THE COMPARISON OF TWO COHOMOLOGY OPERATIONS

ARUN DEBRAY OCTOBER 13, 2017

1. INTRODUCTION

The goal of this document is to make the following calculation.

Theorem 1.1. Let M be a closed 5-manifold and $B \in H^2(M; \mathbb{Z}/2)$. Then,

(1.2)
$$\langle B\mathrm{Sq}^{1}B + \mathrm{Sq}^{2}\mathrm{Sq}^{1}B, [M] \rangle = \frac{1}{2} \langle \widetilde{w}_{1} \smile \mathfrak{P}(B), [M] \rangle.$$

The right-hand side uses some unfamiliar notation, which we proceed to define.

Lemma 1.3. If \mathbb{Z}_{w_1} denotes the orientation local system, $H^1(BO_1, \mathbb{Z}_{w_1}) \cong \mathbb{Z}/2$.

Indeed, this is the group cohomology $H^1(\mathbb{Z}/2,\mathbb{Z}_{\sigma})$, where \mathbb{Z}_{σ} denotes \mathbb{Z} with the sign action.

Definition 1.4. The pullback of the nonzero element of $H^1(BO_1; \mathbb{Z}_{w_1})$ under the determinant map $B \det: BO_n \to BO_1$ is called the *twisted first Stiefel-Whitney class* $\widetilde{w}_1 \in H^1(BO_n; \mathbb{Z}_{w_1})$.

Hence this defines a twisted first Stiefel-Whitney class of any real vector bundle, which lives in cohomology twisted by the orientation bundle. Its mod 2 reduction is the usual first Stiefel-Whitney class in untwisted $\mathbb{Z}/2$ -cohomology. In (1.2), we consider its reduction $\widetilde{w}_1 \in H^1(M; (\mathbb{Z}/4)_{w_1})$, twisted mod 4 cohomology.

Next, \mathfrak{P} denotes the *Pontrjagin square* $\mathfrak{P}: H^2(M; \mathbb{Z}/2) \to H^4(M; \mathbb{Z}/4)$ (though it exists in greater generality). It is the realization of the idea that if you know an $x \in \mathbb{Z}$ modulo 2, you know $x^2 \mod 4$.

On the right-hand side of (1.2), we use cup and cap products in twisted $\mathbb{Z}/4$ -cohomology: if [M] denotes the fundamental class in twisted $\mathbb{Z}/4$ -cohomology, this is

(1.5)
$$H^{1}(M; (\mathbb{Z}/4)_{w_{1}}) \otimes H^{4}(M; \mathbb{Z}/4) \xrightarrow{\smile} H^{5}(M; (\mathbb{Z}/4)_{w_{1}}) \xrightarrow{\frown \sim [M]} \mathbb{Z}/4$$

However, since $2\tilde{w}_1 = 0$, $\langle \tilde{w}_1 \smile \mathfrak{P}(B), [M] \rangle$ is even, and so it makes sense to divide by 2 and obtain an element of $\mathbb{Z}/2$, so we can compare with the left-hand side of (1.2).

We'll prove Theorem 1.1 in three steps:

- (1) First, prove that both sides of (1.2) are cobordism invariants for a certain class of manifolds.
- (2) Then, determine generating manifolds for the group of cobordism classes of those manifolds.
- (3) Finally, verify (1.2) on the generators.

2. Cobordism-invariance

To capture the notion of cobordism of a manifold and a degree-2 cohomology class, we consider cobordism of manifolds with a $\mathbb{Z}/2$ -gerbe, or equivalently, manifolds M together with a degree-2 $\mathbb{Z}/2$ cohomology class B, where (M, B) bounds if $M = \partial W$ for W compact and B extends over W. For the rest of this document, cobordism-invariant, cobordism groups, etc., refers to this kind of cobordism unless otherwise specified.

The classifying space for this structure is $BO_n \times K(\mathbb{Z}/2, 2)$, so the cobordism groups are the homotopy groups of the Thom spectrum of the virtual bundle $(V_n - \mathbb{R}^n) \to BO_n \times K(\mathbb{Z}/2, 2)$ (here $V_n \to BO_n$ is the tautological bundle).

Lemma 2.1. Let $E \to X$ and $F \to Y$ be virtual vector bundles. The Thom space of $E \boxplus F \to X \times Y$ is $\text{Thom}(E) \land \text{Thom}(F)$.

We're looking at $(V_n - \mathbb{R}^n) \boxplus 0$, hence obtain $MO \wedge K(\mathbb{Z}/2, 2)_+$ (the Thom space of the zero bundle on X is $X/\emptyset = X_+$). The cobordism group we want is π_5 of this spectrum.

Proposition 2.2. The quantity $\langle \widetilde{w}_1 \smile \mathfrak{P}(B), [M] \rangle$ is a cobordism invariant, and in particular a group homomorphism $\Omega_5^{\mathcal{O}}(K(\mathbb{Z}/2,2)) \to \mathbb{Z}/2$.

Proof. This quantity is additive under disjoint union, so it suffices to show that it vanishes when M bounds. Let (M, B) bound, i.e. M is a closed 5-manifold, $B \in H^2(M; \mathbb{Z}/2)$, and there's a compact manifold W and a $\widehat{B} \in H^2(W; \mathbb{Z}/2)$ such that $M = \partial W$ and if $i: M \hookrightarrow W$ is inclusion, $B = i^*\widehat{B}$. Then, $TW|_M \cong TM \oplus \mathbb{R}$ (using the outward normal vector field), so $i^*\widetilde{w}_1(W) = \widetilde{w}_1(M)$. By naturality $i^*\mathfrak{P}(\widehat{B}) = \mathfrak{P}(B)$. In the long exact sequence for (W, M),

(2.3)
$$H^{n}(W; (\mathbb{Z}/4)_{w_{1}}) \xrightarrow{i^{*}} H^{n}(M; (\mathbb{Z}/4)_{w_{1}}) \xrightarrow{\delta} H^{n+1}(W, M; (\mathbb{Z}/4)_{w_{1}}),$$

so $\widetilde{w}_1(M)\mathfrak{P}(B) \in \operatorname{Im}(i^*) = \ker(\delta)$.

Let $[W, M] \in H_{n+1}(W, M; (\mathbb{Z}/4)_{w_1})$ denote the fundamental class of the pair, and $[M] \in H_n(M; (\mathbb{Z}/4)_{w_1})$ denote the fundamental class. Under the connecting morphism $\partial : H_{n+1}(W, M; (\mathbb{Z}/4)_{w_1}) \to H_n(M; (\mathbb{Z}/4)_{w_1}),$ $[W, M] \mapsto [M]$. Lefschetz duality gives us a version of Stokes' theorem: if $x \in H^n(M; (\mathbb{Z}/4)_{w_1})$, then

(2.4)
$$\langle x, \partial[W, M] \rangle = \langle \delta x, [W] \rangle.$$

Hence

(2.5)
$$\langle \widetilde{w}_1(M)\mathfrak{P}(B), [M] \rangle = \langle \widetilde{w}_1(M)\mathfrak{P}(B), \partial[W, M] \rangle = \langle \delta(\widetilde{w}_1(M)\mathfrak{P}(B)), [W, M] \rangle = 0.$$

Proposition 2.6 (Conner-Floyd [CF64]). For any $a \in H^i(X; \mathbb{Z}/2)$ and degree-(n-i)-polynomial p in the Stiefel-Whitney classes, the Whitney number

(2.7)
$$\phi_{p,a} \colon (M, f) \longmapsto \langle p(M) f^*(a), [M] \rangle$$

is a cobordism invariant for the cobordism theory of unoriented n-manifolds with a map to X, and moreover a group homomorphism $\Omega_n^{\mathcal{O}}(X) \to \mathbb{Z}/2$.

Proof. This quantity is additive under disjoint union, so it suffices to show that if $(M, f: M \to X)$ is the boundary of $(W, g: W \to X)$, in the sense that $M = \partial W$ and $g|_M = f$, then $\langle p(M)f^*(a), [M] \rangle = 0$. Let $i: M \hookrightarrow W$ be inclusion; as in the proof of Proposition 2.2, it suffices to prove $p(M)f^*(a) \in \text{Im}(i^*)$. Since $f = g \circ i$, then $f^*(a) = i^*(g^*(a)) \in \text{Im}(i^*)$, and since $TW|_M \cong TM \oplus \mathbb{R}$, then $i^*w_k(W) = w_k(M)$, so p(M), which is a polynomial in the Stiefel-Whitney classes of M, is also in $\text{Im}(i^*)$; thus, $p(M)f^*(a) \in \text{Im}(i^*)$, which suffices.

Corollary 2.8. The quantity $\langle BSq^1B + Sq^2Sq^1B, [M] \rangle$ is a cobordism invariant.

Proof. Let B denote the tautological class in $H^2(K(\mathbb{Z}/2,2);\mathbb{Z}/2)$. The quantity $BSq^1B + Sq^2Sq^1B$ is a Whitney number for $X = K(\mathbb{Z}/2,2)$, $a = BSq^1B + Sq^2Sq^1B \in H^5(K(\mathbb{Z}/2,2);\mathbb{Z}/2)$, and p = 1, hence is a cobordism invariant.

3. Computing the cobordism group

Proposition 3.1 (Serre [Ser53]). $H^*(K(\mathbb{Z}/2,2);\mathbb{Z}/2)$ is generated by Sq^IB, where $B \in H^2(K(\mathbb{Z}/2,2);\mathbb{Z}/2)$ is the tautological class, and we consider admissible sequences $I = (i_1, \ldots, i_m)$ such that $i_j \geq 2i_{j+1}$ and $2i_1 - \sum_{j>1} i_j < 2$.

Corollary 3.2. The low-dimensional mod 2 homology groups of $K(\mathbb{Z}/2,2)$ are:

(3.3)
$$H_i(K(\mathbb{Z}/2,2);\mathbb{Z}/2) \cong \begin{cases} \mathbb{Z}/2, & i = 0, 2, 3, 4\\ (\mathbb{Z}/2)^{\oplus 2}, & i = 5\\ 0, & i = 1. \end{cases}$$

Proof. The low-degree generators of cohomology are 1 (degree 0), B (degree 2), $\operatorname{Sq}^1 B$ (degree 3) B^2 (degree 4), and $\operatorname{Sq}^2 \operatorname{Sq}^1 B$ and $B \operatorname{Sq}^1 B$ (degree 5). To get homology, use the universal coefficient theorem over the field \mathbb{F}_2 , so all Ext terms vanish and the homology and cohomology are isomorphic.

Proposition 3.4. $\pi_5(MO \wedge K(\mathbb{Z}/2,2)_+) \cong (\mathbb{Z}/2)^{\oplus 4}$.

Proof. MO is a wedge of suspensions of Eilenberg-Mac Lane spectra $H\mathbb{F}_2$, so

(3.5)
$$MO \wedge K(\mathbb{Z}/2,2)_{+} \cong \bigvee_{k} \Sigma^{k} H\mathbb{F}_{2} \wedge K(\mathbb{Z}/2,2)_{+},$$

where k runs over the degrees of the generators of unoriented cobordism as a graded abelian group: $k = 0, 2, 4, 4, 5, \ldots$ (corresponding to pt, \mathbb{RP}^2 , \mathbb{RP}^4 , $\mathbb{RP}^2 \times \mathbb{RP}^2$, and the Wu manifold, respectively).

For the purpose of taking π_5 , we can 5-truncate to obtain

$$H\mathbb{F}_2 \wedge K(\mathbb{Z}/2,2)_+ \vee \Sigma^2 H\mathbb{F}_2 \wedge K(\mathbb{Z}/2,2)_+ \vee \Sigma^4 H\mathbb{F}_2 \wedge K(\mathbb{Z}/2,2)_+ \vee \Sigma^4 H\mathbb{F}_2 \wedge K(\mathbb{Z}/2,2)_+ \vee \Sigma^5 H\mathbb{F}_2 \wedge K(\mathbb{Z}/2,2)_+ \vee \mathbb{F}_2 \wedge K(\mathbb{$$

This is a finite coproduct, hence equivalent to a finite product. π_5 commutes with products, and finite products and sums of abelian groups are the same, so we now have

$$\pi_5(MO \wedge K(\mathbb{Z}/2,2)_+) = \pi_5(H\mathbb{F}_2 \wedge K(\mathbb{Z}/2,2)_+) \oplus \pi_5(\Sigma^2 H\mathbb{F}_2 \wedge K(\mathbb{Z}/2,2)_+) \oplus (\pi_5(\Sigma^4 H\mathbb{F}_2 \wedge K(\mathbb{Z}/2,2))_+)^2$$

(3.6a)
$$\oplus \pi_5(\Sigma^5 H \mathbb{F}_2 \wedge K(\mathbb{Z}/2, 2)_+)$$

(3.6b)
$$= H_5(K(\mathbb{Z}/2,2);\mathbb{Z}/2) \oplus H_3(K(\mathbb{Z}/2,2);\mathbb{Z}/2) \oplus (H_1(K(\mathbb{Z}/2,2),\mathbb{Z}/2))^2 \oplus H_0(K(\mathbb{Z}/2,2);\mathbb{Z}/2)$$

 \boxtimes

Plug in the results from Corollary 3.2 and we're done.

4. FINDING THE GENERATORS

Proposition 2.6 tells us that we can use Whitney numbers to determine whether a candidate set of generators is linearly independent. Using Proposition 3.1, the relevant cohomology classes are $1 \in H^0$, $B \in H^2$, $\operatorname{Sq}^1 B \in H^3$, $B^2 \in H^4$, and $B \operatorname{Sq}^1 B$ and $\operatorname{Sq}^2 \operatorname{Sq}^1 B \in H^5$. Thus we can write down the Whitney numbers, and some of them coincide.

- When a = 1, we get ordinary Stiefel-Whitney numbers for 5-manifolds. Using the Wu formula, one can show they're all either 0 or determined by w_2w_3 .
- When a = B, we get w_3B , w_2w_1B , and w_1^3B . However, $w_2w_1 = v_3$ on any closed manifold, and $v_3 = 0$ on any 5-manifold.
- When $a = \mathrm{Sq}^1 B$, we get $w_2 \mathrm{Sq}^1 B$ and $w_1^2 \mathrm{Sq}^1 B$. However,

(4.1)
$$\operatorname{Sq}^{1}(w_{1}^{2}B) = \operatorname{Sq}^{1}(w_{1}^{2})B + w_{1}^{2}\operatorname{Sq}^{1}B = w_{1}^{2}\operatorname{Sq}^{1}B,$$

and since $v_1 = w_1$,

(4.2)

$$Sq^{1}(w_{1}^{2}B) = v_{1}w_{1}^{2}B = w_{1}^{3}B$$

so this class isn't anything new; similarly, because $Sq^1w_2 = w_3$ on a 5-manifold,

(4.3)
$$Sq^{1}(w_{2}B) = Sq^{1}w_{2}B + w_{2}Sq^{1}B = w_{3}B + w_{2}Sq^{1}B,$$

and because $w_1w_2 = 0$ as noted above,

(4.4)
$$\operatorname{Sq}^{1}(w_{2}B) = v_{1}w_{2}B = w_{1}w_{2}B = 0.$$

Thus w_2 Sq¹ $B = w_3 B$, and this isn't anything new either.

• When $a = B^2$, we get $w_1 B^2$. Since $w_1 = v_1$,

(4.5)
$$w_1 B^2 = v_1 B^2 = \operatorname{Sq}^1(B^2) = 0$$

• For $a = \mathrm{Sq}^2 \mathrm{Sq}^1 B$, we must let p = 1, giving the Whitney number $\mathrm{Sq}^2 \mathrm{Sq}^1 B$. This is

(4.6)
$$\operatorname{Sq}^{2}\operatorname{Sq}^{1}B = v_{2}\operatorname{Sq}^{1}B = (w_{2} + w_{1}^{2})\operatorname{Sq}^{1}B,$$

so this is a sum of terms we've already accounted for.

• Finally, we can take $a = BSq^1B$, again forcing p = 1 and the Whitney number BSq^1B .

So there are four candidate Whitney numbers: w_3w_2 , w_3B , w_1^3B , and BSq^1B . We now use them to determine a generating set of $\Omega_5^O(K(\mathbb{Z}/2,2))$. The answer is in Table 1, and the calculations follow.

Example 4.7. The Wu manifold $W \coloneqq SU_3/SO_3$ has cohomology ring $H^*(W; \mathbb{Z}/2) \cong \mathbb{F}_2[z_2, z_3]/(z_2^2, z_3^2)$ with $w = 1 + z_2 + z_3$, $Sq(z_2) = z_2 + z_3 + z_2^2$, and $Sq(z_3) = z_3 + z_2z_3$. Hence (W, 0) and (W, z_2) are linearly independent in $\Omega_5^O(K(\mathbb{Z}/2, 2))$, giving us two of the four needed generators.

	(W, 0)	(W, z_2)	$(S^1 \times \mathbb{RP}^4, xy),$	$(S^1 \times \mathbb{RP}^2 \times \mathbb{RP}^2, ux)$
w_3w_2	1	1	0	0
$w_{1}^{3}B$	0	0	1	1
w_3B	0	1	0	1
B Sq ^{1}B	0	1	0	0

TABLE 1. Whitney numbers for some nonbounding 5-manifolds, explained below.

Example 4.8. Consider $Y = S^1 \times \mathbb{RP}^4$: if x generates $H^1(S^1; \mathbb{Z}/2)$ and y generates $H^1(\mathbb{RP}^4; \mathbb{Z}/2)$, then $H^*(Y; \mathbb{Z}/2) \cong \mathbb{F}_2[x, y]/(x^2, y^5)$ and $w(Y) = 1 + y + y^4$; the \mathcal{A} -module structure is determined by $\operatorname{Sq}(y) = y + y^2$ and $\operatorname{Sq}(x) = x$. If B = xy, $w_1^3 B = xy^4$ is nonzero, so $(S^1 \times \mathbb{RP}^4, xy)$ is a third linearly independent element.

Example 4.9. Consider $X = S^1 \times \mathbb{RP}^2 \times \mathbb{RP}^2$, whose cohomology is $H^*(X; \mathbb{Z}/2) \cong \mathbb{F}_2[x, u, v]/(x^2, u^3, v^3)$, where x generates $H^1(S^2; \mathbb{Z}/2)$, u generates H^1 of the first \mathbb{RP}^2 , and v generates H^1 of the second copy. Then,

(4.10) $w(X) = (1 + u + u^2)(1 + v + v^2) = 1 + u + v + u^2 + uv + v^2 + u^2v + uv^2 + u^2v^2.$

The Steenrod action is determined by $Sq(u) = u + u^2$, $Sq(v) = v + v^2$, and Sq(x) = x.

When B = ux, $w_3B = u^2v^2x \neq 0$, but $BSq^1B = u^3x^2 = 0$, so (X, ux) is linearly independent from the previous three examples, and hence is the last generator.

5. CHECKING ON THE GENERATORS

Proposition 5.1 (Massey [Mas69]). Let $m, n \in \mathbb{Z}$ be such that $m \equiv n \mod 2$ and X be a topological space. If $a \in H^m(X; \mathbb{Z}/2)$ and $y \in H^n(X; \mathbb{Z}/2)$, then

$$\mathfrak{P}(ab) = \mathfrak{P}(a)\mathfrak{P}(b) + \theta((\mathrm{Sq}^{m-1}u)v\mathrm{Sq}^{1}v + u\mathrm{Sq}^{1}u(\mathrm{Sq}^{n-1}v)),$$

where $\theta: H^*(X; \mathbb{Z}/2) \to H^*(X; \mathbb{Z}/4)$ is induced by the multiplication by 2 map $(\cdot 2): \mathbb{Z}/2 \to \mathbb{Z}/4$.

Proof of Theorem 1.1. We've reduced the problem to verifying (1.2) on the four generators.

(1) When (M, B) = (W, 0), both sides are 0 because B = 0.

(2) For $(M, B) = (W, z_2)$, we have

(5.2)
$$BSq^{1}B + Sq^{2}Sq^{1}B = z_{2}z_{3} + z_{2}z_{3} = 0,$$

and since W is orientable, $\widetilde{w}_1(W) = 0$ and the right-hand side is also 0. (3) If $(M, B) = (S^1 \times \mathbb{RP}^4, xy)$,

(5.3a)
$$\operatorname{Sq}^{1}(xy) = x\operatorname{Sq}^{1}y + x\operatorname{Sq}^{1}y = xy^{2}$$

(5.3b)
$$\operatorname{Sq}^{2}\operatorname{Sq}^{1}(xy) = (\operatorname{Sq}^{2}x)y^{2} + \operatorname{Sq}^{1}x\operatorname{Sq}^{1}y + x\operatorname{Sq}^{2}(y^{2}) = xy^{4}$$

(5.3c)
$$xy \operatorname{Sq}^{1}(xy) = x^{2}y^{3} = 0.$$

Hence

(5.5)

(5.4)
$$\langle BSq^1B + Sq^2Sq^1B, [S^1 \times \mathbb{RP}^4] \rangle = \langle xy^4, [S^1 \times \mathbb{RP}^4] \rangle = 1.$$

To compute the right-hand side of (1.2), apply Proposition 5.1 with m = n = 1:

$$\mathfrak{P}(xy) = \mathfrak{P}(x)\mathfrak{P}(y) + \theta(xy^3 + x^3y) = \theta(xy^3)$$

by degree considerations.

One can check on the generators of $H^3(S^1 \times \mathbb{RP}^4; \mathbb{Z}/2)$ to show that xy^3 is not in the image of the Bockstein, hence $\theta(xy^3) \neq 0$. It lands in the piece of $H^4(S^1 \times \mathbb{RP}^4; \mathbb{Z}/4)$ that is $H^1(S^1; \mathbb{Z}/4) \otimes H^3(\mathbb{RP}^4; \mathbb{Z}/4) \cong \mathbb{Z}/4 \otimes \mathbb{Z}/2 \cong \mathbb{Z}/2$, hence is the generator.

Now, $\widetilde{w}_1(S^1 \times \mathbb{RP}^4) = \widetilde{w}_1(S^1) + \widetilde{w}_1(\mathbb{RP}^4)$. $\widetilde{w}_1(S^1) = 0$ because S^1 is orientable, and $\widetilde{w}_1(\mathbb{RP}^4) = \widetilde{y}$, the generator of $H^1(\mathbb{RP}^4; \mathbb{Z}_{w_1})$, using that the inclusion $\mathbb{RP}^4 \hookrightarrow BO_1$ is cellular.

Hence, in $H^5(S^1 \times \mathbb{RP}^4; (\mathbb{Z}/4)_{w_1}), \widetilde{w}_1 \mathfrak{P}(xy)$ is nonzero, so must be twice the generator. Thus

(5.6)
$$\langle \widetilde{w}_1 \smile \mathfrak{P}(xy), [S^1 \times \mathbb{RP}^4] \rangle = 2,$$

so (1.2) is valid.

(4) Finally, let $(M, B) = (S^1 \times \mathbb{RP}^2 \times \mathbb{RP}^2, xy)$. We have

$$BSq1B + Sq2Sq1B = 0 + uvx + uvx = 0.$$

Using Proposition 5.1,

(5.8)

$$\mathfrak{P}(B) = \mathfrak{P}(ux) = \mathfrak{P}(u)\mathfrak{P}(x) + \theta(ux\mathrm{Sq}^{1}x + xu\mathrm{Sq}^{1}u),$$

 $\mathfrak{P}(B) = \mathfrak{P}(ux) = \mathfrak{P}(u)\mathfrak{P}(x) + \theta(ux\mathrm{Sq}^{1}x + xu\mathrm{Sq}^{1}u),$ which vanishes by degree considerations: $\mathfrak{P}(x) \in H^{2}(S^{1}; \mathbb{Z}/4) = 0$, $\mathrm{Sq}^{1}x \in H^{2}(S^{1}; \mathbb{Z}/2) = 0$, and $u\mathrm{Sq}^{1}u \in H^{3}(\mathbb{RP}^{2}; \mathbb{Z}/2) = 0.$

References

- [CF64] P.E. Conner and E.E. Floyd. Differentiable periodic maps. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, 1964. **2**
- [Mas69] W. S. Massey. Pontryagin squares in the Thom space of a bundle. Pacific J. Math., 31(1):133-142, 1969. https:// //projecteuclid.org/download/pdf_1/euclid.pjm/1102978057.4
- [Ser53] Jean-Pierre Serre. Cohomolodie modulo 2 des complexes d'Eilenberg-MacLane. Commentarii mathematici Helvetici, 27:198–232, 1953. **2**