THE COMPARISON OF TWO COHOMOLOGY OPERATIONS

ARUN DEBRAY
OCTOBER 13, 2017

1. Introduction

The goal of this document is to make the following calculation.
Theorem 1.1. Let M be a closed 5-manifold and $B \in H^{2}(M ; \mathbb{Z} / 2)$. Then,

$$
\begin{equation*}
\left\langle B \mathrm{Sq}^{1} B+\mathrm{Sq}^{2} \mathrm{Sq}^{1} B,[M]\right\rangle=\frac{1}{2}\left\langle\widetilde{w}_{1} \smile \mathfrak{P}(B),[M]\right\rangle . \tag{1.2}
\end{equation*}
$$

The right-hand side uses some unfamiliar notation, which we proceed to define.
Lemma 1.3. If $\mathbb{Z}_{w_{1}}$ denotes the orientation local system, $H^{1}\left(B \mathrm{O}_{1}, \mathbb{Z}_{w_{1}}\right) \cong \mathbb{Z} / 2$.
Indeed, this is the group cohomology $H^{1}\left(\mathbb{Z} / 2, \mathbb{Z}_{\sigma}\right)$, where \mathbb{Z}_{σ} denotes \mathbb{Z} with the sign action.
Definition 1.4. The pullback of the nonzero element of $H^{1}\left(B \mathrm{O}_{1} ; \mathbb{Z}_{w_{1}}\right)$ under the determinant map B det: $B \mathrm{O}_{n} \rightarrow B \mathrm{O}_{1}$ is called the twisted first Stiefel-Whitney class $\widetilde{w}_{1} \in H^{1}\left(B \mathrm{O}_{n} ; \mathbb{Z}_{w_{1}}\right)$.

Hence this defines a twisted first Stiefel-Whitney class of any real vector bundle, which lives in cohomology twisted by the orientation bundle. Its mod 2 reduction is the usual first Stiefel-Whitney class in untwisted $\mathbb{Z} / 2$-cohomology. In (1.2), we consider its reduction $\widetilde{w}_{1} \in H^{1}\left(M ;(\mathbb{Z} / 4)_{w_{1}}\right)$, twisted mod 4 cohomology.

Next, \mathfrak{P} denotes the Pontrjagin square $\mathfrak{P}: H^{2}(M ; \mathbb{Z} / 2) \rightarrow H^{4}(M ; \mathbb{Z} / 4)$ (though it exists in greater generality). It is the realization of the idea that if you know an $x \in \mathbb{Z}$ modulo 2 , you know $x^{2} \bmod 4$.

On the right-hand side of (1.2), we use cup and cap products in twisted $\mathbb{Z} / 4$-cohomology: if $[M]$ denotes the fundamental class in twisted $\mathbb{Z} / 4$-cohomology, this is

$$
\begin{equation*}
H^{1}\left(M ;(\mathbb{Z} / 4)_{w_{1}}\right) \otimes H^{4}(M ; \mathbb{Z} / 4) \xrightarrow{\smile} H^{5}\left(M ;(\mathbb{Z} / 4)_{w_{1}}\right) \xrightarrow{-\frown[M]} \mathbb{Z} / 4 \tag{1.5}
\end{equation*}
$$

However, since $2 \widetilde{w}_{1}=0,\left\langle\widetilde{w}_{1} \smile \mathfrak{P}(B),[M]\right\rangle$ is even, and so it makes sense to divide by 2 and obtain an element of $\mathbb{Z} / 2$, so we can compare with the left-hand side of (1.2).

We'll prove Theorem 1.1 in three steps:
(1) First, prove that both sides of (1.2) are cobordism invariants for a certain class of manifolds.
(2) Then, determine generating manifolds for the group of cobordism classes of those manifolds.
(3) Finally, verify (1.2) on the generators.

2. Cobordism-invariance

To capture the notion of cobordism of a manifold and a degree- 2 cohomology class, we consider cobordism of manifolds with a $\mathbb{Z} / 2$-gerbe, or equivalently, manifolds M together with a degree- $2 \mathbb{Z} / 2$ cohomology class B, where (M, B) bounds if $M=\partial W$ for W compact and B extends over W. For the rest of this document, cobordism-invariant, cobordism groups, etc., refers to this kind of cobordism unless otherwise specified.

The classifying space for this structure is $B \mathrm{O}_{n} \times K(\mathbb{Z} / 2,2)$, so the cobordism groups are the homotopy groups of the Thom spectrum of the virtual bundle $\left(V_{n}-\mathbb{R}^{n}\right) \rightarrow B \mathrm{O}_{n} \times K(\mathbb{Z} / 2,2)$ (here $V_{n} \rightarrow B \mathrm{O}_{n}$ is the tautological bundle).

Lemma 2.1. Let $E \rightarrow X$ and $F \rightarrow Y$ be virtual vector bundles. The Thom space of $E \boxplus F \rightarrow X \times Y$ is $\operatorname{Thom}(E) \wedge \operatorname{Thom}(F)$.

We're looking at $\left(V_{n}-\mathbb{R}^{n}\right) \boxplus 0$, hence obtain $M O \wedge K(\mathbb{Z} / 2,2)_{+}$(the Thom space of the zero bundle on X is $\left.X / \varnothing=X_{+}\right)$. The cobordism group we want is π_{5} of this spectrum.

Proposition 2.2. The quantity $\left\langle\widetilde{w}_{1} \smile \mathfrak{P}(B),[M]\right\rangle$ is a cobordism invariant, and in particular a group homomorphism $\Omega_{5}^{\mathrm{O}}(K(\mathbb{Z} / 2,2)) \rightarrow \mathbb{Z} / 2$.
Proof. This quantity is additive under disjoint union, so it suffices to show that it vanishes when M bounds. Let (M, B) bound, i.e. M is a closed 5 -manifold, $B \in H^{2}(M ; \mathbb{Z} / 2)$, and there's a compact manifold W and a $\widehat{B} \in H^{2}(W ; \mathbb{Z} / 2)$ such that $M=\partial W$ and if $i: M \hookrightarrow W$ is inclusion, $B=i^{*} \widehat{B}$. Then, $\left.T W\right|_{M} \cong T M \oplus \underline{\mathbb{R}}$ (using the outward normal vector field), so $i^{*} \widetilde{w}_{1}(W)=\widetilde{w}_{1}(M)$. By naturality $i^{*} \mathfrak{P}(\widehat{B})=\mathfrak{P}(B)$. In the long exact sequence for (W, M),

$$
\begin{equation*}
H^{n}\left(W ;(\mathbb{Z} / 4)_{w_{1}}\right) \xrightarrow{i^{*}} H^{n}\left(M ;(\mathbb{Z} / 4)_{w_{1}}\right) \xrightarrow{\delta} H^{n+1}\left(W, M ;(\mathbb{Z} / 4)_{w_{1}}\right) \tag{2.3}
\end{equation*}
$$

so $\widetilde{w}_{1}(M) \mathfrak{P}(B) \in \operatorname{Im}\left(i^{*}\right)=\operatorname{ker}(\delta)$.
Let $[W, M] \in H_{n+1}\left(W, M ;(\mathbb{Z} / 4)_{w_{1}}\right)$ denote the fundamental class of the pair, and $[M] \in H_{n}\left(M ;(\mathbb{Z} / 4)_{w_{1}}\right)$ denote the fundamental class. Under the connecting morphism $\partial: H_{n+1}\left(W, M ;(\mathbb{Z} / 4)_{w_{1}}\right) \rightarrow H_{n}\left(M ;(\mathbb{Z} / 4)_{w_{1}}\right)$, $[W, M] \mapsto[M]$. Lefschetz duality gives us a version of Stokes' theorem: if $x \in H^{n}\left(M ;(\mathbb{Z} / 4)_{w_{1}}\right)$, then

$$
\begin{equation*}
\langle x, \partial[W, M]\rangle=\langle\delta x,[W]\rangle \tag{2.4}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left\langle\widetilde{w}_{1}(M) \mathfrak{P}(B),[M]\right\rangle=\left\langle\widetilde{w}_{1}(M) \mathfrak{P}(B), \partial[W, M]\right\rangle=\left\langle\delta\left(\widetilde{w}_{1}(M) \mathfrak{P}(B)\right),[W, M]\right\rangle=0 . \tag{2.5}
\end{equation*}
$$

Proposition 2.6 (Conner-Floyd [CF64]). For any $a \in H^{i}(X ; \mathbb{Z} / 2)$ and degree- $(n-i)$-polynomial p in the Stiefel-Whitney classes, the Whitney number

$$
\begin{equation*}
\phi_{p, a}:(M, f) \longmapsto\left\langle p(M) f^{*}(a),[M]\right\rangle \tag{2.7}
\end{equation*}
$$

is a cobordism invariant for the cobordism theory of unoriented n-manifolds with a map to X, and moreover a group homomorphism $\Omega_{n}^{\mathrm{O}}(X) \rightarrow \mathbb{Z} / 2$.

Proof. This quantity is additive under disjoint union, so it suffices to show that if $(M, f: M \rightarrow X)$ is the boundary of $(W, g: W \rightarrow X)$, in the sense that $M=\partial W$ and $\left.g\right|_{M}=f$, then $\left\langle p(M) f^{*}(a),[M]\right\rangle=0$. Let $i: M \hookrightarrow W$ be inclusion; as in the proof of Proposition 2.2, it suffices to prove $p(M) f^{*}(a) \in \operatorname{Im}\left(i^{*}\right)$. Since $f=g \circ i$, then $f^{*}(a)=i^{*}\left(g^{*}(a)\right) \in \operatorname{Im}\left(i^{*}\right)$, and since $\left.T W\right|_{M} \cong T M \oplus \mathbb{R}$, then $i^{*} w_{k}(W)=w_{k}(M)$, so $p(M)$, which is a polynomial in the Stiefel-Whitney classes of M, is also in $\operatorname{Im}\left(i^{*}\right)$; thus, $p(M) f^{*}(a) \in \operatorname{Im}\left(i^{*}\right)$, which suffices.

Corollary 2.8. The quantity $\left\langle B \mathrm{Sq}^{1} B+\mathrm{Sq}^{2} \mathrm{Sq}^{1} B,[M]\right\rangle$ is a cobordism invariant.
Proof. Let B denote the tautological class in $H^{2}(K(\mathbb{Z} / 2,2) ; \mathbb{Z} / 2)$. The quantity $B \mathrm{Sq}^{1} B+\mathrm{Sq}^{2} \mathrm{Sq}^{1} B$ is a Whitney number for $X=K(\mathbb{Z} / 2,2), a=B \mathrm{Sq}^{1} B+\mathrm{Sq}^{2} \mathrm{Sq}^{1} B \in H^{5}(K(\mathbb{Z} / 2,2) ; \mathbb{Z} / 2)$, and $p=1$, hence is a cobordism invariant.

3. Computing the cobordism group

Proposition 3.1 (Serre [Ser53]). $H^{*}(K(\mathbb{Z} / 2,2) ; \mathbb{Z} / 2)$ is generated by $\operatorname{Sq}^{I} B$, where $B \in H^{2}(K(\mathbb{Z} / 2,2) ; \mathbb{Z} / 2)$ is the tautological class, and we consider admissible sequences $I=\left(i_{1}, \ldots, i_{m}\right)$ such that $i_{j} \geq 2 i_{j+1}$ and $2 i_{1}-\sum_{j \geq 1} i_{j}<2$.
Corollary 3.2. The low-dimensional mod 2 homology groups of $K(\mathbb{Z} / 2,2)$ are:

$$
H_{i}(K(\mathbb{Z} / 2,2) ; \mathbb{Z} / 2) \cong \begin{cases}\mathbb{Z} / 2, & i=0,2,3,4 \tag{3.3}\\ (\mathbb{Z} / 2)^{\oplus 2}, & i=5 \\ 0, & i=1\end{cases}
$$

Proof. The low-degree generators of cohomology are 1 (degree 0), B (degree 2), $\mathrm{Sq}^{1} B$ (degree 3) B^{2} (degree 4), and $\mathrm{Sq}^{2} \mathrm{Sq}^{1} B$ and $B \mathrm{Sq}^{1} B$ (degree 5). To get homology, use the universal coefficient theorem over the field \mathbb{F}_{2}, so all Ext terms vanish and the homology and cohomology are isomorphic.

Proposition 3.4. $\pi_{5}\left(M O \wedge K(\mathbb{Z} / 2,2)_{+}\right) \cong(\mathbb{Z} / 2)^{\oplus 4}$.

Proof. $M O$ is a wedge of suspensions of Eilenberg-Mac Lane spectra $H \mathbb{F}_{2}$, so

$$
\begin{equation*}
M O \wedge K(\mathbb{Z} / 2,2)_{+} \cong \bigvee_{k} \Sigma^{k} H \mathbb{F}_{2} \wedge K(\mathbb{Z} / 2,2)_{+} \tag{3.5}
\end{equation*}
$$

where k runs over the degrees of the generators of unoriented cobordism as a graded abelian group: $k=$ $0,2,4,4,5, \ldots$ (corresponding to $\mathrm{pt}, \mathbb{R P}^{2}, \mathbb{R P}^{4}, \mathbb{R P}^{2} \times \mathbb{R P}^{2}$, and the Wu manifold, respectively).

For the purpose of taking π_{5}, we can 5 -truncate to obtain

$$
H \mathbb{F}_{2} \wedge K(\mathbb{Z} / 2,2)_{+} \vee \Sigma^{2} H \mathbb{F}_{2} \wedge K(\mathbb{Z} / 2,2)_{+} \vee \Sigma^{4} H \mathbb{F}_{2} \wedge K(\mathbb{Z} / 2,2)_{+} \vee \Sigma^{4} H \mathbb{F}_{2} \wedge K(\mathbb{Z} / 2,2)_{+} \vee \Sigma^{5} H \mathbb{F}_{2} \wedge K(\mathbb{Z} / 2,2)_{+}
$$

This is a finite coproduct, hence equivalent to a finite product. π_{5} commutes with products, and finite products and sums of abelian groups are the same, so we now have
$\pi_{5}\left(M O \wedge K(\mathbb{Z} / 2,2)_{+}\right)=\pi_{5}\left(H \mathbb{F}_{2} \wedge K(\mathbb{Z} / 2,2)_{+}\right) \oplus \pi_{5}\left(\Sigma^{2} H \mathbb{F}_{2} \wedge K(\mathbb{Z} / 2,2)_{+}\right) \oplus\left(\pi_{5}\left(\Sigma^{4} H \mathbb{F}_{2} \wedge K(\mathbb{Z} / 2,2)\right)_{+}\right)^{2}$

$$
\begin{align*}
& \oplus \pi_{5}\left(\Sigma^{5} H \mathbb{F}_{2} \wedge K(\mathbb{Z} / 2,2)_{+}\right) \tag{3.6a}\\
= & H_{5}(K(\mathbb{Z} / 2,2) ; \mathbb{Z} / 2) \oplus H_{3}(K(\mathbb{Z} / 2,2) ; \mathbb{Z} / 2) \oplus\left(H_{1}(K(\mathbb{Z} / 2,2), \mathbb{Z} / 2)\right)^{2} \oplus H_{0}(K(\mathbb{Z} / 2,2) ; \mathbb{Z} / 2) \tag{3.6b}
\end{align*}
$$

Plug in the results from Corollary 3.2 and we're done.

4. Finding the generators

Proposition 2.6 tells us that we can use Whitney numbers to determine whether a candidate set of generators is linearly independent. Using Proposition 3.1, the relevant cohomology classes are $1 \in H^{0}$, $B \in H^{2}, \mathrm{Sq}^{1} B \in H^{3}, B^{2} \in H^{4}$, and $B \mathrm{Sq}^{1} B$ and $\mathrm{Sq}^{2} \mathrm{Sq}^{1} B \in H^{5}$. Thus we can write down the Whitney numbers, and some of them coincide.

- When $a=1$, we get ordinary Stiefel-Whitney numbers for 5 -manifolds. Using the Wu formula, one can show they're all either 0 or determined by $w_{2} w_{3}$.
- When $a=B$, we get $w_{3} B, w_{2} w_{1} B$, and $w_{1}^{3} B$. However, $w_{2} w_{1}=v_{3}$ on any closed manifold, and $v_{3}=0$ on any 5 -manifold.
- When $a=\mathrm{Sq}^{1} B$, we get $w_{2} \mathrm{Sq}^{1} B$ and $w_{1}^{2} \mathrm{Sq}^{1} B$. However,

$$
\begin{equation*}
\mathrm{Sq}^{1}\left(w_{1}^{2} B\right)=\mathrm{Sq}^{1}\left(w_{1}^{2}\right) B+w_{1}^{2} \mathrm{Sq}^{1} B=w_{1}^{2} \mathrm{Sq}^{1} B \tag{4.1}
\end{equation*}
$$

and since $v_{1}=w_{1}$,

$$
\begin{equation*}
\mathrm{Sq}^{1}\left(w_{1}^{2} B\right)=v_{1} w_{1}^{2} B=w_{1}^{3} B, \tag{4.2}
\end{equation*}
$$

so this class isn't anything new; similarly, because $\mathrm{Sq}^{1} w_{2}=w_{3}$ on a 5 -manifold,

$$
\begin{equation*}
\mathrm{Sq}^{1}\left(w_{2} B\right)=\mathrm{Sq}^{1} w_{2} B+w_{2} \mathrm{Sq}^{1} B=w_{3} B+w_{2} \mathrm{Sq}^{1} B \tag{4.3}
\end{equation*}
$$

and because $w_{1} w_{2}=0$ as noted above,

$$
\begin{equation*}
\mathrm{Sq}^{1}\left(w_{2} B\right)=v_{1} w_{2} B=w_{1} w_{2} B=0 \tag{4.4}
\end{equation*}
$$

Thus $w_{2} \mathrm{Sq}^{1} B=w_{3} B$, and this isn't anything new either.

- When $a=B^{2}$, we get $w_{1} B^{2}$. Since $w_{1}=v_{1}$,

$$
\begin{equation*}
w_{1} B^{2}=v_{1} B^{2}=\mathrm{Sq}^{1}\left(B^{2}\right)=0 \tag{4.5}
\end{equation*}
$$

- For $a=\mathrm{Sq}^{2} \mathrm{Sq}^{1} B$, we must let $p=1$, giving the Whitney number $\mathrm{Sq}^{2} \mathrm{Sq}^{1} B$. This is

$$
\begin{equation*}
\mathrm{Sq}^{2} \mathrm{Sq}^{1} B=v_{2} \mathrm{Sq}^{1} B=\left(w_{2}+w_{1}^{2}\right) \mathrm{Sq}^{1} B \tag{4.6}
\end{equation*}
$$

so this is a sum of terms we've already accounted for.

- Finally, we can take $a=B \mathrm{Sq}^{1} B$, again forcing $p=1$ and the Whitney number $B \mathrm{Sq}^{1} B$.

So there are four candidate Whitney numbers: $w_{3} w_{2}, w_{3} B, w_{1}^{3} B$, and $B \mathrm{Sq}^{1} B$. We now use them to determine a generating set of $\Omega_{5}^{\mathrm{O}}(K(\mathbb{Z} / 2,2))$. The answer is in Table 1, and the calculations follow.

Example 4.7. The $W u$ manifold $W:=\mathrm{SU}_{3} / \mathrm{SO}_{3}$ has cohomology ring $H^{*}(W ; \mathbb{Z} / 2) \cong \mathbb{F}_{2}\left[z_{2}, z_{3}\right] /\left(z_{2}^{2}, z_{3}^{2}\right)$ with $w=1+z_{2}+z_{3}, \operatorname{Sq}\left(z_{2}\right)=z_{2}+z_{3}+z_{2}^{2}$, and $\operatorname{Sq}\left(z_{3}\right)=z_{3}+z_{2} z_{3}$. Hence $(W, 0)$ and $\left(W, z_{2}\right)$ are linearly independent in $\Omega_{5}^{\mathrm{O}}(K(\mathbb{Z} / 2,2))$, giving us two of the four needed generators.

	$(W, 0)$	$\left(W, z_{2}\right)$	$\left(S^{1} \times \mathbb{R P}^{4}, x y\right)$,	$\left(S^{1} \times \mathbb{R P}^{2} \times \mathbb{R P}^{2}, u x\right)$
$w_{3} w_{2}$	1	1	0	0
$w_{1}^{3} B$	0	0	1	1
$w_{3} B$	0	1	0	1
$B \mathrm{Sq}^{1} B$	0	1	0	0

Table 1. Whitney numbers for some nonbounding 5-manifolds, explained below.

Example 4.8. Consider $Y=S^{1} \times \mathbb{R}^{4}$: if x generates $H^{1}\left(S^{1} ; \mathbb{Z} / 2\right)$ and y generates $H^{1}\left(\mathbb{R} \mathbb{P}^{4} ; \mathbb{Z} / 2\right)$, then $H^{*}(Y ; \mathbb{Z} / 2) \cong \mathbb{F}_{2}[x, y] /\left(x^{2}, y^{5}\right)$ and $w(Y)=1+y+y^{4}$; the \mathcal{A}-module structure is determined by $\mathrm{Sq}(y)=y+y^{2}$ and $\mathrm{Sq}(x)=x$. If $B=x y, w_{1}^{3} B=x y^{4}$ is nonzero, so $\left(S^{1} \times \mathbb{R} \mathbb{P}^{4}, x y\right)$ is a third linearly independent element.
Example 4.9. Consider $X=S^{1} \times \mathbb{R}^{2} \times \mathbb{R}^{2} \mathbb{P}^{2}$, whose cohomology is $H^{*}(X ; \mathbb{Z} / 2) \cong \mathbb{F}_{2}[x, u, v] /\left(x^{2}, u^{3}, v^{3}\right)$, where x generates $H^{1}\left(S^{2} ; \mathbb{Z} / 2\right)$, u generates H^{1} of the first $\mathbb{R P}^{2}$, and v generates H^{1} of the second copy. Then,

$$
\begin{equation*}
w(X)=\left(1+u+u^{2}\right)\left(1+v+v^{2}\right)=1+u+v+u^{2}+u v+v^{2}+u^{2} v+u v^{2}+u^{2} v^{2} . \tag{4.10}
\end{equation*}
$$

The Steenrod action is determined by $\mathrm{Sq}(u)=u+u^{2}, \mathrm{Sq}(v)=v+v^{2}$, and $\mathrm{Sq}(x)=x$.
When $B=u x, w_{3} B=u^{2} v^{2} x \neq 0$, but $B \mathrm{Sq}^{1} B=u^{3} x^{2}=0$, so ($X, u x$) is linearly independent from the previous three examples, and hence is the last generator.

5. Checking on the generators

Proposition 5.1 (Massey [Mas69]). Let $m, n \in \mathbb{Z}$ be such that $m \equiv n \bmod 2$ and X be a topological space. If $a \in H^{m}(X ; \mathbb{Z} / 2)$ and $y \in H^{n}(X ; \mathbb{Z} / 2)$, then

$$
\mathfrak{P}(a b)=\mathfrak{P}(a) \mathfrak{P}(b)+\theta\left(\left(\mathrm{Sq}^{m-1} u\right) v \mathrm{Sq}^{1} v+u \mathrm{Sq}^{1} u\left(\mathrm{Sq}^{n-1} v\right)\right),
$$

where $\theta: H^{*}(X ; \mathbb{Z} / 2) \rightarrow H^{*}(X ; \mathbb{Z} / 4)$ is induced by the multiplication by 2 map $(\cdot 2): \mathbb{Z} / 2 \rightarrow \mathbb{Z} / 4$.
Proof of Theorem 1.1. We've reduced the problem to verifying (1.2) on the four generators.
(1) When $(M, B)=(W, 0)$, both sides are 0 because $B=0$.
(2) For $(M, B)=\left(W, z_{2}\right)$, we have

$$
\begin{equation*}
B \mathrm{Sq}^{1} B+\mathrm{Sq}^{2} \mathrm{Sq}^{1} B=z_{2} z_{3}+z_{2} z_{3}=0 \tag{5.2}
\end{equation*}
$$

and since W is orientable, $\widetilde{w}_{1}(W)=0$ and the right-hand side is also 0 .
(3) If $(M, B)=\left(S^{1} \times \mathbb{R P}^{4}, x y\right)$,

$$
\begin{align*}
\mathrm{Sq}^{1}(x y) & =x \mathrm{Sq}^{1} y+x \mathrm{Sq}^{1} y=x y^{2} \tag{5.3a}\\
\mathrm{Sq}^{2} \mathrm{Sq}^{1}(x y) & =\left(\mathrm{Sq}^{2} x\right) y^{2}+\mathrm{Sq}^{1} x \mathrm{Sq}^{1} y+x \mathrm{Sq}^{2}\left(y^{2}\right)=x y^{4} \tag{5.3b}\\
x y \mathrm{Sq}^{1}(x y) & =x^{2} y^{3}=0 \tag{5.3c}
\end{align*}
$$

Hence

$$
\left\langle B \mathrm{Sq}^{1} B+\mathrm{Sq}^{2} \mathrm{Sq}^{1} B,\left[S^{1} \times \mathbb{R} \mathbb{P}^{4}\right]\right\rangle=\left\langle x y^{4},\left[S^{1} \times \mathbb{R}^{4}\right]\right\rangle=1
$$

To compute the right-hand side of (1.2), apply Proposition 5.1 with $m=n=1$:

$$
\mathfrak{P}(x y)=\mathfrak{P}(x) \mathfrak{P}(y)+\theta\left(x y^{3}+x^{3} y\right)=\theta\left(x y^{3}\right)
$$

by degree considerations.
One can check on the generators of $H^{3}\left(S^{1} \times \mathbb{R} \mathbb{P}^{4} ; \mathbb{Z} / 2\right)$ to show that $x y^{3}$ is not in the image of the Bockstein, hence $\theta\left(x y^{3}\right) \neq 0$. It lands in the piece of $H^{4}\left(S^{1} \times \mathbb{R} \mathbb{P}^{4} ; \mathbb{Z} / 4\right)$ that is $H^{1}\left(S^{1} ; \mathbb{Z} / 4\right) \otimes$ $H^{3}\left(\mathbb{R P}^{4} ; \mathbb{Z} / 4\right) \cong \mathbb{Z} / 4 \otimes \mathbb{Z} / 2 \cong \mathbb{Z} / 2$, hence is the generator.

Now, $\widetilde{w}_{1}\left(S^{1} \times \mathbb{R P}^{4}\right)=\widetilde{w}_{1}\left(S^{1}\right)+\widetilde{w}_{1}\left(\mathbb{R} \mathbb{P}^{4}\right)$. $\widetilde{w}_{1}\left(S^{1}\right)=0$ because S^{1} is orientable, and $\widetilde{w}_{1}\left(\mathbb{R} \mathbb{P}^{4}\right)=\widetilde{y}$, the generator of $H^{1}\left(\mathbb{R P}^{4} ; \mathbb{Z}_{w_{1}}\right)$, using that the inclusion $\mathbb{R P}^{4} \hookrightarrow B O_{1}$ is cellular.

Hence, in $H^{5}\left(S^{1} \times \mathbb{R P}^{4} ;(\mathbb{Z} / 4)_{w_{1}}\right), \widetilde{w}_{1} \mathfrak{P}(x y)$ is nonzero, so must be twice the generator. Thus

$$
\left\langle\widetilde{w}_{1} \smile \mathfrak{P}(x y),\left[S^{1} \times \mathbb{R}^{4}\right]\right\rangle=2
$$

so (1.2) is valid.
(4) Finally, let $(M, B)=\left(S^{1} \times \mathbb{R}^{2} \times \mathbb{R}^{2}, x y\right)$. We have

$$
\begin{equation*}
B \mathrm{Sq}^{1} B+\mathrm{Sq}^{2} \mathrm{Sq}^{1} B=0+u v x+u v x=0 \tag{5.7}
\end{equation*}
$$

Using Proposition 5.1,

$$
\begin{equation*}
\mathfrak{P}(B)=\mathfrak{P}(u x)=\mathfrak{P}(u) \mathfrak{P}(x)+\theta\left(u x \mathrm{Sq}^{1} x+x u \mathrm{Sq}^{1} u\right), \tag{5.8}
\end{equation*}
$$

which vanishes by degree considerations: $\mathfrak{P}(x) \in H^{2}\left(S^{1} ; \mathbb{Z} / 4\right)=0, \mathrm{Sq}^{1} x \in H^{2}\left(S^{1} ; \mathbb{Z} / 2\right)=0$, and $u \mathrm{Sq}^{1} u \in H^{3}\left(\mathbb{R} \mathbb{P}^{2} ; \mathbb{Z} / 2\right)=0$.

References

[CF64] P.E. Conner and E.E. Floyd. Differentiable periodic maps. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, 1964. 2
[Mas69] W. S. Massey. Pontryagin squares in the Thom space of a bundle. Pacific J. Math., 31(1):133-142, 1969. https: //projecteuclid.org/download/pdf_1/euclid.pjm/1102978057. 4
[Ser53] Jean-Pierre Serre. Cohomolodie modulo 2 des complexes d'Eilenberg-MacLane. Commentarii mathematici Helvetici, 27:198-232, 1953. 2

