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Lecture 1.

Overview, History, and some Linear Algebra: 1/17/18

“This formula should look fake if you haven’t seen it before.”

We’ll start with and overview and some history of index theory. The overview will use a little bit of complex
geometry, but if you don’t know it that’s okay; the rest of the class will not depend on it.

One of the earliest manifestations of index theory was in the theory of algebraic curves. Let M be a compact
smooth connected complex curve, i.e. a Riemann surface, and let D be a divisor on M , a finite formal sum of points
of M with integer coefficients. For example, if p1, p2, p3 ∈ M , one divisor is 4p1 − 2p2 + 7p3.

Definition 1.1. Let f be a meromorphic function on M ; then, its divisor div( f ) is the zeros of f minus the poles
of f , where both are counted with multiplicity. For f = 0, we let div(0) = 0.
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For example, if M = CP1 = C ∪ {∞}, then a meromorphic function on M is a rational function. If we took
f (z) = (z − 1)2/(z + 2), then div( f ) = 2 · 1− 1 · (−2)− 1 ·∞: f has a double zero at 1 and a single pole at −2,
and at∞ there is a simple pole.1

A divisor has a degree which is the sum of its terms.

Theorem 1.2. The degree of the divisor of a meromorphic function is zero.

This is a consequence of the Cauchy integral formula.
A divisor specifies the zeros and poles of a meromorphic function, and it’s a classical problem to, given a

degree-zero divisor D on a Riemann surface, construct a function whose divisor is D. More generally, let L (D)
denote the set of meromorphic f such that div( f ) + D ≥ 0.2 L (D) is a vector space, and if deg(D)< 0, L (D) = 0;
we also have L (0) = C, given by constant functions.

Another classical question is to compute dimL (D). Riemann provided an estimate:

(1.3) dimL (D)≥ 1− g + deg(D),

where g is the genus of M , defined to be

(1.4) g :=
1
2

rank H1(X ).

The next natural question is to identify the discrepancy, and Riemann’s student Roch found the answer.

Theorem 1.5 (Riemann-Roch). here is a canonical divisor KM such that

(1.6) dimL (D)− dimL (KX − D) = 1− g + deg D.

We won’t say much about KM , though deg(KM ) = 2g − 2.

Corollary 1.7. The genus is an integer.

A more modern interpretation of this story is that D determines a holomorphic line bundle L→ M , and L (D)
is the vector space of holomorphic sections of L, i.e. L (D) ∼= H0(M ; L). If s is any smooth section of L, s is
holomorphic iff ∂ s = 0. That is, in local coordinates z = x + i y , and

(1.8) ∂ =
∂

∂ z
=

1
2

�

∂

∂ x
− i

∂

∂ y

�

.

Thus, ∂ x = 0 is a first-order differential equation, and computing dimL (D) is asking for the dimension of the
space of solutions to the equation. Thus one way you might prove Theorem 1.5 is to analyze the differential
operator ∂ , which is a linear operator

∂ : Ω0,0(M ; L) −→ Ω0,1(M ; L).

Then, L (D) = ker(∂ ) and L (KM − D)∼= coker(∂ ).

Definition 1.9. The index of ∂ is ind(∂ ) := dimker(∂ )− dimcoker(∂ ).

Broadly speaking, this course will be about indices of this sort, and their applications: for example, the
Riemann-Roch theorem from this perspective is about computing the index of ∂ .

B ·C

For a simpler case, let V and W be finite-dimensional vector space and T : V → W be a linear map. Then,
ker(T ) ⊂ V and coker T :=W/T (V ). Computing the index is a fundamental theorem in linear algebra.

Theorem 1.10.
ind(T ) := dim(ker T )− dim(coker T ) = dim V − dim W.

In particular, it’s independent of T ! One way you might prove this is to observe that it’s true when T = 0 and
then try to prove that it’s locally constant.

In this class, we’re interested in operators between infinite-dimensional vector spaces, such as Ωp,q(M ; L), whose
kernels and cokernels are finite-dimensional (such that the definition of an index makes sense). There will be no
nice formula like Theorem 1.10, but some aspects stay the same: though the dimension of the kernel or cokernel
may jump along a continuous path, their difference is constant.

1To see this, use the change-of-variables z = 1/w and evaluate f at w= 0.
2This is missing a zero element, so one needs to adjoint 0 for everything to work.
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B ·C

Another classical subject that relates to index theory is that of the Euler number of a compact smooth n-manifold
M . Betti defined Betti numbers b0, . . . , bn associated to M , and Noether realized they can be identified with ranks
of abelian groups (or dimensions of certain real vector spaces).3

Definition 1.11. The Euler characteristic of M is

χ(M) :=
n
∑

i=0

(−1)i bi .

The Betti numbers are defined via simplices, and how M is built out of cells. Since M is a smooth manifold,
one might want to compute them in another way, using the smooth structure of the manifold. To do this, one
introduces the de Rham complex

(1.12) 0 // Ω0(M) d // Ω1(M) d // Ω2(M) // · · · // Ωn(M) // 0,

with linear maps d such that d2 = 0. Unlike in the previous example, this is built out of real functions and real
differential forms.

Definition 1.13. The de Rham cohomology of M is the sequence of real vector spaces

H i
dR(M) :=

ker(d: Ωi(M)→ Ωi+1(M))
Im(d: Ωi−1(M)→ Ωi(M))

.

Theorem 1.14 (de Rham). There is an isomorphism H i
dR(M)

∼= H i(M ;R), and therefore dim H i
dR(M) = bi .

From this perspective, the Euler characteristic looks more like an index, where we stack together the pieces of
the de Rham complex:

(1.15)
⊕

i even

Ωi(M) −→
⊕

i odd

Ωi(M).

However, the index of this is not the Euler characteristic! The issue is that the de Rham cohomology groups are a
subquotient, not just a subspace or just a quotient. To compute the Euler characteristic as an index, we’ll need
some way of turning them into pure subspaces or quotients. One way to do this is to use an inner product and
take orthogonal complements.

Let M be a Riemannian manifold. Then, there is a Laplace operator ∆: Ωi(M)→ Ωi(M), which is a linear
second-order elliptic differential operator.

Remark 1.16. There are three basic kinds of differential operators studied in a typical differential equations course:
elliptic, parabolic, and hyperbolic. The Laplacian is the basic example of an elliptic operator; the heat operator
is the basic example of a parabolic operator; and the Schrödinger operator is the basic example of a hyperbolic
operator. We will focus on elliptic operators in this course, but both the heat equation and the Schrödinger equation
will appear. (

Example 1.17. Let En denote n-dimensional Euclidean space with coordinates x1, . . . , xn. Then, the Laplacian on
En is

∆=
�

∂

∂ x1

�2

+ · · ·+
�

∂

∂ xn

�2

.

(

For more general Riemannian manifolds, the definition of the Laplacian is more complicated, but not much
more so.

Definition 1.18. If M is a Riemannian manifold, there is an L2 inner product on Ωi(M) defined by

〈α,β〉L2 :=

∫

M

〈α(M),β(M)〉dvolm.

Using these inner products, we can let d∗ : Ωi+1(M)→ Ωi(M) be the formal adjoint to d.

3These days, this would be called categorification: it can often be useful to identify a number as the dimension of some vector space
attached to your object.
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Fact. d∗ exists and is a first-order differential operator. (

Definition 1.19. The Laplace operator on M is ∆ := dd∗ + d∗d.

A form in the kernel of ∆ is called harmonic, and the space of harmonic forms is denotedH i(M) ⊂∆i(M).

Theorem 1.20 (Hodge theorem). The natural mapH i(M)→ H i
dR(M) is an isomorphism. In particular, dimH i(M) =

bi .

This is how index theory enters the picture: if we can access the space of harmonic forms as kernels and cokenels
of operators, we could compute the Euler characteristic as an index. And indeed, we can fix (1.15) as folows:

(1.21)
⊕

i even

Ωi(M)
d+d∗
−→

⊕

i odd

Ωi(M).

The index of this operator is the Euler characteristic.
B ·C

A third example of index theory is the higher-dimensional Riemann-Roch theorem. Let M be a compact
complex manifold; then, the ∂ operator defines a Dolbeault complex analogous to the de Rham complex. If M is
2-(complex-)dimensional, the Euler characteristic satisfies a formula

(1.22) χ(M) =
1
12

�

c2
1(M) + c2(M)

�

[M].

Here c1 and c2 are examples of characteristic classes, which we’ll start on in the next few lectures. In particular, the
right-hand side is an integer. In higher dimensions, there are similar expressions with larger denominators and
more characteristic classes.

These were studied by Todd and his student Egger, by Weyl, and others. But the general forms remained
conjectures until 1954, when Hirzebruch proved these generalizations of the Riemann-Roch theorem, and an
additional, similar result called the signature theorem. He wove together two very new pieces of mathematics: the
cobordism theory of René Thom (published only earlier that year!) and the theory of sheaves.

Hirzebruch and others in this field introduced a rational combination of different characteristic numbers, called
Pontrjagin numbers, called the bA-genus (said “A-hat genus”). This is defined on closed oriented manifolds, and on a
spin manifold is an integer.

That bA(M) is an integer is a suggestion that it’s a dimension of something, and when Singer went to visit Oxford
in 1963, Atiyah asked him what object has the bA-genus as its dimension, and this is the problem that they solved:
they constructed a differential operator called the Dirac operator on a spin manifold, and showed that its index is
the bA-genus.

The Dirac operator

D := γµ
∂

∂ xµ
for some γµ (this notation means the index µ is implicitly summed over) is a first-order linear differential operator.
We’d like this to be a square root of the Laplacian operator.

Exercise 1.23. Show that D2 =∆ iff

(1.24) γµγν + γνγµ = −2δµν.

Here, δµν means 1 if µ= ν and 0 otherwise.

So the operator has to satisfy n2 equations. If you try to solve this for functions on En, you can show that no
such γµ exist, but one could instead ask for vector-valued functions which satisfy (1.24), and indeed we will spend
some time studying the abstract theory of matrices which satisfy this condition, rephrased as the algebraic theory
of Clifford modules. In particular, we will be able to show that a spin structure is precisely what one needs to be
able to construct the Dirac operator on a Riemannian manifold.

B ·C

Before Atiyah and Singer told this story, Grothendieck took the Hirzebruch-Riemann-Roch theorem and gen-
eralized it still further, and Atiyah and Hirzenbruch saw how to translate his ideas from algebraic geometry to
topology, and replace sheaves with vector bundles. They then defined K-theory and rapidly developed it from
1958 to 1962. When Atiyah asked Singer his question, it was in this context.
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At the same time, parallel work was undertaken in the Soviet Union under Gelfand and his students. He
observed that the index sometimes can be computed topologically, and asked whether this is true in general, and
Atiyah-Singer’s answer also incorporates this question.

Subsequently, in the 1970s, Gilkey, Patodi, and others were able to provide more rigid, simpler proofs with
analytic methods, and in the 1980s Getzler made another important simplifying step to what’s now called the heat
equation proof of the index theorem, which we’ll follow.

B ·C

We’ll use John Roe’s book in this course. It’s analytic in flavor, but also treats many other nice results, and if
we go quickly enough, we’ll get to see some of them, including Witten’s physical treatment of Morse theory, the
Lefschetz theorem, the Hodge theorem, and more.

In this class, the students will give lectures, two each week, and we hope to go through two chapters a week.
You don’t have to use all three hours!

On the course website (https://www.ma.utexas.edu/users/dafr/M392C/), there will be some useful
information, including some old course notes, some historical background, and more to come. These will be there
so that you do not forget the beauty of the material amongst all the details in the lectures.

Not everybody may know all of the prerequisites for this course, since it draws in lots of different parts of
mathematics. One can ask the professor for references or talk to other students in the course.

B ·C

The second half of the first day is on the first chapter of the book, reviewing some of the basics of Riemannian
geometry.

Let’s first start with some linear algebra and differential forms. Let V be an n-dimensional real vector space.
Eventually, V will be a tangent space at a point to a manifold, and if the manifold has a Riemannian metric, V
picks up an inner product.

Associated to V are several canonical vector spaces built from it: its wedge powers Λ2V, . . . ,ΛnV , and Λ0V ,
which is canonically R. The top exterior power is also called the determinant line, Det V := ΛnV . Dually, there are
the exterior powers of the dual space V ∗: R, V ∗, Λ2V ∗, . . . ,Det V ∗.

An inner product on V canonically induces inner products on all of these exterior powers. One way to see this
is to let e1, . . . , en be an orthonormal basis of V ; then, there is a dual basis e1, . . . , en of V ∗, defined by the relation

(1.25) eµ(eν) = δ
µ
ν ,

i.e. 1 if µ= ν and 0 otherwise.
We specify the inner product on V ∗ by declaring this dual basis orthonormal, which suffices, though you have

to check that if you change the orthonormal basis of V you started with, you’ll end up with the same inner product
nontheless.

We also obtain bases for the exterior powers of V and V ∗: for ΛqV , the basis is

(1.26) {ei1 ∧ · · · ∧ eiq : 1≤ i1 < · · ·< iq ≤ n},

and for ΛqV ∗, it’s

(1.27) {ei1 ∧ · · · ∧ eiq : 1≤ i1 < · · ·< iq ≤ n}.

Again we define the inner products on ΛqV and ΛqV ∗ by asking for these bases to be orthonormal, and again the
inner product in question does not depend on the specific choice of orthonormal basis of V .

Definition 1.28. An orientation of V is an orientation of its determinant line. That is, Det V \0 has two components,
and an orientation is a choice of one of them.

Given n vectors e1, . . . , en ∈ V , we can wedge them together to an e1 ∧ · · · ∧ en ∈ Det V ; {e1, . . . , en} is a basis iff
e1 ∧ · · · ∧ en 6= 0. Thus a basis singles out one of the two rays in Det V \ 0, hence defines an orientation. Since
(Det V )∗ = Det(V ∗) canonically, then this also defines an orientation on (Det V )∗: the duality pairing implies there’s
a single θ ∈ Det V ∗ which sends e1 ∧ · · · ∧ en 7→ 1; we call it the volume form and denote it vol.

On an oriented Riemannian n-manifold, this is a differential n-form, hence can integrate it to determine the
volume of the manifold. If it’s not oriented, there are two at each point, which may twist globally into something
called a density. Nonetheless, this can be integrated, and the volume of, e.g. RP2 still makes sense.

https://www.ma.utexas.edu/users/dafr/M392C/
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The pairing ΛqV ∗ ⊗Λn−qV ∗→ Det V ∗ defined by

(1.29) α,β 7−→ α∧ β

is nondegenerate. An orientation of V defines a trivialization of Det V ∗ (where vol = 1), so this pairing is R-valued.
Therefore we obtain an isomorphism ΛqV ∗ ∼= Λn−q(V ), though it depends on the inner product and the orientation.

Example 1.30. In three dimensions, we use this frequently, to shift from the perspective of vector fields and
scalars and div, ∇, and curl to differential forms. (

There’s also an isomorphism ?: ΛqV ∗→ Λn−qV ∗ which only uses the inner product; this is called the Hodge star.
Putting everything together, the Hodge star is defined uniquely by the stipulation that

(1.31) α1 ∧ ?α2 = 〈α1,α2〉vol

for any α1,α2 ∈ ΛqV ∗.

Exercise 1.32. For example, check that ?(ei1 ∧ · · · ∧ eiq) is the wedge of all of the e j not in (i1, . . . , iq), possibly
multiplied by −1.

Exercise 1.33. Show that ?2 = (−1)q(n−q).

Here, “inner product” means nondegenerate inner product; much of this story still goes through for a Lorentz-
signature metric, but not all of it.

Exercise 1.34. Show that on a closed, oriented Riemannian manifold M , d∗ = ± ? d?, and determine the sign
(which depends on n and q).

You can type-check that the right-hand side is a first-order differential operator which lowers the degree by 1.
Solving the exercise boils down to checking that

∫

M

〈dα,β〉vol= ±
∫

M

〈α,?d?β〉vol.

You’ll end up using Stokes’ theorem.

B ·C

Now let’s think about parallelism. Let An be n-dimensional affine space (no distinguished origin), where
we learn calculus. This has parallel transport: if ξ ∈ Rn is a tangent vector at some point, we can translate it
everywhere to a vector field. This allows us to define differentiation: if f : U → R, where U ⊂ An is open, then we
define the derivative of f at p in the direction of ξ to be

(1.35) ξp f := lim
h→0

f (p+ hξ)− f (p)
h

.

This uses parallelism in the expression p+ hξ.
More generally, if M is a smooth manifold, we don’t always have a canonical parallel transport between tangent

spaces for different points of the manifold, so we can’t compare tangent vectors in different places and differentiate.
For example, if γ: [a, b]→ M is a curve, its tangent vectors at two different points can’t be compared (without

extra structure), so there’s no way to make the subtraction in (1.35). We’ll introduce the structure that allows us
to do this.

Definition 1.36. Let V → M be a vector bundle and C∞(M ; V ) denote its space of smooth sections, which is a
real vector space. A covariant derivative is a bilinear operator

∇: C∞(M ; T M)× C∞(M ; V ) −→ C∞(M ; V ),

denoted
X , s 7−→ ∇X s,

such that

(1) ∇ f X s = f∇X s, and
(2) ∇X ( f s) = (X · f )s+ f∇X s,

where (X · f ) is the usual directional derivative associated to a vector field.
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For V = T M , we have the usual Lie bracket

[–, –]: C∞(M ; T M)× C∞(M ; T M) −→ C∞(M ; T M)

sending X , Y 7→ [X , Y ]; if f , g : M → R are functions, then

[ f X , gY ] = f g[X , Y ] + f (X · g)Y − g(Y · f )X .

This operator is the commutator of an infinitesimal flow of X and an infinitesimal flow of Y .

Definition 1.37. Let ∇ be a covariant derivative for the tangent bundle. Its torsion is

τ(X , Y ) :=∇X Y −∇Y X − [X , Y ].

Exercise 1.38. Show that τ( f X , gY ) = f gτ(X , Y ) and τ(X , Y ) = −τ(Y, X ).

Let’s write this out in local coordinates. There are two things we could mean – coordinates on M or on V .
Since V is a vector bundle, we can use for its coordinates the coordinates of M and a (local) basis of sections
s1, . . . , sr . (Global nonvanishing sections might not exist at all, e.g. TS2→ S2). In this case, you can differentiate
s j , obtaining some linear combination of the sections depending on x in a neighborhood U:

∇X s j = Γ
i
j (x)si .

This is just parameterized linear algebra. These Γ i
j are 1-forms on U . We can also obtain coordinates for these

1-forms: if we let
∇∂ /∂ xµ s j = Γ

i
jµsi ,

then Γ i
j = Γ

i
jµ dxµ.

If V → M has an inner product (metric), a positive definite pairing C∞(M ; V )× C∞(M ; V )→ C∞(M) sending
s1, s2, 7→ 〈s1, s2〉, we can ask how a covariant derivative interacts with it.

Definition 1.39. A covariant derivative is compatible with the metric if for all X ∈ C∞(M ; T M) and s1, s2 ∈
C∞(M ; V ),

X · 〈s1, s2〉= 〈∇X s1, s2〉+ 〈s1,∇X s2〉.

Definition 1.40. A section s ∈ C∞(M ; V ) is parallel if ∇X s = 0 for all X .

Parallel sections exist in An but not in general; the obstruction is called the curvature.

Definition 1.41. The curvature of a covariant derivative ∇ is

K(X , Y ) := [∇X ,∇Y ]−∇[X ,Y ],

i.e.
K(X , Y )(s) :=∇X∇Y s−∇Y∇X s−∇[X ,Y ]s.

If M is Riemannian, there’s a beautiful theorem about how all of these structures interact.

Theorem 1.42 (Levi-Civita). Let M be a Riemannian manifold. Then, there is a unique connection on T M → M
which is torsion-free and compatible with the metric.

Exercise 1.43. Prove this theorem. The way you do this is to compute 〈∇X Y, Z〉, because if you know this for all
Z , you know ∇X Y . Using the torsion-free and metric compatibility conditions, you can expand it out, and after
some number of steps, you’ll get the answer.

This local but non-global parallelism is an important property of Riemannian manifolds.
Next we will write a local formula for this connection. Suppose we have local coordinates x1, . . . , xn on an open

set U ⊂ M ; then, we obtain the symbols Γ i
jk : U → R. If we define the inner product and the Lie bracket, we can

write down formulas for them. Namely, if we let

gi j :=


∂

∂ x i
,
∂

∂ x j

·

,

and since
�

∂

∂ x i
,
∂

∂ x i

�

= 0,
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then we can determine equations that the Γ i
jk must satisfy. These can be encoded in the Riemann curvature tensor

R(X , Y )Z , and in coordinates, on elets

Ri
jk`
∂

∂ x i
= R

�

∂

∂ x k
,
∂

∂ x`

�

∂

∂ x j
.

This tensor has a bunch of important symmetries. The curvature is a 2-form on the manifold, but valued in
End(T M): X and Y are the two directions you’re testing, and are the 2 components of the 2-form.

The symmetry Ri
jk` = −Ri

j`k means that R(X , Y )– is a skew-symmetric endomorphism of T M .
You can also lower an index by defining

(1.44) Ri jk` = 〈R(∂k,∂`)∂ j ,∂i〉,

and skew-symmetry means
Ri jk` = −R jik`.

These are the two “easier” symmetries, in that they don’t use much specifically about R. A more interesting one is

Ri jk` + Rik` j + Ri` jk = 0,

and the fourth identity, which follows from the other three, is

Ri jk` = Rk`i j .

Exercise 1.45. Compute the dimension of the vector space of tensors which satisfy these identities, as a subspace
of (V ∗)⊗4.

Lecture 2.

Principal G-bundles: 1/24/18

The first part of today’s talk was given by George Torres, corresponding to the first part of Chapter 2 of Roe’s
book.

Definition 2.1. A Lie group G is a group that is also a smooth manifold, and such that multiplication m: G×G→ G
and inversion i : G→ G are smooth maps.

Associated to any Lie group G is its Lie algebra g := TeG. There is a Lie bracket operation

[–, –]: g× g −→ g

defined like last time (use multiplication on G to extend tangent vectors to G-invariant vector fields, then take
their commutators).

Definition 2.2. Let G be a Lie group and M be a smooth manifold. A principal G-bundle is a map of smooth
manifolds π: E→ M together with a smooth right action of G on E whose orbits are fibers of π, such that G acts
freely and transitively on each fiber.

This implies that for each m ∈ M , π−1(M)∼= G noncanonically, and E/G ∼= M .
Connections on principal bundles are analogous to those on vector bundles; the goal is to define a horizontal

subspace of the bundle, and use that and its G-translates to define parallel transport. Then, one must show that
connections always exist, but this turns out to be true. This definition of connections is sometimes called an
Ehresmann connection.

In order to define connections, we’ll need a few preliminary definitions.

Definition 2.3. Let G be a Lie group. The adjoint representation of G is the map Ad: G→ End(g) which sends a
g ∈ G to d|eψg , where ψg : G→ G is conjugation by G and d|e is differentiating at the identity.

Definition 2.4. Let π: E → M be a principal G-bundle and ρ : G → Aut(F) be a (real, finite-dimensional)
representation of G. The associated vector bundle to E and F is the E ×G F := E × F/∼, where (e · g, f )∼ (e, g · f )
for all e ∈ E, f ∈ F , and g ∈ G.

Exercise 2.5. Show that E ×G F → M is indeed a vector bundle.

Definition 2.6. Let π: E→ M be a principal G-bundle. A vertical vector field is a vector field v on E such that for
all p ∈ M , vp = deAp(u) for some u ∈ g, where Ap : G→ E is an identification of the fiber Ep with G.4

4TODO: I might have gotten this wrong.
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An equivalent, more intuitive, definition is that a vertical vector field is contained within the vertical subbundle
of E, i.e. the kernel of dπ. A third equivalent definition is that V is vertical if for all p ∈ M , there is some u ∈ g
such that

(2.7) vp =
d
dt
(p exp(tu))

�

�

�

�

t=0

.

Let Rg : E→ E denote the right action of G, sending e 7→ e · g. We can pushforward by this map: let

(Rg)∗v :=
d
dt
(p exp(tu)g)

�

�

�

�

t=0

.

In particular, the pushforward of a vertical vector field is still vertical.
Horizontal differential forms are dual to vertical vector fields.

Definition 2.8. Let α ∈ Ωp(E). Then α is horizontal if for all vertical vector fields X1, . . . , X p, α(X1, . . . , X p) = 0. If
in addition (Rg)∗ω=ω, we say α is invariant under the G-action.

Example 2.9. For any β ∈ Ωp(M), π∗β is an invariant horizontal form:

(Rg)
∗π∗β = (π ◦ Rg)

∗β = π∗β . (

More generally, we can consider G-equivariant forms.

Definition 2.10. Let ρ : G→ Aut(F) be a representation and f : E→ F be a smooth map. Then, f is ρ-equivariant
if for all e ∈ E and g ∈ G,

f (eg) = ρ(g−1) f (e).

Invariance is the same thing as equivariance for the trivial representation.

Lemma 2.11 (Correspondence lemma). Let f : E→ F be as in the previous definition. There is a bijective correspon-
dence between ρ-equivariant maps f : E→ F and sections of E ×G F.

Proof. Let f be a ρ-equivariant map; then, we define a section s f to send x ∈ M to (x , f (x)) ∈ E × F . To check
that this is indeed a section, we need it to commute with the G-action on E × F , and this follows because

s f (x) · g = (x , f (x)) · g = (x g,ρ(g−1) f (x))

= (x g, f (x g))

= s f (x · g).

Conversely, let s : M → E ×G F be a section, and consider the diagram

(2.12)

E σ //

π

��

E × F
π1 //

p

��

E

π

��
M s // E ×G F // M ,

where p is the quotient map, π1 is projection onto the first factor, and σ is defined such that the composition of
the maps across the top is the identity. The key observations are

(1) the right-hand square is a pullback square, and
(2) f = π2σ is ρ-equivariant.

The first property is true because for any g ∈ G,

π1(σ(x g)) = x g

= π1(σ(x)) · g = π1(σ(x · g)),

and along the other corner,

p(σ(x g)) = sπ(x g) = sπ(x)

= pσ(x)

= pσ(x · g),

so σ(x g) = σ(x) · g. TODO: I missed the last part, that f is ρ-equivariant (and why these two properties
suffice). �
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Exercise 2.13. Finish the proof by checking that these assignments are mutual inverses.

With these definitions in mind, we can define connections.

Definition 2.14. Let π: E → M be a principal G-bundle. A connection on E is a subbundle H ⊂ T E (H for
“horizontal”) such that

• (splitting) there is another subbundle V ⊂ T E such that for all u ∈ E, TuE = Vu ⊕Hu, and
• (G-invariance) d|eRg(Hu) = Hu·g .

Using the splitting lemma for vector bundles, the first condition is equivalent to the existence of a split short
exact sequence

0 // V // T E // π∗T M // 0.

The splitting is determined by a section π∗T M → T E (which defines what we call “horizontal”) or by a section
T E → V . This leads to an equivalent definition of a connection on a principal bundle, which is also useful: a
connection on E is a g-valued 1-form ω on E, called the connection one-form, such that

• (G-invariance) for any ξ ∈ TuE, ω(ξ · g) = Ad(g−1)ω(ξ), and
• (splitting) for any v ∈ g, ω(X v) = v.

The splitting lemma guarantees you can always split short exact sequences of vector bundles. But to show that
connections exist, we need to address G-invariance, which is not as immediate.

Lemma 2.15. If G is a Lie group and π: E→ M is a principal G-bundle, then there is a connection on E.

Proof. Let g := E × g and V := E ×G g, where G acts on g by the adjoint action. Then consider the diagram

(2.16)

0 // g //

��

T E //

��

π∗T M //

��

0

0 // V // Q // T M // 0.

Proving that this commutes takes a while, so we won’t delve into the details; one reference is Atiyah, “Complex
analytic connections on fibre bundles.”

The point of introducing (2.16) is that if we can lift a splitting from the bottom row to the top row, it will be a
G-invariant splitting, hence a connection. So choose a splitting σ : T M →Q, which splits the bottom row of (2.16).
Then we have a diagram

(2.17)

π∗T M //

��

T M

σ

��
T E //

��

Q

��
E π // M .

The bottom rectangle is a pullback, and the total rectangle (π∗T M , T M , E, and M) is a pullback. Therefore by
the universal property of pullbacks, the top rectangle also is a pullback, and this implies that σ lifts across it to
something G-invariant. �

There is also a more geometric proof.

B ·C

Next we’ll talk about exterior derivatives.

Definition 2.18. Let π: E→ M be a principal G-bundle with connection H and let pω : Ω∗(E)→ Ω∗(H) denote
projection onto the horizontal subspace. The exterior covariant derivative is the composition

Ωp(E) d // Ωp+1(E)
pω // Ωp+1(H).
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Proposition 2.19. Let ρ : G → GL(F) be a representation, α ∈ Ωp
E(F) be an F-valued,ρ-equivariant horizontal

p-form on E, and ω denote the (g-valued) connection one-form on E. Then

pω(dα) = dα+ρ∗ω∧α.

Definition 2.20. Let ω be a differential 1-form. Then, the curvature Ω of ω is the 2-form

Ω(X1, X2) = dω(X1, X2) + [Ω(X1),Ω(X2)].

Exercise 2.21. With notation as above,
(pωd)2α= ρ∗Ω∧α.

The point is that acting on α is the same as wedging with ρ∗Ω, and this tells you something about what Ω is
doing.

Remark 2.22. In some of these formulas, it’s important to be careful about what the wedge products are doing. For
example, we once or twice saw ω∧α, where ω ∈ Ω1

E(g) and α ∈ Ω1
E(F). If g is a matrix algebra, we can organize

the components of ω into a matrix of differential forms, and F is a representation of the matrix algebra g, so α is a
vector. In this case, the wedge product is a combination of matrix multiplication and the wedge product:

(2.23)
�

ω1
1 ω1

2
ω2

1 ω2
2

�

∧
�

α1

α2

�

=
�

ω1
1 ∧α

1 +ω1
2 ∧α

2

ω2
1 ∧α

1 +ω2
2 ∧α

2

�

.

The same is true for computing ω∧ω; in particular, this is not automatically zero.
Therefore one sometimes sees the formula for curvature written

(2.24) Ω := dω+ [ω∧ω].

What does this mean? We have ω∧ω ∈ Ω2
E(g⊗ g), and the Lie bracket [–, –]: g⊗ g→ g. We implement this on

differential forms by
(ωi ∧ω j)ei ⊗ e j 7−→ (ωi ∧ω j)[ei , e j].

In particular,

[ω∧ω](X1, X2) = [ω(X1),ω(X2)]− [ω(X2),ω(X1)]

= 2[ω(X1),ω(X2)],

which is why (2.24) has an extra 1/2 in it compared to the first definition. (

Remark 2.25. One can even define differential forms valued in vector bundles: Ω•M (E ×G F) consists of sections of
the exterior powers of E ×G F . Alternatively, you can think of these as valued in (E ×G F)p at a point p; the vector
spaces changes as p moves, but that’s okay. The quotient map π: E→ G defines a pullback Ω∗M (E ×G F)→ Ω∗E(F).
This provides yet another interpretation of the definition of a connection.

• Invariance is that α ∈ Im(π∗) iff R∗gα= ρ(g)
−1α for all g ∈ G.

• Splitting comes from the fact that ιζα = 0 when ζ is vertical. (This denotes contraction: ιζα(X ) := α(ζ, X )).

It’s a good exercise to check, to get practice manipulating these vector- or bundle-valued forms. But principal
bundles make some of these computations easier, by turning some bundle-valued forms into constant vector
space-valued forms. (

Lecture 3.

Characteristic classes: 1/24/18

The second part of today’s lecture was given by Riccardo Pedrotti, on characteristic classes from a geometric
perspective.

The theory of characteristic classes comes from the simple question: how can we tell two vector bundles apart?
For instance, how do we know that the tangent bundle to the 2-sphere is non-trivial? Characteristic classes gives a
systematic approach.

Definition 3.1. A characteristic class c is a natural transformation which to each vector bundle V over a manifold
M associates an element c(V ) of the cohomology group H∗(M), with property that if V1 ' V2 then c(V1) = c(V2).
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The idea of Chern-Weil theory is the following: suppose that our bundle V is equipped with a connection. In
some sense, the curvature of this connection measures the local deviation of V from flatness. Now if V is flat,
and the base manifold M is simply connected, then V is trivial. This suggests that there may be a link between
curvature and characteristic classes, which measure the global deviation of V from triviality. Such a link is provided
by the theory of invariant polynomials.

By polynomial function we mean the following:

Definition 3.2. Let glm(C) denote the Lie algebra of m×m matrices over C. A homogeneous polynomial function
P on glm(C) is a function such that there exists a eP ∈ Symk(Cm)∗ such that P(A) = eP(A, A, . . . , A). A polynomial
function is a sum of homogeneous ones.

Definition 3.3. An invariant polynomial on glm(C) is a polynomial function P : glm(C) → C such that for all
X , Y ∈ glm(C), P(X Y ) = P(Y X ). An invariant formal power series is a formal power series over glm(C) each of
whose homogeneous components is an invariant polynomial.

For example, the determinant and the trace are invariant polynomials.

Lemma 3.4. The ring of invariant polynomials on glm(C) is a polynomial ring generated by the polynomials

ck(X ) = (−2πi)−k tr(ΛkX ),

where ΛkX denotes the transformation induced by X on ΛkCm.

Proof. Let P be any invariant polynomial. Restricting P to diagonal matrices, we see that P must be a polynomial
function of the diagonal entries. Since these diagonal entries can be interchanged by conjugation, P must in fact be
a symmetric polynomial function. Now since P is invariant under conjugation, it must be a symmetric polynomial
function of the eigenvalues for all matrices with distinct eigenvalues, since by elementary linear algebra such
matrices are conjugate to diagonal matrices. The set of such matrices is dense in glm(C), so a continuity argument
shows that P is just a symmetric polynomial function in the eigenvalues. Now it is easy to see that tr(ΛkX ) is
the kth elementary symmetric function in the eigenvalues of X . The main theorem on symmetric polynomials
states that the ring of symmetric polynomials is itself a polynomial ring generated by the elementary symmetric
functions, and this now completes the proof. �

Example 3.5. To make the idea of the proof more concrete, let m= 4. A 4× 4 diagonal matrix is of the form

X =







a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d







for some a, b, c, d ∈ R. Then, Λ2X acts on e1 ∧ e2 by X e1 ∧ X e2 = abe1 ∧ e2. Therefore Λ2X is a 6× 6 diagonal
matrix with diagonal terms ab, ac, ad, bc, bd, and cd, and therefore its trace is

tr(Λ2X ) = ab+ ac + ad + bc + bd + cd.

This is a quadratic polynomial, and is symmetric; it’s an example of an elementary symmetric polynomial. There’s a
theorem that the ring of all symmetric polynomials are generated by these elementary symmetric polynomials. (

Now let V be a complex vector bundle over M with connection ∇ and curvature K ∈ Ω2
M (End(V )). Choosing

a local framing for V , we may locally identify K with a matrix of ordinary 2-forms. Hence, if P is an invariant
polynomial, we can apply P to this matrix to get an even-dimensional differential form P(K). A priori, this depends
on the choice of local framing, but since P is invariant, P(K) doesn’t depend on the choice, and is therefore globally
defined.

In terms of the principal GLm(C)-bundle E associated to V , this construction may be phrased as follows. Let Ω
be the curvature form of the induced connection on E; Ω is a horizontal, equivariant 2-form on E with values in
glm(C), so P(Ω) is a horizontal invariant form on E. Such a form is the lift to E of a form on M , and this form is
P(K).

Since 2-forms are nilpotent elements in the exterior algebra Ω∗M (glm(C)), all formal power series with 2-form-
valued variables in fact converge. Thus, this construction makes good sense if P is merely an invariant formal
power series.
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Proposition 3.6. For any invariant polynomial (or formal power series) P, the differential form P(K) is closed, and
its de Rham cohomology class is independent of the choice of connection ∇ on V .

Proof. For the purposes of this proof call an invariant formal power series P as respectable if the conclusion of the
proposition holds for P. Clearly the sum and product of respectable formal power series are respectable. Thus, it
is enough to prove that the generators defined in Lemma 3.4 are respectable. Equivalently, since

det(1+ qK) =
∑

qk tr(ΛkK),

it is enough to prove that det(1+ qK), considered as a formal power series depending on the parameter q, is
respectable.

If P is a respectable formal power series with constant term a, and g is a function holomorphic in a neighborhood
of a, then g◦P is also a respectable formal power series. Hence, det(1+qK) is respectable if and only if logdet(1+qK)
is respectable. We will now prove directly that logdet(1+ qK) is respectable.

For this purpose we will work in the associated principal GLn(C)-bundle E of frames for V , with matrix-valued
connection 1-form ω and corresponding curvature 2-form Ω. Recall the formula

Ω= dω+ω∧ω

where the product in the ring of matrix-valued forms is obtained by tensoring exterior product and matrix
multiplication as in (2.23).

Now suppose that ω depends on a parameter t; then Ω also depends on t, and if we use a dot to denote
differentiation with respect to t, then

Ω̇= dω̇+ω∧ ω̇+ ω̇∧ω.

Consider
d
dt

log det(1+ qΩ) = q tr
�

Ω̇(1+ qΩ)−1
�

(3.7)

=
∞
∑

`=0

(−1)`q`+1 tr
�

Ω`(dω̇+ω∧ ω̇+ ω̇∧ω)
�

(3.8)

where (3.7) is justified by the formula

d
dt

det A(t) = (det A(t)) · tr(Ȧ(t)A(t)−1),

and (3.8) is justified by the power series expansion

1
1+ z

=
∞
∑

i=0

(−1)iz i .

We also need the second Bianchi identity
dΩ= Ω∧ω−ω∧Ω,

which can be proven directly from the definition of the exterior derivative. Using this, plus the fact that trace is
symmetric, we have that

tr
�

Ω`(ω∧ ω̇+ ω̇∧ω)
�

= tr
�

Ω` ∧ω∧ ω̇−ω∧Ω` ∧ ω̇
�

= tr
�

(dΩ`)∧ ω̇
�

.

Therefore

tr
�

Ω` ∧ (dω̇+ω∧ ω̇+ ω̇∧ω)
�

= tr
�

(dΩ`)∧ ω̇+Ω` ∧ dω̇
�

= d tr
�

Ω` ∧ ω̇
�

,

so (3.7) simplifies to

(3.9)
d
dt

log det(1+ qΩ) = d
∞
∑

`=0

(−1)`q`+1 tr
�

Ω` ∧ ω̇
�

,

and in particular is an exact form on E.
In fact, it is the exterior derivative of a horizontal and invariant form on E: ω̇ is horizontal and G-equivariant

since it is a 1-form on M (it follows from Lemma 2.11 that the space of connections is an affine space modeled on
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the vector space of V -valued forms on M), Ω is horizontal and G-equivariant as well. Hence tr(Ω` ∧ ω̇) is invariant
since the trace is an invariant polynomial, and is horizontal since Ω` ∧ ω̇ is.

Therefore, the projection to the base manifold

d
dt

logdet(1+ qK)

is also exact. Now the result follows; for since any connection can be deformed locally to flatness (i.e. K = 0),
we see that log det(1+ qK) is locally exact, hence closed, and since any two connections can be connected by
a smooth path, the cohomology class of log det(1+ qK) is independent of the choice of connection, since their
difference is an exact form. �

It follows from the proposition that any invariant formal power series P defines a characteristic class for complex
vector bundles, by the recipe “pick any connection and apply P to the curvature.”

Definition 3.10. The kth Chern class is the characteristic class corresponding to the generators ck defined in
Lemma 3.4.

Remark 3.11. We immediately see from the definition of Chern classes that if a complex vector bundle has rank m,
then ck = 0 for k > m: ΛkK is the linear transformation induced by K on ΛkCm, and for k > m, the latter is trivial.
Naturality comes from the fact that if on a local patch Ui , E has the local connection form ωi , then on f −1(Ui), the
curvature is f ∗Ωi . (

Lemma 3.12. Let V be a real vector bundle and VC denote its complexification. Then, c2k+1(VC) = 0.

Proof. We can give V a metric and compatible connection. The curvature of such a connection is skew (i.e.
o(m)-valued), so

tr(Λk F) = (−1)k tr(Λk F).

To see this, recall that the coefficients of the characteristic equation for F are exactly tr(Λk F) up to a sign.5 If λ is
an eigenvalue of a skew-symmetric matrix, then −λ is too, and on C this means that the characteristic polynomial
is up to a constant the product of polynomials (z2 −λ2), so there are no coefficients of odd index, hence proving
that for k odd, Λk F is traceless. �

Genera. Holomorphic functions can be used to build important combinations of characteristic classes. Let f (z) be
any function holomorphic near z = 0. We can use f to construct an invariant formal power series Π f by defining

Π f (X ) := det
�

f
�

−
1

2πi
X
��

.

Again, to make sense of this, we need to sidestep convergence issues! But since we’ll just be applying this to
differential forms, which are nilpotent, this is okay.

The associated characteristic class is called the Chern f -genus. It has a few nice properties.

Lemma 3.13. If L→ M is a complex line bundle, Π f (L) = f (c1(L)).

Proof. This comes from the fact that in this case the curvature is a gl1(C)-valued 2-form, so

Π f (L) = Π f (KL) = det
�

f
�

−
1

2πi
KL

��

= f
�

−
1

2πi
KL

�

= f
�

tr
�

−
1

2πi
KL

��

= f (c1(L)). �

Lemma 3.14. For any complex vector bundles V1 and V2, Π f (V1 ⊕ V2) = Π f (V1)Π f (V2).

Proof sketch. Compute using a direct sum connection, which gives rise to a curvature matrix which is a block
matrix. �

5There’s a sign convention here; this is true using our definition det(1− qK). An alternative choice is to use det(q− K), in which case one
must swap the indices to preserve evenness.
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Now observe a very useful property: if the eigenvalues of the matrix (−1/2πi)X are {x j}, then

(3.15) Π f (X ) =
∏

f (x j)

is a symmetric formal power series in the x j , and can therefore be expressed in terms of the elementary symmetric
functions of the x j . But these elementary symmetric functions are just the Chern classes. Thus in the literature the
genus Π f (V ) is often written just as in (3.15), where x1, . . . , xm are formal variables subject to the relations

x1 + x2 + · · ·+ xm = c1,

x1 x2 + · · ·+ xm1
xm−2 = c2,

and so on.

Example 3.16. The genus associated to f (z) = 1+ z is the total Chern class

c(V ) := 1+ c1(V ) + c2(V ) + c3(V ) + · · · .

To see this, consider the power expansion of the determinant:

det
�

1−
1

2π
X
�

=
∑

k

�

−
1

2π

�k

tr(ΛkX ) =
∑

k

ck(X ).

From this we immediately get that c(V1 ⊕ V2) = c(V1)c(V2). (

Definition 3.17. Let V → M be a real vector bundle and g be a holomorphic function near 0, with g(0) = 1. Let
VC be the complexification of V . Denote by f be the branch of z 7→ (g(z2))1/2 which has f (0) = 1; we call the
genus associated to f the Pontrjagin g-genus of V .

Since f is an even function of z, the associated genus involves only the even Chern classes.

Lemma 3.18. Let g be as above. Then for a real vector bundle V , the Pontrjagin g-genus is equal to
∏

j

g(y j)

for some formal variables y j .

Definition 3.19. Let V be a real vector bundle. Its kth Pontrjagin class pk(V ) is the kth elementary symmetric
function in the formal variables y j .

Proof of Lemma 3.18. Regard this as an identity between invariant polynomials over o(n). Any matrix in o(n) is
similar to one in block diagonal form, where the blocks are 2× 2 and are of the form

X =
�

0 λ
−λ 0

�

with eigenvalues ±iλ. Since both sides of the desired identity are multiplicative for direct sums, it is enough to
prove it for this block X , whose first two elementary symmetric functions are

c1(X ) =
�

−
1

2πi

�

tr(X ),

c2(X ) =
�

−
1

2πi

�2

tr(Λ2X ).

Since X is skew, then its trace vanishes, so c1(X ) = 0. By looking at the characteristic polynomial of X we see that
tr(Λ2X ) = λ2, giving

c2(X ) = −
λ2

4π2
.

Thus

y = p1(X ) =
λ2

4π2.
On the other hand, X is similar over C to

�

−iλ 0
0 iλ

�

,
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so

Π f (X ) = f
�

−
λ

2π

�

f
�

λ

2π

�

= g

�

λ2

4π2

�

= g(y)

as required. �

Two important examples are the bA-genus, which is the Pontrjagin genus associated to the holomorphic function

z 7−→
p

z/2
sinh(

p
z/2)

and the Hirzebruch L-genus, which is the Pontrjagin genus associated with the holomorphic function

z 7−→
p

z
tanh(

p
z)

.

Lecture 4.

Clifford algebras, Clifford bundles, and Dirac operators: 1/31/18

Ricky spoke today about Clifford algebras and Clifford bundles.
Let k be a field with characteristic not equal to 2. If V is a vector space over k, its tensor algebra is

(4.1) T (V ) :=
⊕

k≥0

V⊗k,

where V⊗0 := k.

Definition 4.2. Let V be a k-vector space with a quadratic form Q : V ×V → k. Let IQ ⊂ T (V ) denote the two-sided
ideal generated by elements of the form v ⊗ v +Q(v) for v ∈ V . Then, the quotient algebra

C`(V,Q) := T (V )/IQ

is called the Clifford algebra of V and Q.

Example 4.3. The zero function is a quadratic form, so C`(V, 0) is T(V )/(v ⊗ v = 0), which is just the exterior
algebra Λ(V ) of V . (

There is a natural map i : V → C`(V,Q) which is the composition

V = V⊗1 � � // T (V )
πQ // // C`(V,Q).

Lemma 4.4. i : V → C`(V,Q) is injective.

This is not too hard to check.
Moreover, 1 and V generate C`(V,Q), subject to the relations v2 = q(v, v). To get a smaller set of generators, we

can choose a basis of V . From now on, we assume Q is positive definite and choose an orthonormal basis e1, . . . , en of
V . In this case, C`(V,Q) is generated by 1, e1, . . . , en subject to the relations

(4.5)
e2

i = 1

e j · e j = −e j · ei ,

because e2
i = −Q(ei) = −1. This implies the following fact.

Proposition 4.6. The set
{ei1 · · · eik | 1≤ i1 < · · ·< ik ≤ n, 1≤ k ≤ n}

is a basis for C`(V,Q) as a vector space, and hence

dim C`(V,Q) = 2n =
n
∑

k=0

�

n
k

�

.

Example 4.7. Let 〈·, ·〉 denote the standard inner product on Rn; then, C`n := C`(Rn, 〈·, ·〉). In low dimensions
these are familiar.

• C`1 = 〈1〉 ⊕ 〈e〉 with e2 = 1, hence C`1
∼= C.

• C`2 = 〈1〉 ⊕ 〈e1〉 ⊕ 〈e2〉 ⊕ 〈e1 · e2〉 with e2
1 = e2

2 = (e1e2)2 = −1, so as R-algebras, C`2
∼=H, the quaternions.
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There is a sense in which real Clifford algebras are 8-fold periodict, which is an instance of Bott periodicity. We
won’t delve into this, but see Atiyah-Bott-Shapiro, “Clifford modules,” for more information. (

Clifford algebras satisfy a universal property.

Proposition 4.8. Let A be a k-algebra and ϕ : V → A be a map of vector spaces such that ϕ(v)2 = −Q(v) · 1A. Then,
there is a unique algebra map bϕ : C`(V,Q)→ A making the following diagram commute:

V
ϕ //

q�

i ##

A.

C`(V,Q)

bϕ ∃!

OO

Proof. By the universal property of T (V ), there’s a unique map ψ: T (V )→ A sending

(4.9) v1 ⊗ · · · ⊗ vk 7−→ ϕ(v1)ϕ(v2) · · ·ϕ(vk).

The claim follows because ψ(IQ) = 0, hence factors through the quotient, which is C`(V,Q). �

Let QVectk denote the category of quadratic spaces over k, i.e. vector spaces together with quadratic forms; the
morphisms ϕ : (V1,Q1)→ (V2,Q2) are data of a linear map ϕ : V1→ V2 such that for all v, w ∈ V1,

(4.10) Q1(v, w) =Q2(ϕ(v),ϕ(w)).

Using Proposition 4.8, one can show that C`: QVectk → Algk is a functor.
Another use of the universal property is to define a representation

ρC` : On→ Aut(C`n);

a map Rn→ Rn respecting the inner product defines a map C`n→ C`n, and the space of these maps is On.

Definition 4.11. Let (V,Q) be a quadratic space. A Clifford module over (V,Q) is a k-vector space S together with
a k-linear map ϕ : C`(V,Q)→ Endk(S).

So it’s just a module over the algebra C`(V,Q).

Remark 4.12. When S is a complex vector space and V is a real vector space, then we will instead ask for the
action map to be an R-algebra homomorphism C`(V,Q)→ EndC(S). This is equivalent to having a module over
C`(V,Q)⊗R C. (

Remark 4.13. By the universal property, it suffices to specify a map ϕ : V → Endk(S) with ϕ(v)2 = −Q(v) · id. (

Example 4.14.
(1) Let’s consider C`1 as a module over itself. This is the same data as a map ϕ : C`1→ EndC(C) ∼= C; one

choice is 1 7→ id and e 7→ i.
(2) We can also make R4 into a C`2-module by having it act on itself by left multiplication. For example, e1

acts by the matrix






0 −1
1 0

0 −1
1 0






. (

Now, we apply this to geometry. Let (M , g) be a Riemannian manifold, so for each p ∈ M , C`(Tp M , gp)∼= C`n.

Definition 4.15. The Clifford tangent bundle is C`(T M) :=PO(M)×On
C`n, wherePO(M) is the principal On-bundle

of orthonormal frames on M .

More generally, if S→ M is any complex vector bundle, we can equip S with a Clifford action c : C`(T M)→
EndC(S) in a similar way.

Definition 4.16. Let S → M be a complex vector bundle with a Hermitian metric 〈·, ·〉 and a connection
∇: C∞(T M)⊗ C∞(S)→ C∞(S). This data (S, 〈·, ·〉,∇) defines a Clifford bundle if

• for all X ∈ C∞(T M) of unit norm and s1, s2 ∈ C∞(S), 〈X · s1, X · s2〉 = 〈s1, s2〉 iff 〈X · s1, s2〉+ 〈s1, X · s2〉 = 0
and
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• for all X , Y ∈ C∞(T M) and s ∈ C∞(S), ∇L
X (Y · s) = (∇X Y ) · s+ Y ·∇X s, where ∇L denotes the Levi-Civita

connection.6

Now we need to take a brief detour into something called synchronous frames.

Definition 4.17. Let (M , g) be an n-dimensional Riemannian manifold and ϕ : U → Rn be a chart for M containing
some y ∈ U . Let e1, . . . , en be an orthonormal basis of Ty M . . .

TODO: I couldn’t figure out what happened here. Sorry. I’ll have to fix this later.

Remark 4.18. The exponential map gives a canonical choice for a local neighborhood on a Riemannian manifold. (

Dirac operators.

Definition 4.19. Let S→ M be a Clifford bundle. The Dirac operator D : C∞(S)→ C∞(S) is the composition

C∞(S) ∇ // C∞(T ∗M ⊗ S)
g // C∞(T M ⊗ S) C` // C∞(S).

In a neighborhood of a point x ∈ M , choose a local orthonormal frame e1, . . . , en. Let ei := g(ei , –) be the dual
frame. Then, the Dirac operator in coordinates looks like

(4.20) s 7−→ ∇(·)s =
∑

ei ⊗∇ei
s 7−→

∑

ei ⊗∇ei
s 7−→

∑

i

ei · ∇ei
s.

Example 4.21. Let En denote Euclidean space, i.e. Rn with the usual flat metric. If V is a complex vector space, it
canonically defines a complex vector bundle V → En by translation. Let e1, . . . , en be the standard orthonormal
frame on TRn.

Let γ := c(ei), where c : C`(T M) → EndC(V ) denotes the Clifford bundle action. Then, the Dirac operator
D : C∞(V )→ C∞(V ) is

(4.22) D =
∑

i

γi · ∂i ,

where ∂i is the usual partial derivative operator. The γi satisfy the anticommutation relations

(4.23) {γi ,γ j} := γi · γ j + γ j · γi = −2δi j .

Specifically, if V = C= C`1, then e1 7→ i, so γ= i. Therefore D = i ∂∂ x . (

The Dirac operator is self-adjoint. Well, it’s formally self-adjoint: C∞(S) is not a Hilbert space, so we can’t talk
about self-adjointness strictly speaking. One way to abrogate this problem is to take some kind of L2 completion,
but then it’s an unbounded operator, so things are still a little complicated. Anyways, we’ll talk about this in a bit.

Definition 4.24. Let M be a closed Riemannian manifold and V be its volume form. Then, there is an inner
product on C∞(S) defined by

〈s1, s2〉 :=

∫

M

〈s1(x), s2(x)〉dV.

Theorem 4.25. The Dirac operator on a closed manifold is formally self-adjoint.

Proof. That is, we want to prove that

(4.26) 〈Ds1, s2〉= 〈s1, Ds2〉.

We will compute this locally in a synchronous frame e1, . . . , en for a chart in X . Then

(Ds1, s2)− (s1, Ds2) =
∑

i

((ei∇is1, s2)− (s1, ei∇is2))

=
∑

i

 

∇i(ei · s1)− (∇iei)
=0

|x · s1, s2

!

− (s1, ei∇is2)

=
∑

i

∇i(ei · s1, s2)

=
∑

∂ei
(ei · s1, s2)

= d∗ω,

6TODO: I am not completely sure I wrote this down correctly.
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where
ωx := −

∑

(ei · s1, s2)e
i .

Hence the difference is 〈1,d∗ω〉= 〈d1,ω〉= 0. �

There’s a local-vs.-neighborhood argument to make here, but this is the idea.

Lecture 5.

The Weitzenbock formula: 1/31/18

The next talk was by Ivan, on more Clifford bundles and Dirac operators.

Definition 5.1. Let S→ M be a Clifford bundle on a Riemannian manifold (M , g), A∈ Ω2
M (End S), and {ei} be a

local synchronous orthonormal frame for M . The Clifford contraction of A is A ∈ Ω0
M (End S) defined by the local

formula
A · s :=

∑

i< j

c(ei)c(e j)A(ei , e j) · s.

One should check this is independent of the choice of frame, but that is true.
Let K denote the Clifford contraction of the curvature for ∇ on S.

Theorem 5.2 (Weitzenbock formula). Let D denote the Dirac operator of S→ M. Then

D2 =∇∗∇+K.

∇∗∇ is called the covariant Laplacian, and D2 the Dirac Laplacian.

Proof. Let p ∈ M . Then

D2s|p =
∑

i, j

ei · ∇ei

�

e j · ∇e j
s
�

�

�

�

p

=
∑

i, j

ei · e j · ∇ei
∇e j

s|p.

Splitting this into the cases i = j and i 6= j, we get

= −
∑

i

∇2
ei

s|p +
∑

i< j

eie j

�

∇ei
∇e j
−∇e j

∇ei

�

|p

=∇∗∇s|p +Ks|p.

This uses the fact that we’re on a synchronous frame, so ∇[ei ,e j] = 0, and therefore the curvature simplifies to
∇ei
∇e j
−∇e j

∇ei
as we used above. �

This formula will be crucial for us, allowing us to supplant some of the general theory of elliptic operators in
the proof of the index theorem.

Corollary 5.3 (Bochner theorem). Let S → M and K be as above. If (Ks, s) > 0 at some point then there are no
nontrivial solutions to D2s = 0.

Positivity makes sense because K is a Hermitian operator on a bundle which is fiberwise Hermitian.

Proof. Suppose that D2s = 0 and s 6= 0. Then, ∇∗∇s+Ks = 0, so

(5.4) 0= ‖∇s‖2

≥0

+

∫

M

〈Ks, s〉dV

>0

,

which is a contradiction. �

Theorem 5.5. Let S→ M be as above, and K denote the curvature of ∇ on S. Then, K = Rs + F s, where

Rs(X , Y ) :=
1
4

∑

i, j

c(ei)c(e j)〈R(X , Y )ei , e j〉

[F s(X , Y ), c(Z)] = 0.
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Rs is usually called the Riemann endomorphism, and only depends on the Riemannian metric of the base manifold.
F s is called the twisting curvature.

We’ll prove Theorem 5.5 in a series of lemmas. First, we find an obstruction for k being a Clifford module
endomorphism.

Lemma 5.6.
[K(X , Y ), c(Z)] = c(R(X , Y )Z).

Proof. Let {ei} denote a synchronous frame at a p ∈ M . Then it suffices to prove the lemma for X = ei , Y = e j ,
and Z = ek. Since we’re in a synchronous frame, the ∇[ei ,e j] component of the curvature vanishes, so

K(ei , e j)ek · s|p =
�

∇ei
∇e j
−∇e j

∇ei

�

(ek · s)
�

�

�

p

=
�

R(ei , e j)ek

�

· s+ ek · K(ei , e j)s
�

�

p .

The result follows because7

∇ei
(ek)∇e j

s|p = 0. �

Lemma 5.7.
[Rs(X , Y ), c(Z)] = c(R(X , Y )Z).

Proof. Again let {ei} be an orthonormal frame, X = ei , Y = e j , and Z = ek. Then

Rs(ei , e j)ek · s =
1
4

∑

`,m

c(e`emek) 〈R(ei , e j)e`, em〉
Rm`i j

s,

and similarly

c(ek)R
s(ei , e j)s =

1
4

∑

`,m

c(eke`em)Rm`i js.

Hence when we put these together, we get

(5.8) [Rs(ei , e j), c(ek)] =
1
4

∑

`,m

c([e`em, ek])Rm`i js.

If ` = m and `, m, and k are distinct, then [e`em, ek] = 0, so we only care about the cases ` = k 6= m and k = m 6= `.
Both the commutator and Rm`i j are antisymmetric under the exchange of m and `, so (5.8) reduces to

[Rs(ei , e j), c(ek)] =
1
2

∑

`

c([e`ek, ek])Rk`i js

=
∑

`

c(e`)R`ki js

= c

�

∑

`

R`ki js

�

.

Since we’re working in an orthonormal frame, the metric looks like the identity matrix in coordinates, so

= c

�

∑

`

R`ki js

�

= c(R(ei , e j)ek)s. �

These two lemmas suffice to prove Theorem 5.5.

Remark 5.9. Before we go on, let’s review Ricci and scalar curvature, which we’ll need. Let (M , g) be a Riemannian
manifold. Its Ricci curvature is the map Ric: T X × T X → R defined by

Ric(X , Y ) := tr(Z 7−→ R(Z , X )Y ).

Why this trace? You could try others, but they all vanish or give you the Ricci curvature up to a sign!

7TODO: maybe I missed something.
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Raising an index, define R ic: T X → T X by

Ric(X , Y ) = g(X ,R ic(Y )).

Then, the scalar curvature of (M , g) is κ := tr(R ic). In an orthonormal frame, it has the formula

κ=
∑

j

Ric j j . (

Theorem 5.10 (Improvement on Theorem 5.2). With notation as in Theorem 5.2, let Fs denote the Clifford
contraction of F s and κ denote the scalar curvature of (M , g). Then

D2 =∇∗∇+ Fs +
κ

4
1End S .

Proof. By Theorem 5.5, K= Rs + Fs, where Rs is the Clifford-contracted Riemann endomorphism. So all we have
to show is that Rs = (κ/4)1End S . Again we compute in an orthonormal basis:

Rs =
∑

i< j

c(ei)c(e j)R
s(ei , e j)s

=
1
2

∑

i, j

c(eie j)R
s(ei , e j)s

=
1
8

∑

i, j,k,`

c(eie jeke`)〈R(ei , e j)ek, e`〉s

=
1
8

∑

i, j,k,`

c(eic jeke`)R`ki js.

If you decompose this into parts where various subsets of {i, j, k,`} are equal to each other, the Bianchi identities
allow you to simplify this sum:

=
1
4

∑

`,i, j

c(eic jeie`)R`ii js

=
1
4

∑

`, j

c(e je`)

�

∑

i

Ri
`i j

Ric` j

�

· s.

If ` 6= j, the Ricci tensor piece is antisymmetric, so does not contribute to the sum. Hence we only get the case
where k = `:

=
1
4

∑

j

Ric j j 1End S ,

and this is indeed the scalar curvature. �

Now we’ll give an example of a Clifford bundle on a non-flat space.

Example 5.11. Let (M , g) be a closed Riemannian manifold and S := Λ∗(T ∗M)⊗C. The Riemannian metric on M
induces a Riemannian metric on Λ∗T ∗M , hence a Hermitian metric on its complexification; similarly, the Levi-Civita
connection induces a connection on Λ∗T ∗M and therefore also on its complexification. Since the Levi-Civita
connection is compatible with the metric on M , our induced connection is compatible with the Hermitian metric
on S.

We define the Clifford action c : T M → End S to satisfy

(5.12) c(e)2 = −g(e, e)1End S ,

which characterizes it uniquely. Namely, if ω is a k-form and e ∈ ΓM (T M),

c(e) ·ω= ee ∧ω− e ùω,
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where the first term is a (k+ 1)-form and the second is a (k− 1)-form. Then

c(e)2 ·ω= ee ∧ee ∧ω
=0

−ee ∧ (e ùω)− e ù (ee ∧ω) + e ù (e ùω)
=0

= −e ∧ (e ùω)
=0

−(e ùee
g(e,e)

)∧ω+ee ∧ (e ùω)
=0

= −g(e, e)ω.

There are more things to check, including

(5.13) g(e ·ω1,ω2) + g(ω1, e ·ω2) = 0,

which is left as an exercise, and the fact that

(5.14) ∇X (e ·ω) = (∇X e) ·ω+ e · (∇Xω).

One relatively quick way to prove it is to establish that

(5.15) e ùω= (−1)??(ee ∧ ?ω).

This implies

∇X (eùω) = (−1)??∇X (ee ∧ ?ω)

= (−1)? ? (∇X (ee)∧ ?ω+ee ∧ ?∇Xω)

= (∇X e)ùω+ eù(∇Xω).

Hence

∇X (ee ∧ω− eùω) = (∇Xee)∧ω+ee ∧∇Xω−∇X (eùω)
=∇Xee ∧ω+ e ∧∇Xω− (∇X e)ùω− eù∇Xω

= (∇X e) ·ω+ e · (∇Xω),

proving (5.14). Neither side of (5.14) depends on the metric, and in fact there should be a proof that doesn’t use
it either.

Now we compute the Dirac operator. Let {ei} be a synchronous frame at p. Then

Dω|p =
∑

i

ei · ∇ei
ω

=
∑

i

ei ∧∇ei
ω

�

�

�

�

�

p

− eiù∇ei
ω
�

�

p

= dω|p −
∑

i

∗ − 1)? ? (ei ∧∇ei
?ω)|p

= dω|p + d∗ω|p.

This implies D = d+ d∗, which you can again show in a more abstract way. The Laplacian is

∆ := D2 = dd∗ + d∗d,

called the Hodge Laplacian. This in particular exists on any Riemannian manifold, without any reference to Clifford
bundles. (

There are a few more theorems proven in similar ways to the other ones above.

Theorem 5.16. Restricted to Λ1T ∗M, ∆=∇∗∇+Ric.

Theorem 5.17 (Brchner vanishing theorem). If (M , g) is a Riemannian manifold, Ric ≥ 0, and Ric > 0 at some
point, then H1

dR(M) = 0.

This one uses some Hodge theory (e.g. identifying harmonic representatives of de Rham cohomology classes).
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Lecture 6.

Spin groups: 2/7/18

“The moment you might begin to think it’s wrong is when you see ‘the proof is obvious.’ ”

Today, Sebastian spoke about superalgebra and spin groups.

Superalgebra. Superalgebra, or more generally supermathematics, is the process of adding the prefix “super” to
things to denote their Z/2-graded counterparts with the Koszul sign rule.

Definition 6.1. An algebra A (over R or C) is called a superalgebra if there is a decomposition as vector spaces
A = A0 ⊕ A1 such that Ai · A j ⊂ Ai+ j mod 2. We call A0 the even elements, A1 the odd elements, and A0 ∪ A1 the
homogeneous elements.

The degree of a homogeneous element x ∈ A0 ∪ A1 is denoted |x | ∈ Z/2.

Remark 6.2. This is equivalent data to an involutive automorphism ε : A→ A such that ε(a0 + a1) = a0 − a1; A0
and A1 are the ±1-eigenspaces of ε. (

Definition 6.3. Let A be a superalgebra.

• The supercommutator of x , y ∈ A is

[x , y]s := x y − (−1)|x ||y| y x .

• The super center of A is

Zs(A) := {x ∈ A | [x , y]s = 0 for all y ∈ A}.

Exercise 6.4. Let (V,Q) be a quadratic space. Check that C`(V,Q) is a superalgebra with

C`(V,Q)0 := span{ei1 · · · eik | k even}
C`(V,Q)1 := span{ei1 · · · eik | k odd}

Proposition 6.5. If V is a real inner product space, Zs(C`(V ))∼= R and Zs(C`(V )⊗C)∼= C.

Proof. Suppose x = a+ e1 b, where a = a0 + · · ·+ ak−1 and b = b0 + · · ·+ bk−1. Suppose that x ∈ Zs(C`(V )). Then

0= [x , e1]s

= xe1 −
k−1
∑

i=1

(−1)iei(ai − e1 bi)

= xe1 −
k−1
∑

i=0

(−1)ie1a−
k−1
∑

i=0

(−1)i bi

=
k−1
∑

i=0

(−1)ie1ai −
k−1
∑

i=0

(−1)ie1ai

=0

+
k−1
∑

i=0

(−1)i+1 bi −
k−1
∑

i=0

(−1)i+1 bi

= −2
k−1
∑

i=0

(−1)i bi .

This forces b = 0, so x cannot have any e1-component. But e1 was arbitrary. �

The proof boils down to checking minus signs, but is not hard per se.

Exercise 6.6. Let V be an oriented inner product space with a positively oriented orthonormal basis {e1, . . . , ek}.
Let

ω := e1 · · · ek.

(1) Show that ω does not depend on the choice of basis.
(2) Show that ω2 = (−1)k(k+1)/2.
(3) Show that for v ∈ V , ωv = (−1)k−1vω.
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Hence if k is odd, ω ∈ Z(C`(V )) (the ordinary center, not the super center). If k = 2m, then ω−1 = (−1)mω.
Hence

(6.7) ε(x) =ωxω−1 = −xωω−1.

Hence ε is an inner automorphism.

Pin and spin groups. From now on, fix C`k to be the Clifford algebra of Rk with its usual inner product, and let
{e1, . . . , ek} be the standard basis for Rk. Any v ∈ Rk satisfies v · v = −‖v‖2, so V \ 0 ⊂ C`×k .

Definition 6.8.

• The pin− group Pin−k ⊂ C`×k is the Lie subgroup generated by the norm-1 elements of Rk.
• The spin group is Spink := Pin−k ∩ (C`k)0.

Example 6.9. Let k = 1.

• C`(1) = R⊕R · e1 where e2
1 = −1, so C`1

∼= C.
• Pin−1 = {±1,±i} ⊂ C×.
• Spin1 = {±1} ⊂ C×.

(

We want to study the representation theory of these groups. One way to produce representations would be to
find actions of C`k on itself that preserve Rk.

Recall that vw+wv = −2〈v, w〉, and therefore if ‖v‖= 1, v−1 = −v. Hence

−vx v−1 = vx v

= (−x v − 2〈x , v〉)v
= x − 2〈x , v〉v.

Geometrically, this is the reflection of x through the hyperplane 〈v〉⊥, as you may remember from linear algebra.
This extends to a group representation

(6.10)
ρ : Pin−k −→ GLk(R)

ρ(y)(x) := y xε(y−1).

This is called the twisted adjoint representation. We will also let ρ denote the restriction of this representation to
Spink. If y = u1 · · ·u` for u1, . . . , u` ∈ Rk, then

y xε(y−1) = ±(u1 · · ·u`)x(u−1
` · · ·u

−1
1 )

is also a composition of hyperplane reflections in a similar way as above. This means in particular that if y ∈ Spink,
this is a composition of an even number of hyperplane reflections, so ρ : Spink → SOk, not just Ok.

Proposition 6.11. There is a short exact sequence

(6.12) 1 // {±1} // Spink
ρ // SOk

// 1.

Proof. First, ρ is surjective, because every element of SOk can be expressed as an even number of hyperplane
reflections.

Next, let y ∈ ker(ρ), so that y xε(y−1) = x for all x . Hence y ∈ Zs(C`(k)), so by Proposition 6.5, y ∈ Spink ∩R,
which is {±1}. �

This implies that Spink is a compact simple Lie group, and a double cover of SOk. We want to know which one
it is — in particular, is it a trivial double cover? For k > 1, no.

Proposition 6.13. For k ≥ 2, Spink is connected. For k ≥ 3, Spink is simply connected.

Proof. The short exact sequence (6.12) is in particular a fiber sequence, hence induces a long exact sequence on
homotopy groups.

π1(Z/2)
1

// π1(Spink) // π1(SOk) // π0(Z/2)
Z/2

// π0(Spink) // π0(SOk)
1
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The first assertion follows because ±1 are connected in Spink, as t 7→ cos t + e1e2 sin t connects them. Then, the
second assertion follows because when k ≥ 3, π1(SOk) ∼= Z/2, which can be checked with another long exact
sequence of a fibration. �

Since Spink� SOk is a finite cover, it induces an isomorphism of the Lie algebras spink
∼= sok = {A∈ Mk(R) |

A= −AT }.

Lemma 6.14. spink can be identified with the subspace span{eie j | i 6= j} ⊂ C`k via the map

A= (ai j) 7−→
1
4

∑

i, j

ai jeie j .

Representation theory. Let Ek < Pin−k denote the finite subgroup {±ei1
1 · · · e

ik
k | i j ∈ {0, 1}}. Then |Ek|= 2k+1. Let

ν := −1 ∈ Ek.

Proposition 6.15. There’s a one-to-one correspondence between the irreducible representations of C`k and the
irreducible representations of Ek in which ν acts by −1.

Remark 6.16. Warning: Roe’s book has a stronger version of this theorem, which is not true! (

Since ν is involutive and central, it acts by±1. If it acts by ν on some representation V , then V is a representation
for Ek/〈ν〉. This corresponds to ignoring signs, and in particular is an abelian group of order 2k. Therefore it has
2k conjugacy classes, hence 2k irreducible representations.

Therefore the conjugacy classes in Ek must be either of the form {g}, where g is central, or {g, gν}. Since there
are 2k conjugacy classes, you can figure out how many of each there have to be.

Lemma 6.17.
• If k is even, Z(Ek) = {1,ν}.
• If k is odd, Z(Ek) = {1,ν,ω,νω}.

Recall that ω := e1 · · · ek. This in particular implies
• If k is even, there are 2k + 1 irreducible representations of Ek, hence 1 of C`k.
• If k is odd, there are 2k + 2 irreducible representations of Ek, hence 2 of C`k.

For now, assume k = 2m is even, so there’s a unique irreducible ∆. Since

(6.18) |Ek|= 2k+1 = 2k · 1+ (dim∆)2,

then dim∆= 2m. Explicitly, it arises through a C`k-action on an exterior algebra.
So any finite-dimensional C`k-representation W is of the form W ⊗C V , where V is some “coefficient” vector

space, or a bunch of copies of the trivial representation. It’s possible to recover V from W : using Schur’s lemma,8

(6.19) V ∼= HomC`k⊗C(∆,∆)∼= (∆∗ ⊗C`k⊗C∆)⊗C V ∼=∆∗ ⊗C`k⊗CW ∼= HomC`k⊗C(∆, W ).

A similar calculation constructs a natural isomorphism β : EndC`k⊗C(W )
∼=→ EndC(V ).

Definition 6.20. The relative trace trW/∆ F of an F |in EndC`(k)⊗C(W ) is the trace of β(F) ∈ EndC(V ).

Since the elements of Pin−k generate C`k, then ∆ is also an irreducible representation of Pin−k . One can use
this to show that Spink is an index-2 subgroup of Pink, hence is automatically normal. Moreover, Pin−k � Ok is a
double cover map.

Since Spink Ã Pin−k , then ∆ is also a spin representation. Since Spink is index 2, then either ∆ is irreducible or
splits as ∆=∆+ ⊕∆−.

Proposition 6.21. As a Spink-representation ∆ splits as ∆=∆+ ⊕∆−.

Proof. Recall that ω= e1 · · · e2m, so ω2 = (−1)m and ωx = ε(x)ω. Clearly ω ∈ Pin−k , and since k is even, it’s also
in Spink. Suppose ωv = λv. Then

(6.22) ω2v = (−1)mv = λ2v.

Consider imω ∈ spink ⊗C. Then (imω)2v = v = λ2v, so λ ∈ {±1}. Let ∆± denote the ±1-eigenspace of imω, so
∆=∆+ ⊕∆− as vector spaces.

8This requires semisimplicity of C`n, which is true but we haven’t proven yet.



26 M392C (Index theory) Lecture Notes

Let’s consider how C`k ⊗C acts on this splitting. Since

(imω)x v± = ε(x)i
mωv± = ±ε(x)v±,

then if x is even, x v± ∈ ∆±, and if x is odd, x v± ∈ ∆∓. Therefore Spink preserves ∆+ and ∆−, so they’re
Spink-representations of dimension 2m−1. �

∆+ (resp. ∆−) is called the positive (resp. negative) half-spin representation of Spinn. In particular, ∆ =∆+⊕∆−
is a Z/2-graded representation of C`2m.

Lecture 7.

Spin geometry: 2/7/18

These are Arun’s notes for his lecture on spin structures on manifolds. Some errors have been corrected.

Tangential structures. Let ρ : H → G be a homomorphism of Lie groups and π: P → M be a principal G-bundle.
Recall that a reduction of the structure group of P to H is data (π′ : Q→ M ,θ ) such that

• π′ : Q→ M is a principal H-bundle, and
• θ : Q×H G→ P is an isomorphism of principal G-bundles, where H acts on G through ρ.

An equivalence of reductions (Q1,θ1)→ (Q2,θ2) is a map ψ: Q1→Q2 intertwining θ1 and θ2.

Definition 7.1. Let M be a smooth n-manifold and ρ : H → GLn(R) be a homomorphism of Lie groups. If
B(M)→ M denotes the principal GLn(R)-bundle of frames on M , an H-structure on M is an equivalence class of
reductions of the structure group ofB(M) to H.

Example 7.2. Let ρ : On ,→ GLn(R) be inclusion. A reduction of the structure group ofB(M) to On is a smoothly
varying choice of which bases of Tx M are orthonormal, i.e. a smoothly varying inner product on Tx M . Hence it’s
equivalent data to a Riemannian metric. The space of Riemannian metrics on M is connected, which implies that
all reductions are equivalent; a manifold has a single On-structure. (

Example 7.3. Let ρ : SOn ,→ GLn(R) be inclusion. In this case, a reduction of the structure group of B(M) to
SOn specifies which bases of Tx M are oriented at every point, and therefore defines an orientation on M . Two
reductions are equivalent iff they define the same orientation. Therefore an SOn-structure on M is equivalent data
to an orientation. (

In particular: an H-structure is data, and it need not always exist.

Definition 7.4. A spin structure on a manifold M is an H-structure for H = Spinn along the map ρ : Spinn �
SOn ,→ GLn(R). A spin manifold is a manifold with a specified spin structure.

Example 7.3 immediately implies that a spin structure determines an orientation.

Example 7.5 (Spin structures on the circle). The map Spin1→ GL1(R) factors through SO1 = {e}, so a trivialization
ofB(S1) defines an orientation of S1, and a spin structure is a lift of the trivial {e}-bundle to a principal Z/2-bundle.
This is the same as a double cover, and there are two isomorphism classes of these.

The connected double cover defines a spin structure which extends over the disc, and is hence called the
bounding spin structure S1

b . In physics, it’s also called the Ramond circle.
The disconnected double cover defines a spin structure which does not extend over the disc, and is hence called

the nonbounding spin structure S1
nb. In physics, this is sometimes called the Neveu-Schwarz circle. (

The spinor bundle. Recall from Sebastian’s talk the spin representation ρ : Spinn → GL(∆). Throughout this
section, (M , g) is a Riemannian manifold with a spin structure implemented by a principal Spinn-bundle of frames
BSpin(M)→ M .

Definition 7.6. The spin bundle or spinor bundle of M isBSpin(M)×Spinn
∆→ M , which is a complex vector bundle

of rank n.

The spinor bundle has a lot of structure.
• The spin representation is Z/2-graded, and therefore the spinor bundle is as well: S = S0 ⊕ S1.
• The spinor bundle has a canonical connection D on it: the Levi-Civita connection lifts from B(M) to
BSpin(M), and therefore passes to the associated bundle.
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• The spin representation factors through the unitary group U(∆) ,→ GL(∆), and therefore there is an
induced Hermitian metric on S.

Proposition 7.7. The spin connection D is compatible with h, and therefore the spinor bundle is a Clifford bundle.

Proof. If (E,∇, g)→ M is a real vector bundle with connection and metric, compatibility with the metric means
that the connection one-forms are valued in o(E, g); if E is complex with a Hermitian metric h, compatibility
with the metric means the connection one-forms are valued in u(E, g). So this is a fun exercise in what “induced
connection” actually means.

Since the Levi-Civita connection is metric-compatible, its connection one-form lives in Ω1
B(M)(on). The pullback

connection on BSpin(M) has connection one-form in Ω1
BSpin(M)

(spinn). Since the spinor representation factors

through U(∆) ,→ GL(∆), the connection on the associated bundle factors through u(∆) ,→ gl(∆); in particular, its
connection one-form lives in ΩS(u(∆)), so D is compatible with the metric. �

Proposition 7.8. The twisting curvature of the spinor bundle is zero.

Proof. Recall from Sebastian’s talk that there’s a natural identification of spinn with the vector subspace of C`n
spanned by products eie j for i 6= j by the assignment

(7.9) ai j 7−→
1
4

∑

ai jeie j .

Let {ek} be a local orthonormal frame for T M . Therefore the curvature of the Levi-Civita connection is an son-
valued 2-form whose (k,`) entry is 〈Rek, e`〉, where R is the Riemann curvature tensor. By (7.9), the curvature
2-form of the spin connection is

(7.10) KSpin =
1
4

∑

k,`

〈Rek, e`〉eke`.

This acts on the spinor representation through ei 7→ c(ei), i.e. through

(7.11)
1
4

∑

k,`

〈Rek, e`〉c(ek)c(e`).

With notation as last time, this is exactly Rs(e j , ei), so since the twisting curvature F s satisfies F s = KSpin − Rs,
F s = 0. �

Spinc structures.

Definition 7.12. The Lie group Spinc
n is defined to be Spinn ×Z/2 U1, where Z/2 ,→ Spinn as {±1} ⊂ C`n and

Z/2 ,→ U1 as {±1} ⊂ C.

This means in particular there is a short exact sequence

(7.13) 1 // Z/2 // Spinc
n

// SOn ×U1
// 1.

A spinc structure on a manifold M is an H-structure for H = Spinc
n along the map to SOn. This comes with some

extra structure.

• The map Spinc
n→ SOn ×U1 means that a Spinc

n-structure on M determines an orientation and a principal
U1-bundle P → M . The associated complex line bundle L := P ×U1

C→ M is called the fundamental line
bundle associated to the spinc structure; its Chern class is called the Chern class of the spinc structure.

• Since the spin representation is a representation of the complexified Clifford algebra, it also induces a
representation of Spinc

n. In the same manner as above, a spinc structure on M defines an associated real
vector bundle Ec → M , again called the spinor bundle Sc . Since the spin representation is unitary, the
spinor bundle acquires a Hermitian metric.

However, we don’t get a connection for free: instead we have to choose a connection ∇L on L; together with the
Levi-Civita connection onBSO(M), this induces a connection ∇c onBSpinc

n
(M)→ M .

Proposition 7.14. In this situation, the twisting curvature of ∇c is (1/2)KL , where KL is the curvature of ∇L .
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Characteristic classes. We can use characteristic classes to determine whether a manifold has a spin or spinc

structure.
First we mention a general form of the splitting principle, a way of making computations about characteristic

classes for principal G-bundles.
Let G be a compact Lie group, T be a maximal torus for G, and P → X be a principal G-bundle over a paracompact

base X . The quotient map induces a map f : P/T → X , and we can pull P back along f :

(7.15)

f ∗P

G
��

// P

G

��
P/T

f // X .

Then, there is a canonical reduction of the structure group of f ∗P along T ,→ G. In general, T splits as a product
of copies of S1, so f ∗P similarly splits. The key fact is that the map f ∗ : H∗(X )→ H∗(P/T ) is injective. Therefore
any question about characteristic classes of P may be solved for f ∗P, which splits, with no information lost.

Definition 7.16. If E is a real vector bundle, S(E) will denote the Pontrjagin genus of E associated to

g(z) = cosh
�

1
2

p
z
�

.

Proposition 7.17. The Chern character of the spinor bundle on an even-dimensional spin manifold M is

ch(S) = 2mS(T M).

Proof. We will prove a stronger result. A spin structure on a real vector bundle E → M is an (equivalence class
of) reduction of the structure group of the principal GLn(R)-bundle of local frames of E across Spinn→ GLn(R).
Given a spin structure on E, one can define its spinor bundle SE in the same manner as before. We will show that
if E has even rank, then

(7.18) ch(SE) = 2dim E/2S(E).

If E1, E2→ X are even-dimensional spin vector bundles, SE1⊕E2
∼= SE1

⊗ SE2
, both sides of (7.18) are multiplicative

under direct sum. Therefore we may apply the splitting principle for principal Spinn-bundles to E. One choice of
maximal torus in Spinn is

• Spin2 × · · · × Spin2 ,→ Spinn if n is even, or
• Spin2 × · · · × Spin2 × {1} ,→ Spinn if n is odd.

Thus over E/T , BSpin(E) splits as a direct sum of principal Spin2-bundles, so E splits as a sum of rank-2 vector
bundles with spin structure. Since (7.18) is additive, it suffices to assume rank E = 2.

Recall that a classifying space BG for a Lie group G is a space with a principal G-bundle EG→ BG whose total
space is contractible. This determines BG up to homotopy, and also implies that every principal G-bundle P → X is
the pullback of EG along a map X → BG. Since characteristic classes are natural under pullback, verifying (7.18)
over BSpin2 will prove it everywhere.

Given a representation V of G, we get a vector bundle EG×G V → BG. The universal choice of E→ Spin2 is the
one induced from the representation Spin2� SO2 ,→ GL2(R), and its spinor bundle is the complex vector bundle
∆→ BSpin2 associated to the spinor representation.

Since the map Spin2� SO2 is isomorphic to the mapT→ Twhich is multiplication by 2, the map H∗(BSO2;Q)→
H∗(BSpin2;Q) is also multiplication by 2. Therefore if x ∈ H1(BSO2;Q) denotes the generator, which is the Euler
class of the defining representation, H∗(BSO2;Q)∼=Q[x] and H∗(BSpin2;Q)∼=Q[x/2]. Since E→ Spin2 comes
from the defining representation of SO2, c1(EC) = x .

Next we compute ch(∆). This spinor representation is Spin2 ,→ C`2 ⊗ C ∼= M2(C) ∼= End(C1|1), which acts
on C1|1 and therefore induces a representation of the spin group. Since Spin2

∼= U1 abstractly, and irreducible
representations of U1 are z 7→ zn for an n ∈ Z, we will decompose ∆ into characters and compare them to E.

The identification C`2 ⊗C∼= M2(C) sends

e1 7−→
�

0 1
−1 0

�

(7.19a)

e2 7−→
�

0 i
i 0

�

,(7.19b)
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and therefore

e1e2 7−→
�

1 0
0 −1

�

.(7.19c)

This is the direct sum of ∆+ (first entry) and ∆− (second entry). In particular, the ∆+ is the character z 7→ z, and
∆− is the character z 7→ z−1. Via the identification H∗(BSpin2;Q)∼=Q[x/2], c1(∆±) = ±x/2, so ch(∆±) = e±x/2.
Therefore

(7.20) ch(∆) = ch(∆+)− ch(∆−) = ex/2 − e−x/2 = 2cosh
� x

2

�

.

We also have p1(E) = e(E)2 = x2, so

�(7.21) S(E) = cosh
�

1
2

Æ

p1(E)
�

= cosh
� x

2

�

.

Definition 7.22. Let BSOn denote the classifying space of SOn; there’s a natural bijection between isomorphism
classes of principal SOn-bundles P → X and homotopy classes of maps X → BSOn. One can show that when n≥ 2,
H2(BSOn;Z/2)∼= Z/2, with generator denoted w2. Given a principal SOn-bundle P → X , the pullback of w2 by
the classifying map X → BSO2 is called the second Stiefel-Whitney class of P, denoted w2(P) ∈ H2(X ;Z/2).

Proposition 7.23. Let M be a closed, oriented manifold. Then, M has a spin structure iff w2(M) = 0. In this case,
the spin structures of M extending its given orientation are a torsor over H1(M ;Z/2).

Proof. We follow the proof in Roe’s exercises. We’ll assume n≥ 2; otherwise small modifications must be made,
but the result is still true. Let M be a closed, oriented, manifold and π:BSO(M)→ M be its principal SOn-bundle
of frames. This is a fiber bundle with fiber SOn, hence has an associated spectral sequence

(7.24) Ep,q
2 = H p(M ; Hq(SOn;Z/2)) =⇒ H p+q(BSO(M);Z/2).

Associated a first-quadrant spectral sequence converging to Hn(A) is its five-term exact sequence

(7.25) 0 // E1,0
2

// H1(A) // E0,1
2

// E2,0
2

// H2(A),

which in this case specializes to
(7.26)

0 // H1(M ;Z/2) π∗ // H1(BSO(M);Z/2)
i∗ // H1(SOn;Z/2) δ // H2(M ;Z/2) // H2(BSO(M);Z/2).

We claim, and will prove in a bit, that δ sends the generator of H1(SOn;Z/2) to w2(M).
A spin structure lifting the specified orientation of M is the data of an isomorphism class of double covers

BSpin(M) → BSO(M) which induce the connected double cover Spinn → SOn when restricted to each fiber.
Isomorphism classes of covers ofBSO(M) are naturally identified with H1(BO(M);Z/2), and their restriction to a
fiber is the map i∗ in (7.26), so the set of spin structures on M is in bijection with the subset of H1(BSO(M);Z/2)
which is not in ker(i∗).

Suppose that w2(M) vanishes, meaning δ = 0, so i∗ is a surjective map onto Z/2. Therefore |(i∗)−1(0)| =
|(i∗)−1(1)| and π∗ is an injection whose image is (i∗)−1(0). Thus we have a noncanonical bijection H1(M ;Z/2)→
(i∗)−1(1), the set of spin structures on M . The torsor structure arises because (i∗)−1(0) + (i∗)−1(1) ⊂ (i∗)−1(1).

If instead w2(M) 6= 0, then δ is injective. Then i∗ = 0, so there can be no spin structures on M .
To finish this, we had better check that δ sends the generator of H1(SOn;Z/2) to w2. It suffices to check this for

the universal bundle ESOn→ BSOn, as all other principal SOn-bundles are pullbacks of this one, but since ESOn is
contractible, (7.26) simplifies to

(7.27) 0 // H1(BSOn;Z/2) // 0 // H1(SOn;Z/2) δ // H2(BSOn;Z/2) // 0.

so δ has to send the nonzero element to the generator of H2(BSOn;Z/2), which is w2, as desired. �

Proposition 7.28. Let M be a closed manifold. Then, M has a spinc structure iff w2(M) is the reduction of an integral
class. In this case, the spinc structures of M are a torsor over H2(M ;Z).

Corollary 7.29. A spin structure determines a spinc structure; the converse is not true: CP2 is a spinc manifold which
is not spin.
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Partial proof. We’ll prove the last part, by showing w2(CP2) 6= 0. It’s equal to the mod 2 reduction of c1(CP2), and
c(CP2) = (1+ x)3, where x is the generator dual to a CP1, so c1(CP2) is odd and therefore w2(CP2) 6= 0, so CP2

is not spin, but it is spinc . �

Lecture 8.

Analytic properties of the Dirac operator: 2/14/18

Today, Gill and Kenny spoke about analytic questions related to the Dirac operator 6∂ : C∞(S)→ C∞(S), where
S→ M is the spinor bundle on a compact spin Riemannian manifold M .

Since C∞(S) is in general an infinite-dimensional vector space, we would like to place a good topology on it.
The default is the Fréchet topology, but this is kind of unpleasant to work with: it’s not a Hilbert space, for example.
Maybe we can relax the regularity of things we feed to 6∂ , but since we’re interested in the Dirac Laplacian 6∂ 2,
which is a second-order differential operator, we want everything to be at least twice differentiable.

Relatedly, one asks how smooth solutions to 6∂ x = y can be. For example, in R2, harmonic functions, those
functions u: R2→ C satisfying

(8.1)
∂ 2u
∂ x2

+
∂ 2u
∂ y2

= 0,

are smooth and in fact analytic, because f := u+ iu is holomorphic. This is an instance of elliptic regularity, a very
general phenomenon.

Thus the general place to start would be to use the induced Hermitian metric h on S and take the space L2(S),
the Hilbert space of L2 sections of S→ M with respect to h. Since smooth sections are dense in L2(S), we know
how to make sense of 6∂ : L2(S)→ L2(S).

Exercise 8.2. Show that 6∂ : L2(S) → L2(S) is unbounded, i.e. there is no C ∈ R such that for all X ∈ L2(S),
‖DX‖L2 ≤ C‖X‖L2 .

This is a little unfortunate; we would like something whose functional analysis is more tractable. For this reason,
we’ll change the Hilbert space we’re working with slightly.

Recall that if f , g ∈ C∞(S), we defined

(8.3) 〈 f , g〉L2 :=

∫

M

h( f (x), g(x))dV,

where dV is the volume form on M . Then L2(S) is defined to be the completion of { f ∈ C∞(S) | 〈 f , f 〉<∞} in
the norm induced by this inner product. Therefore by changing the inner product we can change what Hilbert
space we’re using.

Definition 8.4. The kth Sobolev inner product of smooth sections f and g is

〈 f , g〉Hk :=

∫

M

k
∑

i=0

h(∇i f ,∇i g)dV,

where ∇0 := id, and h denotes both the Hermitian metric on S and the induced metrics on (T ∗M)⊗i ⊗ S using h
and the Riemannian metric on T ∗M defined by taking the product of all the metrics.

The completion of C∞(S) under 〈–, –〉Hk is denoted Hk(S) and called a Sobolev space.

Proposition 8.5. Any choices of connection and metric on M induce equivalent Sobolev k-norms.

That is, the underlying topological vector spaces of these Hilbert spaces are isomorphic.
Let T n be the n-torus. It suffices to understand the proposition on all charts Uα of M for an atlas which trivializes

S, and we can map these charts onto T n, thus reducing the question to T n.
On T n we use Fourier theory: for any L2 f : T n→ C, its Fourier series is

(8.6) f (x) =
∑

ν∈Zn

bf (ν)eiνx ,

where

(8.7) bf (ν) :=
1

(2π)n

∫

T n

.
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It’s a standard result that sending f 7→ bf converts differentiation into multiplication: if f is C1, then

(8.8)

�

∂

∂ x j

�∧

(v) =
1

(2π)n

∫

T n

�

∂

∂ x j
f

�

(x)e−iνx dx .

Hence for an arbitrary L2 f , we can define ∂ j f through its Fourier series:

(8.9)
∂ f
∂ x j

:=
∑

ν∈Zn

iνbf (ν)eiνx .

Definition 8.10. Let Hk(T n), k ∈ R. The kth Sobolev space on T n, denoted Hk(T n), is the completion of the
subspace of L2(T n) for which the norm

‖ f ‖2
k :=

∑

ν∈Zn

|bf (ν)|2
�

1+ |ν|2
�k

is finite, in this norm. Here |ν|=
∑

ν2
i .

For example,

(8.11) ‖ f ‖2
1 = ‖ f ‖2

L2 +
∑

j









∂ f
∂ x j









2

L2

,

which uses the fact that the Fourier series functional is an isometry.

Proposition 8.12. There exist constants c1, c2 ∈ R such that

c1

∑

|α|≤k









∂ f
∂ xα









L2

≤ ‖ f ‖k ≤ c2

∑

|α|≤k









∂ f
∂ xα









L2

.

This implies in particular that if D is a linear `th-order differential operator, then it’s a linear map D : Hk → Hk−`.

Proposition 8.13. Let k1 ≤ k2. There are continuous embeddings

• Hk1(S) ,→ Hk2(S) and
• C k(T n) ,→ Hk(T n).

Most of these propositions are true in general Sobolev spaces, since they’re all proven locally.

Theorem 8.14 (Sobolev embedding theorem). If p > n/2, Hk+p ,→ C k continuously.

Recall that a map of topological vector spaces is compact if it carries closures of bounded spaces to compact
spaces. (By linearity, it suffices to consider the closed unit ball.)

Theorem 8.15 (Rellich). If k1 ≤ k2, the embedding Hk1 ,→ Hk2 is compact.

B ·C

With these preliminaries out of the way, we proceed to the actual analysis of the Dirac operator. The estimates
we discuss apply more generally, to any first-order operator D on C∞(S) such that

(8.16) D2 =∇∗∇+ B

for some first-order operator B on S. Since M is compact, C∞(S) ,→ L2(S), so D is a bounded map H1(S)→ L2(S),
i.e. there’s a C ∈ R such that for all s ∈ C∞(S), ‖Ds‖0 ≤ C‖s‖1. We will call such a D a generalized Dirac operator.

Proposition 8.17 (Gårding inequality). Let D be a generalized Dirac operator. Then there is a C such that for any
s ∈ C∞(S),

‖s‖1 ≤ C(‖s‖0 + ‖Ds‖0).

This is an analogue of the smoothness of harmonic functions we discussed above, buying us unexpected extra
regularity.
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Proof. The proof follows fairly standard methods in PDE. It suffices to assume that S is the trivial bundle, because
we can work locally: let U be an open cover of M which trivializes S and {ψU : U ∈ U} be a partition of unity
subordinate to it. Then

(8.18) ‖s‖2
0 =

∑

U∈U

∫

U

¬
Æ

ψU s,
Æ

ψU s
¶

dx .

Since M is compact we can take U to be finite, and therefore take the maximum of the constants we got on each
U ∈ U.

Since

(8.19) 〈D2s, s〉= 〈∇∗∇s, s〉+ 〈Bs, s〉,

then

(8.20) ‖Ds‖2
0 = ‖∇s‖2

0 + 〈Bs, s〉,

so by the Cauchy-Schwarz inequality, and the fact that B is bounded in H1,

(8.21) ‖∇s‖2
0 ≤ c1

�

‖s‖0‖s‖1 + ‖Ds‖2
0

�

.

We will bound the left side of (8.21) below. Since we’re working locally, ∇is = ∂is+ Tis, where ∇s := dx i ⊗∇is,
and therefore

〈∇s,∇s〉=
�

∑

i

dx i ⊗∇is,
∑

j

dx j ⊗∇ js

�

=
∑

i, j

〈dx i , dx j〉
g i j

〈∇is,∇ js〉

=

∫

∑

i, j

g i j
�

〈∂is,∂ js〉+ 2Re
�

∂is, T js
�

+
�

Tis, T js
��

dx .

Since

(8.22) ‖Ds‖2
0 :=

∫

〈∇s,∇s〉dx ≥ C2‖s‖
2
1 − C3‖s‖0‖s‖1

(the reasoning for which is a little unclear), then

(8.23) C2‖s‖
2
1 − C3‖s‖0‖s‖1 ≤ C1

�

‖s‖0‖s‖1 + ‖Ds‖2
0

�

,

so there are constants C4, C5 such that

(8.24) ‖Ds‖2
0 ≥ C4‖s‖

2
1 − C5‖s‖0‖s‖1.

It’s a general fact (proven maybe by a convexity argument?) that for any ε > 0, there’s a K > 0 such that for all
a, b > 0,

(8.25) ab ≤ εa2 + K b2.

Therefore there’s a C6 such that

(8.26) C5‖s‖0‖s‖1 ≤
1
2

C4‖s‖
2
1 + C6‖s‖

2
0,

so

(8.27) ‖Ds‖2
0 ≥

1
2

C4‖s‖
2
1 − C6‖s‖

2
0,

which can be rearranged into what we wanted to show. �

The Gårding inequality says that we can control all of the first derivatives of s if we can control Ds (we need the
extra term in case D has kernel – if the first term weren’t there, this would’ve been a proof that D were injective).
Something elliptic is going on here, and we can bootstrap it into stronger estimates.

Theorem 8.28 (Elliptic estimate). For any k > 0, there’s a constant Ck such that for all s ∈ C∞(S),

‖s‖k+1 ≤ Ck(‖s‖k + ‖Ds‖k).
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B ·C

We now turn to spectral theory. This is particularly nice for Hilbert spaces, so when one wants to study the
spectral theory of an operator, part of the story is to find a Hilbert space on which its spectrum is nice.

Definition 8.29. By an unbounded operator on a Hilbert space H we mean a linear operator f : U → H, where U
is a dense subset of H.

We make no assumptions on continuity; hence unbounded operators are a (in general strict) superset of bounded
operators.

Example 8.30. We defined L2(S) to be the completion of C∞(S) under the L2 norm, and hence D : C∞(S)→ L2(S)
is an unbounded operator. (

Proposition 8.31. Let D be a generalized Dirac operator. Then the closure of the graph of D is the also graph of an
unbounded operator D.

Proof. Recall that D has a formal adjoint, i.e. an operator D† such that 〈Dx , y〉 = 〈x , D† y〉. Let Γ denote the graph
of D and suppose that Γ isn’t the graph of a function; then, Γ fails the “vertical line test,” so there are x , y1, y2 ∈ H
such that (x , y1), (x , y2) ∈ Γ . Since D is linear, then (0, y1 − y2) ∈ Γ , and y1 − y2 6= 0.

Hence there are x i ∈ C∞(S) such that x i → 0 and Dx i → z 6= 0 in L2. Hence for all s ∈ C∞(S), 〈Dx i , s〉 → 〈z, s〉
and 〈x i , D†s〉 → 0, but since 〈Dx i , s〉= 〈x i , D†s〉, 〈z, s〉= 0 for all s. Hence z = 0.

From this and the fact that Γ is a linear subspace of H⊕H, one can infer that it’s the graph of a linear operator. �

What’s the domain of D? It’s all x ∈ L2(S) for which there exists a sequence x i → x converging in L2 such that
Dx i → Dx in L2. Hence by Proposition 8.17, the domain contains H1(S), and one can show that the domain is
H1(S).

Definition 8.32. Let x , y ∈ L2(S). We say Dx = y weakly if for all s ∈ C∞(S), 〈x , D†s〉 = 〈y, s〉 (equivalently,
〈Dx , s〉= 〈y, s〉).

Denote by S � S∗→ M ×M the bundle π∗1S ⊗π∗2S∗, where πi : M ×M → M is projection onto the ith factor.

Definition 8.33. Let A: H → H be a bounded operator. Then, A is a smoothing operator if there is a smooth section
k(p, q) of S � S∗, called the kernel of A, such that

(8.34) A(s)(p) =

∫

M

k(p, q)s(q)dq.

The assertion that the integral in (8.34) converges depends both on the compactness of M and a nontrivial
element.

Definition 8.35. A Friedrichs’ mollifier for a section s is a family Fε of self-adjoint smoothing operators on L2(S),
indexed by ε ∈ (0,1), such that

(1) {Fε} is bounded in B(L2(S)),
(2) for any first-order differential operator B, {[B, Fε]} extends to a bounded family on B(L2(S)), and
(3) Fε * 1 as ε→ 0 (i.e. in the weak topology on B(L2(S))).

Exercise 8.36. Friedrichs’ mollifiers exist.

Theorem 8.37. Suppose that x , y ∈ L2(X ) and Dx = y weakly. Then x ∈ H1 and Dx = y.

Proof. Let {Fε} be a Friendrichs’ mollifier and xε := Fε x . Then for any s ∈ C∞(S),

〈Dxε, s〉= 〈xε, D†s〉

= 〈x , FεD
†s〉

= 〈x , D†Fεs〉+ 〈x , [Fε, D†]s〉
≤‖x‖0‖[Fε ,D†]‖B(L2(S))‖s‖0

= 〈y, Fεs〉 ≤ C ′‖y‖‖Fε‖B‖s‖0

≤ K‖s‖0
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for some K . Using the first two properties of Friedrichs’ mollifiers, |〈Dxε, s〉| ≤ C ′‖s‖0; since ‖Dxε‖0 ≤ C , then by
Proposition 8.17, ‖xε‖H1 ≤ C ′.

This implies there exists a subsequence ε j → 0 such that xε j
* z in H1.

Exercise 8.38. Show that compact operators send weakly convergent sequences to strongly convergent sequences.

Thus we can conclude that x = z: 〈xε j
, s〉 → 〈x , s〉= 〈z, s〉, so 〈x , D†s〉= 〈y, D†s〉, and after an argument that I

missed, this implies that Dx = y . �

The next theorem tells us that eigenvalues of a (generalized) Dirac operator have better regularity than one
might expect.

Theorem 8.39. Let D be a generalized Dirac operator. Then, the kernel of D consists of smooth sections.

Proof. Let s ∈ ker(D); we’ll show that s ∈ Hk for all k, which implies by Theorem 8.14 that it’s smooth. We’ll
induct by assuming s ∈ Hk−1. Let {Fε} be a Friedrichs’ mollifier, so that {Fε} and {[D, Fε]} are bounded families of
operators on Hk−1.

Using the elliptic estimate,

(8.40) ‖Fεs‖k ≤ Ck(‖Fεs‖k−1 + ‖DFεs‖k−1) = Ck(‖Fεs‖k−1 + ‖[D, Fε]s‖k−1).

Since Ds = 0, this is bounded above. �

Lecture 9.

Spectral theory: 2/21/18

“There’s a reason to erase the boards at the beginning of a lecture rather than the end: you have an
incentive to do it well.”

This part of today’s lecture was given by Dan.
Let V be a finite-dimensional complex inner product space and T : V → V be a self-adjoint operator. Then we

can diagonalize T : there is an orthogonal direct sum

(9.1) V =
⊕

λ∈R
Vλ

where T |Vλ = λ. Obviously only finitely many Vλ are nonzero.
Geometrically, you could think of this as a family of vector spaces over a base R, and in fact it’s a sheaf (a finite

sum of skyscraper sheaves).

Remark 9.2. If you don’t have an inner product and T isn’t self-adjoint, you can still get something useful, the
Jordan decomposition. In this case the sheaf has nilpotent information if there are nontrivial Jordan blocks, but
we’re not going to encounter this in this course. (

Given a function f : R→ R, one obtains a new operator f (T ) defined by f (T )|Vλ := f (λ). This is an excellent way
to make new operators out of old. For example, the exponential of a matrix is defined through its diagonalization:

(9.3) exp
�

4 2
1 5

�

=
�

−2 1
1 1

�

exp
�

3 0
0 6

��

−1/3 1/3
1/3 2/3

�

=
�

−2 1
1 1

��

e3 0
0 e6

��

−1/3 1/3
1/3 2/3

�

.

We are interested in generalizing this story to infinite dimensions. LetH be a separable9 complex Hilbert space
and T :H →H be a self-adjoint, positive, compact operator.10

Theorem 9.4 (Spectral theorem). There is an orthogonal basis {en}
∞
n=1 ofH and µn ∈ R>0 such that

• µ1 ≥ µ2 ≥ µ3 ≥ · · · ,
• Ten = µen, and
• lim

n→∞
µn = 0.

9If you don’t know what this is, don’t worry about it; its a point-set topological axiom. All Hilbert spaces we will encounter in this class are
separable.

10By writing that the domain of T isH , and not a dense subset of it, we imply that T is already a bounded operator.
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Suppose s ∈H is such that 〈s, en〉= 0 for all n. Then s = 0. HenceH decomposes as

(9.5) H =
⊕

λ∈R
Hλ,

where dimHλ is finite. This is again an orthogonal direct sum, and again Hλ defines a sheaf of Hilbert spaces
over R. Because {µi} has an accumulation point at 0, this is not a finite sum of skyscraper sheaves.

Another way to think about that it defines a measure of sorts on R. For λ ∈ R, let πλ : H → Hλ ,→ H be
orthogonal projection ontoHλ followed by inclusion; hence π2

λ
= πλ. Then

(9.6) T =
∑

λ∈R

λπλ,

though one must make sense of this uncountable sum! In particular, spectral calculus is the same: given f : R→ R,
one defines

(9.7) f (T ) :=
∑

f (λ)πλ,

where again we have to make sense of this sum, but this is possible.
We won’t get into the guts of the proof of Theorem 9.4, but the idea is to study the quadratic form Q : S(H )→ R

sending ξ 7→ 〈ξ, Tξ〉, where S(H ) is the unit sphere insideH .

Remark 9.8. Theorem 9.4 is the only spectral theorem we’ll need in this class, but is not the only one you’ll need
in your life. (

We will apply this theory to the Dirac operator D : C∞M (S)→ C∞M (S) associated to a Clifford bundle S→ M over
a closed Riemannian manifold M . (More generally, we could take an operator with D2 =∇∗∇+ K , as discussed
last time.)

Example 9.9. The first example is M = S1 with length 2π, S = C, and D = −i d
dx : C∞(S1) → C∞(S1). This

operator is diagonalized by Fourier series: for any n ∈ Z,

(9.10) − i
d

dx
einx = neinx .

Unfortunately, this is not a positive operator. D2 = − d
dx2 isn’t either, because it has 0 for an eigenvalue (its

eigenvalues are n2 for n≥ 0). So maybe we should replace it with D2+1, which is positive, but where is (D2+1)−1

defined? This, and our desire to live in the world of Hilbert spaces, are why we have to think about Sobolev
spaces. (

Recall that we defined a Sobolev space W k(S) for k = 0, 1, 2, . . . , denoting the space of L2 functions which have
k derivatives that are also in L2. (Well, this is not the precise definition, but that’s the point.) Then W 0(S) = L2(S).

Remark 9.11. One can more generally use Lp norms for any 1 ≤ p ≤∞, and define Lp
k(R

n) to be the Sobolev
space of Lp functions on Rk which have k derivatives in Lp. (

The Sobolev embedding theorem (Theorem 8.14) shows that Lp
k(R

n) ,→ C` iff k− n/p > `. One can remember
this inequality by taking a Sobolev function and scaling it by x 7→ λx . This is the inequality which makes sense as
λ→ 0 or λ→∞.

It’s also true that
⋂

k W k = C∞. This produces another interpretation of Sobolev spaces: we want to study
smooth functions, but their topology is not the best (it’s Fréchet, not Hilbert), so we weaken our regularity a little
bit to get a better function space.

If D =∇∗∇+ K is a generalized Dirac operator, then

(9.12)

∫

|Ds|2 =
∫

|∇s|2 +
∫

〈Ks, s〉,

so already this looks like a Sobolev norm, which is another hint that Dirac operators naturally live on Sobolev
spaces.

We then discussed the Rellich theorem (Theorem 8.15), that if k′ < k, Wk ,→ Wk′ is compact. So Wk has a
finer topology, but compactness is a really convenient thing to have. This implies that D : W 1(S) → W 0(S) is
bounded, and that 1+ D2 : W 2(S)→W 1(S) is bounded. If we could in addition find an inverse R to 1+ D2, then
T : W 0 → W 2 ,→ W 0 using R, then inclusing, T would be a compact operator, and as the inverse of a positive,
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self-adjoint operator, T is also self-adjoint. Therefore Theorem 9.4 applies, and by diagonalizing T we’re almost
all of the way to diagonalizing D.

Roughly, to invert 1+ D2, we need to show that

(9.13) ‖s‖W 2 ≤ ‖(1+ D2)s‖W 0 ,

which shoes 1+ D2 is injective and has closed image. Then, it only remains to prove it’s surjective.
To prove (9.13), we used Proposition 8.17 a few times. The way Roe does surjectivity is to look at the graph of

D as an operator. This allows surjectivity to relate to a direct construction of R. Since W 1 is a dense subspace of
L@, the graph Γ of D : W 1→ L2 is a subspace of L2 × L2, and we may take its closure. Using self-adjointness of D,
we proved Proposition 8.31, that Γ is also a graph of some operator D. We can use this to define a map Q : L2→ L2

to its orthogonal projection onto Γ (all inside L2 × L2), then projecting that back onto the domain L2. Then for all
Y ,

0= 〈Qx − x , y〉+ 〈DQx , D y〉

= 〈Qx − x + D
2
Qx , y〉,

and therefore (D2 + 1)−1Qx = x , so we have not just surjectivity, but an inverse to D.
We want the eigenvectors of the Dirac operator to be smooth, but a priori they’re just W 2. This is where the

argument involving elliptic estimates and elliptic regularity came in. The upshot is the following spectral theorem
for Dirac operators.

Theorem 9.14. There exists an orthonormal basis {sn}
∞
n=1 for L2(S) and λn ∈ R≥0 such that

• 0≤ λ1 ≤ λ2 ≤ · · · ,
• D2sn = λnsn,
• λn→∞, and
• sn ∈ C∞(S).

Later we will prove a theorem about how fast λn grows; for the Dirac operator on the trivial bundle over S1,
λn ≈ n2.

For any section s, we have the projection formula

(9.15) s =
∞
∑

n=1

〈en, s〉en =
∑

λ

sλ,

where sλ := πλs. On the circle, this is just Fourier series: large eigenvalues tell you about large-scale behavior,
and small eigenvalues tell you about small-scale behavior. In order for this to converge, larger-scale behavior has
to be tamed, and in particular, as you might remember from Fourier theory, better local behavior or regularity is
converted to faster decrease of ‖sλ‖ as λ→∞.

One way to think of this is that D2 = − d
dx2 has units of 1/L2, where L is length. Therefore the units of the

eigenvalues are also 1/L2, hence small at large scales.

Theorem 9.16. An L2 section s is smooth iff ‖sλ‖= O(λ`) for all ` ∈ Z>0.

Proof. Since

(9.17) (D2)`s =
∑

λ

λ`sλ,

then

(9.18)


(D2)`s




0 ≤
∑

λ

λ`‖sλ‖ ≤
∑

λ

C
λ2
<∞.

TODO: I missed something. �

In a similar vein, there’s a result for spectral calculus.

Theorem 9.19. Let f : R→ R be such that f (λ) = O(λ−`) for all ` ∈ Z>0.Then Im( f (D)) consists of smooth sections.
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That is, to get smooth sections, we use functions which vanish more quickly than 1/p where p is any polynomial.
The proof idea is to show that f (D) is an integral kernel, i.e.

(9.20) f (D)s(x) =

∫

M

K(x , y)s(y)dy

for all x ∈ M and s ∈ L2(S). This is smooth iff K ∈ C∞M×M (S � S∗), and we can use elliptic estimates to prove this.
We need an explicit formula for K(x , y) in order to do this, and the answer turns out to be

(9.21) K(x , y) =
∑

λ

f (λ)〈sλ(y), –〉sλ(x): Sy → Sx .

This is explicit enough that you can do analysis with it, showing that it’s bounded in every Sobolev norm, and
hence is smooth.

Lecture 10.

Dirac complexes and the Hodge theorem: 2/21/18

’ In this part of the lecture, Adrian spoke about Dirac complexes and the Hodge theorem. Everything will be
worked out in finite dimensions first, where things are really easy, and then cover the infinite-dimensional case,
whose proof looks similar at large scales, but requires checking a few more things.

A Dirac complex can be viewed as a refinement of a Clifford bundle.

Definition 10.1. Let M be a compact, oriented Riemannian manifold. A Dirac complex on M consists of
• a sequence S0, . . . , Sn of Hermitian vector bundles over M ,
• differential operators d i : C∞(S i)→ C∞(S i+1) for i = 0, . . . , n− 1, and
• a Clifford bundle structure on

S :=
n
⊕

i=0

S i ,

such that D = d + d∗, where
• D is the Dirac operator on S and
• d∗ is the adjoint of d : S→ S with respect to the inner product

(10.2) 〈s, s′〉 :=

∫

M

〈s, s′〉dvol.

Now let’s do some finite-dimensional Hodge theory. Let d : V 0→ V 1 be a map between finite-dimensional inner
product spaces (real or complex) and d∗ : V 1→ V 0 denote its adjoint.

Lemma 10.3. ker(d) = ker(d∗d).

Proof. That ker(d) ⊆ ker(d∗d) is obvious, so suppose v ∈ ker(d∗d), meaning

(10.4) 0= 〈v, d∗dv〉= 〈dv, dv〉,

and therefore dv = 0. �

The operators d∗d : V 0→ V 0 and dd∗ : V 1→ V 1 are self-adjoint, so they have well-behaved spectral theory. Let
λ0, . . . ,λn be the eigenvalues of d∗d and v0, . . . , vn be eigenvectors for them. Then, λ0, . . . ,λn are the eigenvalues
of dd∗, and the eigenvectors are dv0, . . . , dvn.

More generally, consider a finite sequence of finite-dimensional inner product spaces together with adjoint
operators

(10.5) 0 // V 0 d // V 1 d //
d∗
oo V 2 d //

d∗
oo · · ·

d //
d∗
oo V n−1 d //

d∗
oo V n

d∗
oo // 0.

Lemma 10.3 generalizes to another, almost as easy, lemma.

Lemma 10.6. In the setting of (10.5), ker(d∗)∩ ker(d) = ker(dd∗ + d∗d).

Proof. Again the forward inclusion is obvious, so suppose v ∈ ker(dd∗ + d∗d), so 〈d∗dv + dd∗v, v〉= 0.
TODO: something I didn’t understand happened here, using eigenvectors. �

In particular, this leads to a canonical identification of ker(dd∗+ d∗d) with the homology of the complex (10.5).
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General Hodge theory. In this case we have a complex of vector bundles S i , and let V i := C∞(S i), so we have
an induced complex of topological vector spaces.11

. . . something happened here regarding how the finite-dimensional statement changes because certain projections
exist. . .

Theorem 10.7. We have a projection C∞(S i)�H i such that H i(C∞(S•))∼=H i .

In fact, you can promote this into an isomorphism of the cohomology of C∞(S•) withH •, where the latter’s
differentials are all the zero map.

Proof. There exists an orthogonal projection P : L2(S i)→H i becauseH i is finite-dimensional. Let i :H i ,→ L2(S i)
denote inclusion. Let δi j denote the Kronecker delta and f (λ) = 1−δλ0. Then iP = 1 · f (0).

If

(10.8) g(λ) :=

¨

λ−2, λ 6= 0

0, λ= 0,

then g is bounded on D because of (TODO) something I didn’t understand. If G := g(D) and H := d∗G, then

(10.9) (d∗d + dd∗)G = f (D) = Hd + dH = 1− (1− f (D)) = 1− iP

which means it’s a chain homotopy between (C∞(S•), d) and (H •, 0), so their cohomology groups agree. �

The case we’re interested in is the Dirac complex of differential forms: S i := Λi(T ∗M)⊗C and d i := d, with
the Clifford action defined as follows: if v ∈ T M , v ·ϕ := v∨ ∧ϕ − v ùϕ and extending to the rest of the Clifford
algebra.

The inner product is the usual inner product on differential forms induced from the Riemannian metric, which
we’ve seen a few times. The whole story follows from a few formal facts.

• The Hodge star is characterized by ϕ ∧ ?ψ= 〈ϕ,ψ〉vol for any k-forms ϕ,ψ.
• ??ϕ = (−1)k(n−1)ϕ.
• Contraction is a derivation:

(10.10) ù (ϕ ∧ψ) = ùϕ ∧ψ+ (−1)|ϕ|ϕ ∧ ùψ.

• The relation

(10.11) v ùϕ = (−1)k(n−1) ? (?ϕ ∧ v∨).

• ∇ commutes with the Hodge star.
• The relation

(10.12) ∇X (v ùϕ) = (∇X v) ùϕ + X ù∇vϕ.

You can check all the properties for a Dirac bundle using these, and using asynchronous frames, you can also show
that the Dirac operator is the Hodge operator.

Lecture 11.

Applications of Hodge theory: 2/21/18

Rok spoke in this part of the talk. Throughout M is a closed, oriented Riemannian manifold of dimension n.

Corollary 11.1. If S is a Dirac complex, the cohomology groups H i(S) are finite.

This follows because we constructed an isomorphism above. Compactness of M is crucial here, entering in the
form of ellipticity.

Theorem 11.2 (Poincaré duality). The integration pairing

(11.3) Hk(M ;C)⊗C Hn−k(M ;C) ^ // Hn(M ;C)
∫

M

∼=
// C

is a perfect pairing, i.e. it defines an isomorphism Hn−k(M ;C)∼= Hk(M ;C)∗.
11TODO: is this actually a Dirac complex?
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Proof. Stokes’ theorem implies that, since M is closed, the pairing is well-defined. Fix an [α] ∈ Hk(M ;C) and
suppose

∫

M α∧ β = 0 for all β . By the Hodge theorem, there is a unique harmonic representative for [α], which
we’ll also call α, and dα= 0 and d∗α= 0. Hence (−1)2?d?α= 0, so d(?α) = 0. Taking β = ?α, we get

(11.4) 0=

∫

M

α∧ ?α= ‖α‖2
L2 ,

i.e. α= 0. �

You can use this to set up intersection theory, in the form of finding Poincaré duals to closed, oriented submani-
folds.

Let C ⊂ M be a closed, oriented submanifold of dimension k. Then integrating k-forms restricted to C defines
a linear map ϕ : Hk(M ;C)→ C, well-defined by Stokes’ theorem. By the Hodge theorem, Hk(M ;C) ∼=H k(M),
so we may complete and extend eϕ := ϕ ◦ P, where P : Ωk

L2(M)→H k(M) is projection onto the closed subspace
of harmonic forms. In particular, eϕ is a continuous linear functional, so by the Riesz representation theorem,
eϕ = 〈–,β〉 for some β ∈ Ωk

L2(M).
Since P is a projector, it’s self-adjoint, and

〈α,β〉=
∫

C

Pα=

∫

C

P2α= 〈Pα,β〉

= 〈α, P∗β〉= 〈α, Pβ〉.

Therefore in particular β is harmonic!

Definition 11.5. The Poincaré dual to C is PC := [?β] ∈ Hn−k(M ;C).

There are other ways to define this, but the cleanliness of the Hodge star is nice.
We can therefore do intersection theory: if C and C ′ are closed, oriented, transverse submanifolds of M such

that dim C + dim C ′ = n, then their intersection number is

(11.6) I(C , C ′) :=

∫

C

PC ′ = (−1)(dim C)(dim C ′)

∫

M

PC ′ ∧ PC = (−1)(dim C)(dim C ′) I(C ′, C).

So this is commutative up to a sign, just as in cohomology.

Example 11.7. For any point p ∈ M , Pp ∈ Ωn(M) must be λ times the volume form for some λ ∈ C. Then

(11.8) f (p) =

∫

M

f · P − p = λ

∫

M

f vol.

This seems quite strange untill you realize that it means λ= 1/vol(M), after which (11.8) is a tautology. (

We’ll use this to provide another proof of Corollary 5.3, that a compact manifold with nonnegative Ricci
curvature, and positive Ricci curvature somewhere, has vanishing first cohomology.

Proof of Corollary 5.3. Recall that D2α = 0 has no nonzero solutions, and by the Hodge theorem, H1(M ;C) ∼=
H 1(M) = 0. �

Lecture 12.

The heat and wave equations: 2/28/18

In this part of the lecture, Ravi Mohan spoke about the heat and wave equations on a compact Riemannian
manifold (M , g).

Let S → M be a Clifford bundle on M and s be a smooth section of S varying smoothly in time t. The heat
equation is the second-order differential equation

(12.1)
∂ s
∂ t
+ D2s = 0.

In physics, this is known as the diffusion equation: it takes a point distribution and spreads its mass out over M ,
modeling heat flow.
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The wave equation is the first-order equation

(12.2)
∂ s
∂ t
− iDs = 0.

Given a wave as initial data, this propagates the wave.

Proposition 12.3. Let s0 ∈ Γ (M , S) be a smooth section.

(1) The heat equation (12.1) has a unique solution st corresponding to the initial data s0, which exists for all
t ≥ 0. Moreover, ‖st‖

2 ≤ ‖s0‖
2.

(2) The wave equation (12.2) has a unique solution st corresponding to the initial data s0, which exists for all
t ∈ R. Moreover, ‖s2‖

2 = ‖s0‖
2.

Proof. First we prove (1). For existence, consider e−tD2
: C∞(S)→ C∞(S), and let

(12.4) st := e−tD2
s0.

Then
∂

∂ t
st = −D2st(12.5)

=⇒
�

∂

∂ t
+ D2

�

st = 0.(12.6)

For the norm, let {ei} be an orthonormal basis of eigenfunctions for D2, so that a0 =
∑

i aiei and D2ei = niei . Then

st = e−tD2
s0

= e−tD2
∑

i

aiei

=
∑

i

aie
−tni ei .

Therefore

(12.7) ‖st‖
2 =

∑

i

‖ai‖
2e−2tni ,

which decays with t.
For the wave equation, the proof is very similar, except we use eiDt in place of e−tD2

. For (12.7), |ei tni | = 1,
allowing us to get = instead of ≤. �

Remark 12.8. Looking at the heat and wave equations in the eigenbasis allows us to understand what they’re
doing. For example, the heat equation dampens Fourier modes, but dampens the larger Fourier modes faster. In
fact, even if your initial condition s0 isn’t smooth, sε is smooth for any ε > 0, because the large Fourier modes
which cause s0 to not be smooth are dampened to something acceptable. (

There exists a smooth family of smooth sections kt , t > 0, of S�S∗→ M ×M such that for all smooth sections s,

(12.9) e−tD2
s(p) =

∫

M

kt(p, q)s(q)dq.

This kt is called the heat kernel for S.

Proposition 12.10. We have that
�

∂

∂ t
= D2

p

�

kt(p, q) = 0.(12.11)

lim
t→0

kt = δ(p− q).(12.12)

Proof of part (12.11). It suffices to compute: since

(12.13)
�

∂

∂ t
+ D2

p

�

e−tD2
S(p) =

�

∂

∂ t
+ D2

p

�

∫

M

kt(p, q)s(q)dq,
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then

(12.14) 0=

∫

�

∂

∂ t
+ D2

p

�

kt(p, q)s(q)dq.

Since this is true for all s, (12.11) follows. �

The heat kernel is for smooth sections. If we have weaker regularity, we need something slightly different.

Definition 12.15. An approximate heat kernel of order m is a time-dependent section k′t(p, q) of S � S∗→ M ×M
which approximately satisfies the heat equation, in that there is a Cm section rm

t of S � S∗→ M ×M such that
�

∂

∂ t
+ D2

p

�

k′t(p, q) = tmrm
t (p, q).

Proposition 12.16. Let st be a continuous family of C2 sections of S. Then, there is a unique smooth family of smooth
sections est of S with es0 = 0 and satisfying the heat equation

�

∂

∂ t
+ D2

�

est = st .

Lemma 12.17. The asymptotic behavior of the heat kernel in Euclidean space En is

(12.18) kt(x , y)∼
1

(4πt)n/2
exp

�

−
|x − y|2

4t

�

.

On a Riemannian n-manifold (M , g), if p and q are given in geodesic coordinates on M, the asymptotic behavior of
the heat kernel is

(12.19) kt(p, q)∼ h :=
1

(4πt)n/2
exp

�

−
d(p, q)2

4t

�

.

Here d(p, q) is the geodesic distance, i.e. the infimum of the lengths of geodesics between p and q.

Lemma 12.20. Let h be as in (12.19). Then

∇h= −
h
2t

r
∂

∂ r
(12.21)

∂ h
∂ t
+∆h=

rh
4g t

∂ g
∂ r

.(12.22)

TODO: proof was given, and I missed it.

Definition 12.23. Let f : R→ C be a function and S :=
∑

cn tn be a formal power series. Then S is an asymptotic
series for f if for all N ,

lim
t→0

t−N

�

�

�

�

�

f (t)−
N
∑

n=0

cn tn

�

�

�

�

�

= 0.

Remark 12.24. We know that as t →∞, the heat operator converges very strongly to projection onto the kernel.
So when we use it to understand the index, we’ll find a formula for the index in terms of the heat kernel at all
t ≥ 0. At infinity, it simplifies to where we’ll recognize it as an index; then at 0, we’ll be able to identify it with
something else.

If x 6= y, (12.18) has exponential decay as t → 0. On the diagonal, it’s just the function 1/(4πt)n/2, which
doesn’t converge, but we’ll be able to use an asymptotic series to compare what happens on a curved manifold
with what happens on En. Even though these series don’t converge, they’re still useful for computing something!
The way this is accomplished is by taking polynomials instead of formal power series. (

Lecture 13.

Estimates with the heat kernel: 2/28/18

In this part of the lecture, Cameron Darwin spoke.
First, we’ll generalize Definition 12.23.
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Definition 13.1. Let E be a Banach space and f : R+ → E be a function. Let S =
∑∞

k=0 ak(t) be a power series
valued in E (i.e. each at is a function R+→ E). We say that S is an asymptotic expansion for f if for all n, there
exists an `n such that if `≥ `n, there’s a constant C`,n such that for t sufficiently small,











f (t)−
∑̀

k=0

ak(t)











≤ C`,n|t|
n.

Proposition 13.2. Let kt be the heat kernel and ht be as in (12.18).

(1) There is an asymptotic expansion of for kt of the form

(13.3) kt(p, q)∼ ht(p, q)
�

Θ0 + tΘ1 + t2Θ2 + · · ·
�

,

where the Θn are smooth sections of S � S∗→ M ×M.
(2) (13.3) is valid in the Banach space of C r sections of S � S∗ for all r ≥ 0, and may be formally differentiated

in p, q, and t to obtain asymptotic expansions for derivaives of kt .
(3) The values of Θ j(p, p) can be computed from algebraic expressions in the metric and connection coefficients of

S, and the first term is Θ0(p, p) = 1.

If k′t is an approximate heat kernel of order m′, then there’s a C such that for small t,

(13.4) ‖kt − k′t‖Hm′ ≤ C tm′+1,

so by the Sobolev embedding theorem, if m′ > m+ n/2, we get a bound for the Cm norm:

(13.5) ‖kt − k′t‖Cm ≤ ‖kt − k′t‖Hm′ ≤ C tm′+1.

A similar analysis can be performed with

(13.6) ‖∇x1
· · ·∇xn

kt −∇y1
· · ·∇yn

k j
t‖

to bound it above.
Let Θ ∈ Γ (M ×M , S � S∗) and s ∈ Γ (M , S). Then we will use the notation

(13.7) (θ ` s)(p) :=

∫

M

θ (p, q)s(q)dq.

Lemma 13.8. For all sections Θ0, . . . ,Θ j of S � S∗,

(13.9)
�

ht(Θ0 + tΘ1 + · · ·+ t jΘ j) ` s
�

(p)
t→0
−→ Θ0(p, p)s(p)

and the convergence is uniform in p.

Lemma 13.10. For all ε,δ > 0, there’s a t0 such that for 0< t < t0 and all p ∈ RN ,

(13.11) 1− ε <
∫

Bδ(p)
ht(p, q)dq < 1.

This says that ht looks like a delta function near 0.

Corollary 13.12. For all α,β ,δ > 0, there’s a t0 such that for 0< t < t0,
�

�

�

�

�

∫

Bδ(p)
ht(p, q)dq− 1

�

�

�

�

�

< α

�

�

�

�

�

∫

Bδ(p)c
ht(p, q)dq

�

�

�

�

�

< β .

Given a continuous section s ∈ Γ (M , S), we’ll define a section es of S ×M → M ×M by

(13.13) |es(p, q)|= |Θ(p, q)s(q)−Θ(p, p)s(p)|.

TODO: what happened here? Why are we defining es via its norm?
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Anyways, by Lemma 13.8, es is uniformly continuous in p and q. In particular, for all ω> 0, there’s a δ > 0 such
that if d(p, q) < δ, then |es(p, q)| <ω. This implies that for all ε > 0, there’s a t0 independent of p such that for
t ∈ (0, t0),

(13.14)

�

�

�

�

�

∫

Bδ(p)c
ht(p, q)Θ(p, q)s(q)dq

�

�

�

�

�

<
ε

2
.

Finally, for all ε > 0, and independently of p and R, if

(13.15a)

�

�

�

�

�

∫

BR(p)
ht(p, q)dq− 1

�

�

�

�

�

< α

and

(13.15b) |Θ(p, q)−Θ(p, p)s(p)|< ε,

then

(13.16)

�

�

�

�

�

∫

BR(p)
ht(p, q)Θ(p, q)s(q)dq−Θ(p, p)s(p)

�

�

�

�

�

<
ε

2
.

The upshot of all of this is that we know what conditions to put on Θ0 such that ht(Θ0 + tΘ1 + · · ·+ t jΘ j) to
converge to a delta function. We’ll next discuss what else we need to ask of the Θi in order to ensure we get an
approximate heat kernel.

Lemma 13.17. Suppose we have two finite sequencesΘ0,Θ1, . . . , andΘ′0,Θ′1, . . . and that there’s an open neighborhood
U of the diagonal in M ×M such that for all i, Θi |U = Θ′i |U . Then kt ∼ ht(Θ0+ tΘ1+ · · · ) iff kt ∼ ht(Θ′0+ tΘ′1+ · · · ).

Proof sketch. Since M is compact, we can assume U is the set of points (p, q) ∈ M × M such that d(p, q) < ε.
Therefore

(13.18) ht(p, q) =
1

(4πt)n/2
exp

�

−
d(p, q)

4t

�

decays faster than any polynomial on U c , so only the stuff inside U matters. �

Therefore it suffices to construct these Θi in a neighborhood of the diagonal.

Definition 13.19. Let (M , g) be a compact Riemannian manifold.

• At a p ∈ M , the injectivity radius is the supremum of the set of radii r such that the exponential map
exp: Tp M → M is injective when restricted to Br(0) ⊂ Tp M .

• The injectivity radius of M is the infimum of the injectivity radii at all p ∈ M .

Let R be less than the injectivity radius of M ; then the neighborhood NR(∆) of ∆ ⊂ M ×M admits a cover by
charts which are in geodesic coordinates. Using a system of curoff functions for these charts, we can reduce the
problem to working in a single chart in geodesic coordinates.

TODO: something happened here that I missed and didn’t understand.
Using these estimates, we get

1
h

�

∂

∂ t
+ D2

�

(hs) =
1
h

�

h
∂ s
∂ t

hD2s+
�

∂ h
∂ t
+∆h

�

s− 2∇∇hs
�

=
1
h

�

h
∂ s
∂ t
+ hD2s+

rh
4g t

∂ g
∂ r

s+
h
t
∇r∂ /∂ r s

�

=
∂ s
∂ t
+ D2s+

r
4g t

∂ g
∂ r

s+
1
r
∇r∂ /∂ r s.

Then TODO: ???, and we’re trying to determine u, which is TODO. If

(13.20) u∼ u0 + tu1 + t2u2 + · · · ,

then TODO the estimate was erased before I could follow it or write it down. I’ll pick up taking notes where I can
next follow what’s going on. . .
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Let ϕ := g1/4D2u j and

(13.21) ψ(r, s) :=

∫ r

0

ϕ(ρ, s)dρ.

Then, the function [TODO: erased before I could write it down] is smooth, which is somewhat mysterious: Roe
asserts it, but it’s not immediately clear, and there doesn’t seem to be a way around it.

Remark 13.22. So now we have sections Θ j in a neighborhood of the diagonal, constructed from an inductive
sequenece of ODEs. The coefficients of the ODEs are smooth everywhere, including on the diagonal, so the theorem
we’re relying on asserts that we can solve a family of ODEs with parameters and obtain smooth solutions. In fact,
since the family is linear, we can write down the solutions explicitly with integration.

There’s a geometric picture of this, which relates asymptotic expansions to genuine Taylor expansions, but this
is harder. (

The last thing we’ll do is show that these asymptotic sums are actually approximate heat kernels. We can
compute

�

∂

∂ t
+ D2

�

�

ht(p, q)(Θ0(p, q) + · · ·+ t jΘ j(p, q)
�

= h

� j
∑

i=0

i t i−1ui + t i D2ui + t i−1 r
4g
∂ g
∂ r

ui + t i−1∇r∂ /∂ r ui

�

(13.23)

which is equal to TODO and therefore we can conclude that it’s an approximate heat kernel.
The last thing we asserted is that on ∆, Θi(p, p) can be computed using algebraic expressions in the metric,

connection coefficients, and finitely many derivatives of these things. This is obvious for Θ0 = 1, and only slightly
less obvious for Θ1: in synchronous coordinates, it’s also possible to see it explicitly. For general Θ j , the argument
is inductive.

Suppose that x p and xq are in geodesic coordinates; then, the Taylor expansion for the metric is

(13.24) g ∼ 1+
1
3

∑

i,p,q

Ripqi x
p xq +O(|x |3).

Since K =
∑

i,p Rippi , we have

(13.25) g1/4 ∼ 1−
1

12

∑

i,p,q

Ripqi x
p xq −

1
6

∑

i,p

K + · · ·

and therefore can give a few examples of the Θ j terms.

Θ0 = 1(13.26a)

Θ1(p, p) =
1
6
κ(p)−K(p).(13.26b)

Here K is the Clifford-contracted curvature.

Lecture 14.

Asymptotic expansion, I: 3/20/18

Dan spoke about the asymptotic expansion, in order to provide an additional perspective.
Let M be a closed Riemannian manifold. Then the heat equation for t > 0 and x , y ∈ M is

(14.1)
�

d
dt
+∆x

�

pt(x , y) = 0.

The kernel pt(x , y) is called the heat kernel. As t → 0, pt(–, y)→ δy , so it forms an approximation to the identity:

(14.2) lim
t→0

∫

M

f (x)pt(x , y) |dx |= f (y).

There’s something strange about (14.1): we’re mixing units of time and of length squared. In physics, this is solved
by inserting a constant, the specific heat, which has units that make everything type-check. For us, this says that,
approximately, T ∼ L2 in scaling. A similar phenomenon occurs in special relativity, where the constant is the
speed of light.
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Example 14.3. Let En denote n-dimensional Euclidean space. Then the heat kernel is

(14.4) pt(x , y) = (4πt)−n/2e−dE(x ,y)2/4t .

Any exponentiated quantity should be dimensionless, so length squared must be comparable to time. (

For a Dirac operator ∆ = D2, where D acts on sections of a spinor bundle S→ M , the heat kernel is section-
valued, a one-parameter family of sections of Hom(S, S).

If M is compact, we’re going to scale it (which is why we care about which units are comparable). In a
neighborhood of a point y that we’re interested in, we’ll consider an ε > 0 and scale distances near y by 1/ε,
and correspondingly time by 1/

p
ε. This has the effect of pushing everything else in M far away as ε→ 0, so the

geometry only sees things near y .
To make this precise, we can choose a neighborhood of y on which the exponential map is an isometry, then

replace its image with a much larger ball around 0 ∈ Ty M and glue. This defines a family of manifolds over
(0,∞): topologically, the fiber is just M , but its Riemannian metric has changed.

Example 14.5. For a simple example, suppose M = S1; then, as ε→ 0 we get longer and longer circles. (

When ε→ 0, the limit is precisely Ty M , with Euclidean structure induced from the Riemannian metric on M .
The bundle has a section given by y , and this means we obtain an origin on Ty M , so it’s an inner product space,
not just a Euclidean space.

We will then consider heat flow of a specific x ∈ M on each fiber of this bundle. This generates a path that
blows up as ε→ 0 (since we don’t see any x 6= y at 0), so we have a flow pt

ε(x , y). If we look at the diagonal and
let t = 1, this turns out to be a smooth function, hence has a Taylor expansion. In fact, this function is even, so the
Taylor expansion is only in terms of even powers of ε.

Then, after scaling back, we’ll recover the asymptotic expansion of the heat kernel.
Then, we can make the problem slightly fancier: we don’t just want y to be fixed. Instead, we consider the

family Y → [0,∞)× M , where over (–, y) we blow the metric up near y. There’s a canonical section of this
bundle sending (ε, y) 7→ y in the blowup by ε around y .

The map Y → [0,∞) × M is not a fiber bundle, because the fiber over 0 isn’t diffeomorphic (or even
homeomorphic) to the fiber at ε for any ε > 0. However, it is a surjective submersion, which is still nice.
Nonetheless, this class of families of manifolds contains a little weirdness: there’s a surjective submersion X → R
whose fiber is S1 over a negative number and S1 q S1 over a positive number. Over 0, it’s two lines.

Thus surjective submersions allow you to connect manifolds via paths. This perspective is very important
in algebraic geometry; there’s a conjecture that Calabi-Yau 3-folds are connected under a similar kind of paths.
There’s a process called deformation to the normal cone which is analogous to studying how a small circle around y
blows up as ε→ 0; this isa useful technique to prove analogues of index theorems in algebraic geometry.

Remark 14.6. Here we sketch a construction of the bundle X → R for a fixed y. Let Σy denote the one-point
compactification of Ty M ; then, there’s a map F : M → Σy which is the inverse to the exponential map inside a
small neighborhood of y and sends things far from y to the added point∞. Then, we define X ⊂ R×Σy ×M
with coordinates (ε, a, x) to be cut out by the equation F(x) = εa away from {0} × {∞}×M .

One must show this is a regular value, but it is, so this is a smooth manifold. We have metrics on M and R, and
get one on Σy induced from the inner product on Ty M , so X inherits a Riemannian metric — and in particular, so
do its fibers. (

To show that the function is smooth and even, one has to bring in analysis, making estimates such as

(14.7)
�

�

�k1
t (a)− |ε|

−nkεt/ε2(a/ε)
�

�

�≤ C |ε|−ne−c/4t .

This also gives you some concrete information about the asymptotic expansion, which is the case k1
t (0). Specifically,

(14.8) k1
t (0) = |ε|

−nkεt/ε2(0) +O
�

|e|−ne−c/t
�

.

Now set ε = t1/2; in particular,

(14.9) k1
t (0) = t−n/2kt1/2

t (0) +O
�

t−n/2e−c/t
�

.

This is the thing whose Taylor expansion we want.
TODO: after this I ceased to follow.
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Lecture 15.

Asymptotic expansion, II: 3/20/18

This part of the lecture was by Cameron. I’m really out of it right now, so these notes might not be so great.
Sorry about that.

Ultimately, to understand index theory on noncompact manifolds, we’ll need to study the heat equation as it
relates to the wave equation. Therefore we’re interested in the same kind of analysis we’ve been doing, but for the
wave equation, and will prove a similar localization result.

Proposition 15.1. Let R(R) denote the space of functions vanishing at infinity and D be a Dirac operator. Then the
function from R(R) to the space of C∞ integral kernels sending f 7→ f (D) is continuous.

The topology on the codomain is a Fréchet topology induced by all of the C k norms.

Proof. Let λ be an eigenvalue for D and Pλ be projection onto its eigenspace. If Kλ denotes the smoothings kernel
for Pλ, then the kernel for f (D) is given by

(15.2)
∑

λ

f (λ)Kλ.

We next claim that for all k, there’s a ck > 0 and an `(k) ∈ Z>0 such that for all λ,

(15.3) ‖Kλ‖k ≤ ck(1+ |λ|)`(k),

and `(k)≥ dim M/2+ k. The proof of this was not particularly enlightening and wasn’t presented.
Something more enlightening to prove: if {ψn} is an orthonormal basis for L2(S) such that D2ψn = λnψn, then

if ` > dim M/2, then

(15.4)
∑

n

1
(1+λn)`

<∞.

To prove this claim, we fix an N > 0. Then
∑

n≤N

1
(1+λn)`

=
∑

n≤N

‖ψn‖
2

(1+λn)`

=
∑

n≤N

1
(1+λn)`

∫

M

‖ψn(x)‖
2 dx

=

∫

M

∑

i

∑

n≤N

|〈ψn(x),σi(x)〉|
2

(1+λn)2
dx ,

where at each x , {σi(x)} is an orthonormal basis for Sx .
Now suppose

∑

anψn ∈W `. By the Sobolev embedding theorem, W ` ,→ C0 with the operator norm. An elliptic
estimate tells us ‖ψn‖W ` ≤ (1+λn)`, and so

(15.5)

�

�

�

�

�

∑

n

anψn(x)

�

�

�

�

�

x

≤











∑

n

anψn











C0

≤ C

�

∑

n

|an|
2(1+λn)`

�1/2

.

Let σ1, . . . ,σm be an orthonormal basis for Sx , and fix an N > 0. Then let

(15.6) an :=







〈ψn(x),σi〉x
(1+λn)`

, n≤ N

0, n> N .

Then

(15.7)

®

σi ,
∑

n≤N

anψn(x)

¸

x

=
∑

n≤N

an〈σi ,ψn(x)〉

=
∑

n≤N

|〈σi ,ψn(x)〉n|
2

(1+λn)`
.
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Because ‖σi‖= 1, the Cauchy-Schwarz inequality buys us

(15.8)

�

�

�

�

�

®

σi ,
∑

n≤N

aiψn(x)

¸

x

�

�

�

�

�

≤

�

�

�

�

�

∑

n≤N

anψn(x)

�

�

�

�

�

,

and because |an|
2 = |〈σi ,ψn(x)〉|

2/(1+λn)2`, then one of our previous estimates (TODO: which? probably (15.5))
implies that

(15.9)

�

�

�

�

�

∑

n≤N

anψn(x)

�

�

�

�

�

≤ C

�

∑

n≤N

|〈σi ,ψn(x)〉x |
2

(1+λn)`

�

.

Therefore

(15.10)

�

�

�

�

�

®

σi ,
∑

n≤N

anψn(x)

¸

x

�

�

�

�

�

=
∑

n≤N

|〈σi ,ψn(x)〉x |
2

(1+λn)`
≤ c

√

√

√

∑

n≤N

|〈σi ,ψn(x)〉x |
2

(1+λn)`
.

Therefore

(15.11)
1
C

√

√

√

∑

n≤N

|〈σi ,ψn(x)〉x |
2

(1+λn)2
≤ 1,

so summing over i,

(15.12)
∑

i

∑

n≤N

Ai,n(x)≤ (rank S)C2,

and therefore the infinity sum is bounded by (vol M)(rank S)C2. �

Next we’ll discuss finite propagation speed for the wave equation. We need to choose a sign convention in the
wave equation, and we choose (TODO: erased before I could write it down).

Remark 15.13. For the wave equation, we need to equate units of length and time. You can either judiciously
choose units, or end up with a constant with units length over time. This is the speed of the wave, and the
proposition below says that the waves travel at that finite speed.

The heat equation, by contrast, flows compactly supported functions into noncompactly supported functions
after any ε > 0. The upshot is that, according to the heat equation, heat flow travels infinitely fast (though it
doesdecay exponentially away from the heat source at small times). (

Proposition 15.14. For any s ∈ C∞c (S), the support of ei tDs lies within distance |t| from the support of s.

So we’ve normalized constants such that the speed of the wave is 1.
To prove Proposition 15.14, we’ll need an energy estimate. Recall that if ω is the 1-form defined by ω(X ) =

(c(X )st , st), where c(·) is the Clifford action, then

(15.15) (iDst , st) + (st , iDst) = −id∗ω.

Lemma 15.16 (Energy estimate). Let m ∈ M, R be less than the injectivity radius of M, and st be a solution of the
wave equation. Then for t ≥ 0,

d
dt

∫

BR−t (m)
|st |

2 ≤ 0.

Proof. First observe that at x ∈ BR(m),

∂

∂ t
(|st |

2) =
�

∂

∂ t
st , st

�

+
�

st ,
∂

∂ t
st

�

= (iDst , st) + (st , iDst) = −id∗ω.

Therefore

(15.17)
d
dt

∫

BR−t (m)
|st |

2 = −
∫

BR−t (m)
id∗ω−

∫

∂ BR−t (m)
(st , st) in∗vol,
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where in∗ denotes contracting with the normal vector field on ∂ BR−t(m). This is an instance of Stokes’ theorem.
Applying the Divergence theorem, this is equal to

(15.18) =

∫

∂ BR−t (m)
|−i(c(N)st , st)| in∗vol−

∫

∂ BR−t (m)
(st , st).

Cauchy-Schwarz shows the first term is bounded above by |st |
2, so the entire expression is nonpositive, as

desired. �

Proof of Proposition 15.14. Since exp(i(t1 + t2)D) = exp(i t1D)exp(i t2D), it suffices to prove this for small t0 > 0;
specifically, we’ll choose t0 less than the injectivity radius of M , and suppose that d(m, supp(s)) > t0. Then
∫

Bt0
(m)|st |

2 dvol= 0, so by Lemma 15.16,
∫

Bt0−t (m)
st = 0 for all t ∈ (0, t0). �

Definition 15.19. A C∞ function f : R→ R is called Schwarz if f and all of its derivatives are rapidly decreasing.
The Fréchet space of Schwarz functions is denoted S (R).

Proposition 15.20. The Fourier transform of a Schwarz function is Schwarz, and in fact the Fourier transform is an
invertible continuous linear map S (R)→S (R).

There are conventions in the definition of the Fourier transform; if we define

(15.21a) bf (ξ) :=

∫

R
e−i xξ f (x)dx ,

then the inverse to the Fourier transform is

(15.21b) f (x) =
1

2π

∫

R
ei xξ

bf (ξ)dξ.

Proposition 15.22. Let f ∈ S (R). Then for all x , y ∈ L2(S), we have

〈 f (D)x , y〉=
1

2π

∫

R

bf (x)〈eiξD x , y〉dξ

and

f (D) =
1

2π

∫

R

bf (ξ)eiξD dξ,

where we interpret these in a distributional sense.

Proof. Let s be an eigenfunction of D with eigenvalue λ. Then

〈 f (D)x , y〉= f (λ)〈x , y〉

= 〈x , y〉
1

2π

∫

R

bf (ξ)eiλξ dξ

=
1

2π

∫

R

bf (ξ)〈eiξD x , y〉dξ.

More generally, we could have a section s =
∑

λ sλ, and have to justify interchanging the sum and the integral.
The trick to do this is to integrate over small regions of the manifold, making everything finite enough to show
that the integral converges uniformly in λ, allowing us to switch the sum and the integral. �

Here’s the main result.

Theorem 15.23. Suppose f ∈ S (R) and bf is supported in [−c, c]. Then 〈 f (D)x , y〉 = 0 for sections x , y of S
whenever d(supp(x), supp(y))> c. Consequently, the smoothing kernel of f (D) is contained in a c-neighborhood of
the diagonal in M ×M. Consequently, the smoothing kernel of f (D) is contained in a
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Lecture 16.

Asymptotics of the counting function: 3/21/18

Kenny spoke about asymptotics of the counting function for eigenvalues of the Dirac operator.
Let M be a compact, oriented n-manifold with a Riemannian metric. We know its Laplacian has a discrete

spectrum and its eigenvalues tend to infinity.

Definition 16.1. The counting function N: R→ N sends λ to the number of eigenvalues of ∆ less than or equal to
λ.

Our first crude estimate will come from the Sobolev embedding theorem. Let λ′ be an eigenvalue with λ′ ≤ λ,
s1, . . . , sm be orthonormal eigenfunctions for λ′, and s :=

∑

aisi .
Let k := bn/2c. Then

|s(x)| ≤ ‖s‖C0 ≤ C‖s‖Hk

≤ C
�

‖s‖L2 + ‖Dks‖L2

�

≤ C
�

1+λk/2
�

‖s‖L2

≤ C
�

1+λk/2
�

�

∑

i

|ai |
2

�1/2

≤ C(1+λ)k/2
�

∑

i

|ai |
2

�1/2

.(16.2)

Supposing we take ai := si(x), we can rearrange (16.2) into

(16.3)
∑

i

|si(x)|
2 ≤ C2(1+λ)k.

Integrating out x over M , we conclude

(16.4) j ≤ C2(1+λ)k vol(M).

We will be able to do better, though, using traces of operators.

Trace-class operators Let H and H ′ be separable, infinite-dimensional Hilbert spaces, and choose orthonormal
bases {ei} and {e′i} for H and H ′, respectively.

Let A: H → H ′ be a bounded operator. If H and H ′ were finite-dimensional, we would have enough data to
represent A as a matrix; in this setting, we use matrix coefficients, which are more general.

Definition 16.5. Associated to i, j ∈ N, we define the matrix coefficient

ci j(A) := 〈Aei , e′j〉.

We will use these to define nice classes of operators.

Definition 16.6. With A, H, H ′ as above, the Hilbert-Schmidt norm of A is

‖A‖2
HS :=

∑

i, j

|ci j(A)|
2,

which may be infinite.

Proposition 16.7. ‖A‖HS is independent of the choice of bases for H and H ′.

Proof. We’re going to use the following identity a lot today:

(16.8) (x , y) =
∑

j

(x , e j)(y, e j).

For example, it implies

(16.9)
∑

i, j

|ci j(A)|
2 =

∑

i, j

〈Aei , e′j〉〈e
′
j , Aei〉=

∑

i

‖Aei‖
2,

so it’s independent of the basis of H ′. Next we observe that, by definition, ci j(A) = c ji(A∗), so ‖A‖HS = ‖A∗‖HS. The
same reasoning as above tells us this quantity also doesn’t depend on the basis for H. �
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Definition 16.10. If ‖A‖HS is finite, A is called a Hilbert-Schmidt operator.

The idea is that these are the operators which can be represented by matrices.
These operators have a whole bunch of nice properties.

Proposition 16.11.

(1) The Hilbert-Schmidt norm is induced by the following inner product on B(H, H ′):

(16.12) 〈A, B〉HS :=
∑

i, j

ci j(A)ci j(B).

(2) The space of Hilbert-Schmidt operators is a Hilbert space with respect to this inner product.
(3) For any A∈ B(H, H ′), ‖A‖B(H,H ′) ≤ ‖A‖HS.
(4) Hilbert-Schmidt operators are compact.
(5) If A is Hilbert-Schmidt and B is bounded, AB and BA are Hilbert-Schmidt.

You can follow your nose to prove some of these but compactness is tricky: the idea is that your infinite matrix
is a limit of finite matrices, which are compact; then one translates this into rigorous language.

Definition 16.13. An operator T ∈ B(H) is called trace-class if there are two Hilbert-Schmidt operators A and B
whose product is T . In this case its trace is tr T := 〈A∗, B〉HS.

Remark 16.14. Using (16.12), one can quickly compute that the trace is

(16.15) tr(T ) =
∑

j

c j j(T ),

so it’s the sum of diagonal elements, as expected. But the intrinsic perspective will also be helpful. (

One useful perspective is that trace-class operators are a subspace of Hilbert-Schmidt operators, which are a
subspace of compact operators, which are a subspace of bounded operators. The matrix coefficients of a trace-class
operator form an `1 sequence, of a Hilbert-Schmidt operator form an `2 sequence, of a compact operator form a c0
sequence, and of a bounded operator form an `∞ sequence. Thus this follows from the inclusions

(16.16) `1 ⊂ `2 ⊂ c0 ⊂ `∞.

Proposition 16.17. Let T be a self-adjoint, trace-class operator with eigenvalues λi . Then tr(T ) =
∑

λi .

Again, this is a generalization of something we knew in finite dimension.

Proposition 16.18. Let T, B : H → H be bounded operators, and assume either

• T is trace-class, or
• both T and B are Hilbert-Schmidt.

In this case, tr(T B) = tr(BT ).

In other words, trace-class operators are an ideal inside the algebra of bounded operators under composition.
Hilbert-Schmidt operators are also an ideal, as are compact operators.

Proof. We know T B and BT are trace-class from above. Choose an orthonormal basis {ei} for H. Then we can
compute using (16.8):

tr(T B) =
∑

i

〈T Bei , ei〉

=
∑

i

〈Bei , T ∗ei〉

=
∑

i, j

ci j(B)ci j(T )

= tr(BT ). �

For us, the most important Hilbert-Schmidt and trace-class operators arise from integral operators on manifolds.
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Proposition 16.19. Let M be a compact manifold and ω be a smooth volume form on M. If k : M × M → C is
continuous and A: L2(M)→ L2(M) defined by

(16.20) Au(m) :=

∫

M

k(m, m′)u(m′)ωm′

is bounded, then A is Hilbert-Schmidt and

(16.21) ‖A‖2
HS =

∫∫

|k(m, m′)|2ωmωm′ .

Proof. Let {ei} be an orthonormal basis for L2(M). Then

‖A‖2
HS =

∑

j

‖Ae j‖
2
L2

=
∑

j

∫

M

�

�

�

�

∫

M

k(m, m′)e j(m
′)ωm′

�

�

�

�

2

ωm

=

∫

M

∑

j

�

�

�

�

∫

M

k(m, m′)e j(m
′)ωm′

�

�

�

�

2

ωm.

Using (16.8),

(16.22)
∑

j

�

�

�

�

∫

M

k(m, m′)e j(m
′)ωm′

�

�

�

�

2

=

∫

M

|k(m, m′)|2ωm′ ,

so

�(16.23) ‖A‖2
HS =

∫∫

|k(m, m′)|2ωmωm′ <∞.

If we make k better, we make A better.

Proposition 16.24. With M and A as in Proposition 16.19, if k is smooth, then A is trace-class, and

tr(A) =

∫

M

k(m, m)ωm.

Proof. First suppose A= BC for Hilbert-Schmidt operators B and C represented by continuous kernels kB and kC ,
respectively. Then

(16.25) k(m, m′′) =

∫

M

kB(m, m′)kC(m
′, m′′)ωm′ .

(This is akin to the formula for matrix multiplication in coordinates.)
For an integral operator with continuous kernel, we’ve already found an explicit formula for the Hilbert-Schmidt

norm, namely (16.23). Therefore, by a polarization identity, this expression determines the inner product on the
space of integral operators with continuous kernel:

(16.26) tr(A) = 〈B∗, C〉HS =

∫∫

kB(m, m′)kC(m
′, m)ωmωm′ =

∫

M

k(m, m)ωm.

It therefore suffices to prove that every smoothing operator A factors as A= BC , where B and C are as above.
We’ve already seen that (1+∆)−N is an integral operator with continuous kernel for N sufficiently large, and that
it’s Hilbert-Schmidt. Therefore we can let B := (1+∆)−N and C := (1+∆)N A. �

Thus far we’ve only dealt with scalar functions, but for applications we’ll need to consider operators on spaces
of sections of the vector bundle S � S∗→ M . Most of the results go through quite nicely.

Proposition 16.27. Let A be a smoothing operator on L2(S) with kernel k, where S is a complex vector bundle with a
Hermitian metric. Then A is trace-class and

tr(A) =

∫

M

tr k(m, m)ωm.
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Roe suggests proving this using a partition of unity.

Proposition 16.28. Let A: H → H ′ be an operator and {ei} be a basis of H ′. Then A is Hilbert-Schmidt iff {‖Aen‖H ′} ∈
`2(R).

This is the idea of approximating by matrices we mentioned before. You can use this to prove that if T is a
bounded operator, ‖TAen‖H ′ ≤ C‖Aen‖H ′ , so TA is also Hilbert-Schmidt, and this is a somewhat more flexible
approach for sections of a bundle.

Lecture 17.

Geometry from the spectrum of the Laplacian: 3/21/18

In this part of the lecture, Ivan spoke. Throughout this section, M will be a closed, oriented n-manifold, ∆ will
denote the Laplacian on L2(M), and λ1,λ2, . . . will be its eigenvalues, in nondecreasing order. The eigenvalue
counting function for ∆ will be denoted N. The theme of this lecture is the relationship between the spectrum of
∆ and the geometry of M .

Recall that if S → M is a Clifford bundle with Dirac operator D and Laplacian ∆ = D2, then the heat kernel
kt ∈ C∞M (S � S∗) is the kernel for the operator e−t∆. We’ve seen the asymptotic expansion of the heat kernel,

(17.1) kt(p, q)∼t→0+ ht(p, q)(Θ0(p, q) + tΘ1(p, q) + · · ·)

on C k
M (S � S∗) for every k. In particular, on the diagonal,

(17.2) kt(p, p)∼t→0+
1

(4πt)n/2

�

1+
t
6
(κ(p)1−K(p)) + · · ·

�

.

Here κ is the scalar curvature and K is the Clifford-contracted curvature.
Taking S := Λ∗(T ∗M ⊗C)→ M with D := d+ d∗, then restricting to Λ0(T ∗M ⊗C)→ M , (17.2) simplifies to

(17.3) kt(p, p)∼t→0+
1

(4πt)n/2

�

1+
t
6
κ(p) + · · ·

�

.

This asymptotic expansion is uniform in p, so we can integrate over M , obtaining

(17.4)

∫

M

kt(p, p)dp ∼+t→0

1
(4πt)n/2

�

vol(M) +
t
6

∫

M

κ(p)dp+ · · ·
�

.

Proposition 17.5. The spectrum of ∆ determines vol(M) and the total scalar curvature
∫

M κ(p)dp. Bu the Gauss-
Bonnet formula, if dim M = 2, then it determines the topology.

This follows from the previous calculation.

Remark 17.6. The question of whether the spectrum determines M up to isometry is the subject of a famous paper
by Mark Kac called “Can you hear the shape of a drum?” The idea is that the frequencies produced by a drumhead
arise as eigenvalues of its Laplacian. There is a rich history of research; the original question has a negative answer,
but the counterexamples are beautiful too, relating to self-dual lattices. One can also get stronger statements by
twisting the Laplacian. (

Theorem 17.7 (Weyl’s asymptotic formula).

(17.8a) N(λ)∼λ→∞
vol(M)λn/2

Γ (n/2+ 1)(4π)n/2
.

Equivalently,

(17.8b) lim
λ→∞

λ−n/2N(λ) =
vol(M)

Γ (n/2+ 1)(4π)n/2
.

The gamma function arises because one is looking at the volume of an n-dimensional unit ball.

Example 17.9. Let M := S1 with length 2π. Then∆ = − ∂ 2

∂ θ2 . The theory of Fourier series tells us that {eiθn | n ∈ Z}
is an eigenbasis for L2(S1), with eigenvalues 0,1, 1,4, 4,9, 9, . . . . Hence the counting function is

(17.10) N(λ) = 1+ 2bλ1/2c.
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The right-hand side of (17.8a) is

(17.11)
vol(M)λn/2

Γ (n/2+ 1)(4π)n/2
=

2πλ1/2

Γ (3/2)2π1/2
= 2

p

λ,

and clearly 1+ 2b
p
λc ∼λ→∞ 2

p
λ. (

Example 17.12. Let M = R2/(2πZ)2, which is a flat torus; its Laplacian is

(17.13) ∆= −
∂ 2

∂ θ1
2
−
∂ 2

∂ θ2
2

.

The set {exp(i(θ1n+ θ2m)) | (n, m) ∈ Z2} is an eigenbasis for L2(M), and its eigenvalues are n2 +m2 for m, n ∈ Z.
Therefore

(17.14) N(λ) = #{m, n ∈ Z | m2 + n2 ≤ λ}.

Finding a closed form for this function is a classical problem, called Gauss’ circle problem. A closed form does exist,
but it’s messy. Nonetheless, we can see vaguely how it behaves.

The right-hand side of (17.8a) is

(17.15)
4π2λ

Γ (2)4π
= πλ,

which is in particular the area of a disk of radius
p
λ. One can show that N(λ) = πλ+ E(λ), for some E(λ) which

is o(λ) (i.e. limλ→∞ E(λ)/λ= 0). (

Proof of Theorem 17.7. First, an outline of the proof.

(1) We’ll study N(λ) using
∑

j e−tλ j .
(2) If f : [0, 1]→ R is continuous, we can define ϕ f : R+→ C by

(17.16) ϕ f (t) :=
∑

j

f (e−tλ j )e−tλ j .

(3) Then, we’ll show that ϕ f (t) has a few nice properties: first, that for a suitable choice of f we can use it to
bound N; and second, that limt→0+ tn/2ϕ f (t) will exist and have a concrete expression.

(4) We will use this to show that limλ→∞λ
−n/2N(λ) exists and is given by (17.8a).

The fact that

(17.17a)
∑

j

e−tλ j ∼t→0+
1

(4πt)n/2
(vol(M) + · · ·)

implies

(17.17b) lim
t→0+

tn/2
∑

j

e−tλ j =
vol(M)
(4π)n/2

.

Therefore if A := vol(M)/(4π)n/2 and α := n/2, we want to show that

(17.18) lim
λ→∞

λ−αN(η) =
A

γ(α+ 1)
.

Lemma 17.19.

lim
t→0+

tαϕ f (t) =
A
Γ (α)

∫ ∞

0

f (e−s)sα−1e−s ds.

Proof. By the Stone-Weierstrass theorem, it suffices to prove the lemma when f is a polynomial. In fact, since the
result is linear in f , we can just prove it for f (x) = xn. In this case the left-hand side of Lemma 17.19 behaves as

(17.20) tαϕ f (t) = tα
∑

j

e−t(n+1)λ j −→t→0+ A(n+ 1)−α,
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and the right-hand side behaves as

(17.21)
A
Γ (a)

∫ ∞

0

e−s(n+1)sα−1 ds =
A

Γ (α)(n+ 1)α

∫ ∞

0

e−esesα−1 des

Γ (α)

= A(n+ 1)−α,

where es := (n+ 1)s. �

For 0 < r < 1, let fr : [0,1] → R be defined to be 0 on [0, r/e], 1/x on [1/e, 1], linear on [r/e, 1], and
continuous. What can we say about ϕ fr (t)? First, the sum

(17.22) ϕ fr
(t) :=

∑

j

fr(e
−tλ j )e−tλ j

is finite!
If e−tλ j ∈ [1/e, 1], then fr(e−tλ j )e−tλ j = 1, and if e−tλ j ∈ [r/e, 1/e], then fr(e−tλ j )e−tλ j ≤ 1. In particular,

(17.23) ϕ fr

�

1
λ

�

=
∑

j

fr

�

e−λ j/λ
�

e−λ j/λ,

which means the following are equivalent:

• λ j ≤ λ,
• e−λ j/λ ≥ 1/e, and
• fr(e−λ j/λ)e−λ j/λ = 1.

Therefore

(17.24) N(λ)≤ ϕ fr

�

1
λ

�

.

Now, for r ∈ (0, 1), we consider ϕ fr
(1/rλ). A similar analysis shows the following are equivalent:

• fr(e−λ j/rλ)> 0,
• e−λ j/rλ > r/e = e−1+ln r , and
• λ > (1− ln r)rλ > λ j .

Since (1+ ln r)r < 1, this combines with (17.24) to prove

(17.25) ϕ fr

�

1
rλ

�

≤N(λ)≤ ϕ fr

�

1
λ

�

.

Therefore

limsup
λ→∞

λ−αN(λ)≤ lim
λ→∞

λ−αϕ fr

�

1
λ

�

=
A
Γ (α)

∫ 1−ln r

0

fr(e
−s)sα−1e−s ds

≤
A
Γ (α)

∫ 1−ln r

0

sα−1 ds

=
A(1− ln r)α

Γ (α+ 1)
.

Therefore

(17.26) lim sup
λ→∞

λ−αN(λ)≤
A

Γ (α+ 1)
.
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Using the other inequality in (17.25),

lim inf
λ→∞

λ−αN(λ)≥ lim
λ→∞

ϕ fr

�

1
rλ

�

=
rαA
Γ (α)

∫ 1−ln r

0

fr(e
−ssα+1e−s ds

≥
rαA
Γ (α)

∫ 1

0

sα−1 ds

=
rαA

Γ (α+ 1)
.

we conclude

(17.27) lim inf
λ→∞

λ−αN(λ)≥
A

Γ (α+ 1)
,

so in fact

(17.28) lim
λ→∞

λαN(λ) =
A

Γ (α+ 1)

as desired. �

If we’re interested in sections of a Clifford bundle S→ M rather than functions, the same techniques apply, and
we obtain the asymptotic

(17.29) N(λ)∼λ→∞
vol(M) rank(S)λn/2

(4π)n/2Γ (n/2+ 1)
.

Lecture 18.

The harmonic oscillator: 3/28/18

Today, Sebastian spoke about the harmonic oscillator on R.
Recall that the Dirac operator on S1 = R/2πZ is D := i d

dx . Fourier theory tells us this has a discrete spectrum
and finite-dimensional eigenspaces. Everything is nice.

But if we try to set this up on a noncompact manifold, such as R, the Fourier series is replaced with the Fourier
transform. Therefore the Dirac operator has a continuous spectrum, and its “eigenfunctions” are harder to speak
about (in particular, they’re not L2). But there is still a spectral decomposition.

From a physics perspective, the issue manifests as propagating waves that are noncompactly supported (e.g.
infinitely many peaks), hence aren’t L2. One way to fix this is to add a potential to the Dirac operator, which
bounds the low-energy solutions. One can then hope to recover a discrete spectrum.

Definition 18.1. The harmonic oscillator is the unbounded operator H : S (R)→S (R) sending

ψ 7−→
�

−
d2

dx2
+ a2 x2

�

ψ,

for some a > 0.

One can describe this in terms of the annihilation operator

(18.2a) A := ax +
d

dx

and the creation operator

(18.2b) A∗ := ax −
d

dx
.

Using integration by parts, you can prove these are adjoints.
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Namely,

AA∗ψ=
�

ax +
d

dx

�

�

axψ−ψ′
�

= a2 x2ψ+ aψ+ axψ′ − axψ′ +ψ′′

=

�

a2 x2 −
d2

dx2

�

ψ+ aψ

= (H + a)ψ.

This is one of several canonical commutation relations between these operators: others you can prove yourself are
A∗A= H − a, [A, A∗] = 2a, [H, A] = −2aA, and [H, A∗] = 2aA∗. An algebra generated by operators satisfying these
relations is called a CCR algebra.

Definition 18.3. The ground state of H is the ψ0 ∈ L2(R) with Aψ0 = 0 and ‖ψ0‖= 1.

This implies that 0= A∗Aψ0 = (H − a)ψ0, so

(18.4) Hψ0 = aψ0.

H is nice enough that we can explicitly solve this:

0−=
�

ax +
d

dx

�

ψ0

0= axψ0 +ψ
′
0

ψ0 = Ce−ax2/2,

and requiring ‖ψ0‖= 1, we get C = a1/2π1/4.

Definition 18.5. The excited states are

ψk =
1

(2ka)1/2
Akψk−1,

for k ≥ 1.

Lemma 18.6. Each ψk ∈ S (R) and has norm 1. Moreover, Hψk = (2k+ 1)aψk.

Proof. You can just check inductively, e.g.

Hψk =
1

(2ka)1/2
HA∗ψk−1

=
1

(2ka)1/2
(A∗H + 2aA∗)ψk−1

=
1

(2ka)1/2
((2k− 1)aA∗ + 2aA∗)ψk−1

= (2k+ 1)a
1

(2ka)1/2
A∗ψk−1

= (2k+ 1)aψk.

The base case is (18.4). �

Lemma 18.7. There is a degree-k polynomial hk(x) with positive leading coefficient such that

ψk(x) = hk(x)e
−ax2/2.

Again the proof is by induction. These hk are (up to rescaling) the Hermite polynomials. This implies in particular
that the ψk span the space P of maps x 7→ p(x)e−ax2/2, where p ∈ R[x].

Proposition 18.8. P ⊂ L2(R) is dense.

Proof. Without loss of generality, we take a = 1, and let f j := x je−x2/2. Then

‖ f j‖
2 =

∫ ∞

−∞
x2 je−x2

dx .
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Letting y := x2,

=

∫ ∞

0

y je−y dy

= Γ
�

j +
1
2

�

≤ j!.

Since

(18.9) eiλx−x2/2 =
∞
∑

j=0

(iλ) j

j!
f j(x),

and the jth term has L2-norm bounded above by

(18.10) |λ| j · ( j!)−1 · ( j!)1/2 ≤ |λ| j · ( j!)−1/2.

Since each f j ∈ P , eiλx−x2/2 ∈ P .

Suppose f ∈ P
⊥

. Then

(18.11) 0= 〈 f , eiλx−x2/2〉=
∫ ∞

−∞
f (x)eiλx−x2/2 dx .

This is the Fourier transform of f (x)e−x2/2, so by Plancherel’s theorem, f (x)e−x2/2 vanishes almost everywhere,
and therefore so does f (x). �

This all looked like a bunch of analysis, so what have we accomplished? Actually something cool: L2(R) admits
a decomposition into orthogonal, one-dimensional subspaces for H with discrete spectrum tending to infinity. To
the eyes of spectral theory it looks a lot like a Dirac operator on a compact manifold! So we can work through the
same story about the heat kernel and all of that.

Lemma 18.12. Let u ∈ L2(R). Then, u ∈ S (R) iff ak := 〈ψk, u〉 is rapidly decreasing.

Proposition 18.13. Let f be a bounded function on σ(H). Then f (H) is defined and is a bounded operator on L2(R).
The map f 7→ f (H) is a ring homomorphism from bounded functions on σ(H) to B(L2(R)), and f (H) maps S (R) to
S (R).

In this setting we have the heat equation

(18.14)
∂ u
∂ t
+Hu= 0.

The above Hilbert space theory implies the existence of a solution operator e−tH . Moreover, there is a heat kernel
kH

t ∈ S (R×R) such that

(18.15) e−tHu(x) =

∫

R
kH

t (x , y)u(y)dy,

as in the compact case, and again it’s characterized by the following properties.

(1) kH
t is Schwarz.

(2) kH
t satisfies the heat equation.

(3) kH
t tends to a δ-function as t → 0.

In our proof of the index theorem, we will need an expression for u(x , t) := kH
t (x , 0). We will guess that it’s of the

form α(t)exp(−(1/2)β(t)x2), which, through the heat equation, implies that

(18.16)
β̇ = 2(α2 − β2)

α̇= −βα,

and β(t)∼ 1/t as t → 0. Therefore as t → 0,

(18.17) u(x , t) =
1
p

4πt
e−x2/4t ,
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and therefore

(18.18)
1
p

4πt

∫

e−x2/4ts(x)dx
t→0
−→ s(0).

This, plus a lot more computation, yields the following result.

Proposition 18.19 (Mehler’s formula).

u(x , t) =
√

√ a
2π sinh(at)

exp

�

−ax2 coth(at)
2

�

.

The heat kernel is the product of this and the term

(18.20) exp

�

−a(x2 + y2) coth(2at) + 2 csch(2at) · x y
a

�

.

It suffices to check that

(18.21) e−taψ0(x) =

∫

kH
t (x , y)ψ0(y)dy,

which is involved but simple in concept. Then, one can address the ψk by the prefactor A∗, though there are details
to be understood.

Remark 18.22. The expression in Proposition 18.19 makes sense for some complex a, except if a is a pole for
u(x , t). This analytic continuation is not immediate, but will be important in the proof of the index theorem.
Concretely, there’s an open neighborhood of R in C on which the function is holomorphic. (

Lecture 19.

Witten’s deformation of the de Rham complex: 3/28/18

These are Arun’s lecture notes for his lecture on the second part of Chapter 9 in Roe’s book.
Throughout (M , g) is a complete Riemannian manifold and h: M → R is a smooth function.

Remark 19.1. Recall that if M is compact, we can define a Clifford bundle and Dirac operator using Hodge theory:
let S := Λ∗(T ∗M)⊗C→ M , which is Z/2-graded by mod 2 degree. This has an action by C`(T M): if v ∈ Γ (T M)
and ϕ ∈ Γ (S), then

(19.2) v ·ϕ := v∨ ∧ϕ − v ùϕ.

The Dirac operator is d+ d∗, and D2 = dd∗ + d∗d is the Hodge Laplacian. (

Today, we’re going to use h to deform this story.

Remark 19.3. Before we do so, we need to remark on a sign convention. Roe defines the interior product as

(19.4) ιξω := (−1)n|ω|+n+1?(ξ∧ ?ω),

while I’m used to the opposite sign in front. This has some unusual results; I tried to work out the differences and
got confused. Using this definition, [ιξ,εη] = −〈ξ,η〉, which again is the opposite sign from what I’m used to. One
consequence of this is that the adjoint of εξ is −ιξ.

TODO: double-check this if time. (

Definition 19.5. Let s ∈ R The perturbed exterior derivative ds : Ω∗(M)→ Ω∗+1(M) given by h is

(19.6) ds := d+ εs dh.

It also has the formula dsω= e−shd(eshω). Its adjoint is

(19.7) d∗s := d∗ − ιs dh,

which has the formula d∗sω= eshd∗(e−shω).
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Hence the perturbed de Rham-Dirac operator is

(19.8) Ds := ds + d∗s = D+ sR,

where R := εdh − ιdh.
Recall that the Hessian of f , H f ∈ Sym2(T ∗M), is the form given in coordinates by the matrix of partial

derivatives of h in a synchronous orthonormal frame.

Lemma 19.9. For any X , Y ∈ Tx M,

(19.10) H f (X , Y ) = (LXLY f )(x)−L∇X Y ( f ).

Proof. �

Definition 19.11. Define the operator Hh ∈ End(Λ∗(T ∗M)) by

Hh := −Ldh − (Ldh)
∗.

If e ∈ T M , let Le, Re ∈ End(Λ∗(T ∗M)) be defined by left and right Clifford multiplication by e, i.e. e ·ω and
(−1)|ω|ω · e, so that [Le, Re′] = 0.

Lemma 19.12. If {ei} is a local orthonormal frame, then

Hh :=
∑

i, j

Hh(ei , e j)Lei
Re j

.

I wasn’t able to show this — it should boil down to a computation.

Lemma 19.13.

(1) R2 = |dh|2.
(2) [R, D] = Hh.

Since R and D are odd, this is a supercommutator.

Proof. We make use of the fact that [ιξ,εη] = −〈ξ,η〉. Thus

R2 = (εdh − ιdh)(εdh − ιdh)

= ε2
dh

=0

− (ιdhεdh + εdhιdh)
[ιdh,εdh]

+ ι2dh

=0

= 〈dh, dh〉= |dh|2.

For the second part,

[R, D] = [εdh − ιdh, d+ d∗]

= [εdh, d] + [εdh, d∗]− [ιdh, d]− [ιdh, d∗].

Since dh is exact, [εdh, d] = 0, and therefore its adjoint −[ιdh, d∗] = 0. Cartan’s formula tells us that [ιη, d] =Lη,
and therefore [εdh, d∗] = −(Lη)∗. �

Corollary 19.14.
D2

s = D2 + s2|dh|2 + sHh.

Proof. Again, this is a quick computation:

�(19.15) D2
s = D2 + sDR+ sRD

s[R,D]

+s2R2 = D2 + sHh + s2|dh|2.

Example 19.16. Consider Euclidean space En (Rn with the standard metric), and let

(19.17) h :=
1
2

∑

λ j x
2
j .

In coordinates, D2 = −
∑

∂ 2
j , |dh|2 =

∑

(λ j x
j)2, andHh is

∑

λ j Z j , where Z j : Λ
∗(T ∗En)→ Λ∗(T ∗En) is−[ιdx j ,εdx j ],

the operator which on a basis element dx I := dx i1 ∧ · · · ∧ dx im is equal to 1 if j ∈ I and −1 otherwise. TODO: is
that right?
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Therefore by Corollary 19.14, the perturbed Laplacian is

(19.18) D2
s =

∑

j

�

−∂ 2
j + s2(λ j x

j)2 + sλ j Z j

�

.

The first two terms look just like the harmonic oscillator. (

Proposition 19.19. With En and h as above, then for s > 0, there’s a basis of L2(Rn) of smooth, rapidly decaying
eigenfunctions for D2

s , and the eigenvalues are

(19.20) s
∑

j

�

|λ j |(1+ 2p j) +λ jq j

�

,

where p j = 0,1, 2, . . . and q j ∈ {±1}. Restricted to k-forms exactly k of the q j act as +1.

Proof. Let

(19.21) Yj := −∂ 2
j + s2λ2

j (x
j)2,

which is a harmonic oscillator for x j .

Lemma 19.22. [Zi , Yj] = 0, and in particular they can be simultaneously diagonalized.

As we saw in the first half of this chapter,
∑

j Yj is essentially self-adjoint with a discrete spectrum, and its
eigenvalues are

(19.23) s
∑

j

|λ j |
�

1+ 2p j

�

,

with multiplicity dimΛ∗(T ∗En) = 2n. Each Z j acts on these eigenspaces by an involution, hence has ±1-eigenspaces.
If Z j acts by q j ∈ {±1}, we get a factor of sλ jq j , so the eigenvalue of something in this eigenspace for

∑

Yj and the
q j-eigenspace for Z j is the formula in (19.20).

TODO: what about if we act on k-forms? �

Functional calculus on noncompact manifolds Let D be a Dirac operator (the results of this section also apply
to generalized Dirac operators) on M . We’ll describe a way to build, from a suitably regular function f , an operator
f (D), such that the assignment f 7→ f (D) is a ring homomorphism with nice properties analogous to the compact
case we’ve already discussed. One way to do this is to invoke the spectral theorem for self-adjoint unbounded
operators, but following Roe, we’ll use finite propagation of solutions to the wave equation

(19.24)
∂ s
∂ t
= iDs

s(0) = s0.

Proposition 19.25. Let s0 ∈ C∞0 (M). Then (19.24) has a unique solution, and for all t, s(t) is smooth and compactly
supported.

Proof. Existence: pick a t0 > 0; we’ll construct a solution for all t with |t| < t0. Let K := supp(s0) and U be
a t0-neighborhood of K. We can isometrically embed U into a closed manifold M ′: let X ⊂ M be a compact
submanifold, possibly with boundary, containing U , and let M ′ be the double of X . This construction takes the
Clifford bundle S→ M and makes another Clifford bundle S′→ M ′, such that the embedding i : U ,→ M ′ induces
an isomorphism of Clifford bundles i∗S′ ∼= S|U . Thanks to hard work from previous sections, we know the wave
equation has solutions s(t) on M ′ with propagation speed 1, so for |t| < t0, supp(s(t)) ⊂ U , and therefore s(t)
makes sense on M too.

Uniqueness follows in a similar way: if we have two solutions s(t), s′(t), they must agree for t < t0, because we
proved uniqueness for the heat equation on closed manifolds. �

Therefore the solution operator ei tD : C∞c (S)→ L2(S) exists and is unitary. By density, it extends to a unitary
operator on all of L2(S).

Definition 19.26. For an f ∈ S (R), we define

f (D) :=
1

2π

∫

R

bf (t)ei tD dt.
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Because f is Schwarz, this converges weakly, i.e.

(19.27) 〈 f (D)x , y〉=
1

2π

∫

R

bf (t)〈ei tD x , y〉dt :

it suffices to prove this on an eigenbasis for D, where it reduces to the formula for the inverse Fourier transform.

Proposition 19.28.

(1) The assignment f 7→ f (D) is a ring homomorphism S (R)→ B(L2(S)): the former as a ring under pointwise
multiplication, and the latter under composition.

(2) ‖ f (D)‖B(L2(S)) ≤ sup| f |.
(3) If f (x) = x g(x), then f (D) = Dg(D).

Proof. We reduce to closed manifolds, where this proposition is not new.
It suffices to assume bf is compactly supported, because such f are dense in S (R), and let supp(bf ) ⊂ [−t0, t0].

Let s ∈ C∞0 (S) and K = supp(s). As in the previous proof, we can construct a closed manifold M ′ and an isometric
embedding of a t0-neighborhood U of K into M ′ together with a Clifford bundle S′→ M ′; let D′ denote its Dirac
operator.

We showed that the wave equation on M has propagation speed 1, and hence f (D)s is supported in U and is
equal to f (D′)s. Since we know the proposition for f (D′)s, since M ′ is closed, we also know it for f (D)s. Since
such s are dense in L2(S), the result follows. �

Remark 19.29. Part (2) implies that f 7→ f (D) extends uniquely to a map C0(R)→ B(L2(S)); here C0(R) denotes
the space of continuous functions vanishing at∞with the sup norm, which containsS (R) as a dense subspace. (

Lecture 20.

The Lefschetz fixed-point theorem: 4/4/18

These are Riccardo’s notes on his talk on the Lefschetz formula.
In this chapter we will find our first example of a topological invariant defined by elliptic operators. The topo-

logical invariance will come from a pairwise cancellation of eigenspaces, which is sometimes called supersymmetry.

Prerequisites.

Definition 20.1. Let S be a bundle of Clifford modules over a Riemannian manifold M . S is a Clifford bundle if it
is equipped with a Hermitian metric and compatible connection such that

(1) the Clifford action of each vector v ∈ TmM on Sm is skew-adjoint, that is, (v · s1, s2) = −(s1, v · s2), and
(2) the connection on S is compatible with the Levi-Civita connection on M , in the sense that ∇X (Y s) =
(∇X Y )s+ Y∇X s for all vector fields X , Y and sections s ∈ C∞(S).

Definition 20.2. The Dirac operator D of a Clifford bundle S is the first-order differential operator on C∞(S)
defined by the following composition:

(20.3) C∞(S)→ C∞(T ∗M ⊗ S)→ C∞(T M ⊗ S)→ C∞(S),

where the first arrow is given by the connection, the second by the metric (identifying T M and T ∗M), and the
third by the Clifford action on each fiber.

Definition 20.4. Let M be an n-dimensional compact oriented Riemannian manifold, and let S0, S1, . . . , Sk be a
sequence of vector bundles over M , equipped with Hermitian metrics and compatible connections. Suppose given
differential operators d j : C∞(S j)→ C∞(S j+1) in such a way that d j+1d j = 0, i.e. that

(20.5) C∞(S0)
d
−→ C∞(S1)

d
−→ C∞(S2)→ ·· · → C∞(Sk)

is a complex. It will be called a Dirac complex if S =
⊕

S j is a Clifford bundle whose Dirac operator D equals
d + d∗.

Proposition 20.6. Let T and B be bounded operators on a Hilbert space H, and suppose that either T is trace-class,
or both T and B are Hilbert-Schmidt. Then T B and BT are trace-class, and tr(T B) = tr(BT ).



62 M392C (Index theory) Lecture Notes

Theorem 20.7. Let A be a smoothing operator on L2(S), S vector bundle over M, compact smooth manifold, with
kernel k. Then A is of trace-class, and

(20.8) tr(A) =

∫

etr(k(m, m))vol(m),

where etr: Sm ⊗ S∗m→ C denotes the canonical trace on the endomorphism of the finite-dimensional vector space Sm.

Lefschetz numbers. Let M be a manifold and φ : M → M a map. Then φ induces an endomorphism φ∗ of the
(complex) cohomology of M , and the Lefschetz number L(φ) of φ is defined by

(20.9) L(φ) =
∑

q

(−1)qtr(φ∗ on Hq(M))

The classical Lefschetz formula expresses L(φ) as a sum over fixed points of φ. In particular, if L(φ) 6= 0, then φ
has a fixed point!

We want to approach the Lefschetz formula analytically and we will do so in the more general context of
Dirac complexes. Thus, let M be a compact oriented n-dimensional Riemannian manifold, and let (S, d) be a
Dirac complex over M . Let φ be a smooth map from M to M . Then φ induces φ∗ : C∞(S)→ C∞(φ∗S) in the
following way: given a section s ∈ C∞(S), we can define the map s◦φ : M → S. Observe that via the identification
of φ∗S = {(m, v) ∈ M × S | φ(m) = π(v)}, we can consider s ◦ φ as a section of φ∗S. In fact given m ∈ M ,
s(φ(m)) ∈ Sφ(m) = (φ∗S)m.

In case S is the de Rham complex, i.e.

(20.10) S =
⊕

k

Λk T ∗M ,

there is a natural bundle map ζ = Λ∗T ∗φ (over φ) from φ∗S to S which sends sections of φ∗
⊕

kΛ
k T ∗M to

sections of
⊕

kΛ
k T ∗M : in fact given a section s : M → φ∗

⊕

kΛ
k T ∗M , i.e. a map M →

⊕

kΛ
k T ∗M such that

π ◦ s = φ, by composing with Λ∗T ∗φ we have obtained a map over the identity.
As an example let

(20.11) s(m) =ω ∈
�

φ∗
⊕

k

Λk T ∗M

�

m

=

�

⊕

k

Λk T ∗M

�

φ(m)

,

where ζ(s(m)) =ω ◦ Tφ, which is a covector living in the fiber over m, i.e. ζ(s) is a section of
⊕

kΛ
k T ∗M .

For a general Dirac complex there is no such map, and we must assume the existence of a bundle ζ: φ∗S→ S
as part of our data. Thus there is a composite map

(20.12) F = ζφ∗ : C∞(S)→ C∞(S)

Definition 20.13. If F (as above) is a map of complexes (i.e. Fd = dF), one says that (ζ,φ) is a geometric
endomorphism of the given Dirac complex. Its Lefschetz number L(ζ,φ) is defined by

(20.14) L(ζ,φ) =
∑

q

(−1)qtr(F∗ on Hq(S)).

This definition is arranged so that a smooth map φ induces a natural geometric endomorphism of the de Rham
complex, and its Lefschetz number defined by (20.14) agrees with the classical definition (20.9).

To apply analysis to the calculation of the Lefschetz number, we use the Hodge theorem: Hq(S) is represented
by the spaceH q of harmonic sections of Sq. So if we define Pq to be the orthogonal projection L2(Sq)→H q, then

(20.15) tr(F∗ on Hq(S)) = tr(F Pq),

where F is considered as a continuous linear operator from C∞(Sq) to L2(Sq).
Linearity is clear since F = ζ ◦φ∗, where ζ is a bundle map, hence fiberwise linear, and φ∗ is precomposition

with φ. Continuity is done as follows: since we established linearity is enough to prove that for sn→ 0 in the C∞

sense (actually C0 sense is enough), then F(sn)→ 0 in the L2 sense. In fact it’s not hard to see that ζ ◦ sn ◦φ→ 0
if sn→ 0, since both ζ and φ are continuous and sn so tending to zero uniformly.

Remark 20.16. Beware that the operator F itself may not be continuous (i.e. bounded) on L2. In fact if sn→ 0 in
the L2 sense, it might well be that our sections are nonzero on a set of measure zero and if φ is constantly taking a
value in such subset on a non-empty open set, then the resulting integral (the norm in L2) won’t be zero. Clearly
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F is continuous (hence bounded) from C0(Sq) to L2(Sq), and therefore the composition of F with any smoothing
operator is bounded on L2. This suffices for the arguments that follows. (

Lemma 20.17. The operators Pq are smoothing operators. Moreover, if ∆q denotes the restriction of D2 to C∞(Sq),
then as t →∞ the smoothing kernel of e−t∆q tends to the smoothing kernel of Pq in the C∞ topology.

Proof. Pq can be written as f (∆q), where f (0) = 1 and f (λ) = 0 for all other λ. In fact harmonic sections in
C∞(Sq) correspond to the trivial eigenvalue for (the restriction of) D2. Unfortunately, this function is not smooth.
However, since ∆q has discrete spectrum, there is a smooth function f of compact support equal to 1 at zero (and
around it for sufficiently small values between 0 and the next eigenvalue) and equal to 0 at all other eigenvalues
of ∆q. Then f ∈ S (R) and f (∆q) = Pq. If gt(x) = (1− f (x))e−t x1R+(x) then we have

gt(x) = (1− f (x))e−t x1R+(x)(20.18)

= e−t x − f (x)e−t x1R+(x)(20.19)

gt(∆q) = e−t∆q − f (∆q)e
−t∆q(20.20)

= e−t∆q − Pq,(20.21)

where (20.21) is justified as follows: if s ∈ C∞(Sq), we can write it over a basis given by the eigenfunctions of ∆q,
s =

∑

i si (with respective eigenvalues denoted by λi). In particular s = s0 +
∑

i≥1 si . Therefore we have

gt(∆q(s)) = e−t∆q(s)− f (∆q)e
−t∆q(s)(20.22)

=
∑

i

e−tλi si −
∑

i

f (λi)e
−tλi si(20.23)

=
∑

i

e−tλi si − f (0)e0s0(20.24)

=
∑

i

e−tλi si − s0(20.25)

= e−t∆q(s)− f (∆q)(s),(20.26)

where in (20.24) we used the fact that f is zero for nonzero eigenvalues. Therefore we showed that for our
purposes gt(x) = e−t x − f (x). Now notice that gt(x)→ 0 in S (R) as t →∞. Hence, by functional calculus, we
have gt(∆q)→ 0, and the result follows. �

Therefore tr(F Pq) = limt→∞ tr(Fe−t∆q), so

(20.27) L(ζ,φ) = lim
t→∞

∑

q

(−1)q tr
�

Fe−t∆q
�

.

Let us analyze this expression more closely.

Proposition 20.28. For all values of t > 0,
∑

q

(−1)q tr
�

Fe−t∆q
�

= L(ζ,φ).

Proof. It is enough to prove that
∑

q(−1)q tr
�

Fe−t∆q
�

is constant in t. We differentiate, getting

(20.29)
∑

q

(−1)q+1 tr
�

F(dd∗ + d∗d)e−t∆q
�

.

Now dF = Fd, so

(20.30) tr
�

Fdd∗e−t∆q
�

= tr
�

dFd∗e−t∆q
�

.

Assume for the moment that we have

(20.31) tr
�

dFd∗e−t∆q
�

= tr
�

Fd∗e−t∆q d
�

Then
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tr
�

dFd∗e−t∆q
�

= tr
�

Fd∗e−t∆q d
�

(20.32)

= tr
�

Fd∗de−t∆q−1
�

,(20.33)

where (20.33) is justified by the fact that ∆qd = d∆q−1. The terms in the sum for the derivative therefore cancel
in pairs, giving 0. (This is sometimes called supersymmetry.)

It remains to prove the identity (20.31), which we do as follows:

tr
�

dFd∗e−t∆q
�

= tr
�

dFd∗e−t∆q/2e−t∆q/2
�

(20.34)

= tr
�

e−t∆q/2dFd∗e−t∆q/2
�

(20.35)

= tr
�

Fd∗e−t∆q/2e−t∆q/2d
�

(20.36)

= tr
�

Fd∗e−t∆q d
�

,(20.37)

where (20.35) is justified by applying Proposition 20.6 to dFd∗e−t∆q/2 and e−t∆q/2. Clearly the latter is a bounded
Hilbert-Schmidt operator; the former is bounded since dFd∗e−t∆q/2 = Fdd∗e−t∆q/2 and since dd∗ a differential
operator, dd∗e−t∆q/2 is a smoothing operator (move dd∗ under the sign of integral, which can be done because M
is smooth). As observed in Remark 20.16, F followed by a smoothing operator is bounded. Now by Theorem 20.7
we have that e−t∆q/2 is of trace-class, hence we can apply Proposition 20.6.

Similarly, (20.36) is justified by the fact that e−t∆q/2d = de−t∆q−1/2, which shows that the latter is a smoothing
operator, hence bounded and trace-class. Fd∗e−t∆q/2 is bounded for the same reason as above. Therefore we can
apply Proposition 20.6. �

Proposition 20.38. If φ has no fixed points, then the Lefschetz number L(ζ,φ) is 0.

Proof. By Proposition 20.28 we have

(20.39) L(ζ,φ) =
∑

q

(−1)q tr
�

Fe−t∆q
�

for any t > 0. Look at the behavior of this expression for small t. If kq
t (m1, m2) denotes the heat kernel

corresponding to e−t∆q , then Fe−t∆q is a smoothing operator with kernel

(20.40) (m1, m2)→ 1ζ · k
q
t (φ(m1), m2),

where 1ζ denotes ζ acting on the first variable in the tensor product bundle S � S∗ that k is a section of. Therefore
by Theorem 20.7,

(20.41) tr
�

Fe−t∆q
�

=

∫

M

tr 1ζ · k
q
t (φ(m), m)vol(m).

Now the assumption that φ has no fixed points means that its graph {(φ(m), m) | m ∈ M} never meets the diagonal
in M ×M . Therefore, by the asymptotic expansion of the Heat kernel, or by the localization result, kq

t (φ(m), m)
tends to 0, uniformly in m, as t → 0. The result follows. �

Example 20.42. Any holomorphic automorphism of CPn has a fixed point: since CPn is Kähler, its Dolbeault
complex is a Dirac complex. It’s known that the Dolbeault cohomology of CPn is

(20.43) H0,q

∂
(M) =

¨

C, q = 0

0, q > 0.

A holomorphic automorphism of M induces a geometric endomorphism of the Dolbeault complex (as in the de
Rham case), which must act as the identity on H0(CPn), hence has strictly positive Lefschetz number. (

Here Dan stepped in for a bit. The simplest Lefschetz fixed-point theorem is about a finite set X and a bijection
f : X → X . We want to count the number of fixed points.

One way to do this is to let V = C[X ], the vector space of functions from X to C, so we have an induced pullback
map f ∗ : V → V . V has a canonical basis of δ-functions, and in this basis the entries of the matrix for f ∗ are in
{0,1}. The fixed points correspond to 1s on the diagonal, so the number of fixed points is tr( f ). The Lefschetz
theorem therefore concludes that if tr( f ) 6= 0, f has a fixed point.
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To step it up, we could let M be a closed smooth manifold and f : M → M be a diffeomorphism. There might be
too many fixed points, e.g. f = id, so we ask that the fixed points of f are isolated. A fixed point p is simple if d f |p
has no fixed vector as a map Tp M → Tp M , and we also want to assume all fixed points are simple, or equivalently,
that the graph of f and the diagonal in M ×M intersect transversely. In this setting we have the more familiar
Lefschetz fixed-point theorem.

Theorem 20.44 (Lefschetz fixed-point theorem).
∑

p∈Fix( f )

signdet(idTp M − d f |p) =
n
∑

q=0

(−1)q tr( f ∗ : Hq
dR(M)→ Hq

dR(M)).

Why should we expect such a theorem? We have a complex 0→ V 0→ V 1→ ·· · → V n→ 0 given by maps d,
and their adjoints d∗ in the other direction, with d2 = 0 and (d∗)2 = 0. If ∆q = dd∗ + d∗d and H q := ker(∆q),
then this linear algebra implies

(20.45)
∑

q

(−1)q dim V q =
∑

q

(−1)qH q.

This is a basic principle from linear (well, homological) algebra: the alternating sum of cohomology is the same
as the alternating sum of the original complex. Therefore if we have maps T q : V q → V q with T d = dT , (20.45)
implies

(20.46)
∑

q

(−1)q tr(T q) =
∑

q

(−1)q tr(T q|H q).

We applied this to T coming from the heat kernel; this is on an infinite-dimensional vector space, but our work
with Hodge theory and elliptic operators allows it to go through anyways.
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