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1. INTRODUCTION: 9/9/20

Today’s talk was given by Araminta Amabel, and was an introduction/overview to the cobordism hypothesis:
what is it, and why should you believe it? For today, we assume all manifolds are smooth, compact, and oriented.

1.1. Modeling field theories. The cobordism hypothesis is a statement about field theories. So we should begin
by discussing how to model field theories mathematically. There are several ways to do this, but most of them take
these key features into account:

Space: Where are we? Where does the experiment take place?
Time: How long does the experiment run for?

In relativity, these are unified into a single concept called spacetime. For example, if the theory takes place on a
manifold X representing space, and over the time interval [0, 1], then spacetime is X x [0, 1], though one can (and
we will) consider example spacetimes which aren’t products.

Fields: We won’t describe the general idea of fields here, but these provide information in your theory
and are associated to open subsets U inside spacetime. For example, there’s a field theory called the
particle-in-a-box. In this theory, space is X and time is [0, 1], and the fields on an open U C X x [0,1] are
the maps from U into the “box,” thought of as paths the particle can take.

Rules: Differential equations governing what paths are allowed. For example, in a theory called the free
massless theory, paths must be straight lines. Often these are wrapped up into something called the
equations of motion of the theory, such as the Euler-Lagrange equations.

Observables: These are the measurements you can make, such as the length of a math. In the Euler-
Lagrange formalism, the observables on an open subset U, these are maps from the space of solutions to
the Euler-Lagrange equations to R.!

Correlation functions: These are statistical measurements that, in experimental physics, are what we
actually want to compare to real-world experiments. Out of all of these, we will be most interested in
something called the partition function.

We will work with a specific model of field theory, which is Atiyah’s definition — but only of topological field

theories. We will say what all of the above notions mean, mathematically, in Atiyah’s model of TFT, but first we
need some definitions.

IThis is for the classical theory; in quantum field theories this is not always true.
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Definition 1.1. Let n € N, and let 6ob(n) denote the symmetric monoidal category given by the following data.

Objects: Closed, oriented, (n — 1)-manifolds.

Morphisms: A morphism M; — M, is a bordism X from M, to M,, i.e. a compact, oriented n-manifold X
and an equivalence class of identifications dX = M; 11 —M,, modulo diffeomorphisms of X that preserve
the boundary. Here —M, denotes M, with the opposite orientation.

Composition: To compose, glue bordisms. To set this up precisely, one needs to specify collar neighborhoods
of M; and M, within X, but there is a way to make this work.

Symmetric monoidal structure: The tensor product is disjoint union, and the unit is the empty set, which
is a manifold of every nonnegative-integer dimension. One should specify the associator, etc., but we’re
not going to delve into these details right now.

Atiyah came up with this definition, building on Segal’s definition of a conformal field theory.
Let ¥ect; denote the category of vector spaces over a field k, with the symmetric monoidal structure given by
tensor product.

Definition 1.2. A topological field theory (TFT), sometimes also topological quantum field theory (TQFT), is a
symmetric monoidal functor Z : 6ob(n) — ¥ect.

So, for example, the empty set maps to k, and gluing bordisms maps to composition of linear maps.
Now let’s revisit the key concepts in field theory.

Space: All objects (i.e. closed (n — 1)-manifolds) are thought of as spaces. That is, we study this theory for
all possible spaces at once!

Time: [0,1].

Spacetime: All compact n-manifolds, possibly with boundary, are thought of as spacetimes. We’re working
with this theory for all spacetimes at the same time, which is a bit of a perspective shift from what we did
before.

Observables: If the TFT is denoted Z, observables are the vector space Z(S™"™1).

We'll return to fields and equations of motion later.

The identity morphism in 6ob(n) is the cylinder M x [0, 1] (with the correct gluing data), and as Z is a functor,
Z(M x[0,1]) =id;,. But we can do more with these bordisms: regard both M and —M as incoming and @& as
outgoing, which results in something macaroni-looking. When you hit this with Z, you get a map

(1.3) e: Z(M)® Z(—M) — k.
Conversely, regarding both M and —M as outgoing, we get a map
(1.4) c:k—Z(M)® Z(—M).
Lemma 1.5 (Zorro’s lemma). e is a perfect pairing.

This is a fun exercise to do, playing with bordisms and c and e.

1.2. Classifying TFTs. A mathematician encounters a concept, and wants to classify the possible examples. This
is hard and scary in general, as far as we know right now;, so let’s start with a pretty simple case.

Example 1.6 (n =1). Objects of 6ob(1) are finite oriented sets, i.e. finite sets with each element labeled with +
or —. Symmetric monoidality implies that if Z is a one-dimensional TFT, the value of Z on objects is determined by
its values on pt, and 7_.

Let V := Z(pt, ). Then, Z(pt_) = V", which is ultimately because of Lemma 1.5. Z(pt, lIn_) = V®V" = End(V),
and in general a disjoint union of n copies of pt, and m copies of pt_ is sent to V&' @ (V¥)®™.

Now what about morphisms? We know the cylinders (well, line segments) go to identity maps. The macaroni
bordism pt, I pt_ — @ is mapped to e: V ® V" — k, which can be identified with the evaluation map that takes a
covector £ and a vector v and returns £(v). Under the identification V ® V¥ — End(V), this map is taken to the
trace map End(V) — k. The opposite-direction macaroni is sent to the adjoint of this map.

All bordisms in this dimension are made of disjoint unions of these two macaronis and also circles. To determine
Z(SY): k — k, we factor the bordism S*: @ — & into two macaronis. This computes tr(id,) = dim V. In particular,
V must be finite-dimensional; all such V determine TFTs, and V determines the TFT completely. <
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Remark 1.7. The observables of the 1d TFT sending pt, — V are Z(S°) = End(V). This is an associative algebra,
and that’s not a coincidence — often, the space of observables is an algebra of some sort. As homotopy theorists,
we'll be interested in working with co-categories eventually, and the algebraic structures we’ll get on observables
will be quite interesting. <

Example 1.8 (n =2). Let Z: 6ob(2) — Vect, be a TFT. Objects are closed 1-manifolds, which are all isomorphic
to finite disjoint unions of S'. Morphisms are compact, oriented, 2-manifolds with boundary. When you draw a
complicated one, you can factor it as a composition and/or disjoint union of simpler bordisms, including discs
with S! viewed as incoming or outgoing, and pairs of pants regarded as incoming or outgoing. (And cylinders, but
those are identity morphisms, so not as difficult.)

The disc with S! incoming is often called a cap, and with S! incoming is often called a cup.

As S! has an orientation-reversing diffeomorphism, we do not need to keep track of the difference between S and
—S1. The pair-of-pants therefore defines a multiplication-like structure on Z(S'), as a map Z(S')® Z(S') — Z(S1).

In fact, one can show this extends to a commutative algebra structure on A := Z(S!): associativity and
commutativity come from finding equivalent bordisms representing, e.g., m(xy, x5) and m(x,, x;). Moreover, the
pair-of-pants composed with the cap is the macaroni bordism for S*, and we already know it’s a perfect pairing.
So we get a counit map tr: A— k. Moreover, we have a unit e: k — A, which sends 1 — 1,, the unit element in A.

Let’s give this structure a name.

Definition 1.9. A commutative Frobenius algebra is a finite-dimensional commutative k-algebra A with a linear
map tr: A— k such that a, b — tr(ab) is a perfect pairing.

Theorem 1.10. The map sending Z — Z(S') is an equivalence of categories between 6ob(2) and the category of
commutative Frobenius algebras.

This was a folklore theorem for a bit; one reference is Robbert Dijkgraaf’s thesis; another is Joachim Kock’s
book on Frobenius algebras and TFTs.

The observables are, once again, Z(S') = A, which has an algebra structure. It’s worth thinking about what Z
assigns to the pants with i legs. <

In higher dimensions, there’s way too many things to work with: %ob(3) has infinitely many isomorphism
classes of connected objects! So in a sense it’s not finitely generated. It would be nice if there were a way to
simplify this, by using the fact that all closed, connected, oriented 2-manifolds are diffeomorphic to connect-sums
of T2, and to consider TFTs that “understand” this somehow. And maybe the decompositions we did of surfaces in
terms of pants, cups, and caps could apply in this case. But 6ob(3) as we defined it doesn’t know how to cut in
lower dimensions — it doesn’t even know S* exists.

In general, we want to be able to cut up our manifold into simpler manifolds in a way that includes all dimensions
down to 0. Why do we want this? One compelling reason is that otherwise this classification question is pretty
much unapproachable, and the TFTs we get are still interesting.

The solution: higher categories! There is a higher-categorical version of 6ob(n) which takes this desideratum
into account. But: defining higher categories is hard. Defining a higher-categorical version 6ob,(n) of 6ob(n),
even given a nice formalism of higher categories, is still hard. We’ll spend the next few lectures building these
tools that we need to consider this kind of TFT. Once we do, though, we can make the following definition.

Definition 1.11. An extended TFT of dimension n valued in a symmetric monoidal n-category ¥ is a symmetric
monoidal functor between n-categories Z: 6ob,(n) — 6.

With this definition in hand (...eventually), we might expect that there’s an equivalence of (higher) categories
of extended TFTs and %. This is wrong in two different ways: first, we need to restrict to small enough objects in
¢, called “fully dualizable” ones, akin to using only finite-dimensional vector spaces in Example 1.6. Second, in
dimension n = 1, framed is the same thing as oriented, and we miss something important: in general asking for a
descent to oriented bordisms is extra data. But when we take these into account, we get:

Theorem 1.12 (Baez-Dolan cobordism hypothesis (Hopkins-Lurie, Lurie)). There is an equivalence of n-categories
Fun®(6ob (n), ¢) — C).

Though Lurie provided a detailed sketch of a proof, there are more complete proofs available in special cases,
e.g. in Schommer-Pries’ thesis for n < 2, and a nearly complete, very different approach by Ayala-Francis.
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2. n-FOLD COMPLETE SEGAL SPACES: 9/16/20

Today, Adrian Clough spoke.

2.1. Complete Segal spaces. Once we've understood complete Segal spaces, which will occupy us for the bulk of
the talk, it won’t be too terrible to generalize to n-fold complete Segal spaces. Complete Segal spaces are a lift of
the definition of a category from set theory to homotopy theory.

Recall that the nerve functor N: €at — s et sends a category 4 to the simplicial set N, whose set of

k-simplices is the set of strings of diagrams in € A, é>A1 i &Ak, i.e. there are k morphisms.

If you've taken the nerve of €, you can recover the Hom-set 6(c, ¢’) fairly simply: it fits into a pullback diagram

€6(c,c')——=C;

1) L l

{(c,)} —=Co.

Here the right-hand vertical map sends a map f: ¢ — ¢’ to (c,c’).
Generalizing, one can ask, given an arbitrary simplicial set S,, whether it satisfies the Segal condition that for all
2
m,n €N,

Xm+n —>Xm
2.2) l l
Xm— X,

is a pullback diagram. Here the arrow on top sends x; — -+ — X,,,., t0 X, = =+ = X,,,4,,; the arrow on the left
sends it to x, — -+ — X,,,, and the arrows to the lower right send these to x,,.

Theorem 2.3. The essential image of the nerve functor is precisely those simplicial sets which satisfy the Segal
condition.

We will generalize this to homotopy theory, where categories will be generalized to oo-categories. We can use
Theorem 2.3 to characterize categories as certain simplicial sets, and we will do the same thing for co-categories.

Definition 2.4. A commutative square of spaces

_—

p
——

N<—X
e

w
(2.5) L
Y

is a homotopy pullback if the canonical map
2.6) W— X x; 2% xz ¥ = {(6,7,9) | 7: p(x) = p(y)}
is a weak equivalence.

What is this canonical map? Well, W maps to the usual pullback X x, Y, and this maps to the homotopy
pullback by sending (x, y) — (x,id, y), as p(x) =p(y) if (x,y)eX x, Y.
Now we can translate the set-theoretic Segal condition into a homotopy-theoretic definition.

Definition 2.7. A simplicial space X : A% — Jop is a Segal space if for all m,n € N, (2.2) is a homotopy pullback.

We will create Hom spaces for Segal spaces. This isn’t all the stuff you need for enrichment, but you should
think of it as: categories are tautologically enriched in sets, and Segal spaces are tautologically enriched in spaces.
But we’ll return to this and shape it up.

Definition 2.8. Let X be a Segal space and x, x’ € X. Then the Hom space from x to x’ is the space
(2'9) Xh(x:x/) = {(Y}f} Y/) | Y:x— dl(f): Y/: dO(f) - X/},

2For us, 0 €N.




Remark 2.10. Given a Segal space X, we can construct a homotopy category, whose objects are the underlying set
of X and whose set of morphisms x — y is the set 7 X"(x, y). <

Example 2.11. A simplicial space is homotopically constant if all of its face and degeneracy maps are weak
equivalences. All homotopically constant simplicial spaces are Segal spaces. This in particular includes (the nerves
of) categories. <

In this way, the homotopy theory of topological spaces embeds into Segal spaces; moreover, Segal spaces do in
fact generalize (the nerves of) categories.

In a category, objects are isomorphic or they aren’t. In Segal spaces, we have a new phenomenon: x,x’ € X,
may be equivalent in different ways. They may be isomorphic, meaning there is some (¥, f,y’) € X"(x, x’) which
passes to an isomorphism in the homotopy category, or they may be in the same path component in X.

Example 2.12. This is just a sketch for now, but of an idea that matters for us. There is (almost) a Segal space 6 ob,
whose space of 0-simplices is the space of closed (d — 1)-dimensional submanifolds of R* := h'_I)nR”, and whose
space of n-simplices is d-dimensional submanifolds of R®® x [0,n] (together with a transversality requirement at
R x {i} fori =0,...,d). These can be thought of as the time-slices in a bordism which tell you how this is a
d-fold composition.

If you continue the construction here, though, you won’t get degeneracy maps, because there are strictness
issues coming from rescaling when you check the relations between face and degeneracy maps. There are at least
four different fixes to this problem, e.g. you can realize 60b, as an A, -category; all four fixes are at least a little
awkward.

For all M,N € (%6ob,),, there is a map from the path space from M to N to (¥ob,)*(M,N). This was
accompanied by a cool picture. This map, thought of as a map (¥oby); — (€ 0by)y x (0by)o- <

There are two ways to be equivalent: diffeomorphic (so in the same path in (6 0b,),) or bordant via an invertible
bordism. These are inequivalent — this is because in dimensions 5 (maybe 4) and above, invertible bordisms are
the same thing as h-cobordisms. That is, there can be path equivalences in this Segal space which don’t arise as
diffeomorphisms (here we’re using the h-cobordism theorem, I think).

In general, given a Segal space X and x, x’ € X,, there is a space of paths Path(x, x") from x to x’.

Definition 2.13. A Segal space X is complete if for all x,x’ € X,, the map Path(x,x’) — X"(x,x’) is a weak
equivalence.

Let o : [1] — [n] be the map sending 0 — k—1 and 1 — k. Given a Segal space X, let X' denote the subspace
of X consisting of only the simplices ¢ € X,, such that a;c is invertible for all (TODO: which? Didn’t get down in
time) k.

Proposition 2.14.

(1) IfX is a Segal space, then for all x,x" € X,, (v, f,v') € X"(x,x") is invertible iff (consty ¢, f,consty () is
invertible.
(2) TODO: missed.

Rezk showed that the category of simplicial spaces has a model structure whose fibrant objects are precisely the
Reedy fibrant Segal spaces, which is nice. Forcing fully faithful essentially surjective leads to a model structure in
which the fibrant objects are complete. From a different perspective, this can be thought of as a univalence axiom.

Bordism categories don’t quite behave as nicely; one fix is to use flagged higher categories, as introduced by
Ayala-Francis.

(TODO: I think I missed the definition of a category object in a category €).

Example 2.15.

(1) A category object in Fet is a category.

(2) A category object in Jop is a topological category — though this is not quite the same as a topologically
enriched category.

(3) A category object in ¥at is called a double category, one model for a kind of 2-category. <

et is a full subcategory of both Jop and € at, and in fact a topologically enriched category is the same as a
topological category X such that X, € Fet. A 2-category is the same thing as a double category with X, € Fet.
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2.2. n-fold complete Segal spaces. A 2-fold complete Segal spaces is a simplicial object X in complete Segal spaces
such that

(1) X satisfies the (homotopy) Segal condition as a simplicial object (i.e. we use homotopy pullbacks rather
than strict pullbacks).?

(2) X,, is a homotopy constant simplicial space.

(3) Completeness for X,,, which is the most confusing condition of the three. The idea is to extract the
underlying Segal space of X, sending n — X;“.V

Xoo X1 X
(2.16)

Xq0 X1 X1z

Xoo Xo1 Xo2

The homotopy constancy condition on X, tells us the lowest horizontal maps are homotopy complete. The
homotopy completeness condition (in the vertical direction) tells us the leftmost vertical maps are invertible.
TODO: OK, but then what’s the actual condition...?

3. FULLY DUALIZABLE OBJECTS: 9/23/20

Today, Jackson Van Dyke spoke about full dualizability, beginning with 1-dualizability and what it means about
vector spaces; then generalizing to dualizability in a monoidal category; then categorifying to adjunctions in the
2-category of categories and what is the analogue in a general 2-category; and finally discussing full dualizability.
Jackson will post his notes on his website, as well as a video from The Mask of Zorro, the inspiration for the colorful
name “Zorro’s lemma” for Lemma 1.5.

Recall that a 1-dimensional (oriented) TFT is a symmetric monoidal functor Z: 6ob(1) — Vect;, where k
is a field. In Example 1.6, we saw that the data of Z is determined by a vector space V = Z(pt,); pt_ — V",
and the “macaroni” [0,1] regarded as a bordism pt, Ll pt_ — @ is sent to the duality pairing V ® V¥ — k.
However, Lemma 1.5, which comes from an equivalence of a Z-shaped bordism from pt, to pt, with the interval
[0,1] =1id: pt, — pt,, forces V to be finite-dimensional. This motivates the first question one asks on the road to
full dualizability: what is the generalization of finite-dimensionality for (nonextended) TFTs with target more
general than Vect;?

The key thing that happened is that we have data of maps ev: V ® VY — k and coev: k — V ® V" coming from
the interval regarded as a bordism pt, LI pt_ — @, resp. & — pt, LI pt_, and applying Z. Thee is also the condition
which implies Lemma 1.5, that the Z-diagram is equal to a point as morphisms in 60b(1). Explicitly written out,
we have two maps

(3.1a) Veavekd® vyeoyey 22 rgy oy
(3.1b) VWeakeVV 22U ey ey M ek vy,

and Lemma 1.5 is the fact that these are idy, resp. idyv. In fact, in Vect;, the existence of data satisfying this
condition is equivalent to V being finite-dimensional.

Definition 3.2. Let V be an object in a monoidal category (¢, ®, k). A right dual for V is data of an object VY € €
together with maps ev and coev as above satisfying (3.1). In this case, V is called the left dual of VV, and both V
and VV are called dualizable.

Here are some useful facts about duals.

SThe definition of a homotopy pullback in the category of complete Segal spaces is just the levelwise homotopy colimit.
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(1) It is a fact that right and left duals, together with the data of ev and coev, are unique up to unique
isomorphism; this justifies our use of the words “the (left or right) dual” below.

(2) If 6 is symmetric monoidal, then V¥ admits a right dual and there is a canonical isomorphism from V to
the right dual of VV; therefore the notions of left and right dual coincide and we just speak of the dual of
a dualizable object.

Definition 3.3. A monoidal category 6 has duals if all objects are left and right dualizable.

Now let’s step up to the 2-category € at of categories. We're not going to define it in complete, precise generality
here, but important data includes

o the objects are small categories,

o the morphisms are functors between them, and

o the 2-morphisms are natural transformations.
Adjoints will be our analogue of finite-dimensionality: something you've most likely seen before, and which will
be our model for the general case.

Definition 3.4. Suppose we have functors f: € 2 2: g are two functors. We say f is right adjoint to g and g is
left adjoint to f if there is a natural isomorphism €(gy,x) — 2(y, f x).

We can rephrase this in a way that might look suspiciously familiar: the data of an adjunction is natural
transformations u: idy — go f and v: f o g — idy such that the 2-morphism

35) fafoidy =" fogof Tidyof = f
is equal to the 2-morphism id; (the identity natural transformation from f to itself), and an analogous diagram
for g is equal to id,.

Definition 3.6. Let 6 be a 2-category and f, g be 1-morphisms. We say that f is right adjoint to g and g is left
adjoint to f if there exist u, v as above such that (3.5) is equal to id; and its analogue for g is equal to id,.

It turns out that f determines g up to unique isomorphism.
Definition 3.7. A 2-category 6 has adjoints if all 1-morphisms have left and right adjoints.

If € is a symmetric monoidal 2-category, let X € 4. We say that X is O-dualizable if it is dualizable, whence
ev, coev; it is 1-dualizable if ev and coev have adjoints. We will generalize this to monoidal (oo, n)-categories by
inductively defining k-dualizable to mean that we have (k — 1)-dualizability, and the pair of adjoints we obtain at
level k themselves have adjoints.

Speaking more precisely, if € is a monoidal (oo, n)-category, let h(6) be its homotopy category, whose objects
are the objects of ¥, and whose morphisms are the isomorphism classes of 1-morphisms in 4. The monoidal
structure on % induces one on h(%).

Definition 3.8. An X € ¥ is O-dualizable if its image in h(¥) is.

We can also deloop € into an (oo,n + 1)-category B% with a single object @ and Hom (oo, n)-category
Homg (e, ®) := €, with composition given by tensor product.

Lemma 3.9. X € €6 is 0-dualizable iff X, regarded as a morphism in B6, has both left and right adjoints.

None of the oo-stuff we’ve done so far uses anything finer than h(%¢).

Stepping up, let’s say n > 2. We can define a richer version of h(¢) called h,(%€), a 2-category, whose objects
are the objects in ¥, whose 1-morphisms are the 1-morphisms in %, and whose 2-morphisms are the isomorphism
classes of the 2-morphisms in 6. hy(%) is called the homotopy 2-category of €.

Definition 3.10. A 1-morphism f in 6 has adjoints if, regarded as a 1-morphism in h,(%), it has adjoints. (TODO:
chance I missed something here.)

More generally, let s, t be k-morphisms in 6, where n > k + 2. Then Hom(s, t) is an (oo, n — k)-category and
we can take its homotopy 2-category.

Definition 3.11. A (k + 1)-morphism 7n: f — g has adjoints if 1, regarded as a 1-morphism in Hom(s, t), has
adjoints.



Definition 3.12. For k < n, an object X € ¢ is k-dualizable if its (k — 1)-dualizable and the data given at level
k —1 (either ev and coev, or adjoints) has adjoints.

Definition 3.13. An (0o, n)-category 6 has duals if all objects have duals and all morphisms (at all levels) have
adjoints, as far up as this makes sense.

In fact, given %, there is a subcategory i: 6/¢ — 4 satisfying the universal property

(1) €' has duals, and
(2) for all functors F: 9 — € such that 2 has duals, there is a map f: 2 — 6 such that F ~io f.

This ¢/ is sometimes called the subcategory of fully dualizable objects, and it will appear again in the statement of
the cobordism hypothesis.

4. THE STATEMENT OF THE COBORDISM HYPOTHESIS: 9/30/20

Today, Kiran Luecke spoke about the statement of the cobordism hypothesis. All categories are co-categories of
some sort, and “monoidal” means “symmetric monoidal” unless otherwise specified.

Theorem 4.1 (Cobordism hypothesis). Let € be a symmetric monoidal (0o, n)-category. Then there is an equivalence
(4.2) 9un®(%ord':,<€);> (¢,

given by sending F — F(pt). Here the codomain is the maximal oo-groupoid of the subcategory of fully dualizable
objects in 6.

This is a lot to digest. Let’s work up to it. Your first question might be, is there an (oo, n)-category which
represents the functor ¢ — €/4? It’s a fun exercise to show the answer is no. But it leads to interesting further
questions.

For example, there’s an interesting fact that if an object is sufficiently dualizable, it must be invertible! As a
consequence, we could consider %, to be the free symmetric monoidal (00, n)-category on a single, n-dualizable
object pt. What are symmetric monoidal functors &, — €?

e Symmetric monoidality means that the generator pt is sent to some n-dualizable object in €.

e What about the (oo, n — 1)-category of such functors? Given F,G € Fun®(%,,6), a functor n: F — G is
in fact a functor from %, to the path (0o, n— 1)-category of €.

e Over-dualizability implies that therefore 1) is invertible! Be aware that this is in the pointwise tensor
product monoidal structure, not the one given by compsing functors.

So that’s a neat consequence. That is, Fun®(Z,, ¢) is an co-groupoid. Therefore the cobordism hypothesis
follows from the following reformulation.

Theorem 4.3 (Cobordism hypothesis, version 2). %ordfl’ is equivalent to the free symmetric monoidal (oo, n)-
category on a single fully dualizable object.

Next, let’s talk about symmetries. There is a canonical O,-action on QBord’;’ which rotates the framing. The
cobordism hypothesis therefore gives a canonical O,-action on (%”?)™ for any symmetric monoidal (0o, n)-category
€.

This is a little weird, so here’s an analogous example in stable homotopy theory. Let GL, (%) denote the Picard
oo-groupoid of invertible objects and morphisms in €. The stable homotopy hypothesis argues this is equivalent
to a connective spectrum. Such an object is acted on by the monoid 2°°%°°S° as follows: X comes with deloopings
X, X1, X, etc., with equivalences Q"X 5 X. Then Q"S™ acts on these spaces of loops, and n — oo.

The next thing you might wnt to do is change the symmetry group. There are a few different reasons why you
might want to.

(1) Generally, physically or geometrically relevant TFTs have less structured bordism categories. One models
this by specifying a space X and amap &: X — BO,.. Then it is possible to define a bordism (o0, n)-category
of manifolds whose tangent bundles have an (X, &)-structure, i.e. a lift of the map TM : M — BO,, across
£.

(2) In pure math, you might be interested in the interesting question of the O,-action on spaces of objects in
symmetric monoidal categories. This is a good question in the land of equivariant stable homotopy theory.
So why stop at O,;?

It turns out things work well here, and there is a generalization of the cobordism hypothesis to (X, &)-structures.
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Theorem 4.4 (Cobordism hypothesis with structures). Let F(X) — X be the frame bundle of £: X — BO,,. Then
there is an equivalence

(4.5) Fun®(Bord("®, €) — Mapsy (FX),(€"))
sending a functor F to the map sending a point p to F(pt) (where pt has its canonical (X, &)-structure).

One of the most important special cases is when (X, &) is (BG,Bp), where p: G — O, is a representation.
For example, if G = 1 this recovers framing, for id: O, — O, it’s no data on the manifold, for SO, < O, it’s an
orientation, and so on.

In this case, the frame bundle of the associated vector bundle is EG — BG, so Theorem 4.4 says

(4.6) 9un®(9€ordleG’Bp), €) ~ Maps(EG, (€/?)™) = (€)',

i.e., more or less by definition, the homotopy fixed points of the G-action on the space (6/)~, where G acts
through p.

Exercise 4.7. Say n = 1. What is the O; = Z/2-action on (64)~? In this case, fully dualizable just means
dualizable. It turns out when you pass to the homotopy category, this is a Z/2-action sending X — X" — and
maps f — (fV)™! (since all maps considered by this action are invertible). Hence this does not in general extent
to all of € - though it does lift from the homotopy 1-groupoid to the original co-groupoid.

Example 4.8. Now consider n = 2. What is the O,-action? The O; C O, acts by X — X" again, so we more or less
just have to think about SO, c O,, since O, factors as a semidirect product. As SO, ~ BZ as topological groups,
we need to write down an automorphism of the identity functor, or an endomorphism of X for every object X,
given 2-dualizability data.

Explicating this duality data, let XV be the dual of X, £: 1 — X ® X" be coevaluation, n: X¥ ® X — 1 be
evaluation, and &1, n' be their adjoints.

The map we want is 20 : X — X ® XV ® X — X. This is our canonical endomorphism. <

Another interesting application/conequence of the cobordism hypothesis is the Galatius-Madsen-Tillmann-
Weiss theorem. Let 6 be a Picard co-groupoid, i.e. a symmetric monoidal co-groupoid in which all objects are
®-invertible. In this case, any map ,%ordf — % factors through the Picard oo-groupoid quotient of the domain,
which is often denoted as a geometric realization, |9§30rdg |. Thus the cobordism hypothesis provides equivalences

(4.9 /ﬂapsﬂwzmso(lggordgl, €) —> 9’un®(%ordg, €) —> €"C.

That is, L%ordfl is the infinite loop space corepresenting the functor (-)*°. This has another name, namely the
homotopy quotient of S.

Galatius-Madsen-Tillmann-Weiss computed this in a different way, without assuming the cobordism hypothesis.
They defined a Thom spectrum MTG and showed it’s equivalent to I%ordgl. How do we relate them? If you stare
at this a bit, you get ¢"% ~ Map(EG, ¢)°, which ends up being the space of 2°°%°°S°-equivariant maps from
the coequalizer of two different G-actions on 2°°X°°EG: one direct, the other factored through G — O, via

(4.10) G—0,0-58=0%°2®s

The Ando-Blumberg-Gepnr-Hopkins-Rezk perspective on Thom spectra shows that this is a Thom spectrum,
specifically because it simplifies to a map ¢ : BG — BQ®°%°°S° and the Thom spectrum of this map is precisely
MTG.

One upshot: we thought of as the space of symmetric monoidal functors from the framed bordism category to
% is sort of an unstable or truncated version of an infinite loop space. If 2°°%°°S° acts, then the O,-action factors
through that.

So you might ask: is there anything more that acts? Or, what’s the automorphism group of the framed bordism
category? Assuming n # 4, we get something bigger: the group PL(n) of piecewise linear transformations!* As
a kind of weird consequence, PL(n), which gives you (4/?)~, and Q°°2°°S°, which gives you 4>, behave quite
differently, differing primarily via the existence of dualizable objects that are not invertible.

4For n = 4, it contains PL(n), but we do not currently know whether it’s larger.
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5. THE PROOF OUTLINE: 10/7/20

Today, Ishan Levy spoke, going over the main steps in the proof of the cobordism hypothesis. Ishan calls it the
movie trailer version of the talk — hopefully it hypes you up to see the movie, but doesn’t spoil all of the interesting
plot points and dialogue.

Let’s recall where we were last time. We have an co-groupoid X with a map £: X — BO,,, and we think of this
as allowing us to define a structure on n-manifolds: last time, we discussed a symmetric monoidal (oo, n)-category
,%’ordgx’é) of manifolds and bordisms, etc., with (X, &)-structure (i.e. a lift of the stable tangent bundle map
M — BO,, actoss &). The cobordism hypothesis says that if ¢ is another symmetric monoidal (oo, n)-category,
then the space of symmetric monoidal functors Z: %ord&lx’g) — % is equivalent to the space of O,-equivariant
maps X — (¢/?)~, where X — X is the frame bundle, i.e. £*EOQ, — X, ¢/ is the subcategory of fully dualizable
objects, and = means taking the maximal co-groupoid. This equivalence is given by evaluating on pt, .

There are five major steps to proving this.

(1) First, rephrase the cobordism hypothesis inductively: in this form, it will ask what it takes to extend an
(n—1)-dimensional TFT to dimension n. This will come up in next week’s discussion section.

(2) The second step is to reduce to the unoriented case (next week’s talk), i.e. the case when X = BO,, and
¢ =id, corresponding to the bordism category of manifolds, without an orientation or anything. The
corresponding bordism category will simply be denoted %ord,. This is, in a sense, the “most twisted”
bordism category, with the most complicated frame bundle (the framed case, by contrast, has a trivial
frame bundle). So this case should be the hardest.

(3) Then, reformulate the cobordism hypothesis in terms of (oo, 1)-categories. This will be most useful for us
in order to reformulate the inclusion Bord,_; — PBord, in terms of solely (oo, 1)-categorical data; in
general, (00, n)-categories are much more complicated than (oo, 1)-categories, but the fact that Bord,,_;
and PBord, have the same k-morphisms for k < n makes this more possible.

(4) The key step is to prove a variant of the inductive cobordism hypothesis: let %ordrﬁf denote a variant of
the bordism category in which one picks Morse-theoretic data (technically, slightly worse singularities are
allowed, and there’s a little more data than just the function). Then the goal is to show the cobordism
hypothesis for Bord,_; — ,%’ord’;{ .

(5) Igusa conjectured that the space of this Morse data on any bordism is contractible, in a way that would
imply that the map %Bord, — % ord’;{ is an equivalence, and allow us to conclude. However, Igusa was
only able to show that the space of this data is highly connected. Lurie includes a proof sketch that
establishes contractibility; since then, fully detailed proofs have appeared.

Now, a little more detail.

5.1. The inductive formulation. How are we going to reformulate this inductively? Let X, — X be the sphere
bundle inside X — X and { — BO, be the tautological vector bundle, i.e. EO, X, R". Then, restricted to Xy,
m*{ =R & {,, where { is the pullback of the tautological vector bundle along &,: X, — BO,_;, the pullback of
the maps X, — BO, and BO,_; — BO,,. There is a map of bordism categories %ordgi’f") - %ordflx’g).

TODO: I missed the inductive cobordism hypothesis statement, but it involves an equivalence of certain data.
One then wants to prove that the inductive cobordism hypothesis in dimension at most n, together with the
cobordism hypothesis in dimension at most n — 1, implies the cobordism hypothesis in dimension n. This involves
a slightly clever way of rearranging the data provided to us, as we’ll see in an upcoming talk.

5.2. Specializing to the case (X,&) = (BO,,id). Naively, you might try the following: the mapping space
adjunction establishes a homotopy equivalence

(5.1) Mapq, (X, (/1)) — Map,, (EO,, Map(X, (6/1)™)).

You could then try to recast the space on the right as functors from %Bord, to some variant of ¢, which we’ll call
¢*8) and then relate that to symmetric monoidal functors c%ordglx’g) — . This almost works, and in fact €%
does exist.

Proposition 5.2. There exist symmetric monoidal categories & am(pt) and & am(%) such that the following data
are equivalent.

(1) Symmetric monoidal maps t%ordglx’g) — ¢, and

(2) Symmetric monoidal lifts of a particular map & am(€) — Fam(pt) to a map PBord,, — Fam(pt).
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5.3. Unfolding higher categories. There’s a lot going on under the hood here, but the proof does not require
engaging with all of it. Consider the map i: %Bord; — PBord,. The codomain is an (o0, 2)-category, which is
more difficult to understand than an (oo, 1)-category. To actually obtain the data of %Bord,, we need to know
the mapping oco-categories between objects in %Bord,, and we need this in some sort of compatible way. But
dualizability tells us

(5.3 Map g, (X, Y) > Map g, (3, Y @ XV).

Thus we can encode i as a functor Bord; — € at( 1y sending X — Map 4,4 (&, X). This knows i, albeit only as a
lax symmetric monoidal functor! And, helpfully, the codomain is the (oo, 1)-category ¥ at (., ;) — though you
know this a priori because the 2-morphisms in %Bord,; are invertible.

Proposition 5.4 (Unfolding categories). Let B,_; be a symmetric monoidal (00, n)-category with duals. Then, the
following data are equivalent:

(1) a symmetric monoidal (00, n)-category B, and an (n — 2)-connected map B,_; — B,, and

(2) a lax symmetric monoidal functor Q" ?B,_; — €t 1)-

Crucially, the second kind of data is solely (00, 1)-categorical! So we’d better figure out what Q"2 %Bord,_;, an
iterated loop category, is.

The objects of Q"2 %Bord, are closed (n — 2)-manifolds; we’ll denote such an object by N. Maps are bordisms
M with a diffeomorphism M — N; II N,. In this context, the upshot of Proposition 5.4 is that the data of the
inclusion %Bord,_, — PBord, is equivalent to (TODO: missed what (oo, 1)-category N is sent to. Sorry about
that!).

5.4. Understand bordisms using handle moves. Handles are basically one of the only ways to understand
manifolds at all.> Morse theory proves that any bordism is built by attaching handles to the identity (cylinder)
bordism. Index-0 handles are balls, and there can be index-i handles for each i < n.

Happily, Morse theory also tells us how to pass between different handle presentations of the same bordism.
You can isotope handles around (in space or in time), or something called “handle creation/cancellation.” For
example, an index-1 handle is like adding a cylinder, which creates 7, but if we fill in that loop with an index-2
handle, the resulting diffeomorphism is diffeomorphic rel boundary to the cylinder we began with. Similarly, an
index-0 handle can be canceled by an index-1 handle (there’s a ball, but we attached it to the cylinder with another
cylinder, so we just have a cylinder with a bit sticking out).

Igusa’s framed function theory allows one to do Morse theory in a more homotopically friendly way, and this is
important for our categorical applications.

We want to interpolate between %Bord,_; and %Bord,. To do this, we will use a filtration on the indices of
the handles: consider the assignment sending an (n — 2)-manifold N to the (oo, 1)-category whose objects are
compact (n — 1)-manifolds M with identifications d M 5 N and whose maps are bordisms equipped with framed
functions, and in which the handles all have index at most k. This defines a map F;.: Q" 2%ord,_; — G at(eo 1);
these interpolate between %Bord,_; and %Bord,. Let B, denote the image of N.

B, is essentially the same thing as B_;, except with an n-morphism freely adjoined in a lax symmetric monoidal
way. This is essentially saying that all that we’re doing is adding some disks in a nice way, but to actually interpret
this carefully and prove it, one needs the theory of framed Morse functions. More generally, By, is obtained from
B;_; by adding a generator in a similar way, but also adding a relation, arising from the cancellation of k- and
(k —1)-handles.

This looks a lot like our inductive version of the cobordism hypothesis, but there are two key differences. First,
we haven’t imposed any nondegeneracy condition (yet). Secondly, the sense in which we’re freely adjoining an
n-morphism is more general: we’re not asking for it to have duals.

Nondegeneracy comes from 1-handles. One way to say that is: let ¢ be a symmetric monoidal (oo, n)-category.
Then lifts of a map %Bord,_, ~ B_; — % along B_; — B, are equivalent to data of an O,-equivariant morphism
Z(2) — Z(s™™1).

Claim 5.5. Such a map extends across B, — B, iff Z(D™) is nondegenerate.

The idea is that the 1-handles exhibit the nondegeneracy in question.

5They’re also helpful for making terrible math puns.
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