. This map does not depend on one’s choice of e .

Proof sketch. It should be clear (his words, not mine) that if two embeddings are isotopic, the inducedθ is the same,
because isotopic embeddings induce the same map on homotopy. In low dimensions, not all embeddings are
isotopic (e.g. S 1 ,→R3 as a circle or a trefoil knot), but in high dimension it’s not a problem. So in a sufficiently high
enough dimension, so that the space of embeddings is connected, it’s independent of the choice of embedding,
even if it might still depend on dimension.

To deal with the dimension, you can check that M ,→ Rn+k → Rn+k+1 induces the map πn+k (MO(k )) →
πn+k+1(MO(k +1)) that we get from the spectrum. �

Along the way, you might have been wondering why we care that M is compact: this makes the maps into maps
of based topological spaces, which is pretty helpful.

You may also want to know the group operation on πn (X ): if f , g : (I n ,0)→ (X , x0); then, you attach f and g
along a boundary ( f (1) and g (0), so to speak), and then embed it into your space. This leads to a nice pictoral
proof that higher homotopy groups are abelian (they can be massaged into switching around, since we only care
up to homotopy); thus, all homotopy groups of spectra ar abelian.

To show θ is a homomorphism is to show that θ (M tM ′) = θ (M )+θ (M ′). This uses the tubular neighborhoods:
they’re sent “next to” each other (in the attaching sense needed for the group law on πn ), so addition is sent to
addition. Strictly speaking, though, it’s not a homomorphism until we know it’s invariant on cobordism classes.

Claim. θ is invariant on cobordism classes of compact manifolds.

Proof. Let W be an (n + 1)-dimensional manifold-with-boundary whose boundary is M tM ′. The Whitney
embedding theorem also has an analogue for manifolds with boundary, so we can embed W ,→Rn+k × [0,∞),
such that ∂W ,→ Rn+k × {0}. If we take the one-point compactification of the last coordinate, then we have
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embedded the whole thing into D n+k+1. Thus, if we apply the whole Pontryagin-Thom construction to B O(k ),
then the S n+k inside D n+k+1 is also sent to B O(k ), and this map ends up being θ (∂W ). However, we know the
map from the n-sphere is null-homotopic, since it extends to the disc, so θ (M tM ′) = 0. �

To prove that it’s an isomorphism, we’ll describe an inverse, getting a manifold from an element of the homotopy
group. Consider the following diagram.

S n+k
f //

f1

&&
f2
))

MO(k )

τ(γn
k →Grk (Rn ))

OO

We also have i : Grk (Rn )→ τ(γn
k ). We can make f1 transverse to i , first by a smooth approximation, then by a

transverse approximation. This requires a little thinking, because a Thom space may not be smooth at the point
at infinity, but it ends up working. Furthermore, we place the following restrictions on f2.

• f2 is homotopic to f1.
• f2 is smooth everywhere except possibly at the point at infinity.
• f2 ô i .

Claim. If M = f −1
2 (Grk (Rn ))⊆ S n+k , then θ (M ) = f .

This is scary, but the idea is that if you wind through the Pontryagin-Thom construction, the map ends up being
f2 compased with the inclusion τ(γn

k ) ,→MO(k ), so it’s all good. Presumably. So this means that it’s surjective. We
also have injectivity, which is equivalent to saying that the backwards map is well-defined, so that equivalent
maps create cobordant manifolds.

It’s nice that unoriented cobordism is 2-torsion, because we can treat + and − signs a little more cavalierly.3 In
the oriented case, this isn’t true, and things are somewhat trickier.

To prove injectivity, we’ll show that if θ (M ) = 0, then we have a homotopy Ht where H0 = θ (M ) and H1 is the
constant map at the basepoint (i.e. θ (;)). Then, we’ll use this homotopy to prove that M is the boundary.

Let H ′ : I ×S n+k →Grk (Rn ) such that the following are true.

• H 'H ′.
• H ′ =Hom({0, 1}×S n+k ).
• H ′ is smooth away from∞.
• H ′ ôGrk (Rn ).

That is, we can smoothly approximate, and then transversely approximate, the homotopy so that it has the right
properties.

Cobordism can be defined on any class of manifolds with tangential structure; for example, if one uses oriented
manifolds, much (but not all) of the discussion continues, but with the group B SO(k ) =Gror

k (R
∞) (the oriented

k -planes in R∞). One can also use stably framed manifolds: the normal bundle of an abstract manifold isn’t
well-defined, but it is stably defined. Calculating this presupposes that stable homotopy groups of the spectrum
we get are relatively easy to calculate, but, well, this isn’t always true. Anyways, we get an equivalence relationship
cobn

fr = {M , f }/ ∼ (where f is our frame). In this case, we end up with the stable homotopy groups of spheres:
cob∗fr = π∗(Σ

∞S 0) = πst
∗ (S

0). This doesn’t help is calculate the cobordism, but the idea is that this might give us
insights into the stable homotopy groups of spheres, and allows one to calculate that πst

0 (S
0) =Z and πst

1 (S
0) =Z/2.

There are varying degrees of how much geometric intuition you can get from this idea; it’s not all just really
weird homotopy theory. Specifically, we’re classifying frames on S 1, which is quite reasonable to think about.

9. DIFFERENTIAL FORMS: 5/5/15

“I assigned [that homework problem] by accident.”

3I mean, we’ve been treating everything pretty cavalierly in this class.
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Multilinear Algebra. A lot of the introductory stuff (tensor and wedge products, and so on) is likely to be review
from undergrad. But then again, so might be differential forms.

Even though we’re going to cover this in the case of real vector spaces, a lot of it holds true more generally for
modules over a ring.

Definition. Let V and W be real vector spaces. Then, V ⊗RW , the tensor product of V and W , is the free module
on the set V ×W modulo the relations

(r v )⊗w − r (v ⊗w ),

(r v )⊗w − v ⊗ (r w ),

v ⊗ (w +w ′)− v ⊗w − v ⊗w ′, and

(v + v ′)⊗w − v ⊗w − v ′⊗w ,

where (v, w ) is written as v ⊗w . Here, v, v ′ ∈ V , w , w ′ ∈W , and r ∈ R. Sometimes, the tensor product is just
written V ⊗W .

The point is to turn bilinear maps out of V ×W into linear maps out of V ⊗W . A fancier way to describe this
is to consider a categoryC whose objects are real vector spaces U along with bilinear maps V ×W →U , and
whose morphisms are functions T : U1→U2 making the following diagram commute.

V ×W
f1

��

f2

��
U1

T // U2

Then, the tensor product is defined to be the initial object in C . This approach has the advantage that initial
objects are always unique up to unique isomorphism, though we would still have to use the construction to show
that it exists.

A little more concretely, the tensor product also satisfies the following universal mapping property, which is
just obtained by unwinding the categorical definition.

Proposition 9.1. If f : V ×W →U is bilinear, then there exists a unique linear map h : V ⊗W →U such that the
following diagram commutes.

V ×W
f //

e

��

U

V ⊗W
h

;;

Here, e : (v, w ) 7→ v ⊗w .

Proposition 9.2. There is a natural isomorphism (V ⊗W )⊗U ∼=V ⊗ (U ⊗W ).

Proposition 9.3. If {v1, . . . , vn} is a basis of V and {w1, . . . , wn} is a basis of W , then {vi ⊗w j | 1≤ i ≤ n , 1≤ j ≤m}
is a basis for V ⊗W .

Corollary 9.4. dim(V ⊗W ) = dim(V )dim(W ).

Proposition 9.5. There is an isomorphism

Φ : HomR(V ⊗RW ,U )
∼−→HomR(V , HomR(W ,U ))

given as follows: if f : V ⊗W → U , then we get bf : V ×W → U given by bf (v, w ) = f (v ⊗ w ) according to
Proposition 9.1; then, let Φ( f ) : v 7→ (w 7→ bf (v, w )).

Definition. If V is a real vector space, its dual space is V ∗ =Hom(V ,R), the space of linear real-valued functions
on V .

Proposition 9.6. If V and W are finite-dimensional vector spaces, there is a natural isomorphism V ⊗W ∗ ∼=
Hom(W , V ).

This might hold in more generality; the professor doesn’t remember right now.
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Definition. If V is a real vector space, the k -fold wedge product is the space

Λk V =

�

k
⊗

i=1

V

�

/M ,

where M is generated by all relations of the form

v1⊗ · · ·⊗ vi ⊗ · · ·⊗ v j ⊗ · · ·⊗ vn + v1⊗ · · ·⊗ v j ⊗ · · ·⊗ vi ⊗ · · ·⊗ vn .

One also writes Ak (V ) = (Λk V )∗.

This means you can transpose two entries in the tensor, but the sign is switched.
The wedge product also satisfies a universal property.

Proposition 9.7. Let f : V n → U be an alternating n-linear map. Then, there exists a unique h making the
following diagram commute.

V n
f //

��

U

Λn V
h

<<

These constructions are also all functorial: here’s an example for tensor product, but the same thing works for
wedge products.

Definition. Let f1 : V1→W1 and f2 : V2→W2 be maps of real vector spaces. Then, f1⊗ f2 : V1⊗V2→W1⊗W2 is the
unique map making the following diagram commute.

V1×V2

��

f1× f2 // W1×W2

��
V1⊗V2

f1⊗ f2 // W1⊗W2

Here, the vertical arrows send (x1, x2) 7→ x1⊗ x2.

Though this definition looks like it has something to prove, the idea is that composing along the upper right of
the square creates a bilinear map V1×V2→W1⊗W2, so the mapping property makes the definition work.

Finally, we can define tensor algebras more generally.

Definition. By associativity of the tensor product (Proposition 9.2), there is a natural map V ⊗k ⊗V ⊗`→V ⊗(k+`).
Using this multiplication, the tensor algebra is the graded ring

T (V ) =
∞
⊕

n=0

�

n
⊗

j=1

V

�

.

Similarly, we have a graded ring structure on

A(V ) =
∞
⊕

n=0

An (V ).

Ifω ∈ Ak (V ) and η ∈ A`(V ), then we can defineω∧η ∈ Ak+`(V ) by

ω∧η(v1, . . . , vk+`) =
∑

σ∈Sn

sgn(σ)ω(vσ(1), . . . , vσ(k ))η(vσ(k+1), . . . , vσ(k+`)).

These can also be defined in terms of universal properties, taking free vector spaces and restricting them in
some reasonably natural way.

In order for A(V ) to be a graded ring, we need to check one more thing.

Proposition 9.8. (ω,η) 7→ω∧η is graded commutative, i.e. ω∧η= (−1)`kη∧ω. Thus, A(V ) is a graded ring.

This should remind you of the graded commutativity of the cup product and how it turns cohomology into a
graded ring.

The next useful construction for us will be the determinant.
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Proposition 9.9.

dim(Λk V ) =

�

dim V

k

�

,

and if {v1, . . . , vn} is a basis of V , then

{vm1
∧vm2

∧ · · · ∧vmk
|m1 <m2 < · · ·<mk }

is a basis of Λk V .

In particular, if V is n-dimensional, then Λn V is one-dimensional (isomorphic, but not canonically, to R), and
Λm V is zero-dimensional if m > n .

Definition. Let V be an n-dimensional vector space and f : V →V . Then, the induced f∗ = f ∨n :Λn V →Λn V is
an element of the one-dimensional vector space HomR(Λn V ,Λn V ), so f∗ =λ · id∗. Then, the determinant of f is
defined to be det( f ) =λ.

Vector Bundles. We want to generalize these notions from vector spaces to vector bundles, so let Ei →M for
i = 1, 2 be vector bundles with transition functions t i

αβ : Uα ∩Uβ →GLni
(R). Without loss of generality, assume the

charts Uα locally trivialize both E1 and E2, which we can always do (trivialize one, then use those to trivialize the
other).

For x ∈Uα ∩Uβ , t 1
αβ (x )⊗ t 2

αβ (x ) ∈GLn1×n2
(R): each component is invertible, so their tensor product is.4

Definition. The tensor product of E1 and E2, denoted E1⊗E2, is the vector bundle whose fibers are given by the
fiberwise tensor products of E1 and E2 and whose transition functions are t 1

αβ ⊗ t 2
αβ .

The same operation works for wedge products, Hom, and dual spaces, thanks to functoriality. This can be
made general, as long as applying it to the transition functions preserves invertibility. In particular, we also have
constructions of:

• E1⊕E2 (the direct sum), given by the direct sum on fibers,
• Λk E1, also defined fiber-by-fiber,
• Hom(E1, E2), defined fiberwise, and
• the dual bundle E ∗1 =Hom(E1,R) (here, R is the trivial bundle).

Differential Forms. Given a vector bundle π : E → B , then the space of sections is written Γ (E ) = { f : B → E |
π ◦ f = idB }. This just means that for every p , f (p ) lies in the bundle above p .

Definition. The space of differential p -forms is Ωp (M ) = Γ (Ap (TM)), i.e. the smooth sections f : M → Ap (TM)
such that f (p ) lies in the fiber above p . Then, define

Ω(M ) =
∞
⊕

p=0

Ωp (M ).

This is a graded ring, under pointwise multiplication.

For example, 0-forms are just functions and A1(V ) =V ∗ (alternating doesn’t mean anything if there’s only one
coordinate). Given an f : M →R, taking D fx : Tx M → Tf (x )R=R. This is a fiber for a 1-form, so given a 0-form f ,
D f is a 1-form (it’s not hard to check that it’s smooth). In this context, we’ll denote it d f ∈Ω1(M ).5

We will be able to generalize this to higher forms, to obtain a map d :Ωp (M )→Ωp+1(M ). In the book, there’s a
definition using coordinates, which is messy, and a coordinate-free definition using vector fields and Lie brackets,
which is at least coordinate-free but somehow messier. Unfortunately, there doesn’t seem to be an easy way
around this, which is weird; most constructions in geometry are either elegant but impossible to compute with
or easier to get a handle on but depend on charts, and most objects seem to have both constructions. Anyways,
here’s the coordinate-dependent definition.

Definition. Let fi :Rn →R be the i th coordinate; then, dxi ∈Ω1(Rn ) is just notation for d fi .

4Strictly speaking, the tensor product of the transition functions is in GL(R n1 ⊗Rn2 ), which is a little more natural, but the dimensions end
up the same anyways.

5Implicitly stated somewhere in here is that sections of a trivial bundle are just maps into the fiber. This ultimately underscores why
functions are 0-forms.
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This can be thought of as the covector in the i th direction. In particular, ifω ∈Ωp (Rn ), then

ω=
∑

1≤i1<···<ip≤n

fi1...ip
dx1 ∧ · · · ∧dxip

, (9.1)

where fi1...ip
: V →R, which follows from the construction of the dual basis and the basis for Λp V .

Definition. Ifω is given as in (9.1), then let dω ∈Ωp+1(Rn ) be defined by

dω=
∑

1≤i1<···<ip≤n

d fi1...ip
∧dx1 ∧ · · · ∧dxip

.

This map d is called the exterior derivative.

This already looks very coordinate-dependent, and for manifolds it gets even hairier. But in both cases, they
are independent of choice of coordinates.

On manifolds, we want to define the exterior derivative locally, which means pulling back fromRn and stitching
the results together using a partition of unity.

Definition. Let M be a smooth manifold and ω ∈ Ω(M ). Let (φ,U ) be a chart on M and suppose m ∈ U . If
v1, . . . , vp+1 ∈ Tp M , then let

dω(v1, . . . , vp+1) = (d(φ
∗ω))(Dφ−1(v1), . . . , Dφ−1(vp+1)).

This is a reasonable definition because D is locally a bijection, so we get a dω ∈Ωp+1(M ).

There are a couple questions of well-definedness here, which will be on the homework.

10. DE RHAM COHOMOLOGY, INTEGRATION OF DIFFERENTIAL FORMS, AND STOKES’ THEOREM: 5/7/15

Recall that last time, we defined the space Ωp (M ) of differential forms to be the space of sections of the dual
space Ap (M ) = (Λp TM)∗, and defined an operator d :Ωp (M )→Ωp+1(M ).

This operator will turn Ω•(M ) into a chain complex.

Proposition 10.1. d2 = 0.

Proof. Since d is determined locally, then it suffices to prove it forRn , and since it’s linear, it suffices to prove it on
forms that look like

ω= f dxm1
∧ · · · ∧dxmp

.

Then,

dω= d f ∧dxm1
∧ · · · ∧dxmp

=

�

∑

i

∂ f

∂ xi
dxi

�

∧dxm1
∧ · · · ∧ xmp

,

so

d(dω) =
∑

i

∑

j

∂ 2 f

∂ xi ∂ x j
(dx j ∧dxi )∧ (dxm1

∧ · · · ∧ xmp
). (10.1)

Looking at (10.1) more closely, notice that if you switch i and j as indices in the sum, you get the same result, but
if you switch dxi ∧dx j to dx j ∧dxi , you have to add a minus sign. Thus, d(dω) =−d(dω), so it’s equal to zero. �

The correct thing to do with a chain complex is to take its cohomology.

Definition.

• A p -formω is called closed if dω= 0 (i.e. it lies in ker(d)).
• A p -formω is called exact ifω= dη for a (p −1)-form η (i.e. it lies in Im(d)).
• The de Rham cohomology of a manifold M is the closed forms modulo the exact ones, i.e.

H p
dR(M ) =

ker(d :Ωp (M )→Ωp+1(M ))
Im(d :Ωp−1(M )→Ωp (M ))

.

This corresponds to other kinds of cohomology, e.g. the obstruction to a closed form being non-exact has a lot
to do with nontrivial loops in the surface. In fact, we’ll prove the following theorem next lecture.
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Theorem 10.2 (de Rham). H p
dR(M )

∼=H p (M ;R).

Differential forms can naturally be integrated: a p -form defines a p -dimensional volume on p -dimensional
submanifolds of M . Thus, we want some sort of integration map to be the isomorphism in Theorem 10.2, and
what we’ll end up using is

(ω, f :∆p →M ) 7−→
∫

∆p

f ∗ω,

which defines a map Ωp (M )⊗C p (M )→R, which allow adjointness to prove things for us. So it behooves us to
learn how to integrate p -forms.

One interesting corollary is that de Rham cohomology, even though it looks like it depends on the smooth
structure of the manifold, is actually homotopy invariant! If you were looking for something stronger, well, maybe
it’s sad.

For integration, we’ll always want M to be an oriented, n-dimensional manifold. There are many definitions
of orientability; the book defines it as having charts with transition functions with positive determinant, and that
ends up being equivalent to the one we gave earlier in the class.

Definition. Let Ωn
c (M ) = Γc (A

n (M )→M ), i.e. the compactly supported n-forms, which are equal to the zero
section outside of a compact subset of M .

Our goal will be to define a map
∫

:Ωn
c (M )→R. We’ll do it in steps.

Let U ⊆ Rn be open and ω ∈ Ωn
c (U ). Then, there’s a unique f : Rn → R such that f (x) = 0 when x 6∈U and

ω= f dx1 ∧ · · · ∧dxn . Then, define
∫

U

ω=

∫

Rn

f dx1 dx2 · · · dxn .

Notice that this depends on the choice of orientation of Rn , so if you switch the order of x1 and x2, the sign
changes.

Proposition 10.3. If V ⊆Rn and ϕ : V →U is an orientation-preserving diffeomorphism, then
∫

V

ϕ∗ω=

∫

U

ω.

This will end up being true for general manifolds as well.

Proof.

ϕ∗( f dx1 ∧ · · · ∧dxn ) = ( f ◦ϕ)(ϕ∗(dx1)∧ · · · ∧ϕ∗(dxn ))

= ( f ◦ϕ)(dx1Dϕ ∧ · · · ∧dxn Dϕ)

= ( f ◦ϕ)det(DϕT)(dx1 ∧ · · · ∧dxn ),

which just follows from the definition of the determinant as coming from the top exterior power. But in multivari-
able calculus, we learned that

∫

V

f ◦ϕ|det Dϕ|dx1 · · · dxn =

∫

U

f dx1 · · · dxn , (10.2)

and since ϕ is orientation-preserving, then det(DϕT) = |det Dϕ|, so the left side of (10.2) is equal to
∫

V
ϕ∗ω and

the right side is equal to
∫

U
ω. �

Notice that this proof heavily leans on the fact that TRn has a trivialization, and the multivariable calculus fact
of (10.2). On the other hand, in physics classes people prove this by drawing pictures and waving their hands, so I
guess it could be worse (well, is less rigorous and more intuitive worse? It depends on who you are).

Definition. Let M be an n-dimensional manifold and φ :Rn →M be an orientation-preserving chart map. If
ω ∈Ωp (M ) such that supp(ω)⊆ Im(φ), then define

∫

M

ω=

∫

Rn

φ∗ω.

Proposition 10.4. The above definition is well-defined, independent of the choice of chartφ.
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Proof. Let φ1 and φ2 be two orientation-preserving chart maps whose images both contain suppω. Let V =
φ1(Rn )∩φ2(Rn ), soφ−1

1 ◦φ2 :φ−1
1 (V )→φ

−1
2 (V ). Then,

∫

Rn

φ∗1ω=

∫

φ−1(V )

φ∗1ω

=

∫

φ−1
2 (V )

(φ−1
1 ◦φ2)

∗(φ∗1ω)

=

∫

φ−1
2 (V )

φ∗2ω=

∫

Rn

φ∗2ω. �

Notice that, even though we’ve been doing stuff that’s in theory smooth, we can do everything a little more
generally, e.g. integrating continuous functions or forms, rather than just smooth ones.

Now, let’s finally define the integral in full generality, as opposed to for forms supported by just one chart.

Definition. Letω ∈Ωn
c (M ) for an oriented n-dimensional manifold M . Let {Ui } be a locally finite covering of M

be charts, and { fi } be a partition of unity subordinate to {Ui }. Then, we can define
∫

M

ω=
∑

i

∫

M

fiω.

Proposition 10.5. The above definition is independent of the choice of {Ui } and { fi }.

Proof. Let {Vi } be another such locally finite covering by charts and {g i } be a partition of unity subordinate to
{Vi }. Then,

∑

i

∫

M

fiω=
∑

i

∫

M

�

∑

j

g j

�

fiω

=
∑

i , j

∫

M

g j fiω

=
∑

j

∫

M

�

∑

i

fi

�

g jω

=
∑

j

∫

M

g jω. �

By unwinding the definitions, we can apply Proposition 10.3 more generally.

Corollary 10.6. If M and N are n-dimensional manifolds andω : M →N is an orientation-preserving diffeomor-
phism andω ∈Ωn

c (N ), then
∫

M

ϕ∗ω=

∫

N

ω.

The remainder of the class will cover Stokes’ theorem. This involves manifolds-with-boundary, so we have to
define integration of forms on manifolds-with-boundary. It turns out this works in almost exactly the same way;
we just get subsets of Rn that might not be open, but that’s fine.

Proposition 10.7. Let M be an oriented manifold-with-boundary; then, there is a canonical choice of orientation
for ∂M .

Proof. Let M ′ =M ∪∂M (∂M × [0, 1)); that is, we glue along the boundary. The proof of the tubular neighborhood
theorem implies that M ′ ∼=M \ ∂M . M ′ can be thought of as having a collar around the boundary of M .

An orientation of M canonically determines an orientation of M ′, because if (x , r ) ∈M ′, there are canonical
isomorphisms

Hn (M
′, M ′ \ {(x , r )})∼=Hn (∂M × (0, 1),∂M × (0, 1) \ (x , r ))∼=Hn−1(∂M ,∂M \ x ). �

More geometrically, this is akin to orienting ∂M along the outward-pointing unit normal.
Now, we can state the theorem itself.
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Theorem 10.8 (Stokes). Letω ∈Ωn−1
c (M ). Then,

∫

M

dω=

∫

∂M

ω.

Proof. Of course, we’ll use a partition of unity for this. It will allow us to distill the proof into two cases: charts
that don’t intersect the boundary (where

∫

dω= 0), and those where it does intersect the boundary, where it will
just take value on the boundary.

Lemma 10.9. Letω ∈Ωn−1
c (Rn ). Then,

∫

Rn dω= 0.

Proof. Writeω as

ω=
∑

i

fi dx1 ∧ · · · ∧ddxi ∧ · · · ∧dxn
︸ ︷︷ ︸

ωi

,

where ddxi indicates that index is missing. Then, we throw calculus at it:
∫

Rn

dωi =

∫

Rn

∂ f

∂ xi
dx1 ∧ · · · ∧dxn

=

∫

Rn−1

�∫

R

∂ f

∂ xi
dxi

�

dx1 ∧ · · · ∧ddxi ∧ · · · ∧dxn .

However,
∫

R

∂ f

∂ xi
dxi = lim

r→∞

∫ r

−r

∂ f

∂ xi
dxi

= lim
r→∞

f (x1, . . . , r, . . . , xn )− f (x1, . . . ,−r, xn )

= 0,

sinceω is compactly supported. �

Something very similar happens for the charts on the boundary.

Lemma 10.10. Let H = {x1 ≥ 0} ⊆Rn . Then,
∫

H

d( f dx2 ∧ · · · ∧dxn ) =

∫

∂H

f dx2 ∧ · · · ∧dxn .

This has nearly the same proof; just treat i = 1 separately, to recover the boundary, and as a corollary, for any
compactly supportedω,

∫

H

dω=

∫

∂H

ω.

Then, stitch these together using a partition of unity. �

11. DE RHAM’S THEOREM: 5/12/15

“I won’t say anything negative about group theory.”

Recall that we were in the middle of proving Stokes’ theorem, that given an inclusion i : ∂M →M which determines
the orientation of ∂M from an orientation of M and anω ∈Ωn−1

c (M ), we have that
∫

M

dω=

∫

∂M

ω.

We were dealing with the case where M =H = {(x1, . . . , xn ) | x1 ≥ 0} ⊆Rn . Ifω ∈Ωn−1
c (H ), then

ω=
∑

fi dx1 ∧ · · · ∧ddxi ∧ · · · ∧dxn ,

so
i ∗ω= ( f1|∂H )dx2 ∧ · · · ∧dxn .

Then, integrate.
∫

∂H

i ∗ω=

∫

∂H

− f1|∂H dx2 dx3 · · · dxn .
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The sign comes from the induced orientation of ∂H .
Next, we calculate

dω=
∑

i

�

∑

j

∂ fi

∂ x j
dx j

�

∧dx1 ∧ · · · ∧ddxi ∧ · · · ∧dxn ,

which is only nonzero when no index is repeated, i.e. i = j ; then, rearranging the forms requires a sign factor:

=
∑

i

(−1)i+1 ∂ fi

∂ xi
dx1 ∧ · · · ∧dxn .

For i ≥ 2, we know that
∫

H

∂ fi

∂ xi
dx1 ∧ · · · ∧dxn = 0,

and for i = 1, we integrate by parts.
∫

H

∂ f1

∂ x1
dx1 ∧ · · · ∧dxn =

∫

H

∂ f1

∂ x1
dx1 dx2 · · · dxn

=

∫

∂H

�∫ ∞

0

∂ f1

∂ x1
dx1

�

dx2 · · · dxn

=

∫

∂H

�

lim
r→∞

∂ f1

∂ x1
(r, x2, . . . , xn )−

∂ f1

∂ x1
(0, x2, . . . , xn )

�

dx2 · · · dxn

=

∫

∂H

−
∂ f1

∂ x1

�

�

�

�

∂H

dx2 · · · dxn .

Then, the general case follows using a partition of unity.

de Rham’s theorem. In order to show that de Rham cohomology is isomorphic to singular cohomology, we’ll start
by defining cohomology on smooth simplices H ∗

C∞ (M ;R). Then, inclusion of smooth simplices into all simplices
creates a wrong-way map H ∗(M ;R)→H ∗

C∞ (M ;R), and integration will give us a map H ∗
dR(M )→H ∗

C∞ (M ). Next,
we’ll show that all three satisfy a Mayer-Vietoris sequence and that they agree on Rn , which gives us enough
material to make an inductive gluing argument.

Proposition 11.1. Let U and V be open in M , and let iU : U ,→U ∪V , iV : U ,→U ∪V , jU : U ∩V ,→U , and
jV : U ∩V ,→V be inclusions. Then, the following sequence is short exact.

0 // Ωp (U ∪V )
i ∗U⊕i ∗V // Ωp (U )⊕Ωp (V )

j ∗U− j ∗V // Ω(U ∩V ) // 0

A short exact sequence on the chain level induces a long exact sequence in homology, which we already know
from homological algebra, so this proposition is all we need for the Mayer-Vietoris sequence to exist.

Proof. Clearly, i ∗U ⊕ i ∗V is injective, and the sequence is exact atΩp (U )⊕Ωp (V ), because something is in Im(i ∗U ⊕ i ∗V )
iff its two coordinates agree on U ∩V , which is equivalent to j ∗U − j ∗V sending it to zero. Thus, all that’s left is
surjectivity.

Letω ∈Ωp (U ∩V ), and let f : M → [0, 1] be a smooth function which is 0 on a neighborhood of U \V and 1 on
a neighborhood of V \U ; in particular, if η= f ω+ (1− f )ω, then f ω extends to a form α ∈Ωp (U ) and −(1− f )ω
extends to a form β ∈Ωp (V ), so ( j ∗U − j ∗V )(α,β ) =η.6 �

Corollary 11.2. There is a long exact sequence

· · · // H p
dR(U ∪V ) // H p

dR(U )⊕H p
dR(V )

// HdR(U ∩V ) // H p−1
dR (U ∪V ) // · · ·

We’ll call this sequence the Mayer-Vietoris sequence, by analogy with singular cohomology.

Lemma 11.3 (Poincaré).

H ∗
dR(R

n ) =

�

R, ∗= 0
0, ∗> 0.

6It’s important to show that such a f exists; in particular, we might have gotten the definition wrong in lecture.
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We’ll show this by first showing de Rham cohomology is invariant under smooth homotopy, and then calculating
the de Rham cohomology of a point.

Proposition 11.4.

H ∗
dR(pt) =

�

R, ∗= 0
0, ∗> 0.

Proof. Ωp (pt) = Γ (Λp (0)∗→ pt), which is only nonzero when p = 0, where it’s equal to R. Thus, d= 0 for each p ,
and therefore the chain complex is equal to its own homology. �

A fancy way of saying this is “a point is formal,” whatever that means.

Definition.

• Two smooth functions f , g : M → N are smoothly homotopic if there exists a smooth H : M ×R→ N
with H (–, 0) = f and H (–, 1) = g .
• Let C ∗ and D ∗ be cochain complexes.7 Then, a chain homotopy between f ∗, g∗ : C ∗→D∗ is a collection

of maps Hn : Cn →Dn−1 such that f − g = d H −H d .

Recall the following proposition from 210A; now, it’ll actually be useful!

Proposition 11.5. Chain homotopic maps induce the same map in homology.

And the final puzzle piece:

Proposition 11.6. If f , g : M →N are smoothly homotopic, then f ∗, g ∗ :Ω∗(N )→Ω∗(M ) are chain homotopic.

Proof of Lemma 11.3. We’ll prove Poincaré’s lemma assuming Proposition 11.6, and then go back and prove
Proposition 11.6.

We know that idRn is homotopic to 0 via the homotopy Ht (x) = t x. Since de Rham cohomology is functorial,
then the commutative diagram

Rn id //

0   

Rn

pt

i

>>

is sent to the diagram

H ∗
dR(R

n ) H ∗
dR(R

n )
∼=

id∗
oo

i ∗yy
H ∗

dR(pt).

0∗

ee

Thus, since 0∗ ◦ i ∗ = id, then i ∗ must be injective and 0∗ must be surjective, so since these are real vector spaces,
H ∗

dR(pt)∼=H ∗
dR(R

n ). �

Lemma 11.7. Let it : M →M ×R be inclusion at t , i.e. x 7→ (x , t ). Then, i ∗0 is chain homotopic to i ∗1 .

Proof. Let h :Ωp (M × I )→Ωp−1(M ) be given by

h (ω)(v1, . . . , vp−1) =

∫ 1

0

ω

�

d

dt
, v1, . . . , vp−1

�

dt ,

where v1, . . . , vp−1 ∈ Tm M and d
dt is the tangent vector in theR-direction. Then, h is a chain homotopy between

Ω∗(M ×R) and Ω∗(M ). �

The proof is a calculation that you can check yourself. But we’ll leverage it for the rest of the proof.

Proof of Proposition 11.6. Let H : M ×R→N be a smooth homotopy from f to g , i.e. f =H ◦ i0 and g =H ◦ i1.
Then, let h i

p :Ωp (M ×R)→Ωp−1(M ) be a chain homotopy from i ∗0 → i ∗1 , and let hp = h i
p ◦H ∗. Then, since both of

the ingredients are chain homotopies, then hp is, and it’s a chain homotopy between f and g . �

7This means the boundary maps increase index; if they decrease index, the chain homotopy should go in the other direction.
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Thus, we’ve now proven everything we need to for Poincaré’s lemma, and these are all of the facts we need
about de Rham cohomology to prove de Rham’s theorem.

Definition. Let C C∞
p (M ;G ), the smooth chains on M , be the free abelian group on C∞(∆p →M )with coefficients

in G . C C∞
p (M ;G ) is a subcomplex of Cp (M ;G ), so we can define smooth homology

H C∞

p (M ;G ) =Hp (C
C∞ (M ;G ))

and smooth cohomology
H p

C∞ (M ;G ) =H p (C C∞ (M ;G )).

Note that inclusion of chains gives us a map i : H C∞
p (M )→Hp (M ), and similarly for cohomology (in the same

direction, moreover). We also have a map
∫

:Ωp (M )→C p
C∞ (M ;R) =HomZ(C

C∞

p (M );R)

defined by a bilinear pairing Ωp (M )×C C∞
p (M )→R in which

(ω ∈Ωp (M ), f :∆p →M ) 7→
∫

∆p

f ∗ω.

Then, using the same proof method as for Lemma 11.3, we get the following important result.

Proposition 11.8.

H ∗
C∞ (R

n ;R) =
�

R, ∗= 0
0, ∗> 0.

12. CURL AND THE PROOF OF DE RHAM’S THEOREM: 5/14/15

“I asked someone. . . what do [swimmers] do when there are thunderstorms here? They said there
aren’t thunderstorms in the Bay Area.”

Today we’re going to finish the proof of de Rham’s theorem, and then talk about curl.

Proposition 12.1. If P is a statement about smooth manifolds such that:

(1) P (Rn ) is true;
(2) if M and N are smoothly homotopic, then P (M ) iff P (N );
(3) if U , V ⊆M and P (U ), P (V ), and P (U ∩V ) are true, then P (U ∪V ) is true; and
(4) if P (Mα) is true for all α ∈ I , then P

�∐

αMα

�

is true;

then P (M ) is true for all smooth manifolds M .

Notice that the last two properties are different: we can take finite unions with overlap, or arbitrary disjoint
unions. This isn’t quite the same as the examples we had with homology in 215B, but cohomology doesn’t play
quite as well with colimits as homology does, so it’s not quite as simple.

Corollary 12.2. For any manifold M , H ∗
dR(M )

∫

→ H ∗
C∞ (M ) and H ∗(M ;R)

∼=→ H ∗
C∞ (M ) are both isomorphisms of

graded R-vector spaces.

Proof. Let P (M ) be that this corollary is true for M ; then, we’ll use Proposition 12.1. The Poincaré lemma gives us
(1), and Proposition 11.6 gives us (2).

For (3), we’ll use the long exact sequence and the Five lemma. Specifically, we have the following commutative
diagram, thanks to Corollary 11.2.

H k
dR(U )⊕H k

dR(V )
//

o
��

H k
dR(U ∩V ) //

o
��

H k+1
dR (U ∪V )

��

// H k+1
dR (U )⊕H k+1

dR (V )
//

o
��

H k+1
dR (U ∩V )

o
��

H k
C∞ (U )⊕H k

C∞ (V )
// H k

C∞ (U ∩V ) // H k+1
C∞ (U ∪V ) // H k+1

C∞ (U )⊕H k+1
C∞ (V ) // H k+1

C∞ (U ∩V )

Then, the Five lemma guarantees the middle map is an isomorphism as well.
Finally, for (4), cohomology sends disjoint unions to products, since it’s contravariant, so the isomorphisms go

through. �
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This is the result of de Rham’s theorem, but we need to show that our induction of open sets is valid.

Proof of Proposition 12.1. By (1) and (2), P is true for all convex open sets in Rn , and by (3), it’s true for finite
unions of convex open sets in Rn .

Let M ⊆Rn be open. By taking the one-point compactification of Rn , which is Rn ∪{∞}= S n , we can get a
smooth proper map f : M → [0,∞), e.g. f (x ) = 1/dist(x ,∞). Let An = f −1([n , n +1]); then, it is possible to cover
An by finitely many convex open sets U n

i such that

Vn =
⋃

i

U n
i ⊆ f −1

��

n −
1

3
, n +

1

3

��

.

Thus, we know that it’s true for Vn . Moreover, Vn and Vn+2 never intersect, so we also know it’s true for
⋃

n odd Vn

and
⋃

n even Vn , and it’s also true for their intersection, so by (3), it’s also true for their union, which is M .
The general case, where M isn’t open in Rn , isn’t much different: if M is compact, then we can cover it with

finitely many open sets, which is fine, and if it isn’t, the same trick with a proper map f : M → [0,∞)works. �

Curl. In the textbook, curl is defined in a rather coordinate-dependent way, but we can do better than that.

Definition. An orientation form on an n-dimensional manifold is a nowhere-vanishingω ∈Ωn (M ).

So why is this called an orientation form?

Proposition 12.3. A smooth manifold is orientable iff it has an orientation form, and moreover, there is a bijection
between orientations of M and orientation forms up to multiplication by a positive function.

This equates yet another definition of orientability with ours, though there are yet more. . .

Proof. We know that M is orientable iff TM is, and we also know that An (TM) is trivial iff there exists an orientation
form: in the forward direction, choose the section given by 1 everywhere. In the reverse direction, given an
orientation formω, let Tω : M ×R→ An (TM) be defined by Tω(m , r ) = rωm . Thus, we get a commutative diagram
that trivializes An (TM).

R×M
Tω //

��

An (TM)

yy
M

In particular, we want that An (TM) is orientable iff the orientation bundle TMor is (i.e. the one parameterized
by generators of Hn (TM , TM \ 0)). The transition functions for TMor are t or

αβ = sign detφαφ
−1
β , which defines a

function Uα ∩Uβ →Z/2=π0(R∗), and the transition functions for An (M ) are t A
αβ = detφαφ

−1
β , which is a function

Uα ∩Uβ →R∗.
We’ll have to finish the rest of the proof on Tuesday; it depends on a little bit of homotopy invariance. �

To define curl, we also need a Riemannian metric.

Definition. A Riemannian metric is a section 〈·, ·〉 of TM∗⊗TM∗→M such that 〈·, ·〉m is an inner product on Tm M
for all m ∈M .

This allows us to define lengths of tangent vectors, curves, etc. One can show that the space of Riemannian
metrics on a manifold is contractible, and in particular, one always exists (which uses convexity and a partition of
unity). For the rest of this discussion, fix a Riemannian metric on our n-dimensional manifold M .

Definition. An orientation form ω is called a volume form if ωm (b1, . . . , bn ) = ±1 for every orthonormal basis
{b1, . . . , bn} of Tm M for every m ∈M .

Proposition 12.4. There exists a unique volume form equivalent to any given orientation form.

Proof. Let f : M → (0,∞) be given by f (m ) = |ωm (b1, . . . , bn )|, where {b1, . . . , bn} is an orthonormal basis. If
a1, . . . , an is another orthonormal basis, then there’s a linear map T : Tm M → Tm M with T (ai ) = bi , and therefore
T is orthogonal, so det(T ) =±1. In particular,

|ωm (b1, . . . , bn )|= |ωm (Ta1, . . . , Tan )|
= |det(T )ωm (a1, . . . , an )|
= |ωm (a1, . . . , an )|.
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It remains to show f is smooth, but this is true, and then our volume form isω/ f . �

There’s a formula for the volume form in terms of the metric, which differential geometers maybe care about.

Proposition 12.5. Let V be a volume form; then, in local coordinates, the metric is given by g i j (·, ·), and V has the
formula

V =
q

det(g i j )dx1 ∧ · · · ∧dxn .

Definition. Fix a metric 〈·, ·〉 and a volume form V ; then, the Hodge star ∗ : Ωp (M )→ Ωn−p (M ) be the unique
linear map such that if α,β ∈Ωp (M ), then α∧ (∗β ) = 〈α,β 〉p V . Here, 〈·, ·〉p is the induced metric on Ωp (M ) from
the Riemannian metric, using functoriality, where

〈v1 ∧ · · · ∧ vp , w1 ∧ · · · ∧wp 〉=

�

�

�

�

�

�

〈vi , w j 〉

�

�

�

�

�

�

.

For example, on R3, ∗dx = dy ∧dz , because dx ∧dy ∧dz is the standard volume form on R3.
Now, we can define curl in a coordinate-free way.

Definition. The curl of α is curl(α) = ∗(dα).

13. SURJECTIVITY OF THE PONTRYAGIN-THOM MAP: 5/19/15

Recall from a few lectures back that we talked about the Pontryagin-Thom construction.8

If M is an n-dimensional manifold, M ,→ Rn+k ⊆ S n+k , and therefore sending the manifold to the normal
bundle is a map M n →Grk (Rn+k ); then, we can embed this into Gr(R∞) = B O(k ), to make everything suitably
homotopy-invariant. There’s some stuff about classifying vector bundles here, too.

We also have a map from S n+k →τ(N ) (the Thom space of the normal bundle), which embeds into τ(γk ), where
γk is the canonical bundle of Grk (R∞). But τ(γk ) =MO(k ), and therefore we have a class in πn+k (MO(k )), which
becomes a class in πn (MO).

So why on Earth is this surjective? Suppose [ f ] ∈ π(MO); then, by the definition of a spectrum, this means
[ f ] ∈πn+k (MO(k )) for some n and k , i.e. we have a map f : S n+k →MO(k ).

We would like to cook up two maps f1, f2 : S n+k ⇒ τ(γs
k → Gr(Rk+s )), where f1 ' f2, f2 ô Grk (Rk+s ), and f2 is

smooth on a neighborhood of the Grassmanian. One of the important steps in the proof is showing that these
maps exist. We have a map g : M →Grk (Rn+k ) that sends a point to its normal bundle, and we’ll want f2|M : M →
Grk (Rk+s ). You can obtain this by taking a tubular neighborhood N of M , and mapping N to γk+s

k , the canonical
bundle of Grk (Rk+s ), but this still isn’t super illuminating. We want to use the fact that Tpγ

k+s
k = T Grk (Rk )⊕(γk+s

k )p ,
which is a consequence of a more general fact about the tangent space of a vector bundle.

Once we have these maps, we’ll send [ f ] 7→ f −1
2 (Grk (Rk+s )), which is just M .

We’d like to show something akin to the following criterion, which makes intuitive sense and is true when n = 1
and k = 1, but may not be true more generally: that an h : M →Grk (Rn+k ) is homotopic to g if h (m )+TM(m ) =
Rn+k .

Let’s boil this down some more. The transversality of f2 means that D f2(m )+Tf2(m )Grk (Rk+s ) = Tf2(m )γ
k+s
k ). The

dimension of the Grassmanian is k (n −k ).
Additionally, we have the fact that π0 Map(M , B O(k )) is the set of k -dimensional vector bundles over M ,

up to isomorphism. Using that as a black box, we take V1 = f ∗2 γ
k+s
k → M , and using i : M → S n+k , letting

V2 =N (i ) = i ∗TSn+k/TM→M , then we want to show that V1 and V2 are stably isomorphic, i.e. there exist a , b ∈N
such that Rb ⊕V1

∼=V2⊕Ra . But using the black box, finding a bundle isomorphism means that they’re the same
class in π0, i.e. are homotopic.

It’s possible to show that f −1
2 (γ

k+s
k ) is a tubular neighborhood of M , which is a useful next step.

At this point, things got confused and we tried to start again.
We have M ⊂Rn+k ⊂ S n+k , so let’s look at the normal bundle N of M in this space, which is k -dimensional.

M maps into the Grassmanian as the 0-section, which we can identify with Grk (Rk+s ), which we will call f2.
Let π : γs+k

k → Grk (Rn+k ); then, we know that D f2(Np ) ⊂ ker(π∗), which makes sense when you think about
what normality passes to. But ker(π∗) can be identified with the fiber of the vertical plane at f2(p ). This is the

8This lecture was hopelessly above my level of understanding and was presented very informally. Please forgive me for the parts I left out
or got wrong. – Arun
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identification we were hoping for: the bundles are isomorphic, so we can use the black box from before, or even
work around it, by just seeing where the maps go: S n+k →Rn+k ∪∞→N (m )/∂ N (m ) = T (ν). Then, this is equal
to T ( f ∗2 γ

s
k ), and this maps into a homotopy group of MO.

In this proof, we require transversality to imply that the normal bundle was mapped into ker(π∗).
In the last fifteen minutes of class, though, we’ll state some theorems that we’ll prove next time, which involve

intersection theory.

Definition. Let M be a compact, orientable manifold. Then, the intersection product is a map Hn−i (M ) ⊗
Hn− j (M )→Hn−i− j (M ) in which A ·B = PD(PD−1(A)^ PD−1(B )).

The point of this is to make the homology into a ring using Poincaré duality, which isn’t a super interesting ring
structure, but will be useful. Also, despite the fact that this uses the cup product, it was actually discovered first,
and this definition was given later.

Theorem 13.1. Let M be a compact, orientable manifold and N1 and N2 be submanifolds of M such that N1 ôN2.
Then, [N1] · [N2] = [N1 ∩N2].

14. THE INTERSECTION PRODUCT: 5/21/15

Our goal is to prove Theorem 13.1: that if M is a compact, oriented manifold and L1, L2 ⊆M are compact,
oriented submanifolds such that L1 ô L2, then [L1] · [L2] = [L1∩L2], where · is the intersection product defined last
lecture. This is the Poincaré dual to cup product, i.e. PD[L1]^ PD[L2] = PD[L1 ∩ L2].

9

Today’s lecture will be a little bit formal, so if you’re looking for some actual maps or geometry, this won’t be
the most satisfying lecture. As a result, be mindful of typographical or notational errors.

Definition. Let E → X be a vector bundle with a Riemannian metric on the fibers. Then:

• D (E )→ X denotes the unit disc bundle, i.e. the fiber over x is the points of length at most 1 in the fiber
of E over x .

• S (E )→ X denotes the unit sphere bundle, which is the same as above, but with the requirement that the
length is exactly 1.

Proposition 14.1. Let E → X be a vector bundle with a metric. Then, τ(E ) is homeomorphic to D (E )/D (S ).

However, in reasonable conditions, all vector bundles have metrics.

Theorem 14.2. Let E →M be a smooth vector bundle over a smooth manifold. Then, there exists a Riemannian
metric on E .

On more general topological spaces, the point-set topological condition we need to construct a metric are
paracompactness and Hausdorff, since we’ll be constructing a partition of unity.

Proof. Let Ui ⊆M be an open cover of M such thatπ−1(Ui )→Ui is trivial. On trivial bundles, fiberwise Riemannian
metrics exist, so let 〈·, ·〉i be a metric on π−1(Ui ). Take ϕi to be a partition of unity subordinate to {Ui }, and let

〈·, ·〉=
∑

i

ϕi 〈·, ·〉i .

It’s clear that this is bilinear and symmetric, since we’ve just multiplied by stuff, and it’s nondegenerate because
we’ve multiplied by positive stuff, and at every point, at least one of the ϕi is positive. �

Remark. You can promote this argument to show that the space of metrics is contractible, so, up to homotopy,
you can just pick one. But we probably won’t use this.

Theorem 14.3 (Thom isomorphism theorem). Let M be a compact, oriented manifold and E
π→M be an oriented

k -dimensional vector bundle. Then, eH ∗(τ(E ))∼=H ∗−k (X ).

9If M is nonorientable, this result, as well as most of the results involving orientation and homology in this lecture, will hold in the case of
homology with Z/2-coefficients.
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Proof. Let n = dim(M ). Poincaré duality gives us an isomorphism PD : H ∗−k (M )
∼→Hn+k−∗(M ). Then, let i : X → E

be inclusion; i and π are homotopy equivalent, and therefore there’s another isomorphism i ∗ : Hn+k−∗(M )
∼→

Hn+k−∗(E ). But E isn’t compact, so Poincaré duality gives us an isomorphism PD : Hn+k−∗(E )
∼→ H ∗

c (E ), and
for nice topological spaces, compact cohomology is isomorphic to the reduced cohomology of the one-point
compactification, which in this case is eH ∗(τ(M )). Composing these morphisms, we have an isomorphism
H ∗−k (M )→ eH ∗(τ(E )). �

This theorem holds over more general topological spaces, but the proof involves either the Serre spectral
sequence or unpleasant Čech cohomology calculations. The theorem is also useful for computing cobordism
stuff, which is why Thom’s name is on it.

There’s actually some interesting sheaf cohomology floating around in the background when M isn’t orientable,
because one can take Hn+k−∗(M ;OM ) and Hn+k−∗(E ; i∗OM ).

Definition. Let M be a compact, oriented manifold andπ : E →M be a k -dimensional vector bundle (with k > 0)
over M . Let i : M ,→ E be a section for π; then, the class u = PD−1

E (i∗[M ]), regarded in any of H k
c (E ), H k (τ(E )), or

H k (D (E ),S (E )), is called the Thom class of E →M .

Observation. u ^ [D (E )] = i∗[M ], which comes from unwinding the definitions.

Proposition 14.4. The isomorphism in the Thom isomorphism theorem is induced by

H ∗(M ) π∗ //H ∗(D (E )) –^u //H ∗+k (D (E ),S (E )).

Proof. The proposition is equivalent to saying that if β ∈ H ∗(M ), then PDD (E ) ◦i∗ ◦ PDM (β ) = u ^ π∗(β ). Let
α=π∗(β ), so that i ∗(β ) =α. So, since u = PD−1

D (E ) i∗(M ), then [D (E )]_ u = i∗(M ), and therefore

PD−1
D (E )(i∗(PDM (β ))) = PD−1

D (E )(i∗(i
∗α_ [M ]))

= PD−1
D (E )(α_ (i∗[M ])).

This uses the general fact that if f : A→ B , with a ∈H ∗(B ) and b ∈H ∗(A), then f∗( f ∗a _ b ) = a _ f ∗b , which is
probably in Chapter 3 of Hatcher.

= PD−1
D (E )(α_ (u _D (E ))).

The next fact we need is that (a ^ b )_ c = a _ (b _ c ), so that

= PD−1
D (E )((α^ u )_ [D (E )])

=α^ u

=π∗(β )^ u . �

Since we have the Thom class u ∈H k (D (E ),S (E )) =H k (E , E \M ), then if OE denotes the orientation bundle of
E , then the Thom class u gives you a section of OE →M , i.e. it generates the k th cohomology. Thus, a manifold
has a Thom class iff it is orientable; of course, we started with orientable manifolds and fundamental classes, but
you can define it more generally in this way.

Definition. Let L ⊆M ; then, to prove the theorem, we’ll need a bunch of notation. To wit:

• i M
L : L ,→M will denote inclusion.

• N M
L will be the normal bundle.

• uL ∈H ∗(τN M
L ) denotes the Thom class.

• Since this space is naturally isomorphic to H ∗(N M
L , N M

L \ L ) =H ∗(M , M \ L ), let u M ,M \L
L denote its class in

H ∗(M , M \ L ) and u M
L be its image under the map H ∗(M , M \ L )→H ∗(M ).

Proof of Theorem 13.1. Since L1, L2 ⊆M , we have that if j 6= i for i , j ∈ {1,2}, then N L i
L1∩L2

∼=M M
L j
|L1∩L2

. This is the

single geometric fact we use, and can be understood by drawing a picture. This means that u L i
L1∩L2

= (i M
L j
)∗u M

L i
.

Here’s an outline of the proof.

Step 1. First, we must show that u M
L1∩L2

= u M
L1
^ u M

L2
.

Step 2. Then, we’ll interpret this, showing that u M
L = PD−1

M [L ], where L is any of L1, L2, or L1 ∩ L2.
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We’ll cover the second step first; it follows from naturality or functoriality of things. Specifically, if i = codim(L )
(i.e. the dimension of N ), then the following diagram commutes.

Hn (M )⊗H i (M , M \ L ) //

��

Hn (M , M \ L )⊗H i (M , M \ L )

)

��

Hn (N , N \ L )⊗H i (N , N \ L )∼oo

)

��
Hn (M )⊗H i (M ) _ // Hn−i (M ) Hn−i (N )oo

Here, the blue arrows come from excision.
To finish the proof of this section, we chase [M ]⊗u M ,M \L

L around the diagram: at Hn−i (M ) in the bottom center,
it is u M

L _ [M ] along the lower left and i∗[L ] along the upper right. �

15. THE EULER CLASS: 5/26/15

“I don’t know why I’m using so many colors.”

Recall that we’re in the middle of proving Theorem 13.1, that if L1 and L2 are compact oriented submanifolds of a
compact oriented M and L1 ô L2, then [L1] · [L2] = [L1 ∩ L2].

We also had a lot of notation floating around. For L ,→M , let i M
L : L ,→M denote the inclusion map, N M

L be

the normal bundle, uL ∈H ∗(D (N M
L ),S (N M

L )) be the Thom class, and u M ,M \L
L ∈H ∗(M , M \ L ) denote the Thom

clas in this group (which is isomorphic to H ∗(D (N M
L ),S (N M

L )) anyways). Let u M
L be the image of u M \L

L in H ∗(M ).
This proof had exactly one piece of geometric information, which is now normal bundles behave under

inclusion, i.e. that N L1
L1∩L2

= (i L2
L1∩L2

)∗N M
L2

. Everything else is functoriality and abstract nonsense. Last time, we

showed that u M
L = PD−1

M [L ] and u M
L _ [M ] = [L ]; thus, it suffices to show that u M

L1∩L2
= u M

L1
^ u M

L2
.

As a corollary to our single piece of geometric information, we know that u L1
L1∩L2

= (i M
L1
)∗u M

L2
, because we know

that if f : X → Y , then taking the Thom class commutes with pullback, i.e. in the diagram

f ∗E //

��

E

��
X

f // Y ,

u f ∗E = f ∗(uE ).
Then, uL2

∈H ∗(τN M
L2
) =H ∗(M , L2)maps to (i ∗L1∩L2

)uL2
= uL1∩L2

∈H ∗(τN L1
L1∩L2

) =H ∗(L1, L1 \ (L1∩L2)). (This can
be redrawn as a commutative diagram, which makes things a little clearer.)

By the above, it also suffices to show

[M ]_ u M
L1∩L2

= [M ]_ (u M
L1
^ u M

L2
)

= (iL1∩L2
)∗[L1 ∩ L2]

= (i M
L1
)∗([L1]_ u L2

L1∩L2
)

= (i M
L1
)∗([L1]_ (i

M
L1
)∗u M

L2
)

= ([M ]_ u M
L1
)_ u M

L2

= [M ]_ (u M
L1
^ u M

L2
).

Thus, we’ve finished the proof: it really is all algebraic abstraction.
One common question about vector bundles is whether they’re trivial; sometimes, you can write down a

trivialization, but the Euler class is an obstruction in cohomology that determines whether a vector bundle is
trivial.

Definition. Let π : E →M be a k -dimensional oriented vector bundle and i be the zero section for π; then, the
Euler class of E is e (E ) ∈H k (M ) defined by e (E ) = i ∗u E

M .

That is, we’re pushing u E
M along the following sequence.

H ∗(τE ) H k (E , E \M ) // H ∗(E )
i∗ // H ∗(M )

u � // u E ,E \M
M

� // u E
M

� // e (E )
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Proposition 15.1. Let Veck :Manifolds→ Sets denote the functor sending a manifold M to the set of isomorphism
classes of k -dimensional vector bundles; then, e gives a natural transformation between Veck and H k (the latter as
a functor to Sets).

That is, e is a characteristic class. Note that since Veck (M ) =π0(Map(M , B O(k ))), then we could have just used
B O(k ) to classify vector bundles and therefore provide a more abstract definition. This is useful when talking
about moduli spaces in algebraic geometry.

Concretely, though, what Proposition 15.1 tells us is that e commutes with pullback: e ( f ∗(E )) = f ∗(e (E )).

Proposition 15.2. Let E
π→M be a vector bundle, where M is a compact, orientable manifold. If i andσ are two

sections of π such that i ôσ, then PDM e (E ) = [{m ∈M | i (m ) =σ(m )}].

That is, geometrically, the Euler class is Poincaré dual to intersections of sections.

Proof. We know that

[{m ∈M | i (m ) =σ(m )}] =π∗(i∗[M ] ·σ∗[M ]) =π∗(i∗[M ] · i∗[M ]),

since i andσmust be homotopic. Moreover,

[M ]_ e (M ) = [M ]_ i ∗u E
M

=π∗(i∗[M ]_ u E
M )

=π∗(i∗[M ]_ PD−1
E i∗[M ]).

Be careful; some of these will lie in compactly supported cohomology. Which ones?
It suffices to show that

i∗[M ]_ PD−1
E i∗[M ] = PDE (PD−1

E i∗[M ]^ PD−1
E i∗[M ]),

and the right-hand side simplifies as

PDE (PD−1
E i∗[M ]^ PD−1

E i∗[M ]) = [E ]_ (PD−1
E i∗[M ]^ PD−1

E i∗[M ])

= ([D E ]_ PD−1
E i∗[M ])_ PD−1

E i∗[M ]

= i∗[M ]_ PD−1
E i∗[M ]. �

Proposition 15.3. e (TM)_M =χ(M )[pt].

This proposition also uses relatively little geometry. The idea is to consider the diagonal map∆ : M →M ×M
and a section π for it; then,∆∗N M×M

∆(M ) = TM , and compute from there (this is in the textbook).

Corollary 15.4. In H0(M ), e (TM)_ [M ] is equal to the number of zeros (with sign) of a vector field transverse to
the zero field times [pt].

Morse theory. For the next few days, we’ll talk about Morse theory. The idea is to take a manifold M and consider
functions f : M →R.

Definition. A function f : M →R is called Morse if it has isolated critical points and whenever D f (m ) = 0, the
matrix of mixed partial derivatives at m is invertible.

We will build a chain complex out of the critical points of f , and use this to compute the homology of f .

Definition. If f is Morse and x ∈ M is a critical point of f , then the index of x is the number of negative
eigenvalues of the matrix of mixed partials.

Next time, we’ll talk more about it, but Morse’s great idea was to replace M with its space of geodesics, so we
can use the homology of a manifold to gain insights about its critical points (e.g. lower bounds), and therefore
solve problems seemingly unrelated to algebraic topology.
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16. MORSE THEORY: 5/28/15

“Milnor is a great writer but a terrible person, apparently. . . he writes like Bill Clinton talks.”

On the final, looking at Milnor’s book will probably be useful.
For this lecture, we’ll let M be a compact manifold and f : M →R be smooth.10

Recall that m ∈M is called a critical point if D fm : Tm M → Tf (m )R=R is the zero transformation; then, r ∈R
is called a critical value if there exists an m ∈ f −1(r )which is a critical point.

In this lecture, it’s useful to imagine a torus T 2 embedded in R3, and f is its height function. Note that without
a metric, it’s hard to talk about the second derivative matrix; a metric will appear onstage later in thsi lecture.

Definition. Let m be a critical point of f ; then, the Hessian (or second derivative matrix) Hm ∈ (Tm M ⊗Tm M )∗

is defined by Hm (v, w ) = eVm (fW ( f )), where eV (resp. fW ) is any extension of v (resp. w ) to a smooth vector field.

Note that Hm is symmetric, because

eVm (fW ( f ))−fWm ( eV ( f )) = [ eV , fW ]m ( f ) = 0,

because m is a critical point (a vector field of a function at a critical point is zero, because it’s a differential
operator); otherwise, it might not be symmetric.

Proposition 16.1. If m is a critical point, then Hm is well-defined and symmetric.

Again, the definition using a metric will be well-defined and symmetric everywhere.

Proposition 16.2. If M =Rn , then

Hm









a1
...

an



 ,





b1
...

bn







=
n
∑

i , j=1

ai b j
∂ 2 f

∂ xi ∂ x j

�

�

�

�

m

.

That is, the Hessian agrees with the Math 51 definition you may be used to, at least on critical points (and the
metric definition will agree everywhere).

Definition. A critical point m is called non-degenerate if Hm is a non-degenerate quadratic form, i.e. Hm (v, v ) = 0
iff v = 0.

In a basis, Hm corresponds to an invertible matrix (in Rn , the matrix of mixed partials).

Definition. The index of a critical point m is the dimension of the largest subspace V ⊆ Tm M such that Hm |V is
negative definite.

Informally, in how many independent directions does f decrease away from the point? A local minimum
will be index 0, for example. Note that change of basis can change the eigenvalues of a quadratic form, but the
number of negative eigenvalues is invariant, and in fact, over R, is the only invariant!

Lemma 16.3 (Morse). Let m ∈M be a nondegenerate critical point. Then, there exists a ϕ : Rn →M which is
diffeomorphic onto its image and such that ϕ(0) =m, such that

f ◦ϕ(x1, . . . , xn ) =−
λ
∑

i=1

x 2
i +

n
∑

i=λ+1

x 2
i ,

where λ is the index of m.

Definition. f : M →R is called Morse if all of its critical points are non-degenerate.

Morse functions exist, and form an open, dense set in the space of smooth functions. However, it’s not a
contractible space, or even a connected one (e.g. merging two critical points into one).

Example 16.4. Here’s a function which is not Morse, called the Monkey saddle, because if a monkey were to ride
a horse, where would its tail go? The function is f (x , y ) = x 3−3x y 2, and is displayed in Figure 3.

Another good example is f (x ) = sin2(1/x )e −1/x 2
, by the following corollary.

Thus, it’s nice to know the following corollary of Lemma 16.3.

10This may be done more generally if M isn’t necessarily compact, and f is proper.
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FIGURE 3. The “monkey saddle” f (x , y ) = x 3−3x y 2, a non-Morse function f :R2→R. Source:
http://en.wikipedia.org/wiki/Monkey_saddle.

Corollary 16.5. The critical points of a Morse function f are isolated, i.e. their set has the discrete topology.

Definition. For a ∈R, let M a = f −1((−∞, a ]) (i.e. what would be underwater if a were sea level?).

Proposition 16.6. If a isn’t a critical value, then M a is a manifold-with-boundary.

This requires some futzing around with transversality, but looks a lot like some things we’ve already proven.

Proposition 16.7. If a < b and there are no critical values in (a −ε, b +ε) for some ε > 0, then M a is diffeomorphic
to M b , and M b ∼=M a ∪ f −1(a ) [a , b ]× f −1(a ).

That is, we just take the set f −1(a ) and stretch it upwards a little bit. The proof will require something called
gradient flow.

Definition. Choose a Riemannian metric on M . Then, the gradient ∇ f ∈ Γ (TM) is the image of d f ∈ Γ (T ∗M )
under an identification T ∗M ∼= TM .

Cleary, this depends on the choice of identification (i.e. basis).

Proof of Proposition 16.7. We can let ρ : M →R be defined by ρ = 1/‖∇ f ‖2 on f −1(a + ε, b + ε), and 0 elsewhere;
then, let χ =ρ∇ f . Since we only care about the region where ρ is nonzero, this is all right.

Letφt be the flow associated to χ , and f (φt (m )) = f (m )+ t for m ∈ f −1(a − ε, b + ε). Then,φb−a : M a →M b

is the desired diffeomorphism, and so the result follows, as

d

dt
f (φt ) =∇ f ·χ =

‖∇ f ‖2

‖∇ f ‖2 = 1. �

In terms of using Morse theory for homology, this is an extremely nice result: it tells us the topology only
depends on the critical points. We start out with the empty set; then, after the first critical point (plus ε), we get
some number of disks, which are contractible to a number of points, and after the next critical point the topology
gets more interesting.

Definition. Let λ ∈N; then a λ-handle is the thickening of a λ-cell (i.e. from the construction of CW complexes)
by an interval of radius ε.

For example, a 1-cell is a thin strip, and a 2-cell is a thin plate.

Definition. Let M be an n-dimensional manifold-with-boundary and let f : Sλ−1 ×D n−λ ,→ ∂M . Then, con-
structing M =D n−λ×D λ ∪ f M is called attaching a λ-cell.
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Notice that the choice of f is an important part of the definition, even though it doesn’t appear in the notation.11

Theorem 16.8. Suppose m is a critical point and c = f (m ) is the associated critical value. Let λ be the index of m,
and assume that m is the only critical point in f −1((c − ε, c + ε)). Then, M c+ε ∼=M c−ε ∪Cλ ∼=M c−ε ∪C λ, where Cλ
is a λ-handle and C λ is a λ-cell.

Corollary 16.9. A smooth, compact manifold is homotopy equivalent to a CW complex, which can be chosen so
that the number of λ-cells is equal to the number of index-λ critical points.

Note that this is not true for topological manifolds!
We’ll be able to talk about Morse homology next lecture; this is just the cellular homology using this cell

complex, but there’s a nicer (and cooler) way to think about it.

Definition. Let ϕt be gradient flow and m be a critical point of f . Then, the unstable manifold of m is

Um = {x ∈M with lim
t→∞

ϕt (x ) =m},

and the stable manifold of m is
Sm = {x ∈M with lim

t→−∞
ϕt (x ) =m},

That is, if you’re in the stable manifold, you’ll flow back to m . Note that since gradient flow doesn’t move critical
points, the stable manifold won’t contain any other critical points.

Proposition 16.10. With m and c as in Theorem 16.8, M is homotopy equivalent to M c−ε ∪Sm ∪{m}.

This is the homotopy story of cell attachment.

Corollary 16.11. Let F be a field and f : M →R be a Morse function. If f has N critical points, then

N ≥
dim M
∑

i=1

dim Hi (M ;F).

It’s possible to make a stronger statement with homology in more general coefficients.

Definition. Let M be a compact, smooth manifold and f : M →R be a Morse function. Then, letCλ be the set of
critical points of f of index λ.

• A metric is called Morse-Smale if for all critical points m and n of f , Um ô Sn .
• We will also use the notationM (m , n ) =Um ∩Sn/R, where R acts by gradient flow.

• The Morse chain complex will have objects C f
k (M ), the free abelian group on the set of critical points of

index k , and boundary maps

d (m ) =
∑

n∈Cindex(m )−1

[M (m , n )]n .

There will be some negative gradient flow here. Then, the big theorem is that this chain complex has the same
homotopy groups as the singular homology.

17. THE h-COBORDISM THEOREM AND THE GENERALIZED POINCARÉ CONJECTURE

“Using the standard Euclidean structure induced by the blackboard. . . ”

Today’s lecture was given by TODO.
Our goal is to prove the generalized Poincaré conjecture for n ≥ 6. With a little more work, you can also get

n = 5, but we’ll skip this to save time.

Theorem 17.1 (Generalized Poincaré conjecture). If M is a smooth n-dimensional manifold, where n ≥ 6, and is
a simply connected homology sphere (i.e. has the same homology groups as S n ), then M is homeomorphic to S n .

Thanks to exotic smooth structures on S 4 and higher, this theorem is not true if one replaces “homeomorphic”
with “diffeomorphic.”

We’ll derive this as a corollary of the h-Cobordism theorem.

11In other news, topologists sometimes have attachment issues.
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Theorem 17.2 (h-Cobordism). Let W be an n-dimensional cobordism between V and V ′, where n ≥ 6 and V , V ′,
and W are simply connected. If H∗(W , V ) = 0, then W ∼=V × [0, 1].

This turns out to be equivalent to the following condition, which might be surprising at first.

Definition. W is an h-cobordism of V and V ′ if all three are simply connected and W deformation retracts onto
V and V ′.

The h-Cobordism theorem crucially depends on higher-dimensional methods, and by itself makes higher-
dimensional topology much simpler.

Lemma 17.3. Let M be a simply connected, smooth, n-dimensional manifold. If n ≥ 6, then the following are
equivalent.

(1) M is diffeomorphic to D n .
(2) M is homeomorphic to D n

(3) M is contractible.
(4) M has the integral homology of a point.

Proof. (1) =⇒ (2) =⇒ (3) =⇒ (4) is obvious, so let’s show (4) =⇒ (1).
Let M be a manifold with the integral homology of a point, and choose a disc D0 ⊆M . Then, D0 is of course

diffeomorphic to D n , so M \D0 is an h-cobordism between D0 and ∂M . By Theorem 17.2, M \D0
∼= ∂ D0× [0, 1] is

a diffeomorphism, so M =D0 ∪∂ D0
(∂ D0× [0, 1])∼=D0. �

Armed with this, let’s finish the Poincaré conjecture.

Proof of Theorem 17.1. Let D0 ⊆M be a disc, so D0
∼=D n is a diffeomorphism. Then, M \Int(D0) satisfies condition

(4) of Lemma 17.3, so we know that M \ Int(D0) is diffeomorphic to D n . That is, M =D n ∪h D n , where h : ∂ D n →
∂ D n is a diffeomorphism. Then, such a diffeomorphism must extend to a homeomorphism D n →D n , so M is
homeomorphic to S n . �

The next thing to happen to this is Morse theory!

Fact. For every cobordism (W ; V , V ′), there exists a function f : W →Rwith no critical points near ∂W =V ∪V ′,
and such that all of its critical points are nondegenerate. Such an f is called a Morse function. Such functions
are dense.

A Morse function f draws a picture of W in the same sense that a height function does. For example, if
f : W → [0,1], then it draws the picture starting with V = f −1(0). In particular, the topology changes only when
we pass critical values! In particular, if f has no critical points at all, then W ∼= V × [0,1]: we have the product
cobordism. Intuitively, we can reason about this by thinking about gradients, but the gradient isn’t well-defined
without a metric.

Definition. A vector field X ∈ Γ (TW ) is gradient-like if X ( f )> 0 away from critical points and “looks standard”
near critical points, i.e. it is possible to flow to or away from them.

If f has no critical points, then such an X is nonvanishing, and therefore we can use its flow lines to define
V × [0, 1]

∼→W .
More generally, if f is a Morse function on W with a critical point p , then around p ,

f (x ) =−x 2
1 − · · ·− x 2

λ + x 2
λ+1+ · · ·+ x 2

n + f (p ).

Thus, we can look at how the topology differs from f −1( f (p )− ε) to f −1( f (p )+ ε), using the stable and unstable
spheres Dstab, which is homeomorphic to D n−λ, and Dunst, which is homeomorphic to D λ.

Thinking about this in general can be difficult, but if f (W ; V , V ′)→ [0, 1] has exactly one critical point of index
λ, then this implies that

H∗(W , V ) =

�

0, ∗ 6=λ
Z[D λ

unst], ∗=λ.

This is the philosophy behind the h-Cobordism theorem; we don’t have time to prove it fully, but we’ll use the fact
that the homology is trivial to “cancel” the critical points.

The first step is to arrange the critical points so that they’re ordered by index, i.e. if p1 has higher index than
p2, then f (p1)> f (p2). Why can we do this? Suppose their stable and unstable spheres don’t intersect; then, we
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can switch their order by modifying f : choose neighborhoods of their stable and unstable spheres and fix f so
the level sets near p1 are of higher magnitude than those of p2 (i.e. the function grows very fast outside of those
neighborhoods). You have to write this down and make it rigorous, but the point today is that you can. Note that
Dunst and Dstab depend on X , the gradient-like vector field, since we need a flow.

Next, let’s suppose that the stable and unstable discs intersect. Let λ′ be the index of p1 and λ be that of p2, so
that λ′ ≥λ. Let c ∈R be such that f −1(c ) contains points on the intersection of the discs of the two critical discs.
Thus, we have Sλ−1 and S n−λ−1 intersecting, so

λ−1+ (n −λ′−1) = n + (λ−λ′)−2≤ n −2< n −1,

so we can slightly change X to push D λ−1
unst and D n−λ′−1

stab apart, and therefore use the first part of the argument.
Now that we’ve sorted them by index (using bubblesort, I guess, if need be), we can play these critical points off

of each other like Niccolò Macchiavelli. Remember that things of complimentary dimension generally intersect
in a finite number of points, so Ss of a critical point p of index λ and Su of a critical point q of index λ+1 must
intersect in a single point. (Here, Ss and Su are the stable and unstable spheres, contained within some f −1(c ).)

In particular, this implies our gradient-like vector field X has a unique trajectory from p to q . But we can
replace this with a trajectory in the opposite direction, from q to p , and edit X in a neighborhood of that trajectory
so that it’s still smooth. Then, both p and q are no longer zeros of X .

Thus, we end up constructing an X ∈ Γ (TW ) such that X 6= 0 and all trajectories go from the initial boundary
to the final boundary of W , which defines the diffeomorphism W ∼= V × [0,1], and we can use this to obtain a
different Morse function which glues well with our new and improved X . This is why we use vector fields: they’re
so much easier to manipulate than R-valued functions on W .

The second cancellation theorem supposes that the homological intersection
�

Sλ+1
u

�

·
�

S n−λ
s

�

= ±1. Then, if
2≤λ and λ+1≤ n −2, then the same result hold. This is where we need to use the Whitney trick.

Lemma 17.4 (The Whitney trick). Let r+s ≥ 5. Let M be an oriented, simply connected, r -dimensional submanifold
of an (r + s )-dimensional manifold and N be an oriented, s -dimensional submaniold of the ambient manifold L.
Assume L is also simply connected and oriented. Then, if M ôN and p , q ∈M ∩N have opposite intersection signs,
then one can isotope M inside N to remove p and q from M ∩N .

This provides a lot of the flavor of high-dimensional topology. We make it work by joining p and q by two
curves, `⊆M and `′ ⊆N , and join them via a disc inside L (since L is simply connected, so this disc does exist,
because the dimension is high enough).

Then, on a neighborhood of D , we have a local model for removing intersections, and then this local model
can be embedded into our situation in L . The local model is a little silly: we just slide N through the disc until it
has passed the two points of intersection, and then we lose two points of intersection of M and N . More precisely,
one would use two tubular neighborhoods and some framings, and make the change die out on the boundary of
the tubular neighborhood. It seems like this is imprecise, but it’s possible to work more to make this rigorous.

Now, for the second cancellation theorem, we repeatedly apply the Whitney trick and cancel critical points
until there is only one geometric point of intersection, and then use the first cancellation theorem to cancel them.

Now we’re almost done: the only thing left is that if the whole homology is trivial, we can pair the critical points
such that the intersections look like this. This is because of Morse homology: the intersection numbers are the
differentials for the cell complex (C∗, d ), but we already know the homology to be trivial. At level λ, we have some
set of critical points of index λ, including one we’ll call p . Then,

d (p ) =
∑

q

�

S n−λ−1
s (q )

�

·
�

Sλu (p )
�

·q ,

where the sum is over all critical points q with index λ−1. But this map needs to be the zero map.
We know

H∗(W , V )'
⊕

i

Z
�

D λ
unst(pi )

�

=Z〈b1, . . . , bn 〉,

so the next step (if we had time) would be to show that it’s possible to mdoify f so that the corresponding basis
is Z〈b1 + b2, b2, b3, . . . , bn 〉. This argument is a little involved, and uses the “handle slide” to join the unstable
manifolds of two critical points.12

12The “handle slide” is this quarter’s mathematical definition that sounds the most like a disco dance move.
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