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1. INTRODUCTION
The goal of this document is to make the following calculation.

Theorem 1.1. Let M be a closed 5-manifold and B € H*(M;Z/2). Then,
1, .
(1.2) (BSq'B +Sq*Sq' B, [M]) = 5 (@1 — B(B), [M]).
The right-hand side uses some unfamiliar notation, which we proceed to define.
Lemma 1.3. If Z,, denotes the orientation local system, H'(BO1,Z,,) = Z/2.

Indeed, this is the group cohomology H'(Z/2,Z,), where Z, denotes Z with the sign action.

Definition 1.4. The pullback of the nonzero element of H'(BO;;Z,,) under the determinant map
Bdet: BO,, — BOy is called the twisted first Stiefel-Whitney class wy € H (BOy,; Zy, )-

Hence this defines a twisted first Stiefel-Whitney class of any real vector bundle, which lives in cohomology
twisted by the orientation bundle. Its mod 2 reduction is the usual first Stiefel-Whitney class in untwisted
Z/2-cohomology. In (1.2), we consider its reduction wy € HY(M;(Z/4)., ), twisted mod 4 cohomology.

Next, B denotes the Pontrjagin square 3: H?>(M;Z/2) — H*(M;Z/4) (though it exists in greater
generality). It is the realization of the idea that if you know an z € Z modulo 2, you know 22 mod 4.

On the right-hand side of (1.2), we use cup and cap products in twisted Z/4-cohomology: if [M] denotes
the fundamental class in twisted Z/4-cohomology, this is

(15) H (M5 (Z/4),) ® HY(M:Z/4) —> H*(M; (Z/4).,,) —2 Z/4,

However, since 2w, = 0, (w; — P(B),[M]) is even, and so it makes sense to divide by 2 and obtain an
element of Z/2, so we can compare with the left-hand side of (1.2).
We'll prove Theorem 1.1 in three steps:
(1) First, prove that both sides of (1.2) are cobordism invariants for a certain class of manifolds.
(2) Then, determine generating manifolds for the group of cobordism classes of those manifolds.
(3) Finally, verify (1.2) on the generators.

2. COBORDISM-INVARIANCE

To capture the notion of cobordism of a manifold and a degree-2 cohomology class, we consider cobordism
of manifolds with a Z/2-gerbe, or equivalently, manifolds M together with a degree-2 Z/2 cohomology class
B, where (M, B) bounds if M = OW for W compact and B extends over W. For the rest of this document,
cobordism-invariant, cobordism groups, etc., refers to this kind of cobordism unless otherwise specified.

The classifying space for this structure is BO,, x K(Z/2,2), so the cobordism groups are the homotopy
groups of the Thom spectrum of the virtual bundle (V,, — R") — BO,, x K(Z/2,2) (here V,, — BO,, is the
tautological bundle).

Lemma 2.1. Let E — X and F — Y be virtual vector bundles. The Thom space of EFEHF — X XY is
Thom(E) A Thom(F).

We're looking at (V,, — R™) H 0, hence obtain MO A K(Z/2,2)4+ (the Thom space of the zero bundle on X
is X/@ = X ). The cobordism group we want is 75 of this spectrum.
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Proposition 2.2. The quantity (W, — B(B),[M]) is a cobordism invariant, and in particular a group
homomorphism QS (K (Z/2,2)) — Z/2.

Proof. This quantity is additive under disjoint union, so it suffices to show that it vanishes when M bounds.
Let (M, B) bound, i.e. M is a closed 5-manifold, B € H?(M;Z/2), and there’s a compact manifold W and
a B € H2(W;Z/2) such that M = OW and if i: M < W is inclusion, B = i*B. Then, TW |y, 2 TM &R
(using the outward normal vector field), so i*@; (W) = @y (M). By naturality i*B(B) = B(B). In the long
exact sequence for (W, M),

(2.3) H"(W;(Z/4)u,) —— H"(M;(Z/4),) ——> H" Y (W, M; (Z/4).,),

so w1 (M)B(B) € Im(i*) = ker().

Let [W, M| € Hy41(W,M;(Z/4).,) denote the fundamental class of the pair, and [M] € H,,(M;(Z/4).w,)
denote the fundamental class. Under the connecting morphism 0: H,, 41 (W, M; (Z/4)w,) = Hn(M;(Z/4)w, ),
[W, M] — [M]. Lefschetz duality gives us a version of Stokes’ theorem: if x € H"(M;(Z/4)w, ), then

(2.4) (z, 0[W, M]) = (o, [W]).
Hence
(2.5) (Wi (M)B(B), [M]) = (w1(M)B(B), 0[W, M]) = (6(w1(M)B(B)), [W, M]) = 0. DX

Proposition 2.6 (Conner-Floyd [CF64]). For any a € H (X;Z/2) and degree-(n — i)-polynomial p in the
Stiefel-Whitney classes, the Whitney number

(2.7) Ppa: (M, f) — (p(M)["(a), [M])

s a cobordism invariant for the cobordism theory of unoriented n-manifolds with a map to X, and moreover
a group homomorphism Q9 (X) — Z/2.

Proof. This quantity is additive under disjoint union, so it suffices to show that if (M, f: M — X) is the
boundary of (W,g: W — X), in the sense that M = OW and g|p = f, then (p(M)f*(a),[M]) = 0. Let
i: M — W be inclusion; as in the proof of Proposition 2.2, it suffices to prove p(M)f*(a) € Im(i*). Since
f=goi, then f*(a) = i*(¢*(a)) € Im(¢*), and since TW |y = TM ® R, then i*w, (W) = wk( ), so p(M),
which is a polynomial in the Stiefel-Whitney classes of M, is also in Im(i*); thus, p(M)f*(a) € Im(i*), which
suffices. X

Corollary 2.8. The quantity (BSq'B + Sq*Sq' B, [M]) is a cobordism invariant.

Proof. Let B denote the tautological class in H?(K(Z/2,2);Z/2). The quantity BSq'B + Sq*Sq'B is a
Whitney number for X = K(Z/2,2), a = BSq'B + Sq°Sq' B € H*(K(7/2,2);7/2), and p = 1, hence is a
cobordism invariant. X

3. COMPUTING THE COBORDISM GROUP

Proposition 3.1 (Serre [Ser53]). H*(K(Z/2,2);Z/2) is generated by Sq' B, where B € H*(K(Z/2,2);7/2)
is the tautological class, and we consider admissible sequences I = (i1,...,4m) such that i; > 2i;41 and
211 — EjZl ij < 2.

Corollary 3.2. The low-dimensional mod 2 homology groups of K(7Z/2,2) are:

72, i=0,23,4
(3.3) Hi(K(Z)2,2);7/2) = { (2/2)¥2, i=5
0, i=1.

Proof. The low-degree generators of cohomology are 1 (degree 0), B (degree 2), Sq' B (degree 3) B? (degree
4), and Sq?Sq' B and BSq'B (degree 5). To get homology, use the universal coefficient theorem over the field
Fs, so all Ext terms vanish and the homology and cohomology are isomorphic. X

Proposition 3.4. 75(MO A K(Z/2,2),) = (Z/2)®*



Proof. MO is a wedge of suspensions of Eilenberg-Mac Lane spectra HIF5, so
(3.5) MO ANK(Z)2,2); =\ S HF A K (Z/2,2) 4,
k

where k runs over the degrees of the generators of unoriented cobordism as a graded abelian group: k& =
0,2,4,4,5,... (corresponding to pt, RP?, RP*, RP? x RP?, and the Wu manifold, respectively).

For the purpose of taking 75, we can 5-truncate to obtain
HF ANK(Z/2,2) f VE?HFo AK (Z,)2,2) VE*HFoAK (Z)2,2) L VE*HF ANK (Z,)2,2) VIS HF, AK (Z)2,2) 4.

This is a finite coproduct, hence equivalent to a finite product. 75 commutes with products, and finite
products and sums of abelian groups are the same, so we now have

75 (MO ANK(Z)2,2)+) = m5(HF2 A K(Z/2,2) ) ® m5(S*HFo A K(Z/2,2) 1) @ (75(S*HF2 A K(Z,/2,2))4)?

(3.6a) ©75(S°HFy A K(Z)2,2)4)
(3.6b) — Hy(K(Z/2,2):2/2) ® Hy(K(Z/2,2); 2/2) © (Hy (K (2/2,2), 2/2))* ® Ho(K (Z/2,2); Z,/2).
Plug in the results from Corollary 3.2 and we’re done. X

4. FINDING THE GENERATORS

Proposition 2.6 tells us that we can use Whitney numbers to determine whether a candidate set of
generators is linearly independent. Using Proposition 3.1, the relevant cohomology classes are 1 € H°,
B € H? Sq'B € H?, B? € H*, and BSq'B and Sq*Sq'B € H®. Thus we can write down the Whitney

numbers, and some of them coincide.
e When a = 1, we get ordinary Stiefel-Whitney numbers for 5-manifolds. Using the Wu formula, one
can show they’re all either 0 or determined by wows.
e When a = B, we get w3B, wow; B, and w}B. However, wow; = v3 on any closed manifold, and
vs = 0 on any 5-manifold.
e When a = Sq' B, we get wySq'B and w%SqlB. However,
(4.1) Sq' (wiB) = Sq' (w?)B + wiSq' B = w?Sq' B,
and since vy = wy,
(4.2) Sq' (w?B) = vywiB = wiB,
so this class isn’t anything new; similarly, because Sq'ws = w3 on a 5-manifold,
(4.3) Sq' (wyB) = Sq'wy B + wySq' B = w3 B + wySq' B,
and because wiws = 0 as noted above,
(4.4) Sql(wgB) = vywe B = wiwe, B = 0.
Thus w2Sq' B = w3 B, and this isn’t anything new either.
e When a = B?, we get w; B2. Since w, = vy,
(4.5) w; B? = v1 B* = Sq' (B?) = 0.
e For a = Sq*Sq' B, we must let p = 1, giving the Whitney number Sq?Sq'B. This is
(4.6) Sq?Sq' B = v,8q' B = (ws 4+ w?)Sq' B,
so this is a sum of terms we’ve already accounted for.
e Finally, we can take a = BSq' B, again forcing p = 1 and the Whitney number BSq'B.
So there are four candidate Whitney numbers: wsws, w3 B, w} B, and BSqlB. We now use them to determine

a generating set of QP (K (Z/2,2)). The answer is in Table 1, and the calculations follow.

Example 4.7. The Wu manifold W := SU3/SO3 has cohomology ring H*(W;Z/2) = Fa29, 23]/ (23, 23)

with w =1+ 23 + 23, Sq(22) = 22 + 23 + 23, and Sq(23) = 23 + 2223. Hence (W,0) and (W, z3) are linearly

independent in QY (K (Z/2,2)), giving us two of the four needed generators. <
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(W,0) (W, z5) (S* xRP* zy), (S x RP? x RP?, ux)

w3 w2 1 1 0 0
wiB 0 0 1 1
wgB 0 1 0 1
BSq'B 0 1 0 0

TABLE 1. Whitney numbers for some nonbounding 5-manifolds, explained below.

Example 4.8. Consider Y = S! x RP*: if 2 generates H'(SY;7Z/2) and y generates Hl(RIP’4;Z/2), then
H*(Y;7/2) = Falx,y]/ (2%, y°) and w(Y) = 1+y+y*; the A-module structure is determined by Sq(y) = y+ 3>
and Sq(x) = z. If B = 2y, w?B = zy* is nonzero, so (S* x RP*, zy) is a third linearly independent element. <

Example 4.9. Consider X = S x RP? x RP?, whose cohomology is H*(X;Z/2) = Faz, u, v]/ (22, u3, v?),
where x generates H'(S%;7Z/2), u generates H' of the first RP?, and v generates H' of the second copy.
Then,

(4.10) wX)=1+u+v>)1+v+0?) =1+u+v+u®+uw+ v +uv+uw? +u?o?
The Steenrod action is determined by Sq(u) = u + u?, Sq(v) = v + v2, and Sq(z) =

When B = uz, wsB = u?v?z # 0, but BSq'B = u3x =0, so (X,ux) is linearly independent from the
previous three examples, and hence is the last generator. <

5. CHECKING ON THE GENERATORS

Proposition 5.1 (Massey [Mas69]). Let m,n € Z be such that m =n mod 2 and X be a topological space.
Ifa e H™(X;Z/2) and y € H"(X;Z/2), then

P(ab) = P(a)P(b) + 0((Sa™~'w)vSa'v + uSq u(Sq"~"v)),
where 0: H*(X;Z/2) — H*(X;Z/4) is induced by the multiplication by 2 map (-:2): Z/2 — Z /4.

Proof of Theorem 1.1. We’ve reduced the problem to verifying (1.2) on the four generators.

(1) When (M, B) = (W,0), both sides are 0 because B = 0.
(2) For (M, B) = (W, 22), we have

(5.2) BSq'B +SqSq' B = 2323 + 2223 = 0,
and since W is orientable, w1 (W) = 0 and the right-hand side is also 0.

(3) If (M, B) = (S* x RP* xy),

(5.3a) q'(zy) = #Sq'y + #Sq'y = xy?
(5.3b) Sq?Sq (zy) = (Sa’x)y” + Sq'2Sq'y + 2S¢*(y?) = ay*
(5.3c) zySq (zy) = z%y® = 0.

Hence
(5.4) (BSq'B 4 8q*Sq' B, [S! x RPY]) = (zy*,[S! x RPY]) =

To compute the right-hand side of (1.2), apply Proposition 5.1 with m =n = 1:
(5.5) P(ry) = P(2)B(y) + 0(xy® + 2°y) = O(xy”)

by degree considerations.

One can check on the generators of H3(S' x RP*:Z/2) to show that zy? is not in the image of
the Bockstein, hence A(xy?) # 0. It lands in the piece of H*(S! x RP*; Z/4) that is H'(S';Z/4) ®
H3(RP*; Z/4) = 7./4 ® 7.)2 = 7./2, hence is the generator.

Now, @1 (S* x RP*) = @, (S') 4 @1 (RP*). @;(S') = 0 because S* is orientable, and @, (RP*) = 7,
the generator of H 1(RIP’4; Za, ), using that the inclusion RP* < BO; is cellular.

Hence, in H5(S! x RP*; (Z/4),), @B (xy) is nonzero, so must be twice the generator. Thus

(5.6) (@1 — P(ay), [S* x RPY)) =
o (1.2) is valid.



(4) Finally, let (M, B) = (S* x RP? x RP?, zy). We have

(5.7) BSq'B 4 Sq*Sq'B = 0 + wvx + wvz = 0.
Using Proposition 5.1,
(5-8) PB(B) = P(uz) = P(u)P(x) + 0(uzSq'z + zuSq'u),
which vanishes by degree considerations: PB(z) € H?(S';Z/4) = 0, Sq'z € H?*(S';Z/2) = 0, and
uSq'u € H3(RP?Z/2) = 0. X
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