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Lattice models: why

Lattice models are finite approximations to quantum field
theories (QFTs).

Hope to recover original QFT as limiting case

This is hard and poorly understood: for Yang-Mills theory,
would be a $1M reward
I’m working on a much simpler example

Also used in condensed-matter systems



Lattice models: ingredients

The system is set up on a lattice on a closed manifold
A collection of vertices, edges, faces, and higher-dimensional
cells
Intuition: dimension 2, as in this picture:



Lattice models: ingredients

Let E denote the set of (n − 1)-cells of the lattice.

The fields are the set of spin configurations, functions
E → {↑, ↓}.

That is, a choice of spin-up or spin-down for each cell

The state space H is the vector space of complex-valued
functions on the fields

Parameterizes the states the system can be in
Each function is determined by local data (the locality
principle)



Lattice models: ingredients

A Hamiltonian, a linear function H : H → H which
determines how the system changes over time

Named after William Rowan Hamilton (1805–65)

“William Rowan Hamilton. // My name is William Rowan
Hamilton, // And no one uses my quaternions,// but just you
wait, just you wait. . . ”
(N.B.: you can find the full parody by searching “William
Rowan Hamilton” on Youtube!)



Energy levels

The Hamiltonian assigns energy levels to states.

If Hx = cx for a number c , x is a state with energy level c .

The states with lowest energy are called ground states, and
correspond to the vacuum

Higher-energy states thought of as particles living at points on
the lattice

(Disclaimer: might not actually be particles)



Energy levels

Examples of energy levels:

Person before coffee: ground state

Person after coffee: higher-energy state

(Curiously, coffee itself is also in a ground state)



Examples of lattice models: toric code

The toric code has a Hamiltonian

H =
∑

faces f

Hf +
∑

vertices v

Hv ,

where

Hf =
1

2

(
1−

∏
e∈∂f

Ze

)
, Hv =

1

2

(
1−

∏
v∈∂e

Xe

)
.

(Here Ze and Xe are Pauli operators.)

The Ising model is a well-known lattice model for
ferromagnetism.

If you put it on a cylinder, is it the Ising on the cake?



Examples of lattice models: GDS

The generalized double semion (GDS) lattice model has a
similar Hamiltonian, but instead

Hf =
1

2

(
1− (−1)χ(↑f )+1

∏
v∈∂e

Xe

)
.

Here χ is the Euler characteristic and ↑f is the subset of ∂f in
the spin-↑ state.



Examples of lattice models

No wait, this is a lettuce model.



Topological quantum field theories

A topological quantum field theory (TQFT) is a kind of QFT
insensitive to small changes

Because of this, can be extracted from physics and formulated
purely mathematically

Formally, a TQFT is a symmetric monoidal functor

Z : Bordn → VectC.

(I’d explain this, but you’d get bord.)

That means it’s a certain way of assigning the following data:

To every n-dimensional manifold, a vector space of states
dependent only on topology
As a space changes with time, a description of how states
evolve



Why TQFTs?

Used to study topological phases of matter

Condensed-matter systems with scale-independent behavior
Closely related to work of 2016 Nobel Prize in Physics winners

Applications to algebraic topology, knot theory, and
representation theory



Low-energy effective field theories

In a lattice model, the ground states often don’t depend on
lattice structure: they’re purely topological, and in fact form a
TQFT

Called the low-energy effective field theory (LE EFT) of the
system

Since it’s topological, it can be studied with pure math (which
is why I care).



LE EFTs of lattice models

Simple answer for the toric code, called Z/2-Dijkgraaf-Witten
theory.

Gauge group Z/2, simplest possible Lagrangian
(Sidenote: I used to think gauge symmetry meant one in each
ear)

For GDS, Freedman-Hastings prove that, in general, it’s
something new, but leave open what it is.



Finding the Lagrangian

I’ve found the Lagrangian description of the generalized double
semion LE EFT.

This is a formula from which the rest of the TQFT can be
written down in a standard way

Description as an integral of cohomology classes, certain
functions on subspaces of the ambient space

Proven via an intermediate description of the theory, though I
would also like to get it directly from the Hamiltonian



Finding the Lagrangian

Theorem (D., 2016)

Let M be an n-dimensional manifold and y ∈ H1(M;Z/2) be a
cohomology class. The Lagrangian for the generalized double
semion LE EFT on M is ∫

M
w(M)

y

1− y2
,

where w(M) is the total Stiefel-Whitney class of M.



Applications to physics

Working out the continuum limit would provide a good
example for finding continuum limits in more complicated
models

Understanding the GDS lattice model may improve
understanding of bosons and fermions’ statistics



Further questions

Investigate higher-energy states of GDS

What is the continuum limit of the GDS lattice model?

Realize the LE EFT as an extended TQFT

Uses higher category theory to compute on lower-dimensional
submanifolds
Ties to exciting developments in algebra and topology: the
cobordism hypothesis, the geometric Langlands program, . . .
Intuition from physics (the locality principle) tells us this
should be possible



Quantum computation and ECCs

It turns out lattice models have applications to quantum
computation! I’ll finish by briefly describing this.

In quantum computing,
rather than just taking on
values in {0, 1}, a bit’s
states are vectors in a
2-dimensional space.

Quantum algorithms take
advantage of lack of
discreteness, which enables
certain “shortcuts”

|0〉

|1〉



Error-correcting codes

To build a quantum computer, one must overcome real-world
noise.

Sometimes there’s too much noise, so the algorithm fails.

A quantum error-correcting code (ECC) is a way of reducing
the error.

Important to getting a real-world quantum computer working
Non-quantum error-correcting codes used in the real world
(e.g. DVD encoding)
Because of the no-cloning theorem, näıve approaches to
quantum ECCs don’t work



Topological quantum computation

Microsoft’s Station Q aims to build a real-world quantum
computer using topological quantum computation

This is a specific physical model for a quantum bit using
topological states of matter

Topological behavior has been observed experimentally,
making this plausible



The toric code is error-correcting

The toric code lattice model is a quantum error-correcting
code for topological quantum computation

Errors raise the energy above the ground state, interpreted as
(quasi)particle creation

Topological information about particle trajectories signals
whether computation is correct

So. . . what about double semions?



Thanks for listening!

Do you have any questions?


