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1. Introduction

The goal of this document is to make the following calculation.

Theorem 1.1. Let M be a closed 5-manifold and B ∈ H2(M ;Z/2). Then,

(1.2) 〈BSq1B + Sq2Sq1B, [M ]〉 =
1

2
〈w̃1 ^ P(B), [M ]〉.

The right-hand side uses some unfamiliar notation, which we proceed to define.

Lemma 1.3. If Zw1
denotes the orientation local system, H1(BO1,Zw1

) ∼= Z/2.

Indeed, this is the group cohomology H1(Z/2,Zσ), where Zσ denotes Z with the sign action.

Definition 1.4. The pullback of the nonzero element of H1(BO1;Zw1
) under the determinant map

B det : BOn → BO1 is called the twisted first Stiefel-Whitney class w̃1 ∈ H1(BOn;Zw1
).

Hence this defines a twisted first Stiefel-Whitney class of any real vector bundle, which lives in cohomology
twisted by the orientation bundle. Its mod 2 reduction is the usual first Stiefel-Whitney class in untwisted
Z/2-cohomology. In (1.2), we consider its reduction w̃1 ∈ H1(M ; (Z/4)w1

), twisted mod 4 cohomology.
Next, P denotes the Pontrjagin square P : H2(M ;Z/2) → H4(M ;Z/4) (though it exists in greater

generality). It is the realization of the idea that if you know an x ∈ Z modulo 2, you know x2 mod 4.
On the right-hand side of (1.2), we use cup and cap products in twisted Z/4-cohomology: if [M ] denotes

the fundamental class in twisted Z/4-cohomology, this is

(1.5) H1(M ; (Z/4)w1
)⊗H4(M ;Z/4)

^ // H5(M ; (Z/4)w1
)
–_[M ]// Z/4.

However, since 2w̃1 = 0, 〈w̃1 ^ P(B), [M ]〉 is even, and so it makes sense to divide by 2 and obtain an
element of Z/2, so we can compare with the left-hand side of (1.2).

We’ll prove Theorem 1.1 in three steps:

(1) First, prove that both sides of (1.2) are cobordism invariants for a certain class of manifolds.
(2) Then, determine generating manifolds for the group of cobordism classes of those manifolds.
(3) Finally, verify (1.2) on the generators.

2. Cobordism-invariance

To capture the notion of cobordism of a manifold and a degree-2 cohomology class, we consider cobordism
of manifolds with a Z/2-gerbe, or equivalently, manifolds M together with a degree-2 Z/2 cohomology class
B, where (M,B) bounds if M = ∂W for W compact and B extends over W . For the rest of this document,
cobordism-invariant, cobordism groups, etc., refers to this kind of cobordism unless otherwise specified.

The classifying space for this structure is BOn ×K(Z/2, 2), so the cobordism groups are the homotopy
groups of the Thom spectrum of the virtual bundle (Vn − Rn)→ BOn ×K(Z/2, 2) (here Vn → BOn is the
tautological bundle).

Lemma 2.1. Let E → X and F → Y be virtual vector bundles. The Thom space of E � F → X × Y is
Thom(E) ∧ Thom(F ).

We’re looking at (Vn −Rn) � 0, hence obtain MO ∧K(Z/2, 2)+ (the Thom space of the zero bundle on X
is X/∅ = X+). The cobordism group we want is π5 of this spectrum.
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Proposition 2.2. The quantity 〈w̃1 ^ P(B), [M ]〉 is a cobordism invariant, and in particular a group
homomorphism ΩO

5 (K(Z/2, 2))→ Z/2.

Proof. This quantity is additive under disjoint union, so it suffices to show that it vanishes when M bounds.
Let (M,B) bound, i.e. M is a closed 5-manifold, B ∈ H2(M ;Z/2), and there’s a compact manifold W and

a B̂ ∈ H2(W ;Z/2) such that M = ∂W and if i : M ↪→ W is inclusion, B = i∗B̂. Then, TW |M ∼= TM ⊕ R
(using the outward normal vector field), so i∗w̃1(W ) = w̃1(M). By naturality i∗P(B̂) = P(B). In the long
exact sequence for (W,M),

(2.3) Hn(W ; (Z/4)w1
)

i∗ // Hn(M ; (Z/4)w1
)

δ // Hn+1(W,M ; (Z/4)w1
),

so w̃1(M)P(B) ∈ Im(i∗) = ker(δ).
Let [W,M ] ∈ Hn+1(W,M ; (Z/4)w1

) denote the fundamental class of the pair, and [M ] ∈ Hn(M ; (Z/4)w1
)

denote the fundamental class. Under the connecting morphism ∂ : Hn+1(W,M ; (Z/4)w1
)→ Hn(M ; (Z/4)w1

),
[W,M ] 7→ [M ]. Lefschetz duality gives us a version of Stokes’ theorem: if x ∈ Hn(M ; (Z/4)w1), then

(2.4) 〈x, ∂[W,M ]〉 = 〈δx, [W ]〉.

Hence

�(2.5) 〈w̃1(M)P(B), [M ]〉 = 〈w̃1(M)P(B), ∂[W,M ]〉 = 〈δ(w̃1(M)P(B)), [W,M ]〉 = 0.

Proposition 2.6 (Conner-Floyd [CF64]). For any a ∈ Hi(X;Z/2) and degree-(n− i)-polynomial p in the
Stiefel-Whitney classes, the Whitney number

(2.7) φp,a : (M,f) 7−→ 〈p(M)f∗(a), [M ]〉

is a cobordism invariant for the cobordism theory of unoriented n-manifolds with a map to X, and moreover
a group homomorphism ΩO

n (X)→ Z/2.

Proof. This quantity is additive under disjoint union, so it suffices to show that if (M,f : M → X) is the
boundary of (W, g : W → X), in the sense that M = ∂W and g|M = f , then 〈p(M)f∗(a), [M ]〉 = 0. Let
i : M ↪→ W be inclusion; as in the proof of Proposition 2.2, it suffices to prove p(M)f∗(a) ∈ Im(i∗). Since
f = g ◦ i, then f∗(a) = i∗(g∗(a)) ∈ Im(i∗), and since TW |M ∼= TM ⊕ R, then i∗wk(W ) = wk(M), so p(M),
which is a polynomial in the Stiefel-Whitney classes of M , is also in Im(i∗); thus, p(M)f∗(a) ∈ Im(i∗), which
suffices. �

Corollary 2.8. The quantity 〈BSq1B + Sq2Sq1B, [M ]〉 is a cobordism invariant.

Proof. Let B denote the tautological class in H2(K(Z/2, 2);Z/2). The quantity BSq1B + Sq2Sq1B is a
Whitney number for X = K(Z/2, 2), a = BSq1B + Sq2Sq1B ∈ H5(K(Z/2, 2);Z/2), and p = 1, hence is a
cobordism invariant. �

3. Computing the cobordism group

Proposition 3.1 (Serre [Ser53]). H∗(K(Z/2, 2);Z/2) is generated by SqIB, where B ∈ H2(K(Z/2, 2);Z/2)
is the tautological class, and we consider admissible sequences I = (i1, . . . , im) such that ij ≥ 2ij+1 and
2i1 −

∑
j≥1 ij < 2.

Corollary 3.2. The low-dimensional mod 2 homology groups of K(Z/2, 2) are:

(3.3) Hi(K(Z/2, 2);Z/2) ∼=


Z/2, i = 0, 2, 3, 4

(Z/2)⊕2, i = 5

0, i = 1.

Proof. The low-degree generators of cohomology are 1 (degree 0), B (degree 2), Sq1B (degree 3) B2 (degree
4), and Sq2Sq1B and BSq1B (degree 5). To get homology, use the universal coefficient theorem over the field
F2, so all Ext terms vanish and the homology and cohomology are isomorphic. �

Proposition 3.4. π5(MO ∧K(Z/2, 2)+) ∼= (Z/2)⊕4.
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Proof. MO is a wedge of suspensions of Eilenberg-Mac Lane spectra HF2, so

(3.5) MO ∧K(Z/2, 2)+ ∼=
∨
k

ΣkHF2 ∧K(Z/2, 2)+,

where k runs over the degrees of the generators of unoriented cobordism as a graded abelian group: k =
0, 2, 4, 4, 5, . . . (corresponding to pt, RP2, RP4, RP2 × RP2, and the Wu manifold, respectively).

For the purpose of taking π5, we can 5-truncate to obtain

HF2∧K(Z/2, 2)+∨Σ2HF2∧K(Z/2, 2)+∨Σ4HF2∧K(Z/2, 2)+∨Σ4HF2∧K(Z/2, 2)+∨Σ5HF2∧K(Z/2, 2)+.

This is a finite coproduct, hence equivalent to a finite product. π5 commutes with products, and finite
products and sums of abelian groups are the same, so we now have

π5(MO ∧K(Z/2, 2)+) = π5(HF2 ∧K(Z/2, 2)+)⊕ π5(Σ2HF2 ∧K(Z/2, 2)+)⊕ (π5(Σ4HF2 ∧K(Z/2, 2))+)2

⊕ π5(Σ5HF2 ∧K(Z/2, 2)+)(3.6a)

= H5(K(Z/2, 2);Z/2)⊕H3(K(Z/2, 2);Z/2)⊕ (H1(K(Z/2, 2),Z/2))2 ⊕H0(K(Z/2, 2);Z/2).(3.6b)

Plug in the results from Corollary 3.2 and we’re done. �

4. Finding the generators

Proposition 2.6 tells us that we can use Whitney numbers to determine whether a candidate set of
generators is linearly independent. Using Proposition 3.1, the relevant cohomology classes are 1 ∈ H0,
B ∈ H2, Sq1B ∈ H3, B2 ∈ H4, and BSq1B and Sq2Sq1B ∈ H5. Thus we can write down the Whitney
numbers, and some of them coincide.

• When a = 1, we get ordinary Stiefel-Whitney numbers for 5-manifolds. Using the Wu formula, one
can show they’re all either 0 or determined by w2w3.

• When a = B, we get w3B, w2w1B, and w3
1B. However, w2w1 = v3 on any closed manifold, and

v3 = 0 on any 5-manifold.
• When a = Sq1B, we get w2Sq1B and w2

1Sq1B. However,

(4.1) Sq1(w2
1B) = Sq1(w2

1)B + w2
1Sq1B = w2

1Sq1B,

and since v1 = w1,

(4.2) Sq1(w2
1B) = v1w

2
1B = w3

1B,

so this class isn’t anything new; similarly, because Sq1w2 = w3 on a 5-manifold,

(4.3) Sq1(w2B) = Sq1w2B + w2Sq1B = w3B + w2Sq1B,

and because w1w2 = 0 as noted above,

(4.4) Sq1(w2B) = v1w2B = w1w2B = 0.

Thus w2Sq1B = w3B, and this isn’t anything new either.
• When a = B2, we get w1B

2. Since w1 = v1,

(4.5) w1B
2 = v1B

2 = Sq1(B2) = 0.

• For a = Sq2Sq1B, we must let p = 1, giving the Whitney number Sq2Sq1B. This is

(4.6) Sq2Sq1B = v2Sq1B = (w2 + w2
1)Sq1B,

so this is a sum of terms we’ve already accounted for.
• Finally, we can take a = BSq1B, again forcing p = 1 and the Whitney number BSq1B.

So there are four candidate Whitney numbers: w3w2, w3B, w3
1B, and BSq1B. We now use them to determine

a generating set of ΩO
5 (K(Z/2, 2)). The answer is in Table 1, and the calculations follow.

Example 4.7. The Wu manifold W := SU3/SO3 has cohomology ring H∗(W ;Z/2) ∼= F2[z2, z3]/(z22 , z
2
3)

with w = 1 + z2 + z3, Sq(z2) = z2 + z3 + z22 , and Sq(z3) = z3 + z2z3. Hence (W, 0) and (W, z2) are linearly
independent in ΩO

5 (K(Z/2, 2)), giving us two of the four needed generators. (
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(W, 0) (W, z2) (S1 × RP4, xy), (S1 × RP2 × RP2, ux)
w3w2 1 1 0 0
w3

1B 0 0 1 1
w3B 0 1 0 1
BSq1B 0 1 0 0

Table 1. Whitney numbers for some nonbounding 5-manifolds, explained below.

Example 4.8. Consider Y = S1 × RP4: if x generates H1(S1;Z/2) and y generates H1(RP4;Z/2), then
H∗(Y ;Z/2) ∼= F2[x, y]/(x2, y5) and w(Y ) = 1+y+y4; the A-module structure is determined by Sq(y) = y+y2

and Sq(x) = x. If B = xy, w3
1B = xy4 is nonzero, so (S1×RP4, xy) is a third linearly independent element. (

Example 4.9. Consider X = S1 × RP2 × RP2, whose cohomology is H∗(X;Z/2) ∼= F2[x, u, v]/(x2, u3, v3),
where x generates H1(S2;Z/2), u generates H1 of the first RP2, and v generates H1 of the second copy.
Then,

(4.10) w(X) = (1 + u+ u2)(1 + v + v2) = 1 + u+ v + u2 + uv + v2 + u2v + uv2 + u2v2.

The Steenrod action is determined by Sq(u) = u+ u2, Sq(v) = v + v2, and Sq(x) = x.
When B = ux, w3B = u2v2x 6= 0, but BSq1B = u3x2 = 0, so (X,ux) is linearly independent from the

previous three examples, and hence is the last generator. (

5. Checking on the generators

Proposition 5.1 (Massey [Mas69]). Let m,n ∈ Z be such that m ≡ n mod 2 and X be a topological space.
If a ∈ Hm(X;Z/2) and y ∈ Hn(X;Z/2), then

P(ab) = P(a)P(b) + θ((Sqm−1u)vSq1v + uSq1u(Sqn−1v)),

where θ : H∗(X;Z/2)→ H∗(X;Z/4) is induced by the multiplication by 2 map (·2) : Z/2→ Z/4.

Proof of Theorem 1.1. We’ve reduced the problem to verifying (1.2) on the four generators.

(1) When (M,B) = (W, 0), both sides are 0 because B = 0.
(2) For (M,B) = (W, z2), we have

(5.2) BSq1B + Sq2Sq1B = z2z3 + z2z3 = 0,

and since W is orientable, w̃1(W ) = 0 and the right-hand side is also 0.
(3) If (M,B) = (S1 × RP4, xy),

Sq1(xy) = xSq1y + xSq1y = xy2(5.3a)

Sq2Sq1(xy) = (Sq2x)y2 + Sq1xSq1y + xSq2(y2) = xy4(5.3b)

xySq1(xy) = x2y3 = 0.(5.3c)

Hence

(5.4) 〈BSq1B + Sq2Sq1B, [S1 × RP4]〉 = 〈xy4, [S1 × RP4]〉 = 1.

To compute the right-hand side of (1.2), apply Proposition 5.1 with m = n = 1:

(5.5) P(xy) = P(x)P(y) + θ(xy3 + x3y) = θ(xy3)

by degree considerations.
One can check on the generators of H3(S1 × RP4;Z/2) to show that xy3 is not in the image of

the Bockstein, hence θ(xy3) 6= 0. It lands in the piece of H4(S1 × RP4;Z/4) that is H1(S1;Z/4)⊗
H3(RP4;Z/4) ∼= Z/4⊗ Z/2 ∼= Z/2, hence is the generator.

Now, w̃1(S1 × RP4) = w̃1(S1) + w̃1(RP4). w̃1(S1) = 0 because S1 is orientable, and w̃1(RP4) = ỹ,
the generator of H1(RP4;Zw1

), using that the inclusion RP4 ↪→ BO1 is cellular.
Hence, in H5(S1 × RP4; (Z/4)w1

), w̃1P(xy) is nonzero, so must be twice the generator. Thus

(5.6) 〈w̃1 ^ P(xy), [S1 × RP4]〉 = 2,

so (1.2) is valid.
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(4) Finally, let (M,B) = (S1 × RP2 × RP2, xy). We have

(5.7) BSq1B + Sq2Sq1B = 0 + uvx+ uvx = 0.

Using Proposition 5.1,

(5.8) P(B) = P(ux) = P(u)P(x) + θ(uxSq1x+ xuSq1u),

which vanishes by degree considerations: P(x) ∈ H2(S1;Z/4) = 0, Sq1x ∈ H2(S1;Z/2) = 0, and
uSq1u ∈ H3(RP2;Z/2) = 0. �
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