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1. What is a scheme?: 8/31/16

Today, Tom provided an introduction and overview, with the goal of understanding what a scheme, the central

object of study in algebraic geometry, is. We’ll start with sheaves, a way of understanding locality of things in

geometry, then discuss locally ringed spaces, the spectrum of a ring, and �nally schemes, their properties, and a little

bit about morphisms of schemes. Finally, we’ll learn a little about varieties.

1.1. Sheaves.

De�nition 1.1. A presheaf of rings1 F on a topological space X consists of the data

(1) for every open U ⊂ X , a ring F (U ), and

(2) for every inclusion of open sets V ⊂ U , a ring homomorphism �
U

V
∶ F (U ) → F (V ) called the restriction

map,

such that for every nested inclusion of opens W ⊂ V ⊂ U , the restriction maps compose: �
U

W
= �

V

W
◦�
U

V
.

Elements of F (U ) are called sections.
The idea is that F (U ) is some collection of data on U , such as the continuous real-valued functions on U , which

de�ne a ring. Given such a function, we can restrict it to a V ⊂ U , and this is exactly what the restriction map does. If

I want to further restrict to another subset, it doesn’t matter whether I restrict to V �rst.

Presheaves have some problems, and we de�ne sheaves to �x these problems.

De�nition 1.2. A sheaf F on a space X is a presheaf such that

(1) sections can be computed locally: if U ⊂ X is open, U is an open cover of U , and s ∈ F (U ), then if �
U

Ui
(s) = 0

for all Ui ∈ U, then s = 0.

(2) compatible sections can be glued: with U and U as above, suppose we have data of si ∈ F (Ui) for each Ui ∈ U

such that for all Ui , Uj ∈ U, �
Ui

Ui∩Uj
(si) = �

Uj

Ui∩Uj
(sj ), then there is a section s ∈ F (U ) such that �

U

Ui
(s) = si for all

Ui ∈ U.

1
One can talk about presheaves of sets, groups, or of any other category, by replacing “rings” in this de�nition by “sets,” “groups,” or whatever

you’re using.
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To understand this intuitively, think about continuous real-valued functions, which can be uniquely determined

from local data, and can be glued together from compatible functions on an open cover.

Example 1.3. Let X be a space. We’ve already been referring to the sheaf CX of continuous R-valued functions:

CX (U ) = {f ∶ U → R continuous}. Restriction of functions de�nes a restriction map, functions are determined by

local data, and compatible functions may be glued together.

This is a good example of sheaves for your intuition: sheaves in general behave a lot like a sheaf of functions, and

it’s convenient to think of the restriction map as actual restriction of functions.

Example 1.4. Let X be a manifold; then, we can de�ne the sheaf C
∞

X
of smooth functions: C

∞

X
(U ) is the ring of

smooth functions U → R. This is very similar, but it’s interesting that this sheaf uniquely determines the smooth

structure on the manifold X .

That is, smooth structure is determined by what you call smooth functions. This is a rule that applies more

generally in geometry: a geometric structure is determined by the sheaf of functions to some base that we allow.

Remark. The empty set is an open subset of a space X . You can prove or de�ne (depending on your taste for empty

arguments) that for any sheaf F on X , F (∅) = 0.

De�nition 1.5. Let F and G be sheaves on a space X . Then, a morphism of sheaves ' ∶ F → G is the data of for

all open U ⊂ X , a ring homomorphism '(U ) ∶ F (U )→ G (U ) that commutes with restriction in the following sense:

for all inclusions of open sets V ⊂ U , the following diagram commutes:

F (U )

'(U ) //

�
U

V

��

G (U )

�
U

V

��
F (V )

'(V ) // G (V ).

That is, we want to map in a way that doesn’t a�ect how we restrict. A sheaf is data parametrized by a topological

space, and we want a morphism of sheaves to respect this parametrization.

De�nition 1.6. Let F be a sheaf on X and p ∈ X . Then, the stalk of F at p is

Fp = {(s, U ) ∣ U ⊂ X is open, s ∈ F (U )}/ ∼,

where (s, U ) ∼ (t, V ) if there’s an open W ⊂ U ∩ V containing p such that �
U

W
(s) = �

V

W
(t).

That is, we de�ne two functions to be equivalent if they agree on any neighborhood of the point. These are sort of

in�nitesimal data of functions near the point p.

1.2. Locally ringed spaces.

De�nition 1.7. A local ring is a ring A with a unique maximal ideal m ⊂ A, often denoted (A,m).

This is the same as saying A
×
= A ⧵m: everything outside the maximal ideal is invertible.

De�nition 1.8. A locally ringed space is a pair (X,OX ), where X is a topological space and OX is a sheaf of rings,

such that all stalks OX,p are local rings.

Example 1.9. Manifolds are examples of locally ringed spaces: if X is a manifold, let OX = C
∞

X
, the smooth, real-

valued functions. Let p ∈ X and mX,p be the functions vanishing at p inside OX,p , which is an ideal. Then, any

f ∈ OX,p ⧵mX,p is a unit: since it doesn’t vanish at p, there’s an open neighborhood U of p on which f doesn’t vanish,

so 1/f is smooth on U , and therefore de�nes an inverse to f in OX,p .

This locally ringed formalism is surprisingly useful: the maximal ideal of a stalk will always be functions vanishing

at a point, even in weirder situations.

Of course, we want to understand morphisms of locally ringed spaces.

De�nition 1.10. A morphism of locally ringed spaces (X,OX ) → (Y ,OY ) is the data (', '
♯
) of a continuous map

' ∶ X → Y and a morphism of sheaves '
♯
∶ '∗OY → OX such that the induced map on stalks preserves the notion

of vanishing at a point, i.e. for every p ∈ X , the preimage of the maximal ideal mX,p is contained in m
Y ,'(p)

.

Here, '∗OX is the pushforward of OX , which attaches to every open U ⊂ Y the ring '∗OX (U ) = OX ('
−1
(U )): since

' is continuous, this is again an open set.
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The pushforward is an important de�nition in its own right. It’s necessary to check that it actually de�nes a sheaf,

but this isn’t too complicated.

As an example, a smooth map ' ∶ X → Y of manifolds de�nes a morphism of locally ringed spaces: ' is

continuous, and a continuous map f ∶ V → R is sent to the map f ◦' ∶ '
−1
(V )→ R. This is called the pullback of f .

This is curious: we could have started with a merely continuous function that sends smooth functions to smooth

functions, and it’s forced to be smooth. Thus, the geometry of smooth manifolds is determined entirely by their

structure as locally ringed spaces! Similarly, we’ll de�ne schemes to be certain kinds of locally ringed spaces.

1.3. The spectrum of a ring. A scheme is a particular kind of locally ringed space, locally isomorphic to SpecA for

rings A, in the same way that a manifold is locally Rn
. Let’s discuss the local model better.

De�nition 1.11. The spectrum of a (commutative) ring A is SpecA = {p ⊂ A ∣ p is prime}.

Let’s brie�y recall localization of rings.

De�nition 1.12. If A is a ring and S ⊂ A is a subset such that 1 ∈ S and whenever x, y ∈ S, then xy ∈ S, we call S a

multiplicative subset. Then, we can de�ne the localization S−1A to be the ring of fractions {a/s ∣ a ∈ A, s ∈ S}, where

a/s = b/s
′

i� there exists a t ∈ S such that t(s
′
b − sa) = 0.

This is strongly reminiscent of the �eld of fractions of an integral domain, for which S = A ⧵ 0; the equivalence

relation is what allows us to know that 1/2 = 2/4. For example, if A = Z and S = Z ⧵ 0, then S
−1
A = Q. In the same

sense, a more general localization is akin to formally adding inverses of S.

Example 1.13. Let p ⊂ A be a prime ideal. Then, S = A ⧵ p is multiplicative, since if x ∉ p and y ∉ p, then xy ∉ p.

The localization S
−1
A is denoted Ap, the set of fractions a/s where a ∈ A and s ∉ p, with some equivalence relation.

This makes everything except p for units, so the image of p is maximal in Ap.

Similarly, if f ∈ A, we can de�ne S = (f ). The localization S
−1
A is denoted A

f
, fractions of the form a/f

n
; this

makes f into a unit.

We need to de�ne SpecA as a topological space, and then place a sheaf structure on it. With this structure, SpecA

will be an a�ne scheme.

De�nition 1.14. Let I ⊂ A be an ideal. Then, let D(I ) ⊂ SpecA be the set of prime ideals not containing I ; if I = {f },

D(I ) = D(f ) = {p ∣ f ∉ p}. We de�ne the topology on SpecA to have as its open sets D(I ) for all ideals I .

One has to check that these are closed under �nite intersection and arbitrary union, but this is true, so SpecA is

indeed a topological space.

Example 1.15. For example, SpecZ as a set is the set of prime numbers and 0, since these account for all the ideals.

The topology is curious: (0) ⊂ p for all prime ideals p ⊂ Z, so the zero ideal “lives everywhere.”

The open sets are D(a), the set of primes not dividing a, unless a = 0, in which case we get ∅.

The open setD(f ) is actually isomorphic as a topological space to Spec(A
f
); for this reason, it’s called a distinguished

a�ne open.

Now, we just need to de�ne the structure sheaf OA: what are the functions on SpecA? We de�ne OA(U ) to be the

ring of functions f ∶ U → ∐p∈U Ap such that f (p) ∈ Ap and for all p ∈ U , there’s an a/s ∈ Ap and an open V ⊂ U

such that for all q ∈ V , f (q) = a/s.
There are a bunch of equivalent de�nitions, but this is one of the most concrete: a section is a function to a weird

space, but other de�nitions don’t explicitly make the structure sheaf a sheaf of functions, and so it’s harder to prove

that the structure sheaf is, in fact, a sheaf.

Distinguished opens are particularly nice, in that OX (D(f )) ≅ Af . Moreover, for any p ∈ SpecA, one can show

OA,p ≅ Ap. Ap is a local ring, with (the image of) p as its unique maximal ideal.

1.4. Examples. First, let’s understand SpecZ as a scheme, not just a topological space. D(6) is the set of all primes

except 2 and 3, plus the zero ideal. The acceptable functions on it are isomorphic to Z6 = {a/6n ∣ n ≥ 0, a ∈ Z} = Z[1/6].
Thinking of these as functions, the function 21/6 has value 21/6 — but in di�erent rings. Over (5), 21/6 takes the

value 21/6 ∈ Z
(5)

; at (7), 21/6 takes the value 21/6 ∈ Z
(7)

. Here, Z
(5)

is the ring of fractions whose denominators aren’t

divisible by 5. We can make sense of this for all primes except 2 or 3, and the function 21/6 can’t exist there (since

dividing by zero is bad). At (0), the value is 21/6 ∈ Z
(0)
= Q.

Next, we’ll do a more geometric example.
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Example 1.16. Let k be a �eld (if you like, k = C makes for good geometric intuition). We de�ne a�ne n-space
An

k
= Spec k[x1,… , xn]. All prime ideals of A1

k
look like (f ) for some f ∈ k[x]; this prime ideal is prime i� f is

irreducible. If k is algebraically closed, e.g. k = C, this is only the case when f (x) = x − a or f (x) = 0.

We associate the point (x − a) to the point a ∈ C, so we have a complex line of points plus the zero ideal, which is

weird: it somehow lives everywhere.

A2C is a little stranger: not only do we have a C2 worth of points (a, b) corresponding to (x − a, y − b), and (0)

which is once again everywhere, there are additional prime ideals: (y − x
2
) is a prime ideal, and it somehow lives at

the entire curve {y = x
2
} ⊂ C2. This is disorienting, but sometimes is useful.

2. But really, what is a scheme?: 9/7/16

These are Arun’s lecture notes on the functor of points, another way to understand schemes and algebraic geometry

that’s particularly useful in the world of algebraic groups.

There doesn’t seem to be a canonical reference for functor-of-points-style algebraic geometry. The discussion in

the comments of [Kam09] provides interesting perspective, though no math. [Mil15, §1.a] has a brief introduction.

[Vak15] and [Sta16] have the information, but it’s scattered.

2.1. Functors and Yoneda’s lemma. The functor of points describes maps to schemes as “universal” or “natural”

families of objects; to understand these cleanly, we need a dash of category theory. This section more or less

follows [Sta16, Tag 001L].

De�nition 2.1. A category C is a collection of objects and for every pair of objects X.Y ∈ C a set of morphisms
HomC(X, Y ), such that there is always an identity idX ∈ HomC(X, X ) and we can compose morphisms f ∶ X → Y

and g ∶ Y → Z into a morphism g◦f ∶ X → Z .

For example: Set of sets and functions, Grp of groups and group homomorphisms, VectR of real vector spaces and

linear maps, Top of topological spaces and continuous functions.

Categories are useful for de�ning universal properties. We know what the product of two sets is, of rings, of spaces,

of manifolds, . . . but if we can unify these de�nitions, we know how to de�ne the product in unfamiliar situations: in

particular, this is how we’ll de�ne the product of schemes.

De�nition 2.2. Let X, Y ∈ C. The product of X and Y , denoted X × Y , is the terminal object with a pair of morphisms

�X ∶ X × Y → X and �Y ∶ X × Y → Y . That is, for any object Z ∈ C with maps p1 ∶ Z → X and p2 ∶ Z → Y , there

exists a unique map ℎ∶ Z → X × Y such that the following diagram commutes.

Z

∃!

ℎ

""

p2

  

p1

$$

X × Y

�Y //

�X

��

Y

X

From this de�nition, one can show that the product doesn’t always exist, but when it does, it’s determined up to

unique isomorphism respecting �X and �Y . The product in any category you’ve seen is an instance of this universal

de�nition, and �X and �Y are the projection maps.

Here’s a more general example, which we’ll need later.

De�nition 2.3. Let '∶ X → Z and  ∶ Y → Z be morphisms in a category C. Then, the �ber product (also pullback
and base change) X ×Z Y is the terminal object with a pair of morphisms �X ∶ X ×Z Y → X and �Y ∶ X×Z → Y such

that the following diagram commutes.

X ×Z Y

�Y //

�X

��

Y

 

��
X

' //
Z

Once again, this might not exist, but is uniquely determined if it does.
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Exercise 2.4. If you haven’t seen this before, show that in Set, the �ber product of '∶ X → Z and  ∶ Y → Z is

X ×Z Y = {(x, y) ∶ '(x) =  (y)}.

Given any category C, we can de�ne the opposite category Cop
by reversing the arrows: HomCop (X, Y ) =

HomC(Y , X ).

De�nition 2.5. A (covariant) functor F ∶ C → D is a structure-preserving map of categories: to every object X ∈ C,

we associate F (X ) ∈ D, and to every morphism f ∈ HomC(X, Y ) in C, we associate F (f ) ∈ HomD(F (X ), F (Y )).

A functor Cop
→ D is sometimes called a contravariant functor from C to D: it sends every f ∶ X → Y in C to

F (f ) ∶ F (Y )→ F (X ).

Functors abound in mathematics. For example: fundamental group, homotopy, homology, and cohomology groups;

free groups, abelian groups, or algebras; pullback of functions; the forgetful functor Grp → Set sending a group to its

underlying set.

Example 2.6 (Functor of points). Given an object X ∈ C the contravariant functor ℎX = HomC(–, X )∶ C → Set
(sending Y to the set of morphisms Y → X ) is called the functor of points of X . This is contravariant because of

precomposition: a map ' ∶ Y → Z induces a map '
∗
∶ ℎX (Z ) → ℎX (Y ), called pullback: it sends f ∶ Z → X to

f ◦' ∶ Y → X .

The functor-of-points approach to algebraic geometry is to understand a geometric object X through its functor

ℎX , which typically has a cleaner description. This is like understanding a function f ∶ S
1
→ R through its Fourier

coe�cients, with Hom playing the role of an inner product.

The Yoneda lemma is the statement that this “inner product” is nondegenerate.

Lemma 2.7 (Yoneda). Let X, Y ∈ C. An isomorphism ℎX

∼

→ ℎY uniquely determines an isomorphism X

∼

→ Y .

In particular, X is completely and canonically determined by ℎX .

Finally, we mention a few categorical facts about scheme theory.

De�nition 2.8. A duality of categories is a pair of adjoint, contravariant functors inducing an equivalence of opposite

categories. That is, a duality of categories C and D is the data of two functors F ∶ Cop
→ D and G ∶ D → Cop

such

that F ◦G and G◦F are naturally isomorphic to the identity functor.

This term is nonstandard.

Theorem 2.9 (“Fundamental theorem”, [Sta16, Tag 01HX]). The following pairs of functors de�ne dualities of categories.
(1) (Γ, Spec) between AffSch and Ring: the ring of global sections Γ(X ) of an a�ne scheme X and the spectrum

SpecA of a commutative ring, respectively.
(2) Fixing a ring A, (Γ, Spec) between AffSchA and Alg

A
: the same functors, but between the category of a�ne

schemes over A2 and the category of A-algebras.
(3) Fixing a �eld k, (I , V ) between AffVar

k
and RedAlg

k
: analogous functors between the category of a�ne varieties

over a �eld k and �nitely generated reduced k-algebras.

Moreover, because every scheme (resp. scheme over A, variety over k) can be constructed by gluing together a�ne

schemes (resp. a�ne A-schemes, a�ne varieties over k), a functor of points ℎX ∶ Schop → Set is determined by its

restriction to ℎX ∶ AffSchop → Set (we’ll explain this more in a bit), which by the above theorem is equivalent to a

covariant functor ℎ
op
X
∶ Ring → Set. That is, functors of points on this geometric category can be understood in terms

of purely algebraic data. In the same way, a functor of points on schemes over A is determined by a contravariant

functor Alg
A
→ Set, and one from k-varieties is determined by a covariant functor RedAlg

k
→ Set.

2.2. Representability. Our game plan is to write down examples of these functors and try to understand the

geometry of the objects associated to them. The �rst obstacle is that not every functor is ℎX for some X .

De�nition 2.10. Let F ∶ Cop
→ Set be a functor. If X ∈ C is such that F ≅ ℎX , then F is called representable.

Representable functors are the ones we can do geometry with.

2
A scheme over a base A is the data of a scheme X and a map to SpecA, called the structure map. Morphisms of schemes over A are required to

commute with the structure maps.
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Example 2.11. Algebraic geometry is built out of solution sets to systems of polynomial equations, and the functor of

points is a package for solving a system of equations (the geometric constraint) over all coe�cient rings simultaneously,

as this example illustrates.

Let f1,… , fn ∈ Z[x1,… , xm]. For any ring A, the unique map Z → A induces a map Z[x1,… , xm]→ A[x1,… , xm].

Let F ∶ Ring → Set send

A⟼ {(a1,… , am) ∈ A
n
∣ f1(a1,… , am) = ⋯ = fn(a1,… , am) = 0},

the set of solutions to f1,… , fn over A. Using (2.9), F is representable, and is represented by the scheme X =

SpecZ[x1,… , xm]/(f1,… , fn).

In this sense, a solution to (f1,… , fn) over A can be thought of as an “A-valued point” of the representing scheme X ;

the A-valued points are in natural bijection with the maps HomSch(SpecA, X ). More generally, if X is any scheme, an

A-valued point is (the image of) a map SpecA→ X . This is the etymology of the functor of points: to a scheme/functor

X we have its C-valued points X (C), its Fp-valued points X (Fp), etc.

The following discussion is adapted from [Vak15, §9.1.6].

Example 2.12 (Fiber products). Let X , Y , and Z be schemes, and ' ∶ X → Z and  ∶ Y → Z be speci�ed. Let

F ∶ Schop → Set be the functor sending a scheme W ↦ ℎX (W ) ×
ℎZ (W )

ℎY (W ). Then, F is representable, and is

represented by the �ber product X ×Z Y .

In particular, �ber products of schemes always exist. They include restricting to the preimage of an open subset or

changing the base ring (e.g. base change with SpecC turns schemes over R to schemes over C).

When we refer to the �ber product of functors Schop → Set, we take them pointwise, i.e. (F ×H G)(X ) =

F (X ) ×
H (X )

G(X ).
3

This allows us to discuss a criterion for representability. The key is that a morphism of schemes can be glued

together from compatible local data. They de�ne a sheaf U ↦ HomSch(U , X ), with restriction given by actual

restriction of functions.

De�nition 2.13. Let F ∶ Schop → Set be a functor such that for every scheme X , the map U ↦ F (U ) for U ⊂ X

open de�nes a sheaf of sets on X , and for every morphism ' ∶ X → Y , the induced map F (') is a morphism of these

sheaves; then, F is called a Zariski sheaf.

In other words, morphisms should shea�fy in a universal way. This is necessary, but not su�cient.

De�nition 2.14. Let ℎ∶ Schop → Set be a functor.

∙ A functor ℎ
′
∶ Schop → Set is called an open subfunctor of ℎ if for all representable functors ℎX and maps

ℎX → ℎ,
4

the pullback ℎ
′
×
ℎ
ℎX is representable and represents an open subscheme of X .

∙ A collection U of open subfunctors of ℎ is said to cover ℎ if for all representable functors ℎX and maps ℎX → ℎ,

the schemes representing ℎX ×ℎ Fi for all Fi ∈ U are an open cover of X .

Once again, these are the ordinary notions universalized.

Theorem 2.15. Let F ∶ Schop → Set be a Zariski sheaf that has an open cover by representable functors. Then, F is
representable.

Exercise 2.16. Let A be a ring and F ∶ Schop
A

→ Set be the functor sending an A-scheme X to the set of data

{(L , s0, s1)} up to isomorphism, where L is a line bundle (invertible sheaf) on X and s0 and s1 are sections with no

common zero. Use Theorem 2.15 to show F is representable; the representing scheme is called projective 1-space over

A, denoted P1
A

.

Remark. You may be more used to the de�nition of P1
A

as two copies of A1
A

glued together so one’s 0 is the other’s

point at in�nity, as for the construction of the Riemann sphere S
2
≅ P1C.

Example 2.17. Another use for the functor of points is in moduli problems: we want to classify geometric objects as

elements of some space. In general, the “moduli space of X -stu�” is the scheme representing the functor sending Y to

the set of �at families of X -stu� over Y . These functors aren’t always representable, however.

3
This is in fact the �ber product of these functors in the functor category Fun(Schop,Set).

4
A morphism of schemes is an open embedding if it factors as an isomorphism of schemes followed by an inclusion (U ,OX |U )↪ (X,OX ) of an

open subset. See [Vak15, §7.1].
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2.3. Group Schemes. This section follows [Vak15, §6.6].

Informally, just as a topological group is a topological space with continuous multiplication and inversion, and a

Lie group is a manifold with smooth multiplication and inversion, a group scheme is a scheme with multiplication

and inversion maps that are morphisms of schemes. We will make this precise in two di�erent ways.

De�nition 2.18. Let C be a category in which �nite products exist. A group object in C is an object G ∈ C together

with a multiplication map � ∶ G × G → G, an identity map e ∶ 1 → G,
5

and an inversion map i ∶ G → G, all of

which are morphisms in C, such that �, e, and i satisfy the usual axioms of a group. For example, associativity of �

means that the following diagram commutes:

G × G × G

(�,id) //
(id,�)

// G × G

� //
G.

You know what the axioms are; the trick is writing them as commutative diagrams rather than element-wise.

Example 2.19. Group objects encode the usual notion of “groups with additional structure:”

∙ A group object in Set is just a group.

∙ A group object in Top is a topological group.

∙ A group object in Man is a Lie group.

Exercise 2.20. Why are the group objects in Grp the abelian groups?

Group objects in C form a category whose morphisms are group homomorphisms that are also C-morphisms.

De�nition 2.21. A group scheme is a group object in Sch. A group variety is a group in Var.

Algebraic groups are well-behaved group varieties.

Let’s functor-of-pointsify De�nition 2.18. If G ∈ C is a group object and Y ∈ C, we can de�ne multiplication

pointwise on HomC(Y , G): f ⋅ g is the composition �◦(f , g) (so, if we have elements, (f ⋅ g)(x) = f (x)g(x)), and can

de�ne the identity and inverse maps similarly. The upshot is that ℎG (Y ) is a group, and ℎG sends morphisms to group

homomorphisms, so we may regard it as a functor Cop
→ Grp. The converse is also true: if a representable functor

factors through Grp, it’s represented by a group object. Maybe the following de�nition is actually a theorem.

De�nition 2.22. A group object in a category C is an object X ∈ C whose functor of points ℎX ∶ Cop
→ Set factors

through the structure-forgetting inclusion Grp → Set, and hence may be regarded as group-valued.

This generalizes to abelian group objects, ring objects, etc.

There’s no shortage of group-valued functors around, making it easy to de�ne group schemes.

Example 2.23.

(1) Fix a ring A. The forgetful functor For∶ Alg
A
→ Ab sends an A-algebra to its underlying abelian group, and

is covariant. It is representable, and is represented by the additive group Ga = A1
A

, which is hence an abelian

group scheme.

(2) Similarly, the group of units is a covariant functor Alg
A
→ Ab sending B ↦ B

×
; its representing A-scheme

is called the multiplicative group Gm = SpecA[x, x
−1
], which is an abelian group scheme.

(3) The functor GLn ∶ Ring → Grp sending A ↦ GLn(A), the group of n × n matrices with coe�cients in A,

is represented by the general linear group GLn , an algebraic group. In the same way, one may de�ne the

special linear group SLn ∶ A ↦ SLn(A), the orthogonal group On ∶ A ↦ On(A), and the special orthogonal
group SOn ∶ A↦ SOn(A). For n > 2, these are all nonabelian group schemes.

(4) There is a covariant functor �n ∶ Alg
A
→ Ab sending B to its group of n

th
roots of unity, i.e. solutions x ∈ B

to x
n
= 1. This is an instance of Example 2.11; this functor is represented by SpecA[x]/(x

n
− 1).

Exercise 2.24. Let A be a ring and G be a group scheme. Show that the identity, multiplication, and inversion maps

de�ne a group structure on the set of A-valued points of G. (It will be easier to use De�nition 2.22 than De�nition 2.18.)

For example, the usual notion of the group GLn(k) agrees with that induced on the k-valued points of GLn .

5
Here, 1 is the terminal object, which is also the empty product.
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3. Algebraic Groups, a Definition: 9/14/16

Tom Gannon spoke today. Throughout today’s lecture, k will denote a �eld, and ∗= Spec k denotes the one-point

variety.

The de�nition of an algebraic group might be a little surprising at �rst, but it turns out that it’s just a restatement

of the usual de�nition of a group, trying to replace the reference to elements with commutative diagrams.

De�nition 3.1. A (blah) group (we’ll be nonspeci�c about what (blah) means for now) consists of a (something) G

and maps m ∶ G × G → G, e ∶∗→ G, and i ∶ G → G such that the following diagrams commute.

Associativity: We have two possible ways to apply m to three copies of G (starting with the �rst factors, or starting

with the last factors), and we want them to be the same:

G × G × G

(id,m) //

(m,id)

��

G × G

m

��
G × G

m //
G.

Identity: We want to encode that multiplication with e as one of the factors doesn’t change anything. Since groups

in general are noncommutative, we need this to be true both on the left and the right:

∗ × G

(e,id) //

�2 $$

G × G

m

��

G × ∗

(id,e)oo

�1zz
G.

Here �i is projection onto the i
th

component (i ∈ {1, 2}).

Inverse: In the same way, multiplying with the inverse should give you the identity, both on the left and on the

right.

G

(id,i) //

��

G × G

m

��

G

��

(i,id)oo

∗
//
G ∗
oo

A (blah) should really be some sort of category, but we don’t need the full generality.

If (something) is just a set, then this de�nition is equivalent to that of an ordinary group.

De�nition 3.2. If (something) is

∙ a scheme, then this group is called a group scheme.
∙ an a�ne scheme, then this group is caled an a�ne group scheme.
∙ a variety, this group is called an algebraic group or group variety.

We also like commutativity, but again need to specify this without using elements.

De�nition 3.3. An algebraic group G is commutative or abelian if m = m◦� , where � ∶ G × G → G × G is the

transposition map switching the two copies of G in G × G.

It’s also important to know what a homomorphism of algebraic groups is. Recall that for usual groups (de�ned

over sets), a map ' ∶ (G, ⋅G )→ (H, ⋅H ) is a homomorphism if for all g1, g2 ∈ G, '(g1 ⋅G g2) = '(g1) ⋅H '(g2).

De�nition 3.4. Let (G,mG ) and (H,mH ) be algebraic groups, and let ' ∶ G → H be a morphism of schemes. Then,

' is a homomorphism of algebraic groups if '◦mg = mℎ
◦(', ').

Once again, this just means it sends multiplication to multiplication.

De�nition 3.5. Let (G,mG ) and (H,mH ) be algebraic groups. Then, H is a algebraic subgroup of G if it’s a subscheme

of G and the inclusion map i ∶ H ↪ G satis�es i◦mH = mG .

Example 3.6. The special linear group is

SLn = Spec(k[x11, x12,… , xnn]/(det(X ) − 1)),

which represents the n × n matrices over k with determinant 1.
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Schemes have a lot of structure, e.g. they are topological spaces. Let’s see what the structure of an algebraic group

buys us in this context. Given a scheme X , we’ll let |X | denote the topological space of closed points of X .

De�nition 3.7. At any closed point p ∈ |X |, the stalk OX,x has a unique maximal ideal mx . The quotient OX,x /mx is

called the residue �eld; Milne denotes this �, and we will denote it
̊
k(x).

The multiplication map on an algebraic group is regular. This more or less means it looks like a polynomial

function locally. This means that if we �x a �eld � and let T = {x ∶
̊
k(x) = �} be the space of points with that residue

�eld, then the multiplication map restricted to T × T maps into T .

If � = k, then T = |G |, and m induces a map on the underlying topological space. However, it does not de�ne the

structure of a topological group on |G | in general! However, in this case, the left multiplication map �a ∶ G → G

de�ned by x ↦ ax (for an a ∈ G), is a homeomorphism of underlying topological spaces, and therefore |G | is a

homogeneous topological space: its automorphism group acts transitively on it (there’s only one orbit).

We can also develop a notion of density. The de�nition is a little scary, but means intuitively that, just like a dense

subset of a topological space, a function on a schematically dense set extends uniquely to one on the whole scheme.

De�nition 3.8. Let X be a scheme over an algebraically closed �eld k. Then, a subset S ⊆ |X | is schematically dense
if the restriction map f ↦ {(s, f (s)) ∣ s ∈ S} is injective.

6

If X is reduced, which is often but not always true, this is equivalent to the usual notion of density.

Another view. Yoneda’s lemma tells us that an algebraic group G determines a functor ℎG ∶ Alg
k
→ Grp (which is

the functor of points):
7

specifying what this group does to all algebras allows us to determine a lot about the group in

question. The functor G ↦ ℎG is fully faithful.

This functor is group-valued because we can precompose pairs of morphisms by m ∶ G × G → G: if ',  ∈ ℎG (R),

then their product is (',  )◦m, and this obeys the usual axioms for a group (of sets).

This allows us to provide a better de�nition for SLn: it’s the algebraic group that represents the functor R ↦ SLn(R),

where R is a k-algebra. And we can also use it to make clean de�nitions about algebraic groups.

De�nition 3.9. Let H be a subscheme of the algebraic group G. Then,

∙ H is an algebraic subgroup of G if for all k-algebras R, ℎH (R) is a subgroup of ℎG (R).

∙ H is a normal algebraic subgroup if for all k-algebras R, ℎH (R) ⊲ ℎG (R) (it’s a normal subgroup).

The general pattern isn’t too di�erent: a notion on algebraic groups often comes from that notion applied to all

groups that its functor of points de�nes.

Proposition 3.10. The identity and inverse maps are uniquely determined for an algebraic group G. Moreover, if
' ∶ G → H is a homomorphism, then '◦eG = eH and iH ◦' = '◦iG .

This is something we already know for groups; then, we invoke Yoneda’s lemma.

Proposition 3.11. The identity subscheme is a subgroup of any algebraic group.

The proof is the same: we know this for groups (of sets), and using Yoneda’s lemma, we can recover it for algebraic

groups.

4. Nice Properties of Algebraic Groups: 9/21/16

Today, Gill spoke on the rest of chapter 1.

4.1. When is an algebraic group a variety?

De�nition 4.1. Let X be a scheme over a �eld k. Then, X is geometrically reduced if X
k
= X ×

k
Spec k is a reduced

scheme, i.e. for all x ∈ X
k
, the stalk OX

k
,x has no nonzero nilpotents. (Here k is the algebraic closure of k.)

This is stronger than being reduced, and is a good thing to have.

De�nition 4.2. A scheme X is separated if the diagonal map ΔX ∶ X → X × X is a closed embedding.

6
Question we weren’t able to resolve during lecture: where should f live?

7
Milne in [Mil15] writes this as a functor ℎG ∶ Alg0

k
→ Grp. Here, Alg0

k
means the “small” (i.e. �nitely generated) k-algebras, which su�ces

because he only considers schemes of �nite type over k. This notation is confusing (since it’s reminiscent of the opposite category).

9



These are used to de�ne varieties, which are the kind of schemes that are used in classical algebraic geometry.

Recall that we’re already assuming all schemes are �nite type over a �eld k.

De�nition 4.3. A k-scheme X is a variety if it is separated and geometrically reduced.

For algebraic groups, we only have to worry about the second condition.

Proposition 4.4. All algebraic groups are separated.

Proof. Consider the map m◦(id, inv) ∶ G × G → G. The (image of the) diagonal is the preimage of the identity, which

is a closed point; thus, the diagonal is a closed subscheme. ⊠

Recall that a set S ⊂ X (k) is schematically dense if the assignment f ↦ {(s, f (s)} is injective.

Fact. If G is a reduced algebraic group and S ⊂ G(k) is dense in the usual (topological) sense, then S is schematically

dense.

This notion behaves well under �eld extension.

Fact. Let X be a geometrically reduced scheme over a �eld k, S ⊂ X (k) be schematically dense, and k ↪ k
′

be a �eld

extension. Then, X
k
′ is reduced and S ⊂ X (k

′
) remains schematically dense. In particular, S is schematically dense i�

it’s dense in |G | and in G(k).

Let G be an algebraic group over a �eld k, so we may regard its functor of points as a covariant functor from

k-algebras to groups. If R is any k-algebra, the base change GR = G ×
k
Spec R is a covariant functor from R-algebras

to groups, and if A is a k-algebra, G(A) = GR(A ⊗ R).

Proposition 4.5. Let G and H be algebraic groups over k, k ↪ k
′ be a �eld extension, and suppose G(k′) is dense in G.

Then, a morphism of algebraic groups ' ∶ G → H is determined by its action on G(k′).

Proof. Let ', '
′
∶ G ⇒ H be two morphisms agreeing on G(k

′
). Since H is separated, then the equalizer Eq(', '

′
) is

closed. It contains the subscheme where ' and '
′

agree, but this is at least G(k
′
), which is dense, so the equalizer

must be G itself. ⊠

The condition that the equalizer is closed for all maps is equivalent to separability.

De�nition 4.6. If G is an algebraic group, G
◦

denotes the connected component containing the identity element.

Proposition 4.7. G◦ is an algebraic subgroup of G.

Here are some nice facts about this subgroup.

Fact.
∙ This construction commutes with base change: for any extension k ↪ k

′
, (G

◦
)
k
′ = (G

k
′ )
◦
.

∙ G
◦

is geometrically connected.

∙ If G is connected, then it is geometrically connected. In particular, G is connected i� G
k
′ is.

This is really nice: we don’t have to worry about the distinction between connectivity and geometric connectivity.

Proposition 4.8. The following are equivalent for an algebraic group G:
(1) G is irreducible.
(2) G is connected.
(3) G is geometrically connected.

If G is a�ne, these are also equivalent to OG (G)/N being an integral domain. Here, N is the nilradical, the ideal of
nilpotent elements.

This equivalence is not true for general schemes, e.g. the zero set {xy = 0} ⊂ A2, which is connected but not

irreducible.

Corollary 4.9. If X is a connected but reducible scheme, it isn’t an algebraic group.

Smoothness is another nice property of schemes we might want to have. Once again, it’s equivalent to a lot of

other nice properties.

Proposition 4.10. The following are equivalent for an algebraic group G:
10



(1) G is smooth.
(2) G◦ is smooth.
(3) The stalk at the identity OG,e is regular.
(4) dim Te(G) = dimG.8

(5) G is geometrically reduced.
(6) For all k-algebras R and ideals I ⊂ R such that I 2 = 0, the map G(R)→ G(R/I ) is surjective.

4.2. Subgroups. Let S ⊂ X be a closed subset of X . It’s a general fact from algebraic geometry that there’s a unique

reduced closed subscheme S
red

of S whose underlying topological space is S.

Proposition 4.11. If G
red

is geometrically reduced, then it’s an algebraic subgroup of G.

Following this, we saw a bunch of facts about algebraic subgroups. These went by too fast for me.

Fact. Let G be an algebraic group over a �eld k.

∙ Every algebraic subgroup of G is a closed subscheme.

∙ If G is a�ne, so are all of its algebraic subgroups.

∙ Let H and H
′

be algebraic subgroups of G that are varieties, and k ↪ k
′

be a �eld extension containing a

separable closure of k. If H (k
′
) = H

′
(k
′
), then H = H

′
.

∙ Let S be a closed subgroup of G(k). Then, there is a unique reduced subgroup H of G such that H (k) = S.

In particular, given any subgroup S ⊂ G(k), there’s a unique reduced algebraic subgroup H of G such that H (k) is

the Zariski closure of S in G(k). This H is called the Zariski closure of S.

We’re now going to extend a bunch of constructions and de�nitions from the land of �nite groups to the world of

algebraic groups. Generally, these will use the functor of points.

De�nition 4.12. Let G be an algebraic group over k, and H be an algebraic subgroup of G.

∙ H is a normal subgroup of G, written H ⊴ G, if for all k-algebras R, H (R) ⊴ G(R) (that is, it’s a normal subgroup

in the usual sense).

∙ H is a characteristic subgroup of G if for all k-algebras R and � ∈ Aut(G), �(HR) = HR .

Proposition 4.13. G◦ is a characteristic subgroup.

This is reassuring.

De�nition 4.14. Let ' ∶ G → H be a morphism of algebraic groups. Its kernel, denoted ker ', is the algebraic

subgroup of G obtained by base changing with e ∶∗→ H , i.e.

ker(')
//

��

∗

e

��
G

' //
ℎ.

In fact, the kernel is a normal subgroup of G.

Proposition 4.15. If ' is a smooth, surjective map, then ker(') is smooth.

We can also talk about group actions (which is a really good thing): as per usual, we’ll need to rephrase it in terms

of commutative diagrams.

De�nition 4.16. A group action of an algebraic group G on a scheme X is a natural transformation � ∶ G × X → X

that is compatible with multiplication and the identity, in that the following diagrams commute.

G × G × X

idG×� //

m×idX

��

G × X

�

��
G × X

� //
X

∗ × X

e×idX //

$$

G × X

�

��
X.

We can also de�ne normalizers, centralizers, and centers, though it’s then a theorem that they exist (as algebraic

subgroups). They also play well with base change.

8
It’s a general fact in algebraic geometry that dim Te (G) ≥ dimG.
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5. Examples of Algebraic Groups: 9/28/16

Today, Souparna spoke on some examples of algebraic groups. Today, we’ll be thinking in the functor-of-points

perspective a lot, where we consider a functor F ∶ Alg
k
→ Grp representable if it’s isomorphic to ℎA for some

k-algebra A, where the isomorphism is in the functor category Fun(Alg
k
,Set).

Today, given a k-algebra A, we’ll use ℎA to denote the covariant functor Alg
k
→ Set, and ℎSpecA to denote the

contravariant functor AffSchop
k

→ Set.
Suppose F ∶ Alg

k
→ Grp is a functor and there exists a k-algebra A, an a ∈ F (A), and a natural isomorphism

� ∶ ℎA

∼

→ F such that for any k-algebra R, �(R) ∶ ℎA(R)→ F (R) sends a function f ↦ F (f )(a). In this case, we say

that (A, a) represents F . This is equivalent to stipulating that for any k-algebra R and r ∈ F (R), there’s a unique map

f ∶ A→ R such that F (f ) ∶ F (A)→ GF (R) is de�ned by a ↦ F (f )(a) = r .

The point is, group-valued functors of points de�ne algebraic groups, so we’ll de�ne some algebraic groups using

them,

Example 5.1. The additive groupGa is the functor sending a k-algebra to its underlying abelian group under addition:

Ga ∶ R ↦ (R, +). This is represented by (k[T ], T ).

If G is an algebraic group, then pulling global sections back across the multiplication map m ∶ G ×G → G de�nes

a k-algebra map Δ ∶ OG (G) → OG (G) ⊗ OG (G), which is called comultiplication. Let’s describe this map for Ga ,

whose global sections are k[T ]; in the absence of concrete information on what Ga looks like, we can still recover the

multiplication and comultiplication maps by unwinding Yoneda’s lemma.

If F is a group-valued functor, pointwise multiplication de�nes a natural multiplication � ∶ F × F → F (a natural

transformation); if F is represented by ℎG = ℎOG (G)
, then we have isomorphisms ℎG ≅ ℎOG (G)

≅ F , which therefore

pull back the multiplication map to a diagram

ℎG×G ≅ ℎG × ℎG
//

��

ℎG

��
ℎOG (G)

× ℎOG (G)
//

��

ℎOG (G)

��
F × F

� //
F .

(5.2)

If G is a�ne (which is the case for Ga), then we can plug G × G and OG (G) ⊗k OG (G) into (5.2):

ℎG×G (G × G)
//

��

ℎG (G × G)

��
ℎOG (G)

(O(G) ⊗ O(G)) × ℎOG (G)
(O(G) ⊗ O(G)) //

��

ℎOG (G)
(O(G) ⊗ O(G))

��
F (O(G) ⊗ O(G)) × F (O(G) ⊗ O(G))

� //
F (O(G) ⊗ O(G)).

Starting in the upper left, we always have an identity map id ∈ ℎG×G (G × G), and we can trace it around the diagram:

∙ Passing to ℎG (G × G), we’ve multiplied, so idG×G passes to the multiplication map m.

∙ Along the left, we get the projection maps onto the two factors in ℎG × ℎG , which is pulled back into maps

in the opposite direction for ℎO(G) × ℎO(G). Thus, when we multiply across the middle arrow, we get the

comultiplication map Δ.

∙ Along the bottom, evaluating F does the same thing, but with the universal element a, so on the bottom right,

we obtain F (Δ)(a).

Now, we specialize to Ga . When we work this out, the universal element is a = T , and the pullbacks of the projection

maps on global sections are �
∗

1
∶ T ↦ T ⊗ 1 and �

∗

2
∶ T ↦ 1 ⊗ T . Then, we “multiply” these together in Ga(k[T ]),

meaning adding them in the underlying abelian group, and obtain the comultiplication map, which is the unique map

Δ ∶ k[T ]→ k[T ] ⊗ k[T ] extending

T ⟼ T ⊗ 1 + 1 ⊗ T .
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Example 5.3. The multiplicative group is de�ned to be the functor Gm ∶ Alg
k
→ Grp sending a k-algebra R to its

group of units R
×
. Almost the same argument applies; Gm is represented by (k[T , T

−1
], T ), and the comultiplication

map multiplies the two projections together: Δ ∶ T ↦ T ⊗ T .

Example 5.4. Suppose char k = p > 0. Then, there’s a functor �pm ∶ Alg
k
→ Grp sending R ↦ {r ∈ R ∣ r

p
m

= 0}.

Characteristic p guarantees this is an additive subgroup.

�pm is represented by (k[T ]/(T
p
m

), T ) and the comultiplication is once again the unique map extending

Δ ∶ T ⟼ T ⊗ 1 + 1 ⊗ T .

Example 5.5. Let n ∈ N. Then, the n
th roots of unity are the algebraic group �n ∶ Alg

k
→ Grp sending R ↦ {r ∈

R ∣ r
n
= 1}. This is represented by (k[T ]/(T

n
− 1), T ), and has the comultiplication map T ↦ T ⊗ T .

Remark. Suppose char k = p is positive. Then, there are isomorphisms

k[T ]/(T
p
m

) ≅ k[T ]/((T + 1)
p
m

− 1) ≅ k[u]/(u
p
m

− 1).

Thus, �pm and �pm have isomorphic underlying schemes, but their group structures are di�erent, ultimately arising

from addition and multiplication.

Example 5.6. Let m, n ≥ 1. Then, the functor Mm,n ∶ Alg
k
→ Grp sends a k-algebra R to the additive group of m × n

matrices with values on R. This is represented by k[Tij ∣ 1 ≤ i ≤ m, 1 ≤ j ≤ n] with the universal element (Tij ): given

any matrix M over any k-algebra R and a map from (Tij ) to M , we know where the Tij have to go, and therefore have

de�ned a map from k[Tij]→ R.

The coordinate-free way to do this is to start with a (�nite-dimensional) k-vector space V , and de�ning the functor

EndV ∶ Alg
k
→ Grp sending R ↦ EndR(R ⊗ V ). Choosing a basis de�nes a natural isomorphism EndV ≅ Mn,n when

dimV = n.

Example 5.7. A related example is GLn ∶ Alg
k
→ Grp, sending R ↦ GLn(R), the invertible n × n matrices over R.

This is interesting because it’s nonabelian. It’s represented by the Zariski-open subset where matrices are invertible;

speci�cally, we have to localize k[Tij ∣ 1 ≤ i, j ≤ n] at det(Tij ). This forces our universal element to be invertible as

desired, so GLn is represented by (k[Tij ∣ 1 ≤ i, j ≤ n]det(Tij )
, (Tij )).

The comultiplication is the unique map extending

Δ ∶ Tij ⟼ ∑

1≤�≤n

Ti� ⊗ T� j .

GLn has some nice subgroups, e.g. Dn , the functor sending a k-algebra R to the multiplicative group of diagonal

matrices in GLn(R).

Suppose char k = p is positive. Then, the Frobenius map f ∶ k → k sending � ↦ �
p

is a ring homomorphism,

essentially by the freshman’s dream in characteristic p.

If s ∶ k → R is any k-algebra, we can de�ne a twisted version of it,
f
R, which has the underlying ring of R, but

with the k-algebra structure induced by the map s◦f ∶ k → k → R.

Let G be an algebraic group. We can twist it as well, de�ning G
(p)

∶ Alg
k
→ Grp to send R ↦ G(

f
R) =

HomSch
k
(Spec(

f
R), G) (also HomAlg

k
(OG (G), f R) if G is a�ne).

9

If G is a�ne, G
(p)

is represented by (OG (G) ⊗k f
k, '), where ' ∶ OG (G) → OG (G) ⊗k f

k is the map extending

x ↦ x ⊗ 1.
10

In particular, G
(p)

is an a�ne algebraic group. In general, for nona�ne G, G
(p)

is an algebraic group,

but not necessarily a�ne.

There’s a natural k-algebra homomorphism fR ∶ R →
f
R, which induces a natural k-algebra homomorphism

Spec(
f
R)→ Spec R; applying the contravariant functor ℎG = HomSch

k
(–, G) means we’ve de�ned a natural homo-

morphism G(R)→ G
(p)
(R), i.e. a natural transformation of the functors G → G

(p)
. Since the Yoneda embedding is

fully faithful, this means there’s a map of schemes G → G
(p)

; the corresponding map on algebras is O(G(p))→ O(G)
sending c ⊗ a ↦ c ⊗ a

p
.

This construction iterates, allowing us to de�ne maps

G
//
G
(p) //

G
(p)2 //

⋯
//
G
(p)n

.

We call the composition of these maps fn .

9
For a more general k-scheme X we can de�ne X

(p)
in the same manner, but it will not be an algebraic group in general.

10
The twisted tensor product R ⊗k f k is sometimes also written R ⊗k,f k.
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Proposition 5.8. ker(fn) is a characteristic subgroup of G.

De�nition 5.9. We say that G has height ≤ n if f
n
= 0.

De�nition 5.10. A homomorphism � ∶ G → H between connected group varieties is an isogeny if it’s surjective

and has �nite kernel. It’s called separable if the kernel is étale (de�ned in [Mil15, p. 42]), and central if ker(�) ⊂ Z (G).

Finally, we can talk about products: if G1,… , Gn are algebraic groups over a �eld k, the product G = G1 ×⋯ ×Gn is

a scheme. We also know ℎG = ℎG1
×⋯ × ℎGn

is a group object in the functor category (essentially because the product

of groups is a group in a natural way), and G represents it, so G is a group. If all of the Gi are a�ne, then we know

from algebraic geometry that O(G) ≅ O(G1) ⊗⋯ ⊗ O(Gn).
The �ber products of algebraic groups over a common algebraic group are also groups, represented by the �ber

product of functors ℎG1
×
ℎH

ℎG2
, which turns out to be a group object. We know that if G1, G2, and H are a�ne, then

O(G1 ×H G2) = O(G1) ⊗O(H ) O(G2). Fiber product commutes with base change, which is a really nice tool to have.

6. More Examples: 10/5/16

7. Hopf Algebras and Affine Algebraic Groups

Today, Richard spoke; I was about 20 minutes late, so I missed some things. As usual, a �eld k is �xed; all algebras

are �nitely generated, and all schemes are �nite type.

Recall that an algebra over k is a k-vector space A together with a multiplication map � ∶ A ⊗ A→ A and a unit

map � ∶ k → A satisfying a list of axioms (multiplication must be associative, and � is a unit for multiplication)

encoded as commutative diagrams.

Dually, a coalgebra over k is a k-vector space A together with a comultiplication map Δ ∶ A→ A ⊗ A and a counit
map " ∶ A→ k satisfying a list of axioms obtained by reversing the arrows in the diagrams de�ning algebras (and

replacing multiplication by comultiplication and unit by counit).

De�nition 7.1. A bialgebra is a k-vector space with compatible algebra and coalgebra structures, i.e. an algebra

structure (m, �) and a coalgebra structure (Δ, ") such that either

∙ m and � are coalgebra homomorphisms, or

∙ Δ and " are algebra homomorphisms.

(The two are equivalent.)

De�nition 7.2. A Hopf algebra A over k is a bialgebra with an antipode map S ∶ A → A such that the following

diagram commutes.

A ⊗ A
m //

A A ⊗ A
moo

A ⊗ A

id⊗S

OO

A
Δ

//
Δ

oo

"◦�

OO

A ⊗ A.

S⊗id

OO

(7.3)

Example 7.4. Let G be any group; then, the group algebra k[G] of �nite formal sums of elements of G weighted by

elements of k is a Hopf algebra:

∙ the multiplication map is the unique linear map such that m(1 ⋅ g, 1 ⋅ ℎ) = 1 ⋅ (gℎ), and

∙ the unit is the unique linear map such that 1
k
↦ 1 ⋅ e.

∙ The comultiplication is the map induced from the diagonal map Δ ∶ G → G × G, which induces a map

k[G]→ k[G × G] = k[G] ⊗ k[G], and

∙ the counit is the trace.

∙ Finally, the antipode is the unique linear map extending S(1 ⋅ g) = 1 ⋅ g
−1

.

More importantly for us, the diagrams for a Hopf algebra look suspiciously like the ones for algebraic groups.

Compare associativity of multiplication and coassociativity and comultiplication:

G × G × G

(m,1) //

(1,m)

��

G × G

m

��
G × G

m //
G

A ⊗ A ⊗ A A ⊗ A
Δ⊗idoo

A ⊗ A

id⊗Δ

OO

A.
Δoo

Δ

OO

14



Compare the identity and counit diagrams:

∙ × G

(e,id) //

$$

G × G

m

��

G × ∙

(id,e)oo

zz
G

k ⊗ A

�⊗id //
A ⊗ A A ⊗ k

id⊗�oo

A

dd

Δ

OO ::

Finally, compare inversion and the antipode diagram (7.3).

What we’ve discovered is a powerful equivalence:

Proposition 7.5. (A,Δ) is a Hopf algebra i� (Spec(A), Spec Δ) is an a�ne algebraic group. In particular, Spec de�nes
an equivalence of categories between (�nitely generated) Hopf algebras over k and a�ne algebraic groups over k.

Maybe you didn’t care about Hopf algebras before, but you should now. Let’s study them some more.

De�nition 7.6. Let A be a Hopf algebra and B be a k-subalgebra of A such that

(1) Δ(B) ⊂ B ⊗ B, and

(2) S(B) ⊆ B.

Then, restricting " and S to B de�nes a Hopf algebra structure on B; B is called a sub-Hopf algebra of A.

De�nition 7.7. Let A be a Hopf algebra. A Hopf ideal a of A is an ideal of A such that

(1) Δ(a) ⊂ A ⊗ a ⊕ a ⊗ A,

(2) "(a) = 0, and

(3) S(a) ⊆ a.

We care about Hopf ideals because, like ordinary ideals of rings, they are the kernels of homomorphisms.

Proposition 7.8. Let A and B be Hopf algebras and f ∶ A → B be a k-algebra homomorphims. Then, f is a Hopf
algebra homomorphism i� ker(f ) is a Hopf ideal.

Proof. In the forward direction, the �rst axiom follows from the general fact that if f ∶ V → V
′

is a k-linear map of

vector spaces, then ker(f ⊗ f ) = V ⊗ ker(f ) + ker(f ) ⊗ V .

Since f is a Hopf algebra homomorphism, the following diagram commutes.

A

f //

"A

��

B

"B

��
k k.

If a ∈ ker(f ), then f (a) = 0, so "B◦f (a) = 0, so "A(a) = 0 as desired.

For the antipode, the argument is basically the same: since f is a Hopf algebra homomorphism, the following

diagram commutes.

A

f //

SA

��

B

SB

��
A

f //
B.

Since this diagram commutes, SA must map ker(f ) to ker(f ).

Conversely, suppose we know ker(f ) is a Hopf ideal. Then, we will be able to put a Hopf algebra structure on A/a.

We’ll skip this for reasons of time. ⊠

Proposition 7.9. There is a bijective correspondence between the algebraic subgroups of an a�ne algebraic group G
and the Hopf ideals of OG (G).

Finally, we’ll sketch the proof of Cartier’s theorem.

Theorem 7.10 (Cartier). If G is an a�ne algebraic group over k, where char(k) = 0, then G is smooth.

The following lemma will be our criterion for smoothness.

Lemma 7.11. Let k be an algebraically closed �eld, G be an algebraic group over k, and me ⊂ OG,e be the maximal
ideal of the stalk of G at its identity e. Then, G is smooth if every nilpotent element of OG,e is contained in m2

e
.
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Proof sketch. Recall that G is smooth i� dimG = dim TeG, and TeG ≅ Hom(me/m
2

e
, k). This kills all the nilpotents by

hypothesis, and therefore dim Te(G) = dim Te(Gred
). ⊠

We also need a fact from linear algebra.

Lemma 7.12. Let V and V ′ be vector spaces over k,W ⊂ V be a subspace, and y ∈ V ′ ⧵ 0. If x ∈ V , then x ∈ W i�
x ⊗ y ∈ W ⊗ V

′.

Finally, we need an algebraic fact about Hopf algebras. The proof is a diagram chase and a little linear algebra.

Lemma 7.13. Let A be a Hopf algebra and I = ker(").
(1) As k-vector spaces, A = k ⊕ I .
(2) For all a ∈ I , Δ(a) = a ⊗ 1 + 1 ⊗ a mod I ⊗ I .

Proof sketch of Theorem 7.10. Let A = OG (G), so that me = ker("). By Lemma 7.11, it su�ces to show that if a ∈

OG,e = Ame
is nilpotent, then a ∈ m2

e
. The idea is if a

n
= 0 but a

n−1
≠ 0 in Ame

, then we can calculate Δ(A
n
) and

obtain a contradiction.

8. Some Representation Theory: 10/19/16

These are Arun’s prepared notes for today’s talk.

Throughout we �x a �eld k. Recall that if G is a �nite group, then a representation V of G is a k-vector space with

a G-action, meaning the data of a homomorphism � ∶ G → AutV . In a basis, this means the elements of G act by

matrices on V , and matrix multiplication agrees with group multiplication.

De�nition 8.1. Let G be an algebraic group. A representation of G is the data of a vector space V and a morphism of

algebraic groups � ∶ G → GLV . � is faithful if for all k-algebras A, �(A) ∶ G(A)→ GLV (A) = GL(V ⊗ A) is injective.

8.1. Representations are comodules. Let C be a coalgebra, meaning it has a coassociative comultiplication map

Δ ∶ C → C ⊗
k
C and a counit map " ∶ C → k.

De�nition 8.2. A C-comodule is a k-vector space V together with a k-linear map � ∶ V → V ⊗
k
C that is compatible

with Δ and " in the sense that the following diagrams commute.

V

� //
V ⊗ C

id⊗"

��
V

V

� //

�

��

V ⊗ C

id⊗Δ

��
V ⊗ C

�⊗id//
V ⊗ C ⊗ C.

A C-co-submodule is a vector subspace W ⊂ V such that �(W ) ⊂ W ⊗
k
C (so that � de�nes a comodule structure on

W ).

For G a �nite group, representations of G over k are the same data as k[G]-modules. Analogously, if G is an

algebraic group, a G-representation V is the same data as an O(G)-comodule structure on V .

∙ Given a representation � ∶ G → GLV , let a ∈ G(O(G)) denote the universal element, so �(a) is an O(G)-
linear element of GL(V ⊗ O(G)), hence an O(G)-linear map V ⊗ O(G)→ V ⊗ O(G). Thus, its restriction to

V ⊂ V ⊗O(G) is a k-linear map � = �(a)|V ∶ V → V ⊗O(G). Associativity of multiplication on G guarantees

coassociativity of � , and that 1G acts as the unit guarantees � satis�es the counit axiom, so � de�nes an

O(G)-comodule structure on V .

∙ On the other hand, let � ∶ V → V ⊗ O(G) be an O(G)-comodule, and let {ei}i∈I be a basis for V . Let

rij ∈ O(G) be such that

�(ej ) = ∑

i∈I

ei ⊗ rij

(so there are only �nitely many j such that rij ≠ 0). The comodule structure tells us that for all i and j,

Δ(rij ) = ∑

�∈I

ri� ⊗ r� j

"(rij ) = �ij .

Now, for any k-algebra A, {ei ⊗ 1}i∈I de�nes an A-basis for V ⊗ A, so we can explicitly de�ne the action

of a g ∈ G(A) to be the endomorphism with the “matrix” (rij (g))i,j (disclaimer: not literally a matrix unless

V is �nite-dimensional). This allows one to de�ne a map O(GLV ) → O(G) which sends Tij (the symbol

representing the (i, j)
th

matrix entry) to rij .
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As an example application, we characterize representations of Gm .
11

Proposition 8.3. Representations of Gm are Z-graded vector spaces. That is, there is an equivalence of categories
between RepGm

and the category of Z-graded vector spaces over k which respects tensor products.

Proof sketch. The key is that sinceGm = Spec k[x, x
−1
], aGm-representation is the same thing as a k[x, x

−1
]-comodule,

where Δ ∶ x ↦ x ⊗ x .

The data of a Gm-representation on a vector space V de�nes a map � ∶ V → V ⊗ k[x, x
−1
], which sends

v ⟼ ∑

n∈Z
vnx

n

(where only �nitely many vn are nonzero). By linearity, �(vn) = vnx
n
. Let Vn ⊂ V be the subspace that’s the preimage

of span{xn}; then, V =⨁
n∈Z Vn , so V is Z-graded.

Conversely, if V =⨁
n∈Z Vn is a Z-graded vector space, we can de�ne a k[x, x

−1
]-comodule structure on V as the

unique linear map � ∶ V → V ⊗ k[x, x
−1
] such that �(vn) = vnx

n
for all vn ∈ Vn .

Under this identi�cation, k[x, x
−1
]-equivariant morphisms are those which send homogeneous elements of degree

n to homogeneous elements of degree n, so this is an equivalence of categories. ⊠

8.2. A few other useful results.

Proposition 8.4. Let � ∶ G → GLV be a �nite-dimensional representation andW ⊂ V be a subspace. Then, the functor
StabG (W ) sending a k-algebra A to the group {� ∈ G(A) ∣ �(W ⊗ A) = W ⊗ A} is representable, and is represented by
an algebraic subgroup of G.

Proof. Let � ∶ O(G) → V ⊗ O(G) be the coaction corresponding to �. Choose a complement W
⟂

to W , and let

{ei}i∈I be a basis for V such that I = J1 ≠ J2, {ei}i∈J1
is a basis for W , and {ei}i∈J2

is a basis for W
⟂

. Then, there exist

aij ∈ O(G) such that

�(ej ) = ∑

i∈I

ei ⊗ aij .

For any g ∈ G(A) = HomAlg
k
(O(G), A),

g(ej ) = ∑

i∈I

ei ⊗ g(aij ),

meaning that g(W ⊗ A) ⊂ W ⊗ A i� g(aij ) = 0 for all j ∈ I1 and i ∈ I2. Thus, GW is represented by O(G)/⟨aij ∣ j ∈
I1, i ∈ I2⟩; since this is a quotient of O(G) and G is a�ne, GW is represented by a closed subscheme, and since GW (A)

is naturally a subgroup of G(A) for all k-algebras A, then GW is an algebraic subgroup. ⊠

We’re used to only thinking about �nite-dimensional representations. This isn’t the whole story, but fortunately

it’s almost the whole story: every representation can be built up from �nite-dimensional representations.

Proposition 8.5 ([Mil15], Prop. 4.6, 4.7). IfC is a k-coalgebra, everyC-comodule is a �ltered colimit of �nite-dimensional
sub-comodules. In particular, if G is an algebraic group, every G-representation is a �ltered colimit of �nite-dimensional
subrepresentations.

Proof. Let C be a k-coalgebra and � ∶ V → V ⊗ C be a comodule for it; it su�ces to show every v ∈ V is contained

in a �nite-dimensional sub-comodule of V . Let {ei}i∈I be a basis for C as a k-vector space; then, there exist vi ∈ V

such that

�(v) = ∑

i∈I

vi ⊗ ei .

In particular, only �nitely many vi are nonzero. There are rij� ∈ k such that

Δ(ei) = ∑

j,�∈I

rij� (ej ⊗ e� ).

One of the comodule axioms was that (idV ⊗ Δ)◦� = (� ⊗ idC )◦� . We apply each of these to v to obtain

∑

i,j,k∈I

r
ijk
(vi ⊗ ej ⊗ ek ) = ∑

k

�(v
k
) ⊗ e

k

11
Recall that a Z-graded vector space is a vector space V = ⨁

n∈Z Vn , where each Vn is a subspace, and that morphisms of Z-graded vector

spaces must preserve the grading. The tensor product of Z-graded vector spaces V and W is

(V ⊗W )n = ⨁

i+j=n

Vi ⊗ Wj .
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inside V ⊗ O(G) ⊗ O(G). When we equate the coe�cients for 1 ⊗ 1 ⊗ e
k
, we have to factor out

∑

i,j

r
ijk
(vi ⊗ ej ) = �(vk ).

If W denotes the space spanned by v and the v
k
, then this says �(W ) ⊂ W ⊗C , so W is a C-sub-comodule of V . Since

only �nitely many v
k

were nonzero, then W is �nite-dimensional. ⊠

8.3. A�ne Algebraic Groups are Linear Algebraic Groups. Matrix groups are an important source of groups;

since GLV is algebraic, we can ask speci�cally about its algebraic subgroups.

De�nition 8.6. A linear algebraic group is an algebraic subgroup of GLV , where V is a �nite-dimensional k-vector

space.

Equivalently, it’s an algebraic group G with a faithful, �nite-dimensional representation.

In the theory of �nite groups, Cayley’s theorem states that every �nite group is a subgroup of a �nite symmetric

group. For Lie groups, the Peter-Weyl theorem states that every compact Lie group is isomorphic to a matrix group (a

Lie subgroup of GL(n,R)). Here’s the analogous statement for algebraic groups.

Theorem 8.7 ([Mil15], Cor. 1.29, Thm. 4.8). Let G be an algebraic group. Then, G is a�ne i� it is linear.

Proof. Let G be an a�ne algebraic group. Comultiplication Δ ∶ O(G) → O(G) ⊗ O(G) makes O(G) into an O(G)-
comodule, and therefore de�nes a representation of G on O(G), which is called the regular representation of G. Since G

is �nite type over k, we may choose �nitely many generators f1,… , fn for O(G) (as a k-algebra), and by Proposition 8.5,

there’s a �nite-dimensional sub-comodule V ⊂ O(G) containing these generators.

Let {e1,… , em} be a basis for V and aij ∈ O(G) be de�ned by Δ(ej ) = ∑
i
ei ⊗ aij . Writing the coaction axioms in

coordinates implies that the induced map �
∗
∶ O(GLV )→ O(G) hits each aij . Since " is the counit for Δ, then

ej = (" ⊗ idO(G))Δ(ej ) = ∑

i

"(ei)aij .

Thus, Im(�
∗
) contains a basis for V , so contains V ; since �

∗
is an algebra homomorphism and V contains the generators

of O(G), then Im(�
∗
) = O(G). Thus, �

∗
is surjective, so G → GLV is a closed immersion, since G is a�ne.

Conversely, let G be a linear algebraic subgroup, so that it’s a closed subscheme of GLV for some �nite-dimensional

vector space V . Since GLV is an a�ne algebraic group, and closed subschemes of a�ne schemes are a�ne, then G is

a�ne. ⊠

The regular representation is quite useful, e.g. in the following result.

Theorem 8.8. Every �nite-dimensional representation of an algebraic group G is isomorphic to a subrepresentation of a
direct sum of copies of the regular representation.

8.4. Semisimplicity. Semisimplicity is an important concept throughout representation theory. If A is a ring, a

simple A-module M is a module such that if N is an A-submodule of M , then N = M or N = {0}. For A = k[G], these

are the irreducible representations of G. More generally, a module that is a �nite direct sum of simple modules is

called semisimple. This terminology extends to algebraic groups: we de�ne simple representations (and comodules)

the same way, and semisimple representations (comodules) in the same way.

Theorem 8.9 (Maschke). If char(k) = 0 and G is a �nite group,12 then all representations of G over k are semisimple.

There are several equivalent criteria for a representation (of �nite groups or algebraic groups) to be semisimple:

Proposition 8.10. The following are equivalent for a G-representation V :

(1) V is semisimple, i.e. it’s a direct sum of simple representations.
(2) V is a sum of simple representations.
(3) IfW ⊂ V is a subrepresentation, then it has a complementW ′ such that V = W ⊕W

′.

12
More generally, we may choose any �eld k whose characteristic doesn’t divide #G. If char(k) ∣ #G, counterexamples to this theorem exist.
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9. More Representation Theory and Chevalley’s Theorem: 10/26/16

Today, Tom spoke about more representation theory and Chevalley’s theorem.

Recall that a linear representation of an a�ne algebraic group G on a vector space V is given by any of the

following equivalent data.

(1) For all k-schemes X , an action of G(X ) on V ⊗ Γ(X,OX ).

(2) If Va denotes the functor X ↦ V ⊗ Γ(X,OX ), the data of an action of the functor G = ℎG on Va.

(3) An O(G)-comodule structure on V , i.e. a linear map � ∶ V → V ⊗ O(G) satisfying two axioms. This is

particularly useful because if {ei} is a basis for V , then we can write

�(ei) = ∑

j

ej ⊗ �ij ,

and thus describe the action in terms of matrices.

(4) Finally, a homomorphism of algebraic groups G → GLV . Pullback on the rings of regular functions describes

the group elements in terms of matrices: k[Tij]det(T ) → OG (G) sends Tij ↦ aij .

Recall also that every representation is a �ltered colimit of its �nite-dimensional representations (Proposition 8.5), and

that a�ne algebraic groups are linear (Theorem 8.7). In particular, this arises from the regular representation, arising

from the O(G)-comodule structure on O(G) coming from the comultiplication map Δ ∶ O(G)→ O(G) ⊗O(G). The

key to proving that a�ne algebraic groups are linear is the following theorem.

Theorem 9.1. The regular representation is faithful, and in particular, has a �nite-dimensional subrepresentation on
which G acts faithfully.

Proof. If A = SO(G), A is a �nitely-generated k-algebra, so let’s pick a �nite generating set S. Since A as a G-

representation is a �ltered colimit of subrepresentations, we can �nd a �nite-dimensional subrepresentation V ⊂ A

containing S. Let {e1,… , en} be a basis of V , and write

Δ(ej ) = ∑

j

ej ⊗ aij ,

so that O(GLV ) → O(G) must have image containing these aij . The counit axiom for a comodule says that

(" ⊗ 1A)◦Δ = 1A, so

ei =

n

∑

j=1

"(ei)aji ,

so ei ∈ ⟨aij⟩, and therefore V ⊆ ⟨aij⟩, determining A ⊆ k[aij]. This means that the map O(GLV )→ O(G) is surjective,

so G → GLV is a closed immersion (as G is a�ne).
13

⊠

An algebraic group is called linear if it admits a faithful �nite-dimensional representation, i.e. is isomorphic to an

algebraic subgroup of GLV for some �nite-dimensional vector space V . The above theorem shows that every a�ne

algebraic group is linear; the converse is also true. Thus, for an algebraic group, being a�ne is the same as being

linear. This is not in general true for non-a�ne algebraic groups, which suggests that non-a�ne algebraic groups

behave weirdly with respect to representation theory: in the non-a�ne case, the comodule structure doesn’t uniquely

determine the representation, so this whole proof and the regular representation go out the window. In fact, elliptic

curves are explicit examples of algebraic groups that are not linear.

Given a representation V of G � ∶ V → V ⊗ O(G), we can de�ne another O(G)-comodule through the map

1V ⊗ Δ ∶ V ⊗ O(G)⟶ (V ⊗ O(G)) ⊗ O(G).

De�nition 9.2. With the structure map 1V ⊗ Δ, V ⊗ O(G) is called the free O(G)-comodule on V .

A choice of isomorphism V ≅ k
n

de�nes an isomorphism V ⊗ O(G) ≅ O(G)n , which is more concrete, but not

natural.

13
This wasn’t technically the de�nition of a faithful representation; we required that G(X )↪ GLV (X ) for all k-schemes X , but this turns out

to be equivalent to requiring G ↪ GLV to be a closed immersion.
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Proposition 9.3. Let � ∶ V → V ⊗ O(G) be an O(G)-comodule. Then, the following diagram commutes:

V

� //

�

��

V ⊗ O(G)

1V ⊗Δ

��
V ⊗ O(G)

�⊗1O(G)//
V ⊗ O(G) ⊗ O(G),

and in particular, it de�nes an injective homomorphism of O(G)-comodules.

This is a little silly, but its corollaries are not silly.

Corollary 9.4. Any �nite-dimensional O(G)-comodule arises as a sub-comodule of O(G)n for some n.

That is, it arises as a subcomodule of a �nitely generated free comodule (on the regular representation). This is

quite di�erent from the general theory of modules: it’s not true that every module is a submodule of a free module.

Theorem 9.5. Let V be a faithful �nite-dimensional representation of G. Then, any �nite-dimensional G-representation
W can be written as a sub-comodule of a quotient of a direct sum of representations of the form

n

⨂

i=1

(V ⊕ V
∨
).

That is, start with V , direct-sum with its dual, and take some tensor power. Then, take a free representation on

that, and W arises as a subrepresentation of that. This is kind of cool, because any single representation knows all

representations. This is not often used to construct representations in practice, but it’s still good to know.

For the next theorem, we’ll have to do a little more.

De�nition 9.6. A representation V is simple if it’s nonzero and has no nonzero proper subrepresentations.

That is, its only subrepresentations are 0 and itself. This is sort of like a prime number.

De�nition 9.7. A representation V is semisimple if it’s a direct sum of simple representations.

For �nite-dimensional representations, semisimplicity is the same as complete reducibility.

Proposition 9.8. A representation V can be written as a sum of simple representations i� it can be written as a direct
sum of a subset of those representations.
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