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Lecture 1.

The Lagrangian formalism for classical mechanics: 8/31/17

The audience in this class has a very mixed background, so this course cannot and will not assume any
physics background. We’ll first discuss classical and Lagrangian mechanics. Quantum mechanics is, of
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course, more fundamental, and though historically people obtained quantum mechanical mechanics from
classical mechanics, it should be possible to go in the other direction.

We’ll start, though, with classical and Lagrangian mechanics. This involves understanding symplectic
and Poisson structures, and the principle of least action, the beautiful insight that classical mechanics can
be formulated variationally; there is a Lagrangian L and an action functional

S =

ˆ t1

t0

L dt,

and the system evolves through paths that extremize the action functional.
The history of the transition from classical mechanics to quantum mechanics to quantum field theory

happened extremely quickly in the historical sense, all fitting into one lifetime. JJ Thompson discovered the
electron in 1897, and in 1925, GP Thompson, CJ Dawson, and LH Germer discovered that it had mass. This
led people to discover some inconsistencies with classical physics on small scales, ushering in quantum
mechanics, with all of the famous names: Einstein, Schrödinger, Heisenberg, and more. The basic equations
of quantum mechanics fall in linear dispersive PDE for functions living in the Hilbert space, typically L2 or
the Sobolev space H1 (since energy involves a derivative).

One of the key new constants in quantum mechanics is Planck’s constant h̄ := h/2π. It has the same units
as the classical action S, and therefore they are comparable. There is a sense in which quantum mechanics
is the regime in which S/h̄ ≈ 1, and classical mechanics is the regime in which S/h̄ � 1. In this sense,
quantum mechanics is the physics of very small scales. Sometimes people take a “semiclassical limit,” and
say they’re letting h̄→ 0, but this makes no sense: h̄ is a physical quantity. Instead, it’s more accurate to
say taking a semiclassical limit lets (S/h̄)−1 → 0.

If you want to analyze a fixed number of electrons, life is good. They will always be there, and so on.
But this is a problem for photons, as there are physical processes which create photons, and processes
which destroy photons. Thus imposing a fixed number of quantum particles is a constraint — and the
theory which describes the quantum physics of arbitrary numbers of quantum particles, quantum field
theory, was worked out a little later. In this case, the Hilbert space is a direct sum over the Hilbert subspace
of 1-particle states, 2-particle states, etc., and is called Fock space. The symplectic and Poisson structures of
classical mechanics, transformed into commutation relations of operators in quantum mechanics, is again
interpreted as commutation relations of creation and annihilation operators.

The mathematics of quantum field theory is rich and diverse, drawing in more PDE as well as large
amounts of geometry and topology. But there’s a problem — many important integrals and power
series don’t converge. And this is not a formal series problem: it’s too central. Physicists have used
renormalization as a formal trick to solve these divergences; it feels like a dirty trick that produces
incredibly accurate results agreeing with experiment. But again there are problems: renormalization
expresses Fock space and the commutation relations in terms of the noninteracting case, and the results
you get don’t necessarily agree with what you did a priori.

For example, quantum field theory contains a Hamiltonian H whose spectrum is of interest. One can
imagine starting with the noninteracting Hamiltonian H0 and perturbing it by some small operator W:
H := H0 + W. You’re often interested in the resolvent

R(z) = (H − z)−1

= (H0 − z)−1
∞

∑
`=0

(
W(H0 − z)−1

)`
.

The issue is that adding W does not do nice things to the spectrum, and this is part of the complexity of
quantum field theory.

Let λ denote the interaction, and N denote the number of particles, and suppose λ ∼ 1/N as we let
N → ∞. Then, the equations describing the mean field theory for this system are complicated, typically
nonlinear PDEs. Typical examples include the nonlinear Schrödinger equation, the nonlinear Hartree
equation, the Vlasov equation, or the Boltzmann equation. We’ll hopefully see some of these equations in
this class.

This is a lot of stuff that’s tied together in complicated and potentially confusing ways, and hopefully in
this class we’ll learn how to make sense of it.



1 The Lagrangian formalism for classical mechanics: 8/31/17 3

Classical mechanics and symplectic geometry In classical mechanics, we think of objects in idealized
ways, e.g. thinking of a stone as a point mass at its center of mass. Thus, we’re studying the motion of
idealized point masses (or particles, in the strictly classical sense). We do this by letting time be t ∈ R; at a
time t, the particles x1, . . . , xN have positions q(t) := (q1(t), . . . , qN(t)), with qi(t) ∈ Rd; these are called
“generalized coordinates.”

Classical mechanics says that the kinematics of particles can be completely described by their position
and velocity. Thus the motion of a system is completely determined by q(t) and q̇(t) := dq

dt .
The next question: what determines the motion? The answer is the Newtonian equations of motion: q̈ is

expressed as a function of q̇ and q using Hamilton’s principle, also known as the principle of least action.

(1) Let q ∈ C2([t0, t1],RNd) be a curve in RNd. We associate to q a weight function L(q, q̇) called the
Lagrangian.

(2) Given q as above, define the action functional

S[q] :=
ˆ t1

t0

L(q(t), q̇(t))dt.

(3) Then, among all C2 curves with q(t0) and q(t1) fixed, the curve that minimizes S is the one that
satisfies the equations of motion.

Now let q•(t) be a C2 family of curves [t0, t1]×R→ RNd and that q0 minimizes S. Then,

∂s|s=0 S[qs] = 0.

We can apply this to the Lagrangian to derive the equations of motion.

∂s|s=0 S[qs] =

ˆ t1

t0

(
(∇qs

L) · ∂sqs(t) + (∇q̇s
L) · ∂sq̇s(t)

)
dt
∣∣∣∣
s=0

=

ˆ t1

t0

(
∇qs

L− (∇q̇s
L)•
)∣∣

s=0 · ∂s|s=0 qs(t)︸ ︷︷ ︸
δq(t)

dt + (∇q̇0
L) · (∂s|s=0q(t))︸ ︷︷ ︸

=0

∣∣∣∣∣∣
t

t0

,

where δq(t) is the variation. For all variations, this is nonzero. Thus, minimizers of S satisfy the Euler-
Lagrange equations

(1.1) ∇qL− (∇q̇L)• = 0.

We’ll now impose some conditions on L that come from reasonable physical principles.

Additivity: if we analyze a system A ∪ B which is a union of two subsystems A and B that don’t
interact, then

LA∪B = LA + LB.

Uniqueness: Assume L1 and L2 differ only by a total time derivative of a function f (q(t), t); then,
they should give rise to the same equations of motion:

S2 = S1 +

ˆ t1

t0

∂t f (q(t), t)dt

= S1 + f (q(t1), t1)− f (q(t0), t0),

so the minimizers for S1 and S2 are the same.
Galilei relativity principle: The physical laws of a closed system are invariant under the symmetries

of the Galilei group parameterized by a, v ∈ Rd, t ∈ R, and R ∈ SO(d), the group element ga,v,R,b acts
by

q 7−→ a + vt + Rq
t 7−→ t + b.

That is, in each component j, qj 7→ a + vt + Rqj.
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This actually determines L for a system consisting of a single particle. By homogeneity of space (by the
Galilei group contains translations), L can only depend on V = q̇. Since space is isotropic (because the
Galilei group contains rotations), L should depend on v2. Next, the Euler-Lagrange equations imply

d
dt

∂L
∂v
− ∂L

∂q
= 0,

and since L does not depend on q, ∂L
∂q = 0, so ∂L

∂v must be a constant.
Now we consider Galilei invariance of v If v 7→ v + ε, the equations of motion must be invariant, so

L[(v′)2] = L[(v + ε)2] = L(v2) +
∂L
∂v2 2v · e + O(ε),

and this should only differ by a total time derivative q̇:

F(q̇) · q̇ = ∂tG,

where F(q̇) is a constant, and ∂L
∂v2 is also constant. This latter constant is denoted m, and called the mass,

and the Lagrangian expresses its kinetic energy:

L(v) =
1
2

mv2.

Now imagine adding N particles, which we assume don’t interact. Then additivity tells us they have
masses m1, . . . , mN , and the Lagrangian is

L =
1
2

N

∑
j=1

mjv2
j .

If the particles are interacting, there’s some potential function U(q1, . . . , qN), and the Lagrangian is instead

L =
1
2

N

∑
j=1

mjv2
j −U(q1, . . . , qN).

Now, by (1.1),
mj q̈j = −∂qj U = F,

and this is called the force. This is Newton’s second law F = ma.

Symmetries and conservation laws There’s a general result called Noether’s theorem which shows that
any symmetry of a physical system leads to a conserved quantity. We’ll see the presence of symmetry in
classical mechanics and then how it changes in quantum mechanics.

For example, the systems we saw above had symmetries under time translation invariance t 7→ t + b, so
the Lagrangian doesn’t depend on t, just on q and q̇. Therefore

d
dt

L = ∑
j

(
∂L
∂qj

q̇j +
∂L
∂q̇j

q̈j

)

=
d
dt

N

∑
j=1

(
∂L
∂q̇j

)
· q̇j,

and therefore
d
dt

(
N

∑
j=1

∂L
∂q̇j
· q̇j − L

)
E

= 0.

The quantity E is the energy of the system, and time translation invariance tells is that energy is conserved.
The component pj := ∂L

∂q̇j
is called the jth canonical momentum.
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The homogeneity of space, told to us by invariance under the Galilei translations qj 7→ qj + ε, tells us that

δL = ∑
i

∂L
∂q̇j
· ε

= ε
d
dt ∑

∂L
∂q̇j

= 0.

Thus, the quantity

p :=
N

∑
j=1

∂L
∂q̇j

is conserved, and is constant. This is called the total momentum, so translation-invariance gives you
conservation of momentum. In the same way, rotation-invariance around any center gives you conservation
of angular momentum around any center.

Hamiltonian dynamics The Euler-Lagrange equations express q̈ as a second-order ODE. One might want
to reformulate this into a first-order ODE; there are many ways to do this. There’s one that’s particularly
important. Since

pj =
∂L
∂q̇j

(q, q̇),

then it looks like one could solve for q̇ in terms of p and q.

Lemma 1.2. Let f ∈ C2(Rn,R) be such that its Hessian D2 f is uniformly positive definite, i.e. there’s an α > 0
such that

D2 f (x)(h, h) = ∑
i,j

∂2 f
∂xj∂x`

hjh` ≥ α‖h‖2

uniformly in x ∈ Rn, then there is a unique solution to

D f (x) = y

for every y ∈ Rn.

Proof. Let g(x, y) := f (x)− 〈x, y〉. Then, ∇xg(x, y) = ∇ f − y, and D2g = D2 f . Hence it suffices to check
for y = 0.

The positive definite assumption on D2 f means f is strictly convex, and hence has at most a single
critical point, at which ∇ f = 0. Thus it remains to check that there’s at least one solution.

If you Taylor-expand, you get that

f (x) = f (0) + 〈D f (0), x〉+ 1
2

D2 f (sx)(x, x) + · · · ,

so for all x,

f (x) ≥ f (0)− |∇ f (0)||x|+ α

2
|x|2.

Thus, there’s an R > 0 such that if |x| ≥ R, then f (x) ≥ f (0), so f has at most one minimum in the ball
BR(0), so by compactness, it has a minimum x0, which must be the global minimum, so D f (x0) = 0. �

Definition 1.3. Suppose f is continuous on Rn. Then, its Legendre transform or Legendre-Fenchel transform is

f ∗(y) := sup
x∈Rn

(〈y, x〉 − f (x)).

You can think of this as measuring the distance from the graph of f to the line cut out by 〈y, x〉 (i.e.
between the two points with minimum distance).
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Lecture 2.

The Hamiltonian formalism for classical mechanics: 9/5/17

Last time, we discussed Lemma 1.2, that if f : Rn → R is C2 and its Hessian is uniformly positive
definite, then there’s a unique solution to ∇ f (x) = y for all y ∈ Rn. We then defined the Legrendre-Fenchel
transform of f : f ∗(y) geometrically means the minimal distance from f (x) to the hyperplane 〈y, x〉 = 0. It
has the following key properties:

Theorem 2.1. Let f : Rn → R be a C2 function with uniformly positive definite Hessian. Then,

(1)
f ∗(y) = 〈y, x(y)〉 − f (x(y)),

where x(y) is the unique solution to ∇ f (x) = y guaranteed by Lemma 1.2, and
(2) f ∗(y) is C2 and strictly convex.
(3) If n = 1, ∇( f ∗) = (∇ f )−1.
(4) For all x, y ∈ Rn,

f (x) + f ∗(y) ≥ 〈y, x〉,
with equality iff x = x(y) is the unique solution to ∇ f (x) = y.

(5) The Legendre-Fenchel transform is involutive, i.e. ( f ∗)∗ = f .

We’ll use this in the Hamiltonian formalism of classical mechanics. One motivation for the Hamiltonian
formalism is that the Lagrangian formalism produces second-order ODEs, and it would be nice to have an
approach that gives first-order equations. There are many ways to do that, but this one has particularly
nice properties.

Suppose we have generalized coordinates q and p = ∂L
∂q̇ . You might ask whether we can solve for

q̇i = q̇i(q, p). If we assume D2
vL(q, v) is uniformly positive definite, then p = ∇q̇L(q, q̇) has a unique

solution.

Definition 2.2. The Hamiltonian H is the Legendre-Fenchel transform of L for q fixed, i.e.

H(q, p) := sup
v∈Rn

(〈p, v〉 − L(q, v))

= 〈p, q̇(q, p)〉 − L(q, q̇(q, p)).

Theorem 2.3. Assume the matrix

(2.4)
[

∂2L
∂q̇i∂q̇j

]
is uniformly positive definite. Then, the Euler-Lagrange equations(

∂L
∂q̇

)•
− ∂L

∂q
= 0

are equivalent to

(2.5) q̇ =
∂H
∂p

, ṗ = −∂H
∂q

.

(2.4) is called the mass matrix of the system, and (2.5) is called the Hamiltonian equations of motion.

Proof. Since pj =
∂L
∂q̇j

,

∂H
∂pi

= q̇i +
n

∑
j=1

(
pj

∂ q̇j

∂pi
− ∂L

∂q̇j

∂ q̇j

∂pi

)
= q̇i.
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Similarly, since
∂qj
∂qi

= δij and ∂L
∂q̇j

= pj, then

∂H
∂qi

=
n

∑
j=1

(
pj

∂ q̇j

∂qi
− ∂L

∂qj

∂qj

∂qi
− ∂L

∂q̇j

∂ q̇j

∂qi

)

= −
(

∂L
∂q̇i

)•
= ṗi. �

This leads to the Hamiltonian formalism, which starts with the Hamiltonian and works towards the
physics from there. We begin on a phase space R2n with coordinates (q, p), and a Hamiltonian H : R2n → R.
Let

J :=
[

0 1n
−1n 0

]
denote the symplectic normal matrix.1

The Hamiltonian vector field for this system is

XH := J∇H =

[
∇pH
−∇qH

]
.

Then, the Hamiltonian equations of motion (2.5) may be expressed in terms of the flow for XH .
This “Hamiltonian structure” on R2n is closely related to a complex structure: J2 = −1 is closely

reminiscent of i2 = −1. Indeed, if
z := (q + ip),

then

iż = i(q̇ + iṗ)

= i(∇pH − i∇qH)

= (∇q + i∇p)H.

This is an example of a Wirtinger derivative:

∂z =
1
2
(∂x− i∂y)

∂z =
1
2
(∂x + i∂y)

Example 2.6 (Harmonic oscillator). Let

H(q, p) =
1
2

q2 +
1
2

p2,

so
H(z, z) =

1
2

zz.

In this case, the Hamiltonian equations of motion are

iż = 2∂z H = z

z(0) = z0,

so we recover
z(t) = z0eit,

as usual for a harmonic oscillator. (

We can also study Hamiltonian PDEs, which include several interesting systems of equations. But they
got erased before I could write them down. :( One of them includes the nonlinear Schrödinger equation: for
x ∈ Rd, the system

H[u, u] =
ˆ (

1
2
|∇u|2 + 1

2p
|u|2p

)
dx,

1More generally, one can formulate this system on any symplectic manifold, in which case J is the symplectic form in Darboux
coordinates. But we won’t worry about this right now.
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which leads to the equations of motion (the Schrödinger equation)

iu̇ = −∆u + |u|2p−2u.

The solutions of these equations tend to be interesting: Hamiltonian flow (the flow generated by XH) isn’t a
gradient flow, but rather gradient flow twisted by J. We call this flow Φt : R2n → R2n, with x(t) = Φt(x0)
and x(t) = Φt,s(x(s)).

Theorem 2.7. H is conserved by Φt.

Proof.
d
dt

H(x(t)) = ∇x H · ẋ = ∇x H · J∇xH = 0,

because J is skew-symmetric. �

Definition 2.8. In this situation, the symplectic form is the skew-symmetric form ω ∈ Λ2((R2n)∗) defined by

ω(X, Y) := 〈Y, JX〉.

The pair (R2n, ω) is a symplectic vector space; the space of invertible matrices preserving this form is
called the symplectic group

Sp(2n,R) := {M ∈ GL2n(R) | MT JM = J}.
Now we can prove some properties of the Hamiltonian flow.

Theorem 2.9. Let Φt be the Hamiltonian flow generated by XH . Then,
(1) x(t) = Φt,s(x(s)),
(2) Φs,s = id, and
(3) DΦt,s(x) ∈ Sp(2n,R).

Conversely, if Φt,s is the local flow generated by a vector field X such that locally (in x) (3) holds, then X is locally
Hamiltonian, in that there’s a G such that X = XG.

Definition 2.10. A diffeomorphism φ : R2n → R2n with Dφ ∈ Sp(2n,R) is called a symplectomorphism.

Proof sketch of Theorem 2.9. Since

∂tDΦt,s(x) = DXH(Φt,s(x)) · DΦt,s(x),

then it suffices to check that if
Γ(t, s, x) := DΦT

t,s(x)JDΦt,s(x),
then

d
dt

Γ = 0.

Definition 2.11. The Liouville measure µL on R2n is the measure induced by ω∧n, i.e.ˆ
R2n

f dµL :=
ˆ
R2n

f ω∧n.

Theorem 2.12 (Liouville). Let Φt,s be the Hamiltonian flow. Then, for every Borel set B, |Φt,s(B)| = |B|. Hence
Φt,s preserves the Lesbegue measure and the Liouville measure.

Proof. If ϕ : R2n → R2n is a diffeomorphism, thenˆ
B

f (x)dx =

ˆ
ϕ−1(B)

( f ◦ ϕ)|det Dϕ(x)|dx,

and det DΦt = 1. �

The next theorem is a conservation property.

Theorem 2.13. Let Φt,s be the flow generated by an arbitrary vector field X, D ⊂ R2n be a bounded region, and
Dt,s := Φt,s(D). Then, for every f ∈ C1(Rn),

d
dt

ˆ
Dt,s

f dx =

ˆ
Dt,s

(∂t f + div( f X))dx.
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Proof. By the group property (Φt,s = Φt,s1 ◦Φs1,s) it suffices to prove it for s = 0 and at t = 0. In this case

d
dt

∣∣∣∣
t=0

ˆ
Dt

f dx =
d
dt

∣∣∣∣
t=0

ˆ
D
( f ◦Φt)det DΦt dx

Since DΦt = 1 + tDX + O(t2), then det(DΦt) = 1 + t tr(DX) + O(t2) and hence

=

ˆ
D
((∂ f +∇ f · X) + f div X)dx

=

ˆ
D
(∂t f + div f X)dx. �

Corollary 2.14. Any function f (t, x) for which the matter content

MC( f )(t) :=
ˆ

Φt,s(D)
f (x, t)dx

remains constant (equivalently, d
dt MC( f )(t) = 0), must satisfy the continuity equation

(2.15) ∂t f + div( f X) = 0.

In physically interesting cases, the matter content actually represents how much mass is in the system.
In the Hamiltonian case, div XH = 0, so

∂t f +∇ f · XH = 0

is equivalent to
∂t f +∇ f · J∇H = 0.

We can rewrite this in terms of the Poisson bracket

{ f , H} := 〈∇ f , J∇H〉,
producing the equation

∂t f + { f , H} = 0.
The Poisson bracket can also be defined as

{ f , H} = ω(X f , XH)

=
n

∑
j=1

(
∂ f
∂qj

∂H
∂pj
− ∂H

∂qj

∂ f
∂pj

)
.

We’ll see related phenomena in the quantum-mechanical case. What we talk about next, though, will not
reappear in quantum mechanics, but it’s too beautiful to ignore completely.

Definition 2.16. An integral of motion is a C1 function g : R2n → R constant along the orbits of the
Hamiltonian. Equivalently,

d
dt

g(x(t)) = {g, H} = 0.

Two integrals of motion g1 and g2 are in involution if {g1, g2} = 0.

Notice that {g, g} = 0 always.
Generally, Hamiltonian systems are incredibly difficult to solve. There are some cases where they can be

solved by hand, e.g. by quadrature classically. It would be nice to know when such a solution exists. If
you can find n integrals of motion that are in involuton with each other, you can heuristically reduce the
equations into something tractable; this is the contant of the Arnold-Yost-Liouville theorem.

Theorem 2.17 (Arnold-Yost-Liouville). On the phase space (R2n, ω), assume we have n integrals of motion
G1, . . . , Gn which are in involution; further, assume G1 = H. Let G = (G1, . . . , Gn) : R2n → Rn, and consider its
level set

MG(c) := {x ∈ R2n | G(x) = c},
for some c ∈ Rn. Assume that the 1-forms {dGj} are linearly independent (equivalently, the gradients ∇Gj are
linearly independent). Then,

(1) MG(c) is a smooth manifold that’s invariant under the flow generated by XH , and
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(2) ifMG(c) is compact and connected, it is diffeomorphic to an n-torus Tn := S1 × · · · × S1.
(3) The Hamiltonian flow of H determines a quasiperiodic motion

(2.18)
dϕ

dt
= η(c),

dI
dt

= 0

with initial data (ϕ0, I0).
(4) The Hamiltonian equations of motion can be integrated by quadrature:

(2.19)
I(t) = I0

ϕ(t) = ϕ0 + η(c)t.

Here I and ϕ are the new coordinates for phase space in which the system can be solved.

We’ll prove this next lecture, then move to quantum mechanics.

Lecture 3.

The Arnold-Yost-Liouville theorem and KAM theory: 9/7/17

Today, we’re going to prove the Arnold-Yost-Liouville theorem, Theorem 2.17. We keep the notation
from that theorem and the notes before it.

One key takeaway from the theorem is that the Hamiltonian equations can be explicitly solved. That is,
going from (2.18) to (2.19) is a particularly simple system of ODEs.

Proof sketch of Theorem 2.17. By assumption, {∇Gj} is linearly independent on MG(c). By the implicit
function theorem,MG(c) is an n-dimensional submanifold of R2n. The gradients {∇Gj} span the normal
bundle ofMG(c) because it’s a level set for them.

Consider XGj
:= J∇Gj. It’s a tangent vector:

(3.1)

〈XGj ,∇G`〉 = 〈J∇Gj,∇G`〉
= −〈J∇Gj, J J∇G`〉

= ω
(

XGj , XG`

)
= {Gj, G`} = 0

for all j and `. We’ve produced n linearly independent tangent vectors at each point, so {XGj}
n
j=1 spans

TMG(c). In particular, XH = XG1 is tangent to MG(c), so MG(c) is invariant under its flow. This
proves (1).

For part (2), we assumeMG(c) is compact and connected. Let ϕ
j
tj

denote the flow generated by XGj , so

t1, . . . , tn ∈ R are separate time variables. Because {Gj, G`} = 0, then G` is invariant under ϕ
j
tj

for any j

and `. Thus ϕ
j
tj

and ϕ`
t` commute, so we may define

ϕt := ϕ1
t1
◦ · · · ◦ ϕn

tn .

Pick an x0 ∈ MG(c) and define ϕ : Rn →MG(c) to send t 7→ ϕt(x0). This is transitive in the sense that
for all x ∈ MG(c), there’s a τ ∈ Rn such that ϕτ(x0) = x.

SinceMG(c) is compact but Rn isn’t, ϕ cannot be a bijection. Define

Γx0 := {t ∈ Rn | ϕt(x0) = x0},

the stationary group of x0. This is indeed an abelian group, because if τ ∈ Γx0 , then nτ ∈ Γx0 for all n ∈ Z:
if you iterate a loop again and again, you still end up back where you started with. And clearly 0 ∈ Γx0 .

Let ε1U be an ε1-neighborhood of 0 in Rn and Vε2 be an ε2-neighborhood of x0 inMG(c); then, there are
ε1, ε2 > 0 such that ϕ|Uε1

: Uε1 → Vε2 is a diffeomorphism. Thus, for sufficiently small ε2, there’s no other
fixed point in Vε2 , which means Γx0 is a discrete subgroup of (Rn,+).
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This means there are vectors e1, . . . , en ∈ Rn such that

Γx0 =

{
n

∑
i=1

miei | m1, . . . , mn ∈ Z

}
,

and that ϕ establishes an isomorphism

Tn ∼= Rn/Γx0 −→MG(c).

This proves (2).
Now we need to make the change-of-variables in (3); these new variables are called action-angle variables.

First note thatMG(c) is a Lagrangian submanifold, i.e. it’s half-dimensional and the restriction of ω to it is 0
(it’s isotropic; an isotropic submanifold of R2n can be at most n-dimensional). This is because TMG(c) is
spanned by {XGj}, and in (3.1), we proved ω(XGj , XG`

) = {Gj, G`} = 0 for all j, `.
Consider the 1-form

Θ := ∑
j

pj dqj.

Then,
dΘ = ∑

j
dpj ∧ dqj = ω,

so restricted toMG(c), Θ is a closed 1-form.
Let {γj}n

j=1 be a set of cycles whose homology classes generate H1(MG(c)) = H1(Tn) ∼= Zn. Then, the
action variables

Ij(c) :=
1

2π

˛
γj

Θ

is independent of the choice of cycle representative of the homology class of γj: if D is a 2-chain with
∂D = γj − γ̃j (a cobordism or homotopy from γj to γ̃j), then by Stokes’ theorem.˛

γj

Θ−
˛

γ̃j

Θ =

ˆ
D

dΘ =

ˆ
D

0 = 0.

One can show that the assignment (q, p) 7→ (ϕ, I) is symplectic, where ϕj is a variable parameterizing γj

and is called an angle variable (since it’s valued in S1). In these coordinates, H only depends on I, not ϕ, so

dϕ

dt
=

∂H
∂I

= η(c)

dI
dt

= −∂H
∂ϕ

= 0. �

Sometimes the entires of η(c) are irrational relative to each other. In this case you’ll get dense orbits in
the torus, corresponding to lines with irrational slope in R2n before quotienting by the lattice Γx0 , and there
will not be n integrals of motion.

Kolmogorov-Arnold-Moser (KAM) theory. More generally, if one doesn’t have complete integrability,
one can make weaker but still interesting statements. For example, one can envision a problem which
is completely integrable in the absence of perturbations, and one can study what happens when the
dependence on ϕ is small:

H(ϕ, I) = H0(I) + εH(ϕ, I).
Some systems will lose integrability, though understanding the precise ways they do so is very hard. Such
a system is associated to a frequency vector η0 := η(I(t0)) satisfying the Diophantine condition

|〈η0, n〉| ≥ 1
〈n〉τ

for all n ∈ Z for some τ > 0. Here 〈x〉 :=
√

1 + |x|2 is the Japanese bracket. This quantitatively captures the
qualitative idea that “η0 is poorly approximated by rationals.”

In this setup, there exists an invariant torus under the flow of H. The proof involves renormalization
group flow, though it was not originally discovered in those terms. It’s a kind of recursive proof style, and



12 M393C (Topics in Mathematical Physics) Lecture Notes

getting into the details would take a long time. It involves a great result called the shadowing lemma, which
discusses the dynamics of a pendulum.

The pendulum has two equilibria: the bottom is stable (ϕ = 0), and the top is unstable (both with no
velocity). The phase space is two-dimensional, in ϕ and ϕ̇, and some trajectories are shown in Figure 1.
The curves with singularities are called separatrices.

Figure 1. The phase diagram of a pendulum. Source: https://physics.stackexchange.
com/q/162577.

.

Given a sequence of 0s and 1s, one may construct a parametric perturbation of the pendulum, regularly
bumping it a small amount based on whether 0 or 1 is present.2. The shadowing lemma states that these
trajectories uniformly approximate real trajectories. There’s a rich theory here: the proof is a fixed-point
argument, and there’s interesting geometry of the homoclinic points, where two trajectories meet. These tend
to be concentrated near the unstable equilibrium.

Quantum mechanics. Though quantum mechanics was discovered later than classical mechanics, it’s
actually much more fundamental. This suggests that one can derive classical mechanics as some sort of
limit of quantum mechanics where Planck’s constant is small, and indeed we can do this. We’ll do this in
three ways.

(1) The first is to use the Weiner transform to derive the Liouville equations from quantum mechanics
in a semiclassical limit.

(2) The second case is to use a path integral to rediscover the principle of least action.
(3) The third way is to use observables and something called the Ehrenfest theorem.

Schrödinger discovered the Schrödinger equation, one of the cornerstones of quantum mechanics:

ih̄∂tψ = − h̄2

2m
∆ψ + V(x)ψ,

where ψ(t, x) ∈ L2 and

‖ψ‖2
L2 =

ˆ
|ψ(t, x)|2 dx = 1,

Schrödinger arrived at this equation by (somewhat heuristically) studying quantization. Electrons had been
observed (by de Broglie) to sometimes behave as particles and sometimes behave as waves. If an electron
behaves like a particle, it has momentum h̄k, where k is something called a wave vector. If you look at it as a
wave, you get something like ih̄∇e−ikx, where P := ih̄∇ is called the momentum operator. The Schrödinger
equation (a guess within his PhD thesis) replaced the true momentum in the Hamiltonian

H(x, p) =
1

2m
p2 + V(x)

with the momentum operator ih̄∇, giving is −h̄2∆.

2TODO: did I get this right?

https://physics.stackexchange.com/q/162577
https://physics.stackexchange.com/q/162577
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Lecture 4.

The Schrödinger equation and the Wigner transform: 9/12/17

Today we’re going to begin by asking, how does one derive (well, guess) the Schrödinger equation? This
involves an interesting and relevant digression on the Hamilton-Jacobi equation.

From the principle of least action, we know the Euler-Lagrange equations (1.1). Assume q0(t) is a
solution to these equations. Take a one-parameter variation (s, qs) from (t0, q0) to (t, q). The Hamilton
principal function is

S(t, q) =
ˆ (t,q)

(t0,q0)
L(q(s), q̇(s))ds.

The variation with respect to q is

δS =

ˆ t

t0

(
∂L
∂q

δq +
∂L
∂q̇

δq̇
)

ds

=

ˆ t

t0

∂s

(
∂L
∂q̇

δq
)

ds

=
∂L
∂q̇

δq
∣∣∣∣t
t0

.

Since p = ∂L
∂q̇ and δq(t0) = 0, this is

= (pδq)(t).

Hence, p = ∂S
∂q and

L =
dS
dt

=
∂S
∂t

+ ∑
j

∂S
∂qj

q̇j,

so
∂S
∂t

= L−∑
j

pj q̇j

= −H(q,∇qS).

This is called the Hamilton-Jacobi equation.
The link with the Schrödinger equation: let’s take for an ansatz that we have a wavefunction

ψ(t, x) = a(t, x)e−iS(t,x)/h̄.

This does not come entirely out of left field: if you want to exponentiate the action, you have to make it
dimensionless, and that’s exactly what dividing by h̄ accomplishes. Then,

ih̄∂tψ = ih̄ȧe−iS/h̄ +
h̄
h̄

∂S
∂t

ae−iS/h̄.

= −H(q,∇S)ψ + O(h̄)

=

(
−1

2
(∇S)2 + V(x)

)
ψ + O(h̄).

Compare with

− h̄2

2
∆ae−iS/h̄ = − h̄2

2

(
− i

h̄
∆S +

(
i∇S

h̄

)2
)

ae−iS./h̄ + O(h̄)

=
1
2
(∇S2ae−iS/h̄ + O(h̄).

Putting these together, we arrive at

ih̄∂tψ =

(
− h̄2

2
∆ + V(x)

)
ψ + O(h̄).
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That is, the Schrödinger equation is an O(h̄)-deformation of the Hamilton-Jacobi equations.
We’d like to solve this equation. Precisely, given a ψ0 ∈ L2(Rn), we’d like to find ψ such that

(4.1)
i∂tψ = −∆ψ + V(x)ψ = Hψ

ψ(t = 0) = ψ0.

Here H is the Hamiltonian.
We’d like to apply spectral theory to solve this, but −∆ is unbounded, with the domain

{ f ∈ L2 | ‖−∆ f ‖L2 < ∞},
which is dense in L2. It is self-adjoint, in the formal sense, but because it (and pretty much every operator
in quantum mechanics) is unbounded, the analysis is trickier. For the moment, we’ll consider a regularized
Hamiltonian.

Recall that we have a Fourier transform F : L2(Rn)→ L2(Rn) given by

f̂ (ξ) =
1

(2π)n/2

ˆ
Rn

f (x)e−iξ·x dx

ǧ(x) =
1

(2π)n/2

ˆ
Rn

g(ξ)eiξ·x dξ.

Here, g 7→ ǧ is the inverse Fourier transform. This was defined on Schwartz-class functions by the formulas
above, then using the Plancherel theorem and the density of Schwartz functions in L2, it extends to L2. The
Laplacian turns into multiplication under the Fourier transform:

F (−∆ f )(ξ) = ξ2 f̂ (ξ).

Now we will regularize the Laplacian: define

F (−∆R f )(ξ) := ξ2χR(|ξ|) f̂ (ξ),

where R� 1 and χR is a smooth bump function equal to 1 on [0, R] and 0 on [2R, ∞). Hence, for any finite
R, Plancherel’s theorem allows us to calculate that

‖−∆R f ‖ ≤ (2R)2,

where we use the operator norm. If we assume that V ∈ L∞(Rn), then

‖V(x)ψ‖L2 ≤ ‖V‖L∞‖ψ‖L2 ,

so the regularized Hamiltonian
HR := −∆R + V

is bounded.

Definition 4.2. Let A be an operator on L2, possibly unbounded. We define the adjoint operator A∗ to
satisfy (φ, Aψ) = (A∗φ, ψ) for all φ, ψ ∈ L2. A is symmetric if (φ, Aψ) = (Aφ, ψ) for all φ, ψ in the domain
of A; if A and A∗ have the same domain, this implies A = A∗, and A is called self-adjoint.

Theorem 4.3. If A is bounded, then symmetric implies self-adjoint.

Theorem 4.4. If A is a bounded, self-adjoint operator, then there is an L2 solution to

(4.5)
i∂tψ = −∆ψ + V(x)ψ = Aψ

ψ(t = 0) = ψ0,

where ψ0 ∈ L2, which is given by
ψ(t) = e−itAψ0.

Here,

(4.6) eA :=
∞

∑
j=0

Aj

j!
.

The particular case e−itA is really nice: it’s an isometry, because

‖eitAψ0‖L2 = ‖ψ0‖L2 ,
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and it’s unitary:
(eitA)∗ = e−itA = (eitA)−1.

Exercise 4.7. Check that the infinite sum in (4.6) converges, so that eA is well-defined, and ‖eitA‖ ≤ et‖A‖

for all t.

Now, what does this all mean physically? Quantum mechanics considers a particle whose position and
velocity at time t are probabilistically given by some probability density ψ(t, x), such that

‖ψ(t)‖L2 = ‖ψ0‖L2 = 1.

Measuring physical facts about this system is expressed through observables, self-adjoint operators A : L2 →
L2: the expected value of A with respect to the distribution ψ(t, x) is

〈A〉ψ(t) :=
ˆ

ψ(t, x)(Aψ)(t, x)dx = (ψ, Aψ).

Because this system satisfies the Schrödinger equation (4.1), there are several conserved quantities. Consider

∂t(ψ, Hψ) =

(
1
i

Hψ, Hψ

)
+

(
ψ, H

(
1
i

Hψ

))
= −

(
Hψ,

1
i

Hψ

)
+

(
Hψ,

1
i

Hψ

)
.

In our case, we’d use HR instead of H. The energy of the system is

E[ψ] :=
1
2
(ψ, Hψ),

and by the above, this is a conserved quantity. The L2 mass is also conserved:

M[ψ] := ‖ψ‖2
L2 .

The Wigner transform. We’ll now discuss the Wigner transform, a noncommutative version of the Fourier
transform. As is customary with the Fourier transform and related phenomena, we will be cavalier about
factors of 2π arising from the transform; if you don’t like this, it’s possible to avoid with the harmonic
analysts’ convention

f̂ (ξ) =
ˆ

f (x)e−2πiξ·x dx,

where making these factors precise is easier. We’ll also ignore some factors of h̄.
Consider the function

ρ̂(t, ξ) := 〈eix·ξ〉ψ(t) =
ˆ
|ψ(t, x)|2

ρ(t,x)

e−ix·ψ dξ,

so that ρ(t, x) is a probability distribution in x for a given t. The momentum operator P = i∇x, on the other
hand, satisfies

〈P〉ψ(t) =
ˆ
|ψ̂(t, ξ)|ξ dξ,

and hence defines another natural probability density µ(t, ξ) via

〈e−iPη〉ψ(t) =
ˆ
|ψ̂(t, ξ)|2

µ(t,ξ)

e−iξ·η dξ = µ̂(t, η).

The two probability distributions ρ̂ and µ ought to be related, but they’re not Fourier transforms from each
other. Maybe in quantum mechanics, it doesn’t make sense to separate the densities in x (position) and ξ
(momentum), and to instead consider a probability density on the entirety of phase space of a solution ψ
to (4.1). In particular, let

Ŵ(t, ξ, η) :=
〈

e−i(x·ξ+P·η)
〉

ψ(t)
.

Here x and P do not commute. Accordingly, the Wigner transform of ψ is

(4.8) W(t, x, v) := (Ŵ)∨(t, x, v).
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In the semiclassical limit, as h̄→ 0, this will converge to the Liouville equation as in classical mechanics.

Remark. For a general solution ψ of the Schrödinger equation, its Wigner transform is not positive definite,
and hence doesn’t define a probability density. However, we can make it positive definite: if

G(x, v) = e−c1x2−c2v2

is a Gaussian, then the convolution

H(t, x, v) := (W ∗ G)(t, x, v)

is positive definite, and, suitably normalized, it defines a probability density function. The function H is
called a Husini function, and is very useful in applied math, specifically in the study of wave equations. (

The definition (4.8) is great for telling us what and why the Wigner transform is, but not so much how
to calculate anything with it. Fortunately, there’s an explicit formula.

Lemma 4.9.

W(t, x, v) =
ˆ

ψ(t, x− y/2)ψ(t, x + y/2)eiy·v dy.

This can be simplified using the density matrix Γxx′ := ψ(x)ψ(x′). So the Wigner transform is the Fourier
transform of a density matrix.

Proof. The proof is not fascinating, but will be good practice for a useful technique.
Let A and B be linear operators for which eA and eB are well-defined, and assume [A, B] := AB− BA

is a scalar multiple of the identity. Then the higher commutators all vanish: [A, [A, B]] = [[A, B], B] = 0.
Hence, the Baker-Campbell-Hausdorff formula for eA+B simplifies greatly to

(4.10) eA+B = eAeBe−[A,B]/2.

We’re specifically interested in xi and Pj, and [xi, Pj] = −iδij, so we may use (4.10):

e−i(x·ξ+P·η) = e−ix·ξ e−iP·ηe−ξ·η/2.

Next, observe that e−iP·η acts through a translation by η:(
e−iP·η f

)
(x) = eη·∇

ˆ
f̂ (ξ)eiξ·x dξ

=

ˆ
f̂ (ξ)ei(x+η)·ξ dξ

= f (x + η).

Therefore

Ŵ(t, ξ, η) =

ˆ
e−ixξe−(i/2)ξ·ηψ(t, x)ψ(t, x + η)dx.

If you compute the inverse Fourier transform, which is mechanical, you’ll get the desired formula. �

Convergence to the classical Liouville equation. Taking a semiclassical limit means sending h̄ to 0, more
or less. Of course, this makes no sense: h̄ is a nonzero physical constant! But it represents the idea that,
relative to the scale of h̄, everything is very large. Also, we’ll call it ε instead of h̄, which makes it better.

Our Schrödinger equation is, given a potential V ∈ C2(Rn),

iε∂tψ
ε = − ε2

2
∆ψε + Vψε.

Now, the rescaled Wigner transform is

Wε(t, x, p) =
1
εn

ˆ
ψε(t, x− y/2)ψε(t, x + y/2)ei(y·P)/ε dy.

Scaling y→ εy, this is

=

ˆ
ψε(t, x− εy/2)ψε(t, x + εy/2)eiy·P dy.(4.11)
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Exercise 4.12. Show that ∂tWε(t, x, p) is the sum of a kinetic term (I) and a potential term (II) where

(I) = −p · ∇xWε(t, x, p)(4.13a)

(II) = (didn’t get this in time)(4.13b)

The Wigner transform has the property that it turns a Schrödinger-like equation into a transport equation,
and vice versa.

Lecture 5.

The semiclassical limit of the Schrödinger equation: 9/14/17

“Evaluating an object like (5.11) looks like it can be damaging to one’s health. But it can be done”
We’ve been working on the Schrödinger equation

iε∂tψ
ε(t, x) = − ε2

2
∆ψε(t, x) + V(x)ψε(t, x)

ψε(t = 0) = ψε
0.

Here, V ∈ C2(Rn), and ε = h̄, because it seems much more reasonable to say ε→ 0 rather than h̄→ 0 (since
h̄ is a physical constant, not a variable!), as we will do when considering its semiclassical limit.3

To compute this, we introduced the rescaled Wigner transform Equation (4.11).

Theorem 5.1. As ε→ 0, Wε → F, where

(∂t + p · ∇X)F(t, x, p) = (∇V)(x) · ∇pF(t, x, p).

Proof. As in Exercise 4.12, we want to write ∂tWε(t, x, p) as a sum of a kinetic term (I) (4.13a) and a
potential term (II) (4.13b). In more detail, if

(I) =
iε
2

ˆ (
ψε
(

t, x− εy
2

)
∆ψε

(
t, x +

εy
2

)
− ∆ψε

(
t, x− εy

2

)
ψε
(

t, x +
εy
2

))
eipy dy

= i
ˆ
∇x · ∇y

(
ψε
(

t, x− εy
2

)
ψε
(

t, x +
εy
2

))
eipy dy.

Then, the cross terms cancel, which is how you get (4.13a).4

The other term is

(II) = − i
ε

ˆ (
V
(

x +
εy
2

)
−V

(
x− εy

2

))
ψε
(

t, x− εy
2

)
ψε
(

t, x +
εy
2

)
eipy dy.

For some sy ∈ (−1, 1), this is

= − i
ε

ˆ (
ε∇V(x) · y +

1
2

D2V
(

x + sy
εy
2

)
(εy, εy)

)
ψε(· · · )ψε(· · · )eipy dy.

Splitting this along the red + sign, call the first part (II1) and the second (II2). The first term is what we
want, and the second is an error term.

(II1) = −i
ˆ
∇V(x)

1
i
∇pψε

(
x− εy

2

)
ψε
(

x +
εy
2

)
eipy dy

= ∇V(x) · ∇pWε(t, x, p).

We’d like the error term to go away, but because y is unbounded (this integral is over Rn) we need to make
some assumptions. Let’s assume supp(V) ⊂ BR(0) is bounded. Then,∣∣∣x +

εy
2

∣∣∣ < R,

so
|y| ≤ 2

ε
(R + |x|).

This is not strong enough: it’s asymptotic to 1/ε, which does not go away (rather the opposite, in fact).

3For this reason, ε is sometimes known as a semiclassical parameter.
4TODO: I think. . . I didn’t get this written down in time.
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Instead, we’ll have to show that (II2) converges weakly to 0, even when V isn’t compactly supported.
Let J(x, p) ∈ S(Rn ×Rn) be a test function (Schwartz class), and recall that the Fourier transform sends
Schwartz-class functions to Schwartz-class ones. This implies that for all m, n, r, and s,

‖xm∇n
x pr∇s

p J‖L∞ < Cm,n,r,s.

For any such J, its Fourier transform, also Schwartz class, satisfies

(5.2) | Ĵ(x, y)| ≤ f (x)
(R2 + y2)m/2

for some R, where f (x)→ 0 rapidly as |x| → ∞. Hence, when we integrate,

1
ε

ˆ
J(x, p)D2V(εy, εy)ψε(· · · )ψε(· · · )eipy dy dx dp

=
1
ε

ˆ
Ĵ(x, y)D2V(εy, εy)ψε(· · · )ψε(· · · )dy dx.

Using (5.2),

|(above)| ≤ 1
ε

ˆ
| f (x)|‖D2V‖L∞ |εy2| 1

(R2 + y2)m

∣∣∣∣ψε
(

t, x− εy
2

)∣∣∣∣∣∣∣ψε
(

t, x +
εy
2

)∣∣∣dx dy.

Since V is C2, ‖| f | · ‖D2V‖matrix‖L∞ is bounded by some constant C. Here we need to assume D2V grows
at most polynomially in |x| as |x| → ∞ and that f is Schwartz. Then,

≤ 1
ε

ˆ
1

(R+y2)n/2+1 dy
(ˆ ∣∣∣ψε

(
t, x− εy

2

)∣∣∣2 dx
)1/2(ˆ ∣∣∣ψε

(
t, x +

εy
2

)∣∣∣2 dx
)1/2

.

Each of the L2 terms is O(ε), and therefore the whole thing goes as ε2/ε, hence O(ε), which goes to 0 as
ε→ 0. �

Hence the semiclassical limit of the Schrödinger equation is the Liouville equation, as promised. We’re
lucky in a sense, because the semiclassical limit came purely by rescaling; in general, one has to be more
clever.

Derivation of the principle of least action from the path integral. There’s another way to pass from
quantum to classical without doing anything so strange as letting h̄→ 0 (so in particular, we can call it h̄
again).

First, let’s simplify by removing the Vψ term, obtaining the free Schrödinger equation

H0 = − h̄2

2
∆,

whose solution with ψ(t = 0) = ψ0 is

ψ(t, x) =
(

e−itH0/h̄ψ0

)
(x)(5.3)

=

(
1

2πih̄t

)d/2 ˆ
e−i|x−q0|2/(2h̄t)ψ0(q0)dq0.

If it weren’t for the i in the exponent, this would look like a Gaussian. To solve it, we’re going to discretize
time [0, t] into N intervals of width ∆t := t/N. Let tj := j · ∆t and qj be the variable corresponding to tj.

=

(
1

2πih̄∆t

)dN/2 ˆ N−1

∏
j−0

e−i|qj+1−qj |2/(2h̄∆t)

∣∣∣∣∣
qN=x

ψ0(q0)
N−1

∏
j=0

dqj.(5.4)

Thus, if you let qN := (q0, . . . , qN) and

DqN :=
(

1
πih̄∆t

)dN/2 N−1

∏
j=1

dqj,
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which is a complex-valued measure, then (5.4) simplifies to

(5.5)
ˆ

exp
(
− i

h̄
S0,N(t, qN , x)

)
ψ0(q0)DqN .

Here S0,N is the discretization of the action:

(5.6) S0,N :=
1
2

N−1

∑
j=0

( qj+1 − qj

∆t

)2
∆t.

As ∆t → 0, this converges to (1/2)
´ t

0 (q̇(s))
2 ds, and (5.5) resembles more and more the integral of eiS/h̄

over all paths connecting q0 to x, integrated against ψ(q0) with respect to q0. This is an example of a path
integral (after all, it’s an integral over paths).

For the full Schrödinger equation, with V 6= 0, the idea is the same, just with more variables per line.
Again subdivide

[0, t] =
N1⋃
j=0

[tj, tj+1],

and discretize the classical action, like in (5.6) but with a potential.

(5.7) SN(t, qN , x) :=
N−1

∑
j=0

(
1
2

( qj+1 − qj

∆t

)2
+ V(qj)

)
∆t.

Then, define

(5.8) ΨN(t, x) :=
ˆ

e−iSN(t,qN ,x)/h̄
[

det(∂2
t )

det(∂2
t + D2V)

]
︸ ︷︷ ︸

(∗)

ψ0(q0)DqN .

The quantity in (*) is called the Van Vleck-Pauli-Morette determinant, which is the correction to (5.5) dictated
by the potential.

Theorem 5.9. If Ψ(t, x) := limN→∞ ΨN(t, x), then ψ is a strong L2 solution to the Schrödinger equation with
Ψ(t = 0) = Ψ0.

Partial proof. Here s-lim denotes a strong limit. If A and B are two matrices which do not necessarily
commute, Trotter’s product formula establishes that

(5.10) eA+B = lim
N→∞

(
e(1/N)Ae(1/N)B

)N
.

In particular, H0 and V don’t necessarily commute, so if ∆t := t/N,

exp
(
−it

H0 + V
h̄

)
= s-lim

N→∞

(
exp−i

∆tH0

h̄
exp

(
−i

∆tV
h̄

))N
.

Implicit in this composition of operators is a kernel transform.5 Therefore
(5.11)

e−it H0+V
h̄ (x, q0) = s-lim

N→∞

ˆ (
e−i∆tH0/h̄

)
(x, qN−1)e−i∆tV(qN−1)/h̄

(
e−i∆tH0/h̄

)
(qN−1, qN−2) · · · e−i∆tV(q0)/h̄ dq1 · · ·dqN−1.

If you insert (
e−i∆tH0/h̄

)
(qj+1, qj) =

(
1

2πih̄∆t

)d/2
e−i|qj+1−qj |2/(2h̄∆t),

you get the desired expression for ΨN in (5.8), except for the VV-P-M determinant. Now we need to actually
evaluate (5.11), which is a very oscillatory integral on a high-dimensional space. Fortunately, we can use a
trick from harmonic analysis called the stationary phase formula to assist us.6

5TODO: what is this explicitly referring to?
6For those of you who like topology and geometry, there’s a geometric reformulation of this which is related to the Duistermaat-

Heckman formula in symplectic geometry.
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Theorem 5.12. Assume Φ and f are C2 functions on Rn, and let y∗ denote the unique solution to ∆Φ(y) = 0.
Assume D2Φ(y∗) is nondegenerate; then

ˆ
e−iλΦ(y) f (y)dy =

(
2πi
λ

)d/2
|det D2Φ(y∗)|−1/2e−iπ sign(D2Φ(y∗))/4e−iλΦ(y∗) f (y∗) + o

((
1
λ

)d/2
)

as λ→ ∞.

The cool idea is, since

eiλcy =
1

iλc
∂yeicy,

you can use the regularity of f to trade for factors of 1/λ: the more regular f is, the stronger convergence
you can obtain.

Lecture 6.

The stationary phase approximation: 9/19/17

To recap, we wanted to solve the Schrödinger equation, and in order to do so took a kind of path integral:
we discretized the action (5.7) and integrated over all (piecewise-linear) possible paths (5.8) between q0 and
qN = x, the point where we wanted to evaluate the answer. These discretized paths are approximations q∗N
to the classical paths which solve the Euler-Lagrange equations, and one has that

(6.1) ΨN(t, x) =
(

1
2πih̄t

)d/2 ˆ
exp

(−iSN(t, q∗N , x)
h̄

)[
det(∂2

t )

det(∂2
t + D2V)

]
ψ0(q0)dq0.

We then used Trotter’s product formula (5.10) to prove that this converges to solutions ψ(t) strongly
(Theorem 5.9).

To prove (6.1), we have to use the stationary phase formula: that for λ� 1,

(6.2)
ˆ

eiλΦ(x) f (x)dx =

(
1

2πiλ

)d/2
eiλΦ(x∗)eiπ sign(D2Φ(x∗))/4

(
1

det D2Φ(x∗)

)1/2
f (x∗) + o

((
1
λ

)d/2
)

,

where x∗ is the stationary point, i.e. the point where ∇Φ(x∗) = 0.
To use (6.2), we need to find the stationary point q∗N of SN(t, qN , x), which must satisfy

(6.3) ∇q∗N
(t, q∗N , x) = 0.

The Hessian is

D2SN(t, qN , x) =
1

∆t



21d −1d
−1d 21d −1d

−1d
. . .

. . . −1d
−1d 21d


︸ ︷︷ ︸

MN,d

+D2
qV(q∗N)∆t.

Now, (6.3) is equivalent to the equation

−q∗j+1 + 2q∗j − q∗j−1

(∆t)2 = −(∇qj V)(q∗j )

for j = 1, . . . , N − 1, and this is precisly a discretization of the Newton equations

q̈ = −∇V(q).

Remark. 1/(∆t)2MN,d is a discretization of ∂2. (
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From the stationary phase equation,

ΨN(t, x) =
ˆ

KN(t, q∗N , x)ψ0(q0)dq0 + lower-order terms,

where

KN(t, q∗N , x) =
(

1
2πih̄∆t

)Nd/2

(2πih̄)Nd/2
∣∣∣det

(
D2

qN
SN(t, q∗N , x)

)∣∣∣−1/2
exp

(
iSN(t, q∗N , x)

h̄

)
=
∣∣∣det

(
∆t D2

qSN(t, q∗N , x)
)∣∣∣−1/2

exp
(

iSN(t, q∗N , x)
h̄

)
=
∣∣∣det

(
MN,d + D2

qV(q∗N)(∆t)2
)∣∣∣−1/2

exp
(

iSN(t, q∗N , x)
h̄

)
,(6.4)

and we know what the Hessian is. We’ll use a strange-looking trick to simplify this next: observe that(
1

2πih̄

)d/2
=

(
1

2πih̄t

)d/2
exp

(
− i|x− x|

2h̄t

)
,

which can be interpreted as a free propagator of x with itself. This can be expressed as an action

= |det(MN,d)|−1/2 exp
(

i
h̄

S0,N(t, x, x, . . . , x)
)

.

Plugging the ratio of these terms back into (6.4),

KN(t, q∗N , x) =
(

1
2πih̄t

)d/2 ˆ ∣∣∣∣∣ det((1/(∆t)2)MN,d)

det((1/(∆t)2)MN,d + D2V)

∣∣∣∣∣ exp
(

iSN(t, q∗N , x)
h̄

)
.

This ratio of determinants is important — it’s the discretization of the VV-P-M determinant that we alluded
to last time.

Ehrenfest theorem. The Ehrenfest theorem is another link between the quantum and classical worlds.

Theorem 6.5. Let A(t) be a linear operator on L2 and assume ψ(t) is an L2 solution of the Schrödinger equation, i.e.

ih̄∂tψ = Hψ

and ψ(t = 0) = ψ0 for some specified ψ0. Then,

d
dt
〈A(t)〉ψ(t) =

1
ih̄
〈[H, A]〉ψ(t) + 〈∂t A〉ψ(t).

(Recall that 〈A〉ψ = 〈ψ, Aψ〉.) One special case of interest: let A = x be a position variable. Then,

d
dt
〈x〉ψ(t) = 〈[H, x]〉ψ(t),

and

[H, X] =

[
− h̄2

2
∆ + V, x

]
.

If you calculate it out, this commutator is the gradient, so

[H, x] f = −h̄2∇ f = −ih̄P f ,

where P := −ih̄∇ is the momentum operator.
If on the other hand you apply Theorem 6.5 to P, you get that

d
dt
〈P〉ψ(t) =

1
ih̄
〈[H, P]〉ψ(t),

and in a similar manner,
[H, P] f = [V, P] f = −ih̄(∇V) · f .

Thus
d
dt
〈P〉ψ(t) = −〈∇V〉ψ(t).



22 M393C (Topics in Mathematical Physics) Lecture Notes

What this means is that the classical Hamiltonian equations hold, in the operator sense, in expectation, with
respect to ψ(t).

Spectral theory. We’re going to spend the next several lectures on spectral theory. We’ve done some before
in the prelim classes, but the operators that arise in quantum physics are not always compact, and so we’ll
need a more advanced theory.

Definition 6.6. Let A be a linear operator (possibly unbounded) on a Hilbert space H. Its spectrum σ(A) is
the set of λ ∈ C such that A− λ is noninvertible.7 The resolvent ρ(A) := C \ σ(A).

The spectrum further subdivides into three types.
• The point spectrum σp(A) is the subset of σ(A) where A− λ is not injective.
• The continuous spectrum σc(A) is the subset of σ(A) where A− λ is injective, and the range of A− λ

is dense, but (A− λ)−1 is not bounded.
• The residual spectrum is the subset of σ(A) where the range of A− λ is not dense.

Theorem 6.7. These are all the spectral types: σ(A) = σp(A) ∪ σc(A) ∪ σr(A). Moreover, if A is self-adjoint,
σr(A) = ∅ and σ(A) ⊂ R.

Definition 6.8. Assume (A− λ)ψ = 0 has a nonzero solution ψ ∈ H. Then, λ is called an eigenvalue and ψ
an eigenvector.

There are also cases that are “almost as good.”

Definition 6.9. The sequence {ψn} ∈ H is called a Weyl sequence for A and λ if
(1) ‖ψn‖H = 1,
(2) ‖(A− λ)ψn‖H goes to 0 as n→ ∞, and
(3) ψn ⇀ 0 as n→ ∞.

The last condition means that ψn converges weakly to 0, i.e. (φ, ψn)→ 0 for all φ ∈ H.
Let σd(A) denote the discrete spectrum of A, i.e. the set of isolated eigenvalues of A with finite multiplicity.
We won’t prove these theorems, but a proof will be posted (either on Canvas or the course website).

Theorem 6.10 (Weyl criterion). σc(A) is the set of λ ∈ C for which there exists a Weyl sequence.

Theorem 6.11. If U : H → H is unitary, then σ(U∗AU) = σ(A).8

Proof. This follows because U∗AU − λ = U∗(A− λ)U, which is true because U∗U = 1, and the fact that U
is an isometric isomorphism, hence preserves injectivity, surjectivity, and density. �

Different authors use different conventions/definitions for these things, so be careful.

Lecture 7.

Spectral theory: 9/21/17

“Let me write this down in the hope that the errors today are new errors, not old ones.”
We started with a correction of a derivation from the last lecture. I don’t know where it fits in the notes,
unfortunately. (

1
2πih̄t

)d/2
=

(
1

2πih̄t

)d/2
exp

(
− i|x− x|2

2h̄t

)

=

(
1

2πih̄∆t

)dN/2 ˆ
exp

(
− i

h̄
S0,N(t, qN , x)

)
dqN .

dqN is a product of N − 1 integrands dqj, rather than N integrands.

=

(
1

2πih̄∆t

)dN/2

(2πih̄)
d(N−1)

2

∣∣∣∣det
(

1
∆t

)
Md,N

∣∣∣∣−1/2
,

7That is, if λ 6∈ σ(A), A− λ has not just an inverse, but a bounded inverse.
8TODO: this is also true for σp, σc, and σr , right?
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and again, Md,N is an (N − 1)× (N − 1)-matrix.

=

(
N

2πih̄t

)d/2∣∣det Md,N
∣∣−1/2.

As the determinant of the (N − 1)× (N − 1)-matrix

AN−1 =


2 −1
−1 2

. . .
2 −1
−1 2


is N, the determinant of Md,N = AN−1 ⊗ 1d is Nd. The good news is, in the limit the answer is the same.
(There was also a correction in the spectral theory part of the notes, which has already been incorporated.)

Example 7.1.
(1) Let H = L2(Rd) and for a monotone continuous function g : R→ R with range [−M, M], let Ag be

the operator sending f to Ag f (x) = g(x) f (x). Then, σ(Ag) = [−m, M].
If λ 6∈ Im(g), then (Ag − λ)−1 = 1/(g(x)− λ) is bounded.
Now assume λ ∈ Im(g); since g is monotone, g−1(λ) is either a point or an interval.
• Suppose |g−1(λ)| = 0. Then, Ag − λ is injective, because ((Ag − λ) f )(x) = 0 iff (g(x) −

λ) f (x) = 0 implies f = 0 almost everywhere, so λ ∈ σc(Ag).
• Suppose |g−1(λ)| > 0. Then, there functions f ∈ L2(R) not almost everywhere zero with
((Ag − λ) f )(x) = 0, so λ ∈ σp(Ag).

(2) Let A be multiplication by x acting on L2(R). Then, σ(A) = σc(A) = R, essentially by the previous
example. This is the spectrum of a position operator in quantum mechanics.

(3) Let P = −i∇, which is the momentum operator, again in d = 1. If U denotes the Fourier transform,
then U∗PU = ξ, so once again σ(P) = σc(P) = R.

(4) Suppose Aψ = −∆ψ. Then, U∗(−∆)U = ξ2, so we can just look at the spectrum of that, which is
entirely the continuous spectrum, which is R≥0, so σ(−∆) = σc(−∆) = R≥0.

(5) If A = −∆ and d > 1, then

U∗(−∆)U =
d

∑
j=1

ξ2
j ,

which has the same range, and therefore it’s still true that σ(−∆) = σd(−∆) = R≥0. (

Theorem 7.2. Suppose H = −∆ + V on L2(Rd), where V is a continuous function such that V(x) → 0 as
|x| → ∞. Then, σess(H) = R≥0.

This is tricky, because these operators do not commute. The proof is a nice application of a variant of
Weyl sequences.

Definition 7.3. Let A be a linear operator on L2(Rd). A spreading sequence for A and λ is a sequence {ψn}
such that

• ‖ψn‖ = 1,
• for any bounded B ⊂ Rd, there’s an NB such that supp(ψn) ∩ B = ∅ for n > NB, and
• ‖(A− λ)ψn‖ → 0 as n→ ∞.

Proposition 7.4. A spreading sequence for A, λ is also a Weyl sequence.

Proof of Theorem 7.2. Consider the sequence

ψn(x) := ei
√

λx 1
nd/2 φ

(
|x− 2n sign(x)|

n

)
,

where φ is a bump function with total integral 1 and supported on (−1, 1). We’re going to show this is a
spreading sequence for H when λ ≥ 0.
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We have
|x− 2n sign(x)| ≤ n ⇐⇒ n ≤ |x| ≤ 3n,

and therefore the support of ψn is unbounded as n → ∞. It’s also quick to check tht ‖ψn‖2 = 1. Finally,
let’s compute

(7.5) ‖(H − λ)ψn‖ ≤ ‖(−∆− λ)ψn‖L2

(I)

+ ‖Vψn‖L2

(II)

.

Since the Fourier transform is norm-preserving,

(I) = ‖(ξ2 − λ)ψ̂n‖,
and

ψ̂n(ξ) = e2in|ξ| nd/2φ̂
(

n
(
|ξ| − λ1/2

))
χn(ξ)

.

|χn|2 is concentrated around |ξ| − λ1/2, and in fact converges weakly to a δ-function supported there, which
means that for any test function g, as n→ ∞,ˆ

g(|ξ|)χ2
n(|ξ|)d|ξ| −→ g(λ1/2).

Therefore, assuming λ is in the image of ξ2,ˆ
(ξ2 − λ2)|χn(ξ)|2 dξ −→ 0.

The other piece of (7.5) also goes to 0:

(II)2 = ‖Vψn‖

=

ˆ
V(x)2|ψn(x)|2 dx

≤ sup
|x|∈[n,3n]

|V(x)|2
ˆ
|ψn|2,(7.6)

and we know ‖ψn‖ = 1 and V(x)→ 0 as |x| → ∞, so (7.6) does go to 0 as n→ ∞, and therefore for λ ≥ 0,
{ψn} is a spreading sequence, hence a Weyl sequence by Proposition 7.4, and by Theorem 6.10, we’re
done. �

Lecture 8.

The spectral theory of Schrödinger operators: 9/26/17

Note: I came in 20 minutes late and may have missed some material.
References: Reed-Simon, Hislop-Sigal, Yoshida, Kato.

Definition 8.1. T is essentially self-adjoint on H if its closure is self-adjoint.

Theorem 8.2. Let T be a symmetric operator on H. Then, the following are equivalent:
(1) T is essentially self-adjoint on H.
(2) ker(T∗ ± i) = {0}.
(3) Im(T ± i) is dense in H.

Now we’ll talk about the spectral theorem.
For motivation, consider an n× n matrix with complex entries. It has n eigenvalues σ(A) = {λj}, and

assume that it has n linearly independent eigenvectors vj, so that it may be diagonalized: let T = (v1 . . . vn)
and

Λ =

λ1
. . .

λn

 .
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Then,
A = T−1ΛT = ∑ λjPj,

where if Ej is the matrix with a 1 in position (j, j) and 0 elsewhere, Pj := T−1EjT.
The operator norm ‖A‖op is defined to be the supremum of the set of eigenvalues of A. If A = A∗ (i.e. it’s

Hermitian), then T−1 = T∗, i.e. it’s unitary.
Now suppose f is a function with a convergent power series expansion f = ∑ anxn. For a matrix A we

can write

f (A) = ∑ an An

= T−1(∑ anΛn)T
= T−1

 f (λ1)
. . .

f (λn)

 T

= ∑
j

f (λj)Pj.

If Γ is a contour enclosing σ(A), we can also write this as

f (A) =
1

2πi ∑
j

˛
Γ

dz
f (z)

λj − z
Pj,

or, if f is analytic,

=
1

2πi

˛
Γ

dz
f (z)

A− z
.

Now we generalize to infinite-dimensional Hilbert spaces.

Theorem 8.3 (Spectral theorem for bounded Hermitian operators). Let A be a bounded Hermitian operator on
a Hilbert space H, Ω be a complex domain containing σ(A), and f : C→ C be analytic in Ω. If Γis a contour in Ω
encircling σ(A), then

f (A) =
1

2πi

˛
Γ

f (z)(A− z)−1 dz.

Since A = A∗, σ(A) ⊂ R; since A is bounded, so is its spectrum, and therefore the picture makes sense.
This integral may be understood in the following way: the numbers (ψ, f (A)ϕ) over all ψ, ϕ ∈ H

determine f (A) uniquely, and

(ψ, f (A)ϕ) =
1

2πi

˛
Γ

f (z)(ψ, (A− z)−1 ϕ),

and the inner product is analytic in z in a neighborhood of Γ.
In quantum mechanics, we need to also understand unbounded operators. In this case, the spectrum is

real, but may be unbounded, and the idea is to consider the contour that’s the boundary of the rectangle
[−1/ε, 1/ε]× [ε, ε], and let ε↘ 0.

Theorem 8.4 (Spectral theorem for unbounded, Hermitian operators). Let A be an unbounded Hermitian
operator on H and f : R→ R be a Borel function.9 Then,

f (A) =
1

2πi
lim
ε↘0

Im
ˆ ∞

−∞
f (λ)(A− λ− iε)−1 dλ.

The proof is long and not terribly instructive, so we won’t go into it. Instead, we’ll focus specifically on
Schrödinger operators.

Theorem 8.5. Let H = −∆ + V, where V : Rd → R is continuous, V ≥ 0, and V(x)→ ∞ as |x| → ∞. Then,
(1) H is self-adjoint on L2(Rd),
(2) σ(H) = σd(H) is the set {λj} of eigenvalues, and

9This means for every I ⊂ R open, f−1(I) is a Borel set.
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(3) λj → ∞ as j→ ∞.

Partial proof. For self-adjointness, see Hislop-Segal. We next show there does not exist a spreading sequence
for any λ: assume {ψn} is such a sequence; then, for any λ in the essential spectrum, (ψn, (H − λ)ψn)→ 0.
And this is

(ψn, (H − λ)ψn) = (ψn, (−∆)ψn) + (ψn, Vψn)− λ

=

ˆ
|∇ψn|2 +

ˆ
V|ψn|2 − λ

≥ inf
y∈supp(ψn)

(V(y))− λ,

and this goes to ∞, since {ψn} is a spreading sequence, providing a contradiction.
This means the essential spectrum is empty, so σ(H) = σd(H), which is exactly the isolated eigenvalues.
To get at the limit of the eigenvalues, we’ll use a variational characterization of the eigenvalues of an

operator.

Theorem 8.6. Let Hh := span{ψ1, . . . , ψn}, where ψi is an eigenvector for the ith lowest eigenvalue λi (so
λ1 ≤ λ2 ≤ . . . ). Then,

inf
{ψ∈H⊥n ∩D(H)|‖ψ‖=1}

(ψ, Hψ) = inf{σ(H) \ {λ1, . . . , λn}}.

This is true because H is unbounded and its eigenvalues do not accumulate (because there is no essential
spectrum). Repeatedly invoking Theorem 8.6, one gets that there’s always another eigenvalue λi+1, and it’s
at least as big as λi, but the eigenvalues cannot accumulate, so they go to ∞. �

Not every Schrödinger operator meets the criteria of (8.5), though, including some famous ones.

Example 8.7 (The hydrogen atom). Consider the Coulomb potential V(x) = 1/|x| on R3, which goes to 0 as
|x| → ∞, and the Hamiltonian

H = −∆− 1
|x| .

Then, the essential spectrum of H is [0, ∞). There are infinitely many eigenvalues below 0, though, and
we’ll shw this by constructing a sequence {un}n≥1 of linearly independent functions with (un, Hun) < 0
for all n.

Pick a u ∈ C∞
0 (R3) such that ‖u‖L2 = 1 and supp u ⊂ {x ∈ R3 | 1 < |x| < 2}. Then, let

un := 2−3n/2u(2−nx),

for n ∈ N. Since (un, um) = δnm, these are linearly independent. Moreover, (un, Hum) = 0 when n 6= m:

(un, Hum) =

ˆ
∇un(∇um)dx +

ˆ
V(x)un(x)um(x)dx,

but un and um have disjoint domains, so these integrals are both 0. If m = n, then we get

(un, Hun) =

ˆ
|∇un|2 −

ˆ
1
|x| |un|2 < 0. (

Lecture 9.

The Birman-Schwinger principle: 9/28/17

We’ve been studying the Schrödinger operator

H = −∆− 1
|x| ,

which corresponds to a hydrogen atom, a single electron bound to a nucleus. We’re assuming the nucleus
is static and its mass is so large as to make the mass of the hydrogen atom negligible. Last time, we saw
that the essential spectrum of H is R+, the eigenvalues are negative numbers, and there are infinitely many
distinct eigenvalues. This implies there’s an infinite-dimensional linear subspace on which H is negative.
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One might ask, what aspect of this operator leads H to have infinitely many eigenvalues? For which
values of α > 0 does the operator

H = −∆− 1
|x|α

have infinitely many eigenvalues?
Again we consider the function un(x) := 2−3n/2u(2−nx), where u ∈ C∞

0 and supp(u) ⊂ {|x| | 1 < |x| <
2}, so that ‖un‖L2 = 1.10 Then,

〈un, Hum〉 = Cδn,m,

because the support of the derivatives is also disjoint. Thus the kinetic term always vanishes. But the
potential term may be nonzero, and is when m = n: we get

〈un, Hun〉 =
ˆ
|∇un|2 −

ˆ
1
|x|α
|un|2

= 2−2n
ˆ
|∇u|2 − 2−αn

ˆ |u|2
|x|α

.(9.1)

If α < 2, then for all n large enough, this is less than 0, because the second term dominates. This implies
there are infinitely many eigenvalues. If α > 2, then (9.1) is positive for all n sufficiently large. Does this
mean we only have finitely many eigenvalues?

Another potential we might consider is V(x) = 1/〈x〉α (where 〈x〉 is the Japanese bracket). Then,
V ∈ L3/2(R3). For α > 2, do we only have finitely many eigenvalues?

The physical intuition comes from spectroscopic experiments: the hydrogen atom is in a state, and if
it absorbs light of a certain energy (color), it can jump to a higher-energy state, and if it emits light of a
certain energy (color), it falls to a lower-energy state. Every atom has a different potential and hence a
different spectrum (of its Hamiltonian and observationally). The essential spectrum represents when the
electron has been separated from the atom (ionization).

We’ll use something called the Birman-Schwinger principle to solve this. Assume H = −∆ + V, where
V < 0, so U(x) := −V(x) > 0. For any λ < 0, (−∆ + V)φ = λφ iff (−∆− λ)φ = Uφ, so

φ = (−∆− λ)−1Uφ.

Since U > 0 then we can take a square root of it: let v := U1/2φ, so v = K(λ)v, where

K(λ) := U1/2(−∆− λ)−1U1/2.

In particular, λ is an eigenvalue of H (for λ < 0) iff 1 is an eigenvalue of K(λ). Therefore the number nH of
λ < 0 that are eigenvalues of H is the same as the number of λ < 0 such that 1 is an eigenvalue of K(λ).

Proposition 9.2. nH is also equal to the number of ν < 1 such that ν is an eigenvalue of K(0).

We’ll prove this in a series of lemmas.

Lemma 9.3. For all λ < 0, ∂λK(λ) > 0.

Proof. If φ 6= 0,

∂λ(φ, K(λ)φ) = ∂λ

(
U1/2φ, (−∆− λ)−1U1/2φ

)
=
(

U1/2φ, (−∆− λ)−2U1/2φ
)

= ‖(−∆− λ)−1U1/2φ‖2
L2 > 0 �

Lemma 9.4. As λ→ ∞, K(λ)→ 0.

This proof is a nice application of a bunch of tools you learned in your functional analysis course.

10One might say that the uns are supported in dyadic shells and have mutually disjoint supports.
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Proof. We’ll prove this by calculating the integral kernel of K(λ), using the integral kernel for (−∆− λ)−1.
First,

(9.5) (−∆− λ)−1(x, y) =
1

2π|x− y| e
√
|λ||x−y|.

The integral kernel is one such that you get a convolution operator after the Fourier and inverse Fourier
transforms, and is the infinite-dimensional generalization of matrix multiplication.

((−∆− λ)−1 f )(x) =
(
(ξ2 − λ)−1 f̂

)∨
(x)

=
(
((|·|2 − λ)−1)∨ ∗ f

)
(x),(9.6)

where inside the absolute value is
ˆ

1
ξ2 + |λ| e

iξz dξ = C
e−
√
|λ||z|

2|z| ,

where we integrated over the ξ such that |ξ| = ±i|λ|1/2. Therefore (9.6) isˆ
Gλ(x, y) f (y)dy,

where Gλ(x, y) is the Green’s function, which in this case is either side of (9.5).

Remark. There are two norms one can put on a kernel: the usual operator norm and the Hilbert-Schmidt
norm

‖K‖HS :=
(ˆ
|K(x, y)|2 dx dy

)1/2
.

It turns out this is always at least as big as the operator norm: for any f ∈ L2,

‖K f ‖2
L2 = (K f , K f )L2

=

ˆ
dx
∣∣∣∣ˆ K(x, y) f (y)dy

∣∣∣∣2.

By Cauchy-Schwarz,

≤
ˆ

dx
(
|K(x, y)|2 dy

)(ˆ
| f (y)2|dy

)
=

ˆ
|K(x, y)|2 dx dy‖ f ‖2

L2 .

Hence ‖K‖op ≤ ‖K‖HS.
It’ll also be useful to recall the definition of the trace of an integral kernel: if {φi} is an orthonormal

basis of L2(R3),
tr K := ∑(φj, Kφj).

Basis-independently, this is also

tr K =

ˆ
K(x, x)dx. (

Putting all this together,

K(λ) = U1/2(x)
1

2π|x− y| e
−
√
|λ||x−y|U1/2(y),

so

‖K(λ)‖op ≤
(ˆ

U(x)U(y)

4π2|x− y|2
e−2
√
|λ||x−y| dx dy

)1/2

,

and this tends to 0 as λ→ −∞. �
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Proof of Proposition 9.2. Since ‖K(λ)‖ → 0 as λ → −∞, all eigenvalues are less than 1 for λ sufficiently
negative. Since ∂λK(λ) > 0 for all λ < 0, then the eigenvalues of K(λ) increase monotonically in λ. The
idea is that there’s this “eigenvalue flow” such that as λ gets more negative, its eigenvalues get closer to 0.

Let νm(λ) be the mth eigenvalue of λ. Then, if νm(λm) = 1 for some λm < 0, then νm(0) > 1. This means
there’s a one-to-one correspondence between the eigenvalues νm(0) > 1 of K(0) and the points λm at which
some eigenvalue νm(λ) crosses 1, which is, as required, the number of λ < 0 which have 1 as an eigenvalue
of K(λ).

But then,

{ν > 1 | ν is an eigenvalue for K(0)} = ∑
νm>1

eigenvalues of K(0)

1

≤ ∑
νm>1

ν2
m

≤ ∑
eigenvalues of K(0)

ν2
m

= tr|K(0)|2 = ‖K(0)‖2
HS.

This norm is also

1
(2π)2

ˆ
U(x)U(y)

|x− y|2
dx dy =

1
(2π)2

V(x)V(y)

|x− y|2
dx dy.

The right-hand side is sometimes called the Rollwick norm of V. Then, using the Hardy-Littlewood inequality,

≤ 1
(2π)2 C‖V‖2

L3/2 .(9.7)

The Hardy-Littlewood inequality here depends on the fact that the dimension is 3, and indeed, eigenvalues
of Schrödinger operators behave differently in dimension 2.

But the point is, the number of eigenvalues is finite for V ∈ L3/2, and there cannot be any if (9.7) is
greater than 1. �

Lecture 10.

Lieb-Thirring inequalities: 10/3/17

Last lecture, we used the Birman-Schwinger principle to count eigenvalues of certain Hamiltonians in
dimension 3 (specifically, on L2(R3)). If H = −∆ + V and V vanishes at infinity, then the eigenvalues of H
are in bijection with the eigenvalues of

K(λ) := U1/2(−∆− λ)−1U1/2,

i.e.

K(λ)(x, y) = U1/2(x)
e−
√
|λ|

2π
U1/2(y).

This Green’s function is why the theory is so nice in dimension 3: in higher dimensions, there are extra
terms in powers of |x− y|, and they make the analysis considerably more complicated.

Remark. What if V isn’t positive definite? If V = V+ −V−, where V− ≥ 0, then H ≥ H̃ := −∆−V−, and by
the minimax characterization of eigenvalues, the respective eigenvalues satisfy Ej ≥ Ẽj. This in particular
tells us that it suffices to study H̃, and V+ is often just thrown out. (

Using the Birman-Schwinger principle, we obtain that the number of negative eigenvalues of H is at
most ‖H‖HS, the Hilbert-Schmidt norm. By Hardy-Littlewood-Sobolev, this is bounded by some scalar
multiple ‖U‖2

L3/2(Rd) (where U = V−).
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Today, we’re going to bound eigenvalues in a different way, using the Lieb-Thirring inequalities.
Specifically, let Ej < 0 be the jth eigenvalue of H = −∆ + V, where V = V+ −V−. Let ej := |Ej|; we want to
bound

∑
j

eγ
j .

Lemma 10.1.

∑
j

eγ
j = γ

ˆ ∞

0
eγ−1Ne de, 11

where Ne is the number of eigenvalues of H less than or equal to −e, which is a monotonically decreasing step
function.

Proof. Since Ne is a step function,
∂eNe = −∑

j
δEj(−e).

Therefore

∑
j

eγ
j = −

ˆ ∞

0
eγ∂eNe de,

and the result follows after integrating by parts. �

If Be is the number of eigenvalues of K(−e) greater than or equal to 1 , where K = V1/2
− (−∆ + e)V1/2

− ,
then as we saw

Ne = Be

= ∑
ν≥1

ν∈Spec(K(−e))

1

≤ ∑
ν≥1

ν∈Spec(K(−e))

νm(10.2)

for any m > 0.
The Green’s function for e is Ge := −∆ + e. Hence we can bound (10.2):

(10.3) (10.2) ≤ tr(K(−e))m = tr
(

U1/2GeU1/2
)m

.

This is a somewhat miraculous fact, which relies on the following lemma. We won’t prove it, because that
in itself would take the whole hour!

Lemma 10.4. Let A and B be positive, self-adjoint operators. Then,

tr
(

B1/2 AB1/2
)m
≤ tr

(
Bm/2 AmBm/2

)
.

For a proof, see Leib-Seiringer’s book, or Bhatia’s book on matrix analysis.
The Green’s function here is

Ge(x, y) =
exp

(
−
√

e|x− y|
)

2π|x− y| .

We’ll let G̃e(x− y) := Ge(x, y), as it only depends on their difference. Observe that

(Gm
e )(x, y) =

ˆ
G̃e(x− x1)G̃e(x1 − x2) · · · G̃e(xm−1, y)dx1 · · ·dxm−1,

so (Gm
e )(x, y) is a function of x− y as well.

11This e is a variable, not Euler’s constant.
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Now, applying Lemma 10.4 to (10.3), we have

NE ≤ tr
(

Um/2Gm
e Um/2

)
= tr(Um(x)Gm

e (x, y))

= G̃m
e (0)

ˆ
Um(x)dx,

using a Fourier estimate for Ge(0) as an integral of its Fourier transform.
Therefore we conclude that

(10.5) ∑
j

eγ
j ≤ C

ˆ ∞

0
eγ−m+3/2 de

ˆ
Um(x)dx.

This is never convergent: we need γ− m + 3/2 to be < −1 (so that it converges at ∞) and > −1 (so it
converges at 0). So we need to do something smarter.

The trick is to instead of U, consider

We :=
(

V +
e
2

)
−
=
(

V+ −
(

V− −
e
2

))
.

Then,

Ne(−V−) = Ne/2

(
−V− +

e
2

)
≤ Ne/2(We),

since We ≥ V− − e/2. Therefore we can replace U by We and e by e/2 everywhere in (10.5), obtaining

∑
j

eγ
j ≤ γCm

ˆ
R3

dx
(ˆ

de eγ−1−m+d/2
(

V−(x)− e
2

)m
)

.

Here d is the dimension (in the end we care about d = 3, but being general will make it clearer where
everything comes from). Since We(x) = (V + e/2)−, then its support is contained within {x | V−(x)− e/2 ≥
0}.

Let a := 2V−(x) and ẽ := a · e. Then,

2−d/2
ˆ a

0
ek(a− e)m de = ak+m+12−d/2

ˆ 1

0
ẽk(1− ẽ)m dẽ.

If we assume k, m > −1, though we already knew m > 0 anyways, then the above integral converges, and
we can let

Bm,d :=
ˆ 1

0
ẽk(1− ẽ)m dẽ.

Moreover, we have

γ− 1−m +
d
2
> −1,

and therefore that

m < γ +
d
2

.

Specializing to d = 3, and choosing m < γ + d/2 (a popular choice is (γ + d)/2), we get the Lieb-Thirring
inequality.

Theorem 10.6 (Lieb-Thirring inequality).

∑
j

eγ
j ≤ γCd,m

ˆ
dx (V−(x))γ+d/2,

where Cd.m is a constant depending on d and m.

This will be useful later, when we need to control the kinetic energy when analyzing the stability of
matter.

A bound state of the Hamiltonian is a state uj that is an eigenvector for a negative eigenvalue Ej. Physically,
these correspond to states where the electron is bound to the nucleus.
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Later, we’ll show that |uj(x)| is rapidly decaying (specifically, exponentially). If we consider the
Schrödinger equation

(10.7) i∂tu = Hu, u(0) = uj

for these uj, the solutions we obtain are periodic:

u(t) = e−itEj uj(0).

If one imagines a gravitational potential, these correspond to circular, constant-height orbits around a
gravitational source.

Scattering states. Let H = −∆ + V. Let Hb denote the span of the eigenfunctions of H. We want to study
solutions of the Schrödinger equation, as in (10.7), but where u0 ∈ H⊥b .

We should assume a bound on the potential: precisely, we require for every 3-tuple α,

|∂α
xV(x)| ≤ (1 + |x|)−µ−|α|.

Here |α| := α1 + α2 + α3, and

∂α
x :=

3

∏
i=1

∂
αj
xj .

Scattering takes information at t = −∞ to t = ∞. Wave operators bring information from the far past or far
future to the current time.

Definition 10.8. The wave operators are the operators

Ω±φ := lim
t→±∞

eitHe−it∆φ.

Sometimes, one also writes H0 := −∆. To precisely define e−itH , one writes it as

e−itH :=
1

2πi

˛
Γ

eitz 1
z− H

dz,

where Γ is a contour enclosing σ(H).12

Wave operators don’t always exist, but we’ll prove that they exist in the presence of short-range interactions
(i.e. µ > 1), and moreover they are L2-isometries.

Thus

(10.9)

∥∥∥e−itHψ0 − e−itH0 φ0

∥∥∥
L2

=
∥∥∥ψ0 − eitHe−itH0 φ0

∥∥∥
L2

t→∞−→
∥∥ψ0 −Ω+φ0

∥∥
L2 = 0.

Thus ψ0 = Ω+φ0 tells us that ψ0 and φ0 have the same long-range physics. We’ll investigate this further
next time.

Lecture 11.

Scattering states: 10/5/17

“As you’ve all noticed, we’re all stable, at least physically. . . ”
Recall that we’ve been studying Hamiltonians of the form H = −∆+V, where H0 = −∆, and considering

Hb, the subspace spanned by bound states. Assume that the potential is rapidly decreasing, in that there’s
a µ > 1 (corresponding to short-range behavior) such that

|∂α
xV(x)| ≤

(
1
〈x〉

)µ+|α|
.

12Another way to define it is

e−itH :=
1

2π
lim
ε↘0

Im
ˆ
R

e−iλt 1
λ + iε− H

dλ.



11 Scattering states: 10/5/17 33

We want to study the asymptotic behavior of ψ(t) = e−itHψ0 as t → ∞. Last time, we defined the wave
operators

Ω± := s-lim
t→±∞

eitHe−itH0 .

Then, we have (10.9), with the implication that

(11.1a)
∥∥∥e−itHψ0 − e−itH0 φ0

∥∥∥
L2

t→±∞−→ 0

if and only if

(11.1b)
∥∥ψ0 −Ω±φ0

∥∥
L2 = 0,

if and only if

(11.1c) ψ0 = Ω±φ0.

The existence of the operators Ω± is equivaelent to the existence of scattering states

lim
t→±∞

eitHe−itH0 φ0.

Thus, one is led to ask, given a ψ0 ∈ H⊥b , does there exist a φ0 ∈ L2 making (11.1c) true? This is called
asymptotic completeness.

Proposition 11.2. Im(Ω+) ⊂ H⊥b .

Proof. Assume that g ∈ Hb, Hg = λg, and φ ∈ L2 ∩ L1. Since g ∈ Hb, it’s in both L2 and L1, and moreover
has exponential decay. Then,

〈g, Ω+φ0〉 = lim
t→∞
〈g, eitHe−itH0 φ0〉

= lim
t→∞
〈e−itλg, e−itH0 φ0〉

= lim
t→∞

eitλ〈g, e−itH0 φ0〉.

We can write e−itH0 as a kernel:(
e−ih0 φ0

)
(x) =

(
1

2πit

)3/2 ˆ
exp

(
−i
|x− y|2

4t

)
φ0(y)dy.

This implies ∣∣∣〈g, e−itH0 φ0〉
∣∣∣ ≤ ( 1

2πt

)3/2 ¨ ∣∣∣∣∣g(x) exp

(
−i
|x− y|2

4t

)
φ0(y)

∣∣∣∣∣dx dy

≤
(

1
2πt

)3/2
‖g‖L1

‖φ0‖L1
.

Since g, φ ∈ L1, this goes to 0 as t→ ∞. Finally, density implies the result for a general φ0 ∈ L2. �

Definition 11.3. If Im(Ω+) = H⊥b , one says the property of asymptotic completeness holds. There’s a similar
definition for Ω−.

Equivalently, Hb ⊕ Im(Ω+) = L2.

Example 11.4. Suppose V ∈ L1∩ L∞ with sufficiently small norm. Then, asymptotic completeness holds. (

To really do asymptotic completeness justice, we’ll need some better tools, namely the Strichartz estimates
from harmonic analysis. I haven’t seen them before (and apparently I’m the only such person in the class),
so we’ll have to return to this later.

Given a ψ0, we can define φ± by ψ0 = Ω+φ+ and ψ0 = Ω−φ−. φ− represents the −∞-time state that
flows to ψ0, and φ+ denotes the +∞-time state which has initial value ψ0.

Definition 11.5. The scattering operator is S := Ω+∗Ω−.

This operator sends φ− 7→ φ+, and in this sense sees all of time for this theory.
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Remark. In physics, this arises when one has waves or beams of particles which interact with each other. In
this case, t = ±∞ is physically meaningful, as the interactions only exist for a few seconds, and therefore
one minute in the past is an acceptable substitute for t = −∞!

This is used in bubble chambers to learn more about the structure of atoms and subatomic particles.
Feynman diagrams are needed to calculate matrix coefficients for S, i.e. coefficients of the form 〈ui, Suj〉 for
an orthonormal basis {uj} of the Hilbert space, and these quantities are used to calculate expectations for
measured quantities. (

Note also that

Ω+φ+ = lim
t→∞

eitHe−itH0 φ+.

Replacing t 7→ t + s,

= lim
t→∞

eisHeitHe−itH0 e−isH0 φ+

= eisHΩ+e−isH0 φ+.

A similar statement for Ω− means
e−isHΩ± = Ω±e−isH0 ,

and differentiating at s = 0,

(11.6) HΩ± = Ω±H0.

That is, the wave operators intertwine the full Hamiltonian and the free Hamiltonian.
If in addition we have asymptotic completeness, then Ω±∗ = (Ω±)−1 on H⊥b , so (11.6) means that on

H⊥B ,
H = Ω±H0Ω±∗.

Thus the Hamiltonian is diagonalized by the wave operators.
In general, it seems like wave operators are really nice — so it would be good to know that they exist.

Theorem 11.7. If V ∈ L2, then the wave operators Ω± exist.

Proof. Let
Ωt := eitHe−itH0 .

Its operator norm is 1, so we’ll prove the existence of limt→∞ Ωtφ when φ ∈ L1 ∩ L2, then invoke the density
of L1 in L2.

Let t > t′. Then,

Ωtφ−Ωt′φ =

ˆ t

t′
∂sΩsφ ds

= i
ˆ t

t′
eisH (H − H0)︸ ︷︷ ︸

V

e−isH0 φ ds.

Therefore

‖Ωtφ−Ωt′φ‖L2 ≤
ˆ t

t′
‖Ve−isH0 φ‖L2 ds

≤ ‖V‖L2

ˆ t

t′
‖e−isH0 φ‖L∞ ds,

and since ‖e−isH0 φ‖L∞ ≤ (1/2πs)3/2‖φ‖L1 , this simplifies to

≤ C‖V‖L2‖φ‖L1

((
1
t′

)1/2
−
(

1
t

)1/2
)

.(11.8)

For all ε > 0, there’s a T = T(ε) such that (11.8) is less than ε for t, t′ > T, and therefore this is Cauchy in
L2. �
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Stability of matter. If electrons were described by Newton’s laws of mechanics, then eventually, energy
would get lost and the electron would spiral into the nucleus, ultimately causing matter to implode.
Obviously this doesn’t happen, and one of the reasons is Heisenberg’s uncertainty principle — which is
not quite a physical law, but a theorem about Fourier transforms, and it applies to stability of matter, and
another application in information transfer via radio waves, and plenty of other physical phenomena.

Let H = −∆ + V. Then, H is bounded below iff inf Spec H > −∞. The eigenstates for negative
eigenvalues correspond to systems where the electron is bound. Asking for stability imposes some more
conditions, e.g. that the infimum is linearly proportional to the number of particles present in the system.

The ground state of the system is E0 := inf Spec H; we want to make sure this is finite.

Example 11.9. Let H = −∆− 1/|x|, corresponding to a hydrogen atom. Is hydrogen stable?
The energy of the system is

E [ψ] = (ψ, Hψ) =

ˆ
|∇ψ|2 −

ˆ
1
|x|ψ

2

= ‖∇ψ‖2
L2 −

∥∥∥∥∥ 1

|x|1/2 ψ

∥∥∥∥∥
2

L2

≥ ‖∇ψ‖2
L2 − ‖|∇|1/2ψ‖L2 ,(11.10)

using the Hardy inequality ∥∥∥∥ 1
|x|s

ψ

∥∥∥∥
L2
≤ ‖|∇|sψ‖L2 .

We can proceed further with a form of the Gagliardo-Nirenberg inequality

‖|∇|1/2ψ‖2
L2 =

ˆ
ψ̂|ξ|ψ̂ dξ

≤ ‖ψ̂‖L2‖|ξ|ψ̂‖L2 .

Therefore
(11.10) ≥ ‖∇ψ‖2

L2 − ‖ψ‖L2‖∇ψ‖L2 ,
and one can show that no matter which of these is large, it’s still bounded below. (

Lecture 12.

Stability of the First Kind: 10/10/17

“At the beginning of one’s education, one imagines ‘if I could solve the equation, I would know
everything.’ Unfortunately, solving equations is hard.”

Last time, we discussed three inequalities that arose in our analysis of the stability of matter: the Hardy
inequality, a Gagliano-Nirenberg inequality, and the Sobolev inequality. Today, we’re going to play more
with these inequalities.

Recall that the hydrogen operator has Schrödinger operator

H = −∆− 1
|x| .

Then, the expectation of u is

(u, Hu) =
ˆ
|∇u|2 −

ˆ
1
|x| |u|

2.

The second piece is also ‖u/|x|1/2‖L2 , and the Hardy inequality says there’s a C such that∥∥∥∥∥ 1

|x|1/2 u

∥∥∥∥∥
L2

≤ CH
∥∥|∇|su

∥∥
L2 .

Using this, we concluded that

(u, Hu) ≥ ‖∇u‖2
L2 − CH‖u‖L2‖∇u‖L2 > −∞.
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One might ask whether the cusp in the potential at 0 leads the ground state to concentrate at 0 (in the
ground state, the particle is in expectation near the origin). Concretely, one asks whether (u, x2u)→ 0. The
answer is no.

1 = ‖u‖2
L2 =

(
u,

1
|x| |x|u

)
L2

(12.1a)

=

(
1
|x|u, |x|u

)
L2

.(12.1b)

By Cauchy-Schwarz,

≤
∥∥∥∥ 1
|x|u

∥∥∥∥
L2
‖|x|u‖L2 ,(12.1c)

and by the Hardy inequality,

≤ CH‖∇u‖L2‖|x|u‖L2 .(12.1d)

Therefore

‖∇u‖L2 ≥ C
1

(u, x2u)1/2 .

Thus the ground state cannot concentrate at 0 or even anywhere, because the kinetic energy would diverge.
Collecting equations (12.1a) to (12.1d), one has the inequality

(12.2) 1 ≤ CH‖∇u‖L2‖|x|u‖L2 ,

which is called the Heisenberg uncertainty principle. Heisenberg originally formulated this as a physical law,
but it’s really a mathematical theorem which happens to apply to physics. It comes out of Fourier analysis,
and appears in Fourier-theoretic contexts that have nothing to do with physics.

Remark. There’s a rich and classic literature about actually constructing the ground state of the hydrogen
atom, which uses spherical harmonics. We won’t go into this, though. (

Definition 12.3. We say that a physical system H = −∆ + V (where V → 0 as |x| → ∞) has stability of the
1st kind if E0 := inf Spec H > −∞.

Theorem 12.4. Assuming that

V ∈


Ld/2(Rd) + L∞(Rd), d ≥ 3
L1+ε(R2) + L∞(R2), d = 2
L1(R) + L∞(R), d = 1,

then E0 > −∞ and the system has stability of the 1st kind. Moreover,

‖∇u‖2
L2 ≤ C1E(u) + C2‖u‖2

L2 ,

where E(u) := (u, H).

Proof for d ≥ 3. We have

E(u) =
ˆ
|∇u|2 +

ˆ
V|u|2.

When d = 3, we want to write V = V1 + V∞ where V1 ∈ L3/2 and V∞ ∈ L∞. Assuming this,

E(u) ≥ 1
2
‖∇u‖2

L2 −
ˆ
|V1||u|2

(I)

−
ˆ
|V∞||u|2

(II)

.

Since V∞ is L∞, we know that for some C∞ ∈ R,

(12.5) (II) ≤ C∞‖u‖2
L2 .

Next, we use the Hölder inequality to dispatch (I).

(I) ≤ ‖V1‖L3/2‖|u|2‖Lr ,
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where 1/r + 2/3 = 1, so r = 3, i.e.

≤ ‖V1‖L3/2‖|u|2‖L3

= ‖V1‖L3/2‖|u|‖L6 .

Now, using the Sobolev inequality,

≤ ‖V1‖L3/2‖∇u‖2
L2 .(12.6)

Remark. The Sobolev inequality might not be familiar to everyone in the audience.13 The idea is that
differentiability of a function, measured in the Lp-norm, also controls its Lq-norm. The way to remember
the precise exponents is to remember that it’s invariant under scaling x 7→ λx, so if you want there to be a
C such that (ˆ

|u|p dx
)1/p

≤ C
(ˆ
||∇|su|2 dx

)1/2
,

scaling by λ on the left-hand side produces a factor of λd/p, and scaling by λ on the right-hand side
produces a factor of λd/2 (from the |u|2) and a factor of λ−s (from the derivative). Thus we’d better have
that

d
p
=

d
2
− s,

or s = d(1/2− 1/p), and indeed this was true for p = 6, d = 3, and s = 1 as we used it above. (

Using (12.5) and (12.6), we obtain what looks like a lower bound.

(12.7) E(x) ≥
(

1
2
− C‖V1‖L3/2

)
(III)

‖∇u‖2
L2 − C∞‖u‖2

L2 .

However, if ‖V1‖L3/2 is large, (III) < 0, and this lower bound is not helpful. So we need to make sure that
V1 is small, or (III) > 0. For this we use the Chebyshev inequality. Let A>(λ) := {x ∈ Rd | |V(x)| > λ}
and A<(λ) := (A>(λ))c.

Lemma 12.8 (Chebyshev inequality). For any p,

|A>(λ)| ≤
‖V‖p

Lp

λp .

Proof. ˆ
A>(λ)

|V|p ≥ λp
ˆ

A>(λ)
1 = λp|A>(λ)|. �

For any λ, u|A<(λ) is L∞, and ˆ
A>(λ)

|V|p ≤ ‖V‖p
Lp ,

and the left-hand side is monotonically decreasing to 0 as λ→ ∞. Therefore there’s a λ∗ such that for all
λ > λ+, ‖V‖Lp(A>(λ)

< 1/4. Thus, for λ sufficiently large, we can define V1 := V|A>(λ), which implies that
V∞ := V −V1 ∈ L∞, and that (III) > 0, so E(u) is bounded below.

We had assumed d = 3, and used this only in (12.6) when invoking the Sobolev inequality. In the general
d-dimensional case, Hölder tells us thatˆ

|V1||u|2 ≤ ‖V1‖Ld/2‖|u|2‖Lr ,

where 2/d + 1/r = 1, i.e. r = 2d/(d− 2), so

≤ ‖V1‖Ld/2‖u‖2
L2d/(d−2) .

13Certainly, I am only weakly familiar with it.
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The Sobolev inequality says that s = d(1/2− 1/p), so with p = 2d/(d− 2), s = 1, so

≤ ‖V1‖Ld/2‖∇u‖2
L2 .

Thus again

E(u) ≥
(

1
2
− C2‖V1‖Ld/2

)
‖∇u‖2

L2 − ‖V∞‖L∞‖u‖2
L2 .

For a suitable choice of V1, which can be produced by Chebyshev’s inequality, the first term is positive, and
we win. �

After studying one-particle systems, we naturally move to many-particle systems, which will have a
second-order stability condition. “Many” could mean different things in different contexts: for atoms other
than hydrogen, it might be in the dozens, but if you’re analyzing something like a neutron star, it might be
1010 or something in that ballpark. You can set up the Schródinger equation in this context, but if you solve
it, obtaining some explicit function of 1010 variables, it’s not going to give you any great insights.

Let’s consider a quantum-mechanical system with N variables, so its wavefunctions ψ live in L2(RdN),
and we write ψ = ψ(x1, . . . , xN), with xj ∈ Rd, and

‖ψ‖L2 =

ˆ
|ψ(x1, . . . , xN)|2 dx1 · · ·dxN = 1.

The probability density of finding a particle at x (which becomes a probability after normalization) is

Cψ(x) :=
N

∑
j=1

ˆ
Rd(N−1)

|ψ(x1, . . . , xj−1, x, xj+1, . . . , xN)|dx1 · · · d̂xj · · ·dxN .

That is, let x stand in for xj, and don’t integrate out over xj.
Now it’s time to say something important in life, and talk about fermions. We’ve been studying non-

relativistic quantum mechanics, but everything is relativistic, and almost everything is Lorentz invariant.
Therefore we want the kinds of particles in our theories to match this description, and according to quantum
field theory there are only two kinds of elementary particles, bosons and fermions.

This can be deduced from mathematics! Specifically, relativistic quantum field theory tells us that
particles are given by representations of the group preserving the Lorentz metric on R4, which is SL(2,C)
(containing SU(2), the maximal compact subgroup). There are three pieces:

• One-dimensional representations φ(t, x).
• Two-dimensional representations (ψ1, ψ2)(t, x) ∈ C2, called spinors.
• Three-dimensional representations (A1, A2, A3)(t, x) ∈ C3, called vectors.

The spin of such a k-dimensional representation is (k− 1)/2. If s ∈ N, then the particle is called a boson; if
s ∈ N+ 1/2, it’s called a fermion. The reason for this dichotomy is which kind of equation they satisfy.

• Spin-0 particles satisfy the Klein-Gordon equation(
∂2

t − ∆
)

φ = m2φ.

• Spin-1/2 particles satisfy the Dirac equation14

mγ0Ψ + ∑
j

γji∇jΨ = 0.

Here Ψ := (ψ1, ψ2, ψ3, ψ4).
• For spin-1 particles, one has a Maxwell equation.

The difference is that the Dirac equation is indefinite: its spectrum is not bounded below, and therefore
the theory is unstable. This causes problems that will be solved by quantization, but that introduces its
own weirdness — if you assume that spacelike separated particles in Minkowski space have commuting
operators and that the quantized Dirac operators have bounded-below spectrum, one obtains that the
particle creation and annihilation operators for bosons must anticommute! And in fact the function itself is
antisymmetric. This is encoded in the spin-statistics theorem of Pauli-Fierz.

Photons are bosons, and electrons are fermions. We’ll say more about this next time.

14TODO: The heuristic is right, but there’s something wrong with the equation.
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Lecture 13.

Density matrices and stability of matter: 10/12/17

Today we’re going to discuss stability of matter in earnest. To truly understand this, one has to make
some hardcore estimates, which we’re not going to get into. However, we will mention where the estimates
are, and provide estimates.

Last time, we mentioned that there are only two kinds of elementary particles, bosons and fermions, a
classification of particles by their mutual statistics. Bosons are described by a Schrödinger wavefunction
ψ(x1, . . . , xN) ∈ L2(RdN) which is symmetric under arbitrary permutations of the particles x1, . . . , xN . That
is, if SN denotes the symmetric group on N letters, this wavefunction lives in

L2
sym(RdN) := L2(RdN)SN .

Fermions are again described by Schrödinger wavefunctions, but are completely antisymmetric under
permutations:

ψ(x1, . . . , xN) = (−1)sign(σ)ψ(xσ(1), . . . , σ(n))
for any σ ∈ SN . Here sign(σ) is its signature: a permutation can be written as a composition of transposi-
tions, and the signature is the number of transpositions mod 2, which is well-defined. The subspace of
antisymmetryc functions is denoted L2

anti(R
dN).

Matter is fermionic, so we’re going to study stability of matter for fermions.

Density matrices. Let ψ ∈ L2(RdN) with ‖ψ‖ = 1, and then define

Γψ(x, x′) := ψ(x)ψ(x′),

where x := (x1, . . . , xN). This defines an integral operator with kernel Γψ(x, x′):

(Γψφ)(x) = (ψ, φ)ψ(x),

because

Γψφ =

ˆ
Γψ(x, x′)φ(x′)dx′

= ψ(x)
ˆ

ψ(x′)φ(x′)dx′

(ψ,φ)

.

In bra-ket notation, |ψ〉 refers to ψ as a column vector, and 〈ψ| refers to it as a row vector (its adjoint in the
dual space). Then, Γψ = |ψ〉〈ψ|, and it’s a projection, because

ΓψΓψ = |ψ〉 〈ψ | ψ〉
=1

〈ψ| = |ψ〉〈ψ| = Γψ.

This shows off the reason people like bra-ket notation: 〈ψ | φ〉 is exactly their inner product.
Γ is an example of a density matrix.

Definition 13.1. A density matrix is a linear, self-adjoint, positive semidefinite operator Γ with unit trace:
0 ≤ Γ ≤ 1 and tr Γ = 1.

Let (φj) be an orthonormal basis for L2. Then

tr Γ = ∑
j
(φj, Γφj);

since this is finite, Γ has a pure point spectrum: there are eigenvectors φj with corresponding eigenvalues
λj such that ‖φj‖L2 = 1 and

Γ = ∑
j

λj|φj〉〈φj|.

Thus
tr Γ = ∑

j
λj = 1.

A density matrix which is not a rank-1 projection is called a mixed state; otherwise it is a pure state.
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Quantum mechanics and ground state energy. Let ψ ∈ L2(RdN) have unit norm. Then, E [ψ] = (ψ, Hψ),
where H is the Hamiltonian (an N-body Schrödinger operator). More generally, the energy functional for a
density matrix Γ is

E [Γ] = tr(HΓ).

We can simplify this somewhat:

tr(HΓ) = ∑
j

λj tr(H|ψi〉〈ψj|)(13.2)

= ∑
j

λj(φj, Hφj)(13.3)

= ∑
j

λjE [Γφj ].

Here’s why we can get from (13.2) to (13.3): let

Kj(x, x̃) := φj(x̃)(Hφj)(x) =
ˆ

H(x, x′)φ(x)dx′

H|φj〉〈φj |

φj(x̃).

Then,

tr K =

ˆ
φj Hφj.

15

It will also be helpful to know about reduced density matrices, or marginals.

Definition 13.4. Let Γ be a density matrix, fermionic or bosonic. Its k-particle marginal is

γ(k)(xk, x′k) =
N!

(N − k)!

ˆ
Γ(xk, yN−k; xx, yN−k)dyN−k,

where xk := (x1, . . . , xk).

These arise as iterated partial traces, e.g. γ(1) is 1/(N − 1) times a partial trace of γ(2).
The Hamiltonian for N particles has to take into account particle-particle interactions, e.g. if Wij =

w(xi − xj) for some w ∈ R, we could set

(13.5) H = −
N

∑
j=1

(
∆xj + V(xj)

)
=h(j)

+ ∑
1≤i<j≤N

Wij.

Here h(j) is the Hamiltonian for one particle (hence cannot see interactions) acting on xj. Then,

E [Γ] = tr(HΓ) = tr(h(1)γ(1)) +
1
2

tr(W12)γ
(2).

This is something very nice: the expectation only depends on γ(1) and γ(2), but since γ(1) is a partial trace
of γ(2), it actually only requires γ(2). This is a consequence of the fact that we started with Γ either bosonic
or fermionic.

Now we’re going to estimate the kinetic energy piece of (13.5). Recall the Lieb-Thirring estimate for
H = −∆ + V:

∑
j≥0
|Ej| ≤ L

ˆ
(V−(x))p dx,

where p = 1 + d/2. Let

TψN :=

(
ψN ,

(
−

N

∑
j=1

∆xj

)
ψN

)
.

15TODO: Then something happened that I didn’t get down in time.
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Theorem 13.6.

TψN ≥
K

‖γ(1)
ψN
‖p′/p

∞

ˆ
(ρψn(x))p′ dx,

where p′ is the Hölder conjugate to p (1/p′ + 1/p = 1), ρψN (x) := γ
(1)
ψN

(x, x), and K is a constant independent of
N and such that

(pL)p′(p′K)p = 1.

Proof. Let H := −∆ + V be the one-particle operator, and KN be a sum of one copy of H acting on each
particle i, which is called the N-particle operator. Then,

(ψN , KNψN) = tr Hγ
(1)
ψN

.

This is because

(ψN , HiψN) =

ˆ
ψN(x1, . . . , xn)(HiψN)(x1, . . . , xN)dx1 · · ·dxN .

Integrating out everything except xi, which is the only particle affected by Hi, we get

=
1
N

ˆ (
Hiγ

(1)(xi, x′i)
)∣∣∣

xi=x′i
dxi.

Lemma 13.7.
(ψN , KNψN) ≥ TODO.

Proof. Let Ej be the jth eigenvalue of H, which is necessarily negative.
(a few lines missing)
Then,

tr Hγ
(1)
ψN
≥∑

i,j
Eiλj tr

(
|ψi〉〈ψi | φj〉〈φj|

)
= ∑

i,j
Eiλj|(ψi, φj)|2

≥
(

∑
j

λj

)
∑

i
Ei ∑

j
|(ψ+i, φj)|2

(ψi ,ψi)=1

.

Since ‖γ(1)‖op = ‖(λj)‖∞, then

≥ TODO.

Therefore

(ψN , JKψN) = TψN +

ˆ
V(x)ρψN (x)dx

≥ ‖γ(1)
ψN
‖∞ ∑

j≥0
Ej,

and by the Lieb-Thirring inequality,

≥ −‖γ(1)
ψN
‖∞L

ˆ
Rd
(V−(x))p dx,

where p = 1 + d/2 and L is the Lieb-Thirring constant. And this holds for general V. �

So let’s choose
V(x) = −CρψN (x)1/(p−1),

where 1/p + 1/p] = 1, so 1/(p− 1) = p/(p− 1)− 1. Then,

Tψ ≥ C
ˆ
(ρψN (x))p′ dx− ‖γ(1)

ψN
‖∞LCp

ˆ
(ρψN (x))p′ dx.
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The optimal value of C is

C =
(

p‖γ(1)
ψN
‖∞L

)−p′/p
,

so

TψN ≥
K

‖γ(1)
ψN
‖p′/p

∞

ˆ (
ρψ(x)

)p′ dx.

�

Lecture 14.

Multi-nucleus systems and electrostatic inequalities: 10/17/17

Today we’ll discuss the proofs for stability of matter in the fermionic case. We won’t give the complete
proofs, since they depend on some difficult estimates, but we will sketch them.

Let ψN , as last time, be an antisymmetric wave function for N fermions, so that as we discussed last
time,

(14.1) TψN :=

(
ψN ,

(
−

N

∑
j=1

∆xj

)
ψN

)
≥ K

‖γ(1)
ψN
‖p′/p

∞

ˆ
Rd

(
ρψN (x)

)p′ dx,

where p = 1 + d/2 and p′ is the Hölder conjugate of p. For fermions, ‖γ(1)
ψ ‖∞ ≤ 1, i.e. it’s O(1) in N. For

d = 3, p′ = 5/3 and p = 5/2, so since ρψ ∼ O(N), the integral in (14.1) is O(N5/3).
One way to see this explicitly is to consider x ∈ T3. Under the Fourier transform we get ξ ∈ Z3, and the

fermions can live at the lattice points. The Pauli exclusion principle tells us that at most one fermion can
live at each lattice point, and fermions will prefer the lower-energy states which are closer to the origin.
Therefore the electron furthest away from the origin will be O(N1/3) away from the origin, and have energy
asymptotically varying as ξ2 = O(N2/3). Therefore the total kinetic energy varies as N · N2/3, hence is
O(N5/3). This system is called the Fermi sea.

Many-body Hamiltonians. We assume there are multiple atomic nuclei of the same atomic number Z at
fixed positions R := (R1, . . . , RM) together with electrons at varying positions x := (x1, . . . , xN).

In this case,16 the Hamiltonian is

(14.2) H := −1
2

N

∑
i=1

∆xi + VC(x, R),

where
VC(x, R) := W(x, R) + I(x) + U(R).

Here

W(x, R) := −
N

∑
i=1

M

∑
j=1

Z
|xi − Rj|

is the piece of the potential coming from electron-nucleus interactions,

I(x) := ∑
1≤i<j≤N

1
|xi − xj|

is the piece coming from electron-electron interactions, and

U(R) := ∑
1≤i<j≤M

1
|Ri − RJ |

is the piece coming from the nucleus-nucleus interactions. The ground state energy of this system is

EN(Z, R) = inf{E(ψ) | ψ fermionic and ‖ψ‖L2 = 1}.

16This is a simplified version of the full model, which includes Laplacians for the Rj terms weighted by the electron mass divided
by the nuclear mass. This is a very small number, so we have neglected it by pretending electrons have zero mass.
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Definition 14.3. We say the system has stability of the first kind if EN(Z, R) > −∞. In this case, we can
define the absolute ground state

EN,M(Z) := inf{EN(Z, R) | R}.
If in addition

EN,M(Z) > −C0(Z)(N + M),
the system has stability of the second kind.

Electrostatic inequalities. These inequalities appear as ingredients in the proofs of statements we care
about, but are interesting and beautiful on their own.

Let µ be a Borel measure, which physically represents the charge distribution. It has an associated
potential function

Φ(x) :=
ˆ
R3

1
|x− y| dµy.

The Coulomb energy of µ is

D(µ, µ) =

ˆ
R3

ˆ
R3

1
|x− y| dµx dµy.

More generally, one can compute the Coulomb energy D(µ, ν) of two different Borel measures.

Theorem 14.4 (Newton’s theorem). Assume that µ is rotationally symmetric around the origin. Then,

Φ(x) =
1
|x|

ˆ

|y|≤|x|

dµy +

ˆ

|y|>|x|

1
|y| dµy.

Proof. Since µ is rotationally symmetric, Φ is too, so Φ(x) = Φ(x′) whenever |x| = |x|′. Thus

Φ(x) =
ˆ

1
|x− y| dµy =

ˆ 
S2

1
||x|ω− y| dω dµy

(I)

.

Let’s expand the inner integral in spherical coordinates, where y is the direction of the north pole:

(I) =
1

2π

ˆ 2π

0
dϕ

1
2

ˆ
dθ

1(
|x|2 + |y|2 − 2|x||y| cos θ

)1/2 sin θ

=
1
2

ˆ 1

−1

ds(
|x|2 + |y|2 − 2|x||y|s

)1/2

= min
(

1
|x| ,

1
|y|

)
. �

It’s also possible to extend Coulomb energy from measures to signed measures (differences of two
measures) without changing its definition.

Theorem 14.5. Let V be the vector space of signed Borel measures µ on which the Coulomb energy D(µ, µ) is finite.
As a quadratic form on V, the Coulomb energy is positive definite: if µ and ν are signed measures,

• D(µ, µ) ≥ 0, and
• D(µ, ν)2 ≤ D(µ, µ)D(ν, ν).

Proof. We will use the identity

(14.6) ′ 1
|x− y| =

1
π3

ˆ
R3

1

|x− z|2
1

|y− z|2
dz.

Remark. The reason this is true is due to Fourier analysis (in this remark, we ignore factors of 2π):

F
(

1
|·|α
)
(x) =

1

|ξ|d−α
,
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so the right-hand side of (14.6) is, after sending z 7→ z + y,

(RHS) =
ˆ

1

|x− y− z|2
1

|z|2
dz

=

(
1

|·|2
∗ 1

|·|2

)
(x− y).

If we take this and apply F , then F−1, we get

F−1
(

1
|ξ| ·

1
|ξ|

)
(x− y) = F−1

(
1

|ξ|2

)
(x− y) =

1
|x− y| ,

which proves (14.6), at least up to a constant. (

To prove D(µ, µ) ≥ 0, one can apply (14.6) to the definition of D(µ, µ) and see that it’s a positive number
times a square. Details are TODO. The second part follows from Cauchy-Schwarz in the z-variable. �

Now we want to make some estimates on (ψ, Wψ). For this we’ll need at least a little geometry.

Definition 14.7. Let R1, . . . , RM ∈ R3 be distinct points, and

Γj := {x ∈ R3 | |x− Rj| < |x− Ri|, i 6= j}.
This Γj is the set of points closer to Rj than any other Ri, and is open and convex. It’s called the Voronoi cell
associated to Rj. ∂Γj is a finite collection of segments and planes, and possibly the point at infinity.

Figure 2. Voronoi cells for a collection of points in R2. Source: https://en.wikipedia.
org/wiki/Voronoi_diagram.

Let

Dj :=
1
2

min
` 6=j
|Rj − R`|

https://en.wikipedia.org/wiki/Voronoi_diagram
https://en.wikipedia.org/wiki/Voronoi_diagram
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denote the distance to the nearest neighboring R`,

D(x) := min{|x− Ri| | 1 ≤ i ≤ M}
be the distance of x to the closest nucleus, and

W̃(x) := −W(x) = Z
M

∑
j=1

1
|x− Rj|

.

Then, we define

Φ(x) := W̃(x)− Z
D(x)

,

which (the rest of this board was erased before I could get to it. TODO). Notice that Φ is continuous, but
not differentiable on boundaries of Voronoi cells.

Theorem 14.8 (Basic electrostatic inequality). Let µ = µ+ − µ− be a signed measure such that D(µ±, µ±) is
finite, and suppose that R1, . . . , RM ∈ R3 are distinct. Then,

D(µ, µ)−
ˆ

Φ(x)dµx + ∑
Z2

|Rk − R`|
≥ 1

8 ∑
j

Z2

Dj
.

We’ll prove this next time, using an auxiliary proposition.

Proposition 14.9.

(14.10) Φ(x) =
ˆ
R3

1
|x− y| dνy,

where ν is some measure supported only on the boundaries of the Voronoi cells.

Proof. To see this, let f be a test function (Schwarz class); then,ˆ
∆Φ(x)dx =

ˆ
Φ(x)∆ f (x)dx

= ∑
j

ˆ
Γj

Φ(x)∆ f (x)dx.

Integrating by parts,

= ∑
j

ˆ
Γj

div(Φ∇ f )dx

(I)

−∑
j

ˆ
Γj

∇Φ · ∇ f dx

(II)

.

Let n denote the outward-pointing unit normal vector on ∂Γj and dS denote the surface measure on ∂Γj.
Then,

(I) = ∑
j

ˆ
∂Γj

Φ(x)∇ f · nj dS

= 0,

because both Φ and ∇ f are continuous on ∂Γj, so the opposite signs of nj cancel out, as each piece of ∂Γj is
also the boundary of some other Voronoi cell with the opposite outward unit normal. The second piece is a
little harder:

(II) = −∑
j

ˆ
Γj

div( f∇Φ)dx + ∑
j

ˆ
Γj

f ∆Φ dx.

But inside ∆Φ = 0, because −∆(1/|x|) = δ(x), so the Fourier transform of its second derivative is
ξ2/|ξ|2 = 1.

= −∑
j

ˆ
∂Γj

f∇Φ · nj dS,(14.11)
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like before, but this time ∇Φ is not continuous across ∂Γj. Here we need to think more carefully about the
definition of Φ = W̃ − Z/D. Since W̃ is differentiable away from the nuclei Rj, and in particular on ∂Γj,

∑
j

ˆ
∂Γj

f∇W̃nj dS = 0.

Therefore, returning to (14.11),

(II) = ∑
j

ˆ
∂Γj

f∇ Z
D(x)

nj dS.

Suppose Γj and Γk are neighboring cells, and let Bjk := ∂Γj ∩ ∂Γk. Then, ∇(Z/D(x)) has opposite signs
depending on from which side one approaches when tending to a point in Bjk, but the magnitude is the
same. Therefore

nj∇
Z
D(x)

= nk∇
Z
D(x)

,

where the left side comes from Γj and the right side comes from Γk. Therefore
ˆ

∆Φ(x) f (x)dx = 2Z
ˆ
⋃

j ∂Γj

f (x) nj∇
1

|x− Rj|
dS

ν

= −4π

ˆ
f (x)dνx,

as desired. �

Lecture 15.

Stability of matter for many-body systems: 10/19/17

Recall that we’re in the middle of proving stability of matter for many-body systems with fixed nuclei.
This system has Hamiltonian given in (14.2), with terms for the electron-electron interactions, electron-
nucleus interactions, and nucleus-nucleus interactions. We then proved the basic electrostatic inequality,
Theorem 14.8; the proof uses Voronoi cells to understand where Φ is continuous but not differentiable. We
will continue to use notation from last lecture.

Last time, we proved Proposition 14.9, that

Φ(x) := Z
M

∑
k=1

1
|x− Rk|

− Z
D(x)

is actually
´

1/|x− y|dνy, where ν is a measure supported only on the boundaries of the Voronoi cells.
Today, we’ll use that to prove the basic electrostatic inequality.

Proof of Theorem 14.8. By Proposition 14.9,
´

Φ(x)dµx = 2D(µ, ν), so

D(µ, µ)−
ˆ

Φ(x)dµx + ∑
i<j

Z2

|Ri − Rj|
= D(µ− ν, µ− ν)

≥0

−D(ν, ν) + ∑
i<j

Z2

|Ri − Rj|

≥ −D(ν, ν) + ∑
i<j

Z2

|Ri − Rj|
.

Let’s look at D(ν, ν).

D(ν, ν) =
1
2

ˆ
Φ(x)dµx

=
Z
2

ˆ
∑
k

ˆ
δ(y− Rk)

1
|x− y| dy dνx −

1
2

ˆ
Z
D(x)

dνx.
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Since everything is positive, we can switch the order of integration in the first term:

=
Z
2 ∑

k

ˆ
δ(y− Rk)Φ(y)dy− 1

2

ˆ
Z
D(x)

dνx

=
Z
2 ∑

k
Φ(Rk)

(I)

− 1
2

ˆ
Z
D(x)

dνx

(II)

.

We have that

(I) = ∑
k<`

Z2

|Rk − R`|
and

(II) = ∑
j

Z2

8π

ˆ
∂Γj

1
|x− Rj|

nj · ∇
1

|x− Rj|
dS

= −∑
j

Z2

16π

ˆ
∂Γj

nj · ∇
1

|x− Rj|2
dS

= ∑
j

Z2

16π

ˆ
Γc

j

∆
1

|x− Rj|2
dx

= ∑
j

Z2

8π

ˆ
Γc

j

1

|x− Rj|4
dx.

We can break this into pieces: for any x ∈ Γc
j , let Dj be the coordinate of the intersection point of ∂Γj and

line segment from x to Rj. Then,

≥∑
j

Z2

8π

ˆ
R

dz
ˆ
R

dy
ˆ ∞

Dj

dx
1

|x2 + y2 + z2| ,

and this is certainly bounded below:

≥∑
j

Z2

8
1

Dj
. �

The real reason we care about Theorem 14.8 is to prove stability of matter. First, let’s analyze the
electron-electron repulsion. Suppose ψN ∈ ΛN L2(R3) is a fermionic (i.e. antisymmetric) wavefunction.
Then

(15.1) IψN = ∑
1≤i<j≤N

ˆ |ψN(x1, . . . , xN)|2

|xi − xj|
dx1 · · ·dxN .

The integrand is O(1), so IψN is O(N2). We can write IψN as a sum of two pieces:

IψN = D(ρψN , ρψN ) + indψN .

The second term (“everything else”) is called the indirect term. Here recall that

ρψN :−
N

∑
j=1

ˆ
|ψN(x1, . . . , xj−1, x, xj+1, . . . , xN)|dx1 · · · d̂xj · · ·dxN .

The bound on the indirect term is quite hard, so we won’t prove it.

Theorem 15.2.
indψN ≥ −C

ˆ
ρ4/3

ψN
.

For a proof, see Lieb-Seininger. Thus we have an O(N4/3) lower bound for the indirect term, but O(N)
for the direct term.

Now we’ll derive stability of matter (recall N is the number of electrons, and M is the number of nuclei).
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Theorem 15.3 (Stability of matter for many-body systems with fixed nuclei). The ground state energy for
many-body systems is linearly proportional to the number of particles.

Proof. The idea of the proof is to show

(ψN , HψN) ≥ −CN

(
1 +

(
M
N

)1/3
)2

.

Then, using the Cauchy-Schwarz inequality ab ≤ a2/2 + b2/2,

≥ −CN
(

1 + M2/3N−2/3
)

= −C(N + M2/3N1/3).

Using Young’s inequality ab ≤ ap/p + bp′/p′, where p and p′ are Hölder conjugates, M2/3N1/2 ≤ M + N,
so

≥ −C̃(N + M),

where C̃ is some other constant (to absorb the factor of 2).
Now let’s look at the pieces, in order to get to that derivation. First, the kinetic term, which the

Lieb-Thirring inequality shows is(
ψN ,

(
−∑ ∆xj

)
ψN

)
≥ K

‖γ(1)
ψN
‖p/p′

ˆ
ρ5/3

ψN
dx,

where p = 1 + 3/2 and p′ is its Hölder conjugate. Moreover, using creation and annihilation operators, one
gets that ‖γ(1)

ψN
‖ ≤ 1, so (

ψN ,
(
−∑ ∆xj

)
ψN

)
≥ C

ˆ
ρ5/3

ψN
dx.

The electron-electron term: TODO.
The electron-nucleus term:ψN ,− ∑

1≤i≤N
1≤j≤M

Z
|xi − Rj|

, ψN

 = −
M

∑
k=1

ˆ
Z

|x− Rk|
ρψN (x)dx.

The total Coulomb energy:

(ψN , VCψN) ≥ D(ρψN , ρψN )−
M

∑
k=1

ˆ
Z

|x− Rk|
ρψN (x)dx + U(R)− C

ˆ
ρ4/3

ψN

≥ −
ˆ

Z
D(x)

ρψN (x)dx− C
ˆ

ρ4/3
ψN

≥ −
ˆ

Z
D(x)

ρψN (x)dx− C
(ˆ

ρ5/3
ψN

)1/2(ˆ
ρψN

)1/2
.(15.4)

We’ll use a generalized Cauchy-Schwarz inequality

(15.5) ab ≤ ε

2
a2 +

1
2ε

b2

to infer that

−C
(ˆ

ρ5/3
ψN

)1/2(ˆ
ρψN

)1/2
≥ −Cε

ˆ
ρ5/3

ψN
− C

ε

ˆ
ρψN

N

and therefore improve (15.4) to

(15.6) −
ˆ

Z
D(x)

ρψN (x)dx + C(1− ε)

ˆ
ρ5/3

ψN
− CN

ε
.
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We still don’t know what ρψN is, but now everything is stated in terms of it, so we can minimize over it.
For b > 0, write

1
D(x)

=

(
1
D(x)

− b
)
+ b.

From minimizing over ρ (set δ
δρ(x) = 0. . . ), one has that

C(1− ε)
5
3

ρ(x)2/3 = Z
(

1
D(x)

− b
)

,

and therefore that our minimum is

ρ(x) =
C

(1− ε)3/2 Z3/2
(

1
D(x)

− b
)3/2

+
,

so

(ψN , HψN) ≥ (15.6)

≥ −CN
ε

+ C(1− ε)

ˆ
ρ5/3 − Z

ˆ (
1
D(x)

− b
)

ρ

≥ −CN
ε
− CZ5/3

(1− ε)3/2

ˆ [
1
D(x)

− b
]5/2

+
dx.(15.7)

Next, observe

[D(x)− b]5/2
+ = max

j

[
1

|x− Rj|
− b

]5/2

+

≤
M

∑
j=1

[
1

|x− Rj|
− b

]5/2

+

.

Therefore ˆ
R3

[
1
D(x)

− b
]5/2

+
dx ≤ M

ˆ
|x|≤1/b

(
1
|x| − b

)5/2
dx = CMb−1/2.

To see this, for each j, set Rj = 0, so 1/|x| − b ≥ 0, and therefore |x| ≤ 1/b.
Next, optimize over b. The optimal value will satisfy

bN ∼ M
(1− ε)3/2 b−1/2,

i.e.

b ∼ 1
1− ε

(
M
N

)2/3
.

We’ve now reduced to

(ψN , HψN) ≥ (15.7)

≥ −1
ε

CN − C
1− ε

N
(

M
N

)2/3
.(15.8)

Now we optimize for ε, ending up with

1
ε

N ∼ 1
1− ε

N
(

M
N

)2/3
,

i.e.
1
ε
∼ 1 +

(
M
N

)2/3
.
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Now, we can finally conclude stability of matter:

(ψN , HψN) ≥ (15.8) ≥ −CN

(
1 +

(
M
N

)2/3
)
≥ −C(N + M)

by Young’s inequality, as we discussed earlier. �

This is typical of the kinds of analysis proofs in this kind of mathematical physics: the arguments don’t
use extremely fancy math per se, but physics intuition is essential in showing us the way. For example, in
this case, it led us to Voronoi cells.

Lecture 16.

Introduction to quantum field theory and Fock space: 10/24/17

Today, we move into quantum field theory: we’ll start with tensor products, then move into Fock space
and creation and annihilation operators, and use them to restate many-body quantum mechanics (second
quantization). From there we move to other simple examples and further topics.

Fock spaces The quantum-mechanical systems we’ve so far considered have Hilbert spaces which depend
on the number of particles present in the system. Particles can be created and annihilated (though this
requires, resp. produces energy), so it would be useful to have a Hilbert space of states which does not fix
the number of particles. This is what Fock spaces accomplish.

In order to understand Fock spaces, one must understand tensor products. Let H1 and H2 be Hilbert
spaces, say corresponding to two particles in a quantum-mechanical system. We want a Hilbert space
H1 ⊗H2 which encodes the states of both particles.

Definition 16.1. LetH1 andH2 be Hilbert spaces. For any ϕ1 ∈ H1 and ϕ2 ∈ H2, let ϕ1⊗ ϕ2 : H1×H2 → C
denote the conjugate bilinear form

ϕ1 ⊗ ϕ2( f1, f2) = (ϕ1, f1)H1(ϕ2, f2)H2 .

Bilinearity means that

(ϕ1 ⊗ ϕ2)( f1 + g, f2) = (ϕ1 ⊗ ϕ2)( f1, f2) + (ϕ1 ⊗ ϕ2)(g, f2),

and similarly for arguments of the form ( f1, f2 + g).
Let E denote the space of finite linear combinations of the forms ϕ1 ⊗ ϕ2 for ϕi ∈ Hi. It has an inner

product, defined as the linear extension of the form

(16.2) (ϕ1 ⊗ ϕ2, ψ1 ⊗ ψ2)E := (ϕ1, ψ1)H1(ϕ2, ψ2)H2

(one must check it is well-defined and positive-definite). Then, the tensor product of H1 and H2, denoted
H1 ⊗H2, is the completion of E with respect to its inner product.

Proposition 16.3. If {ϕj} is an orthonormal basis forH1 and {ψi} is an orthonormal basis forH2, then {ϕj⊗ψi}i,j
is an orthonormal basis for H1 ⊗H2.

Example 16.4. Let H1 = R2, with coordinates (a1, a2), and H2 = R3, with coordinates (b1, b2, b3). Then,
H1 ⊗H2 ∼= R6, with coordinates (a1b1, a1b2, a1b3, a2b1, a2b2, a2b3). (

If H1 and H2 are L2-spaces, we can identify H1 ⊗H2 as something somewhat more concrete. Let
(M1, dµ1) and (M2, dµ2) be measure spaces such that L2(M1, dµ1) and L2(M2, dµ2) are both separable,
with orthonormal bases {ϕi(x)}, resp. {ψj(y)}. By Proposition 16.3, {ϕi(x)ψ`(y)} is an orthonormal basis
for L2(M1 ×M2, dµ1 ⊗ dµ2) (the product measure).

Theorem 16.5. Let U : L2(M1, dµ1) ⊗ L2(M2, dµ2) → L2(M1 × M2, dµ1 ⊗ dµ2) denote the map extending
linearly from

ϕ1 ⊗ ϕ2 7−→ ϕ1(x)ϕ2(y).

Then, U is a unitary isomorphism.
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That is, up to isomorphism of complex Hilbert spaces, the tensor product of L2(M1, dµ1) and L2(M2, dµ2)
is the space of L2 functions on the product measure space (assuming separability).

One can prove that the tensor product is associative up to unitary isomorphism, and therefore uniquely
define higher-order tensor products, such as H1⊗H2⊗H3. We will let H⊗n denote the n-fold tensor product
of H:

H⊗n := H⊗ · · · ⊗ H︸ ︷︷ ︸
n times

.

The notation ⊗ for tensor product reflects that its inner product (16.2) is the product of the two individual
inner products. There is a corresponding notion for adding inner products, which is denoted ⊕.

Definition 16.6. Let H1 and H2 be Hilbert spaces. Their direct sum H1 ⊕H2 is the space of pairs (ϕ1, ϕ2)
with ϕi ∈ Hi, together with the inner product

((ϕ1, ϕ2), (ψ1, ψ2)) = (ϕ1, ψ1)H1 + (ϕ2, ψ2)H2 .

Unlike for the tensor product, there is no need to complete. As with tensor product, this is associative
up to isomorphism, so we may define triple and higher-order direct sums.

We now have the ingredients we need to define Fock spaces.

Definition 16.7. Let H be a Hilbert space. Then, Fock space over H is

F (H) :=
∞⊕

n=1

H⊗n,

where we set H0 := C.

We’ll place an inner product on this space in just a moment.

Example 16.8. Suppose H = L2(Rm), so if ϕ ∈ H⊗n, we may regard ϕ as an L2 function of n arguments,
with each argument in Rm. Therefore F (H) is the space of functions

((16.9) Φ = (λ, ϕ1(x), ϕ2(x1, x2), ϕ3(x1, x2, x3), . . . ).

The inner product on F (H) is defined as follows: suppose Φ and Ψ are defined as in (16.9). Then,

(Φ, Ψ)F (H) := ϕ0ψ0 +
∞

∑
n=1

(ϕn, ψn)H⊗n .

Remark. TODO: in algebra, the infinite direct sum consists of tuples for which only finitely many are
nonzero, but this space isn’t complete under the above inner product. Do we take the completion of that
space under the inner product, or consider tuples with potentially infinite nonzero elements such that the
inner product converges?17 (

Lemma 16.10. If H is separable, so is F (H).

In physics, there are two particularly relevant subspaces: the symmetric tensors (for bosons) and the
antisymmetric operators (for fermions). Let Sn denote the symmetric group on n letters, i.e. the group of
automorphisms of the set {1, . . . , n}. This acts on H⊗n: if σ ∈ Sn, let

σ(ϕ1 ⊗ · · · ⊗ ϕn) := ϕσ(1) ⊗ · · · ⊗ ϕσ(n).

Define
Symn :=

1
n! ∑

σ∈Sn

σ,

e.g.

Sym2((ϕ1 ⊗ ϕ2))(x, y) =
1
2
(ϕ1(x)ϕ2(y) + ϕ2(x)ϕ1(y)).

One can check that Symn is an orthonormal projection by verifying that

(Symn ϕ, ψ)H⊗n = (ϕn, Symn ψn)H⊗n

and Symn ◦ Symn = Symn; its range is called the n-fold symmetric tensor product of H, denoted H⊗sn :=
SymnHn.

17Less concerning but still interesting: F (H) has an algebra structure. Is this used at all in physics?
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Definition 16.11. The symmetric Fock space or bosonic Fock space is

Fs(H) :=
∞⊕

n=0
H⊗sn.

The fermionic story is the same: there is an antisymmetrization operator

Altn :=
1
n! ∑

σ∈Sn

(−1)sign(σ)σ,

which is again an orthonormal projection. Its range is called the alternating tensor product of H and denoted
H⊗an.

Definition 16.12. The antisymmetric Fock space or fermionic Fock space is

Fa(H) :=
∞⊕

n=0
H⊗an.

Remark. Suppose H = L2(Rd), corresponding to particles moving in Rd. Then, H⊗sn is isomorphic to
the space of L2 functions f (x1, . . . , xn) in n variables on Rd that are symmetric, i.e. f (xσ(1), . . . , fσ(n)) =

f (x1, . . . , xn) for all σ ∈ Sn. We previously studied this space, and called it L2
sym(Rd), exactly the Hilbert

space for a system of n bosons. In this way, the bosonic Fock space is the direct sum of the n-boson Hilbert
spaces for all n. The same analysis applies to fermionic Fock space and n-fermion systems. (

The physical interpretation of a Ψ ∈ Fs(H) is a generalized wavefunction: if Ψ = (ϕn)∞
n=0 and ‖Ψ‖Fs(H)

is normalized to 1, then
‖ψ‖2

Fs(H) = ∑
n≥0
‖ϕn‖L2

sym(Rnd) = 1,

so we interpret Ψ as a state of the quantum system where the probability that there are n particles is
‖ϕn‖2, and the probability density function for particles being in positions x1, . . . , xn, given that the particle
number is n, is |ϕn(x1, . . . , xn)|2. The analogous description applies for fermionic wavefunctions.

To study the dynamics of such a system, we introduce a Hamiltonian H, a self-adjoint, bounded-below
operator, and the Schrödinger equation

(16.13) i∂tΨ = HΨ,

and initial data of a Ψ(t = 0) ∈ Fs(L2(Rd)).
Suppose that H preserves the particle number (maps H⊗sn to itself). This physically means particles are

neither created nor destroyed, and to understand the dynamics of the system, there’s no need to introduce
Fock space at all. However, there are interesting theories in which the particle number is not preserved over
time, corresponding to maps on Fs(H) or Fa(H) which don’t preserve the grading. There’s an extremely
elegant description of the algebra of these maps in terms of creation and annihilation operators, which we
will use.

Remark. The zeroth graded piece H0 = C is called the vacuum sector. Its states are all in phase, so there’s
just one equivalence class of states Ω = (1, 0, 0, . . . ), called the Fock vacuum.

We’re used to thinking of the vacuum as the absence of particles, and indeed this vacuum state is for
the zero-particle system. But just because there is nothing does not mean there isn’t something else. For
example, in the Fermi sea, all fermions are close together, and adding energy can pop one fermion out into
the rest of the world. It leaves behind a hole — regarded as an antiparticle — and one can envision the
Fermi sea as the Fock vacuum, and the popped-out fermion as producing a one-particle state. In this way
there can be more than one way to think about the vacuum. (

Definition 16.14. Let f ∈ S(Rd) (i.e. a Schwartz class operator).

• Define the creation operator a∗( f ) : Fs(L2(Rd))→ Fs(L2(Rd)) to send

(16.15a) ϕn 7−→
√

n + 1 Symn+1( f ⊗ ϕn).

This increases the grading by 1, in that it maps H⊗sn to H⊗s(n+1).
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• Define the annihilation operator a( f ) : Fs(L2(Rd))→ Fs(L2(Rd)) to send18

(16.15b) ϕn(x1, . . . , xn) 7−→
√

n
ˆ
Rd

f (xn)ϕn(x1, . . . , xn−1, xn)dxn.

This decreases the grading by 1, in that for n ≥ 1 it sends H⊗sn → H⊗s(n−1), and the Fock vacuum
is destroyed: any λ ∈ H0 is sent to 0.

Another way to say this is: a( f )Ω = 0 for all f ∈ S(Rd).
Next time, we’ll talk more about these operators and how to use them to express dynamics.

Lecture 17.

Creation and annihilation operators: 10/26/17

Recall that we introduced Fock space to study many-particle systems where the particle number is not a
conserved quantity. Concretely, F (n)

s (H) := SymnH (or the alternating power for fermionic Fock space),
and Fock space is the Hilbert space

Fs(L2(Rd)) :=

{
Ψ := (ψn ∈ F (n)

s )n≥0 | ‖Ψ‖2
F := |ψ0|2 + ∑

n≥1
‖ψn‖2

L2(Rnd) < ∞

}
.

So unlike the purely algebraic tensor, symmetric, or exterior algebras, an element of Fock space may be
nonzero in infinitely many degrees. But the finiteness of the Fock norm means that for any ε > 0, there’s
an N(ε, Ψ) such that

∑
n>N(ε,ψ)

‖ψn‖2
L2(Rnd) < ε.

Thus arbitrary elements of Fock space can be arbitrarily well approximated by finite sums of homogeneous
elements.

We then defined the creation and annihilation operators (16.15a) and (16.15b), respectively. For an
f ∈ S(Rd), the creation operator a∗( f ) physically represents adding a particle with wavefunction f .19 The
annihilation a( f ) removes a particle with wavefunction f if it exists (integrating it out, so to speak).

Theorem 17.1.
(1) a∗( f ) and a( f ) are adjoints: (a∗( f )Ψ, Φ)Fs = (Ψ, a( f )Φ)Fs .
(2) The creation and annihilation operators satisfy the canonical commutation relations20 for any f , g ∈
S(Rd):

[a( f ), a(g)] = 0(17.2a)

[a∗( f ), a∗(g)] = 0(17.2b)

[a( f ), a∗(g)] = ( f , g)L2 .(17.2c)

(3) For any f ∈ S(Rd), a( f )Ω = 0, where Ω := (1, 0, . . . ) is the Fock vacuum.

Partial proof. We prove (17.2c). First we compute a( f )a∗(g)φn.
If φn is symmetric, then the symmetrization Symn+1(g⊗ φn) simplifies considerably:

Symn+1(g⊗ φn) =
1

n + 1
(g(x1)φn(x2, . . . , xn+1) + · · ·+ g(xn+1)φn(x1, . . . , xn)),

so

a( f )a∗(g)φn = a( f )
√

n + 1
1

n + 1
(g(x1)φn(x2, . . . , xn+1) + · · ·+ g(xn+1)φn(x1, . . . , xn))

=
n + 1
n + 1

(g(x1)(( f , φn))(x2, . . . , xn) + · · ·+ g(xn)(( f , φm)L2)(x1, . . . , xn−1) + ( f , g)L2 φn).21

18Since ϕ is symmetric, the choice of n in f (xn) is not important.
19TODO: not 100% sure this is right.
20For fermionic Fock space, these are anticommutation relations.
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In the same way,

a∗(g)a( f )φn = a∗(g)
√

n (( f , φn))

symmetric

=
n
n
(g(x1)(( f , φn))(x2, . . . , xn) + · · ·+ g(xn)(( f , φm)L2)(x1, . . . , xn−1)).

Hence, [a( f ), a∗(g)] = ( f , g)L2 φn. �

Exercise 17.3. Prove the rest of the identities.

Notice that a∗( f ) is linear in f , but a( f ) is conjugate linear in f . This implies the existence of operator-
valued distributions a and a∗ such that

(17.4)
a∗( f ) =

ˆ
dx f (x)a∗x

a( f ) =
ˆ

dx f (x)a∗x,

and these satisfy the commutation relationships

[ax, ay] = 0

[a∗x, a∗y ] = 0

[ax, a∗y ] = δ(x− y).

Remark. By “operator-valued distribution” we mean something which takes a test function and produces
an operator. This means the integrals above aren’t actually integrals, but instead the definition of the
evaluation pairing of operators on functions. For example, the Dirac delta distribution δ : S(Rd)→ C sends
φ 7→ φ(0), and one writes ˆ

φ(x)δ(x)dx = φ(0),

even though there is no function δ(x) for which this is literally true. The integrals in (17.4) are to be
interpreted in the same way, as evaluation of a distribution. (

Let f1, . . . , fn be Schwartz-class. Then,

a∗( fn)Ω = (a∗( fn)1, 0, 0, . . . , )

= (0, fn(x), 0, 0, . . . ).

More generally,

(17.5) a∗( f1) · · · a∗( fn)Ω = (0, . . . , 0,
√

n! Symn( f1 ⊗ · · · ⊗ fn), 0, 0, . . . ).

These span all elements of Fock space with only finitely many terms, which is a dense subset. Hence any
bounded linear operator can be understood in terms of its behavior on elements of the form (17.5). In this
sense, ax and a∗x are building blocks of operators that act on Fock space. Here’s an example/

Definition 17.6. The number operator

N :=
ˆ

a∗xax dx : Fs −→ Fs.

Explicitly,
N (ψ0, ψ1, . . . ) = (0 · ψ0, 1 · ψ1, 2 · ψ2, . . . ).

Lemma 17.7. N a∗( f ) = a∗( f )(N + 1).

Proof. The proof can be abstracted away into the commutation relations:ˆ
a∗xax dx

ˆ
a∗y f (y)dy =

ˆ
dx dy a∗x(a∗yax + δ(x− y)) f (y)

=

ˆ
dy a∗y f (y)

a∗( f )

ˆ
dx a∗xax

N

+

ˆ
dx a∗x f (x)

a∗( f )

. �
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Therefore

N a∗( f1) · · · a∗( fn)Ω = a∗( f1)(N + 1)a∗( f2) · · · a∗( fn)(Ω)

= a∗( f1) · · · a∗( fn)(N + n)(Ω).

This feels non-rigorous, but can be made so, e.g. working with an orthonormal basis of L2. This is done
more carefully in Folland’s tourist guide to quantum field theory, or in Glimm-Jaffe, Streater, or Yost’s
quantum mechanics book. But the proofs are not easy reading.

The reason N is called the number operator is because of its expectation values:

〈N 〉Ψ = 〈Ψ,NΨ〉 = 0 · |ψ0|2 + ∑
n≥1

n‖ψn‖2
L2(Rnd)

when ‖Ψ‖F = 1. This is the expected value of the number of particles present in the system in state Ψ, a
useful physical quantity.

Remark. One place the number operator is important is gauge theory with a massless gauge particle.
Low-frequency particles (said to be in the infrared) are created with some energy E = mc2 (where c is the
speed of light and m is the mass of the particle). But in a massless, interacting system, it costs no energy
to create massless particles. In certain cases, this mans that it’s “too easy” to create too many particles,
so 〈N 〉Ψ is divergent! This is a signal that Fock space is not the right approach for this theory, and one
must use other methods (e.g. C∗-theoretic ones). This issue is likely to also happen in theories of gravitons,
which also have no mass.

The number operator also appears when considering the dynamics of the Schrödinger equation on Fock
space. (

Operators acting on Fock space.

Definition 17.8. Let Hi be Hilbert spaces, i = 1, . . . , n, and consider linear operators Ai : Hi → Hi. Define
the tensor product of these operators to be the operator

A1 ⊗ · · · ⊗ An : H1 ⊗ · · · ⊗Hn −→ H1 ⊗ · · · ⊗Hn

φ1 ⊗ · · · ⊗ φn 7−→ (A1φ1)⊗ · · · ⊗ (Anφn).

One can define the direct sum of these operators in the same way:

A1 ⊕ · · · ⊕ An : H1 ⊕ · · · ⊕Hn −→ H1 ⊕ · · · ⊕Hn

φ1 ⊕ · · · ⊕ φn 7−→ ((A1φ1), . . . , (Anφn)).

Example 17.9. The kinetic energy operator on F (n)
s = (L2(Rd))⊗sn is

Tn :=
n

∑
j=1

1⊗ · · · ⊗ (−∆xj)⊗ 1⊗ · · · ⊗ 1,

i.e. the sum over j of Laplacians acting only on the jth entry. Thus, if ψ ∈ L2(Rnd),

Tnψn =
n

∑
j=1

(−∆xj ψn)(x1, . . . , xn)

on F (n)
s . On the entire Fock space, we define

T := (0, T1, T2, . . . ),

the direct sum of the operators on each component. (

Remark. There’s a notion of second quantization Γs (symmetric) or Γa (antisymmetric) which does this all at
once, so to speak: to a Hilbert space H one assigns

Γs(H) := C⊕
⊕
n≥1

H⊗sn

Γa(H) := C⊕
⊕
n≥1

H⊗an,
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and for any linear operator (bounded or not) h : H1 → H2, one assigns (for either the symmetric or
antisymmetric case)

dΓ(h) :=
∂

∂t

∣∣∣∣
t=0

Γ
(

eth
)

= 0⊕
⊕
n≥1

n

∑
j=1

1⊗ · · · ⊗ 1⊗ h
jth slot

1⊗ · · · ⊗ 1.

These actually define functors: if HilbC denotes the category whose objects are complex Hilbert spaces and
whose morphisms are linear maps,22 the second quantizations Γs, Γa : HilbC ⇒ HilbC are functors. This led
to the quote that “first quantization is a miracle, but second quantization is a functor.” (

As an example, T = dΓs(−∆), which is a more compact way of defining it.
Like everything else, second quantization can be described in terms of creation and annihilation

operators.

Proposition 17.10. Let h : L2(Rd) → L2(Rd) be a multiplication operator, i.e. h( f ) := f (x)h(x) for some
h(x) ∈ L2(Rd). Then,

dΓ(h) =
ˆ

dx a∗xh(x)ax.

Proof. We just calculate:

dΓ(h)a∗( f ) =
ˆ

dx a∗xh(x)ax

ˆ
dy f (y)a∗y

=

ˆ
dx dy h(x)a∗x

(
a∗yax + δ(x− y)

)
f (y)

=

ˆ
dy f (y)a∗y

ˆ
dx h(x)a∗xax +

ˆ
a∗xh(x) f (x)dx

= a∗( f )dΓ(h) + a∗(h f ).

Thus (using the fact that dΓ(h)Ω = 0):

dΓ(h)a∗( f1) · · · a∗( fn)Ω =
n

∑
j=1

a∗( f1) · · · a∗( f j−1)a∗(h f j)a∗( f j+1) · · · a∗( fn)Ω

=

(
n

∑
j=1

1⊗ · · · ⊗ 1⊗ h⊗ 1⊗ · · · ⊗ 1

)
√

n! Symn f1 ⊗ · · · ⊗ fn.

�

Lecture 18.

Second quantization: 10/31/17

Last time, we discussed second quantization as a functor Γs : HilbC → HilbC.23 To a Hilbert space H,
Γassigns

H 7−→ C⊕
⊕
n≥1

H⊗sn,

and to an operator h : H → H, Γ assigns

dΓ : h 7−→ 0⊕
⊕
n≥1

n

∑
j=1

1⊗ · · · ⊗ 1⊗ h⊗ 1⊗ · · · ⊗ 1,

where h is in the jth slot.

22We do not require linear maps to be bounded, and in particular the Laplacian on L2(Rd) isn’t.
23This is the bosonic case (symmetric Fock space); the fermionic (antisymmetric) case is analogous, with ⊗s replaced with ⊗a.
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We then sketched a proof of Proposition 17.10, characterizing dΓ(h) when h : L2(Rd) → L2(Rd) is
multiplication by some h ∈ L2(Rd).

We also defined the number operator N =
´

a∗xax dx (as an operator-valued distribution — this isn’t a
literal integral). There’s a reason for its name: it counts the expected number of particles. We saw that from
the perspective of Fock space, but there’s a more hands-on reason.

Let δx,ε be an L1 approximation to the identity at x, meaning its support is contained within a ball of
radius O(ε) and its maximum value is O(1/εd). Interpreted as a wavefunction, this represents a particle
contained within that disc of radius O(ε), and a)∗(δ1/2

x.ε ) ∈ L2.
Now tile Rd with boxes of side length ε, and let Qε

i (x) be the value of the wavefunction in the ith box.
This is the input for calculating the expected number of particles to be found in this box, so the total
expected number of particles24 is

∑
i

ai(Qε
i )a∗i (Qε),

and as we refine the boxes, we take ε→ 0 and obtain the integral
´

a∗xax dx.
We can set this theory up just as well on momentum space: using the Fourier transform on distributions,

âξ :=
1

(2π)d/2

ˆ
axe−iξx dx

â∗ξ :=
1

(2π)d/2

ˆ
a∗xe−iξx dx.

Therefore, the Fourier-transformed number operator is, by the Plancherel lemma,

N =

ˆ
â∗ξ âξ dξ,

and we also have a nice form for the second quantization of the Laplacian:

dΓ(−∆) =
ˆ

â∗ξ ξ2 âξ dξ.

This uses the fact that
a( f ) =

ˆ
âξ f̂ (ξ)dξ

and similarly for a∗( f ).

The spectrum of the second quantization. We want to understand the relationship between the spectrum
of an operator h and the spectrum of its second quantization dΓ(h).

Lemma 18.1. Assume Ai : Hi → Hi for i = 1, 2 are self-adjoint operators, and consider A := A1 ⊗ 1 + 1⊗ A2 as
an operator on H1 ⊗H2. Then,

σ(A) = σ(A1) + σ(A2) := {λ1 + λ2 | λ1 ∈ σ(A1), λ2 ∈ σ(A2)}.

This is called the sumset of σ(A1) and σ(A2).

Corollary 18.2. With notation as above,
• σd(A) = σd(A1) + σd(A2).
• σess(A) = (σess(A1) + σess(A2)) ∪ (σd(A1) + σess(A2)) ∪ (σess(A1) + σd(A2)).

In particular, one has σ(dΓ(−∆)) = R+. This is a little frustrating, but it is possible to control the
spectrum of the operator acting on purely n-particle states for a fixed n.

We’re going to try to bound the creation and annihilation operators. At least in the bosonic case, they’re
unbounded! But one can try to work instead with relative bounds, so bounded with respect to some other
operator in a useful way.

Definition 18.3. Let A : H → H be a self-adjoint operator.
• Its operator domain is

Dom(A) := {ψ ∈ H | ‖Aψ‖H < ∞}.
24TODO: is it accurate to say this is by linearity of expectation?
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• Its quadratic form domain is

QD(A) := {ψ ∈ H | (ψ, Aψ) > 0} = D(|A|1/2).

Here’s an example of a relative bound.

Lemma 18.4. Assume ψ ∈ QD(N ) (i.e. ‖N 1/2ψ‖Fs
is finite). Then,

‖a( f )ψ‖Fs
≤ ‖ f ‖L2‖N 1/2ψ‖Fs

and
‖a∗( f )ψ‖Fs

≤ ‖ f ‖L2

(
1 + ‖N 1/2ψ‖Fs

)
.

Proof.

‖a( f )ψ‖2
Fs

= (a( f )ψ, a( f )ψ)Fs

=

ˆ
dx dy f (x) f (y)

(
axψ, ayψ

)
Fs

.

By the Cauchy-Schwarz theorem,

≤
ˆ

dx dy | f (x)|| f (y)|‖axψ‖Fs
‖ayψ‖Fs

≤
((ˆ

dx dy | f (x)|2‖ayψ‖2
Fs

)1/2
)2

.

Again, by Cauchy-Schwarz,

= ‖ f ‖2
L2

ˆ
dy
(
ayψ, ayψ

)
= ‖ f ‖2

L2

ˆ
dy
(

ψ, a∗yayψ
)

= ‖ f ‖2
L2(ψ,Nψ).

The proof for a∗ is similar:

‖a∗( f )ψ‖2
Fs

= (a∗( f )ψ, a∗( f )ψ)Fs

=

ˆ
dx dy f (x) f (y)

(
ψ, axa∗yψ

)
Fs

.

Using the canonical commutation relations,

=

ˆ
dy dy f (x) f (y)

(
δ(x− y)(ψ, ψ) + (ayψ, axψ)

)
.

By Cauchy-Schwarz,

≤
ˆ

dx dy | f (x)|| f (y)|‖axψ‖Fs
‖ayψ‖Fs

+ ‖ f ‖2
L2‖ψ‖2.

From here, the rest of the proof is the same as for a. �

In quantum field theory, we’re generally interested in states with finite kinetic energy; hence, if T :=
dΓ(−∆), we consider ψ ∈ QD(T). We also have an explicit description of T as

T =

ˆ
dξ â∗ξ ξ2 âξ

=

ˆ
dx a∗x(−∆xax)

= dx (∇xa∗x)(∇xax).
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Lemma 18.5. Suppose ψ ∈ QD(T). Then,

‖a( f )ψ‖Fs
≤
∥∥∥∥∥ f̂
|ξ|

∥∥∥∥∥
L2

‖T1/2ψ‖L2

and

‖a∗( f )ψ‖Fs
≤
(∥∥∥∥∥ f̂
|ξ|

∥∥∥∥∥
L2

‖T1/2ψ‖+ ‖ f ‖2
L2‖ψ‖2

L2

)1/2

.25

The proof was left as an exercise.
We next look at some operators which are extremely useful in physics for describing ground states of

interacting systems (sometimes called coherent states).

Definition 18.6. Let f ∈ L2(Rd). Then, the Weyl operator associated to f is

W( f ) := ea∗( f )−a( f ).

The term in the exponent is anti-self-adjoint! But the Weyl operator as a whole is unitary:26

W∗( f )W( f ) = 1.

The adjoint has the formula

W∗( f ) = ea( f )−a∗( f ).

In particular,
‖W( f )‖Fs→Fs

= 1.

Lemma 18.7.
W( f ) = e−(1/2)‖ f ‖2

L2 ea∗( f )e−a( f ).

Proof. The proof uses (a case of) the Campbell-Baker-Hausdorff formula for the exponential of a sum of
operators: if [[A, B], A] = 0 and [[A, B], B] = 0, then

eA+B = e(1/2)[A,B]eAeB.

Thus, plus the fact that [a( f ), a∗( f )] = ‖ f ‖2
L2 , finishes the proof. �

If you apply W( f ) to the Fock vacuum Ω, any terms corresponding to a( f ) are zero, so in fact the whole
e−a( f ) term does not contribute: e−a( f )Ω = Ω.

W( f )Ω = e−(1/2)‖ f ‖2
L2 ea∗( f )Ω

= e−(1/2)‖ f ‖2
L2

(
1⊕

⊕
n≥1

(a∗( f ))n

n!

)
Ω

= e−(1/2)‖ f ‖2
L2

(
1, f ,

1
2

f ⊗ f ,
1
6

f ⊗ f ⊗ f , . . .
)

.

26This crucially uses the fact that f is L2. However, in physics, this is not always the case: for quantum electrodynamics (QED), the
physical theory of electromagnetism, or more generally in Lorentz-invariant theories with massless gauge fields, one must consider
non-L2 functions. This is because f̂ (ξ) ∼ 1/

√
|ξ| in d = 3 (and similarly, with a different power, in higher dimensions). This arises

when one considers a wave in Minkowski space (a Poincaré-invariant vector field), and integrates out the frequency coordinate using
a contour integral, which produces dξ/

√
|ξ|, which is Lorentz-invariant. So it’s unavoidable. What we eventually obtain is 1/|ξ|3/2,

which is not L2.
Typically in physics, one introduces cutoffs, stipulating that |ξ| < Λ (called ultraviolet cutoffs). This is physically reasonable: high

frequency is the same regime as high energy, and for sufficiently high energies the typical approximations don’t necessarily apply,
and one must incorporate additional terms. So with the caveat that we’re only working with a range of physically relevant energies,
L2 regularity can be restored.

But the singularity as |ξ| → 0 cannot be avoided — and so the Weyl operators are still not unitary. This is called the infrared
catastrophe, and has the consequence that the ground state of a QED system does not live in Fock space! One has to work harder to
make sense of the theory, and the Weyl operators are extremely important.
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Since f = f , each component is already a symmetric tensor, and there is no need to symmetrize. This is an
example of a coherent state — the n-particle piece is n copies of the same function, for all n.27

In the following, we use a] to denote either of a or a∗.

Definition 18.8. Let f ∈ S(Rd). The Bogoliubov transformation is the map sending

a]x 7−→W∗( f )a]xW( f ).

Lemma 18.9.

W∗( f )axW( f ) = ax + f (x)

W∗( f )a∗xW( f ) = a∗x + f (x).

There are a few ways to prove this: you can again use the Campbell-Baker-Hausdorff formula or
Taylor-expand, or a few other techniques.

Proof. For a t ∈ R, let ax(t) := W∗(t f )axW(t f ), with W(t f ) = et(a∗( f )−a( f )). Then,

∂tax(t) = W∗(t f ) (−(a∗( f )− a( f ))ax + ax(a∗( f )− a( f )))
(I)

W( f ),

and the middle term is
(I) = [ax, a∗( f )− a( f )] = [ax, a∗( f )] = f (x),

which involves a sketchy-feeling computation with a δ-function that’s ultimately OK. Hence ∂tax(t) = f (x).
Therefore ax(t) = ax(0) + t f (x), so ax(1) = ax + f (x). �

Remark. Coherent states describe, among other things, Bose-Einstein condensates, where there are many
electrons in the same state in an interacting system. (

Lecture 19.

Bose-Einstein condensation: 11/2/17

“When you have a divergence, it tells you that something infinite is missing.”

Recall that we defined the Weyl operator W( f ) := ea∗( f )−a( f ) for an f ∈ L2, and that W( f )Ω ∈ Fs is the
coherent state. We’ll use this, and the lemmas we proved about it last time, to learn about a simple physical
model.

The van Hove model is one of the simplest interacting quantum field theories, with Hamiltonian

H =

ˆ
â∗ξ ω(ξ)aξ dξ + a∗(v) + a(v),

which is an operator on FS, where ω is positive definite. For instance, one could set ω(ξ) := ξ2,
corresponding to non-relativistic massive particles, or ω(ξ) := |ξ|, for photons.

We want to determine the ground state. We apply the Bogoliubov transform to H:

W
(

v̂
w

)
HW∗

(
v̂
w

)
=

ˆ (
â∗ξ −

v̂(ξ)
ω(ξ)

)
ω(ξ)

(
âξ −

v̂(ξ)
ω(ξ)

)
+

ˆ
v̂(ξ)

(
â∗ξ −

v̂(ξ)
ω(ξ)

)
dξ +

ˆ
v̂
(

aξ −
v̂(ξ)
ω(ξ)

)

=

ˆ
â∗ξ ω(ξ)âξ dξ

T

−
ˆ |v̂(ξ)|2

ω(ξ)
dξ

E0

,

and E0 < 0. Thus the Bogoliubov transform diagonalizes the Hamiltonian, and describes it almost
completely in terms of the operator

(Tψ)(n)(ξ1, . . . , ξn) =

(
n

∑
i=1

ω(ξi)ψ̂
(n)(ξ1, . . . , ξn)

)
n≥0

.

27This cannot happen for fermions, which is related to the Pauli exclusion principle, or the fact that f ∧ f = 0. In this case, one
considers a different analogue of a coherent state, which is a notion of a determinant for n linearly independent functions.
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Therefore

W
(

v̂
w

)
HW∗

(
v̂
w

)
= T + E0.

Since TΩ = 0 and 0 = inf Spec T, then Ω is a ground state for T, and therefore E0 is the energy of the
ground state for H!

In particular,

W
(

v̂
w

)
HW∗

(
v̂
w

)
Ω = E0Ω,

so

HW
(

v̂
w

)
Ω = E0 W∗

(
v̂
w

)
Ω

ψ0

,

and the left-hand side is a coherent state.
Using the number operator, we can calculate the expected number of particles in the ground state.

〈N 〉ψ0
=
(

W∗( f̂ )Ω,NW∗( f̂ )Ω
)
Fs

=
(

Ω, W( f̂ )NW∗( f̂ )Ω
)
Fs

=

(
Ω,

ˆ (
â∗ξ − f̂ (s)

)(
âξ − f̂ (ξ)

)
dξΩ

)
Fs

=

(
Ω,

ˆ
â∗ξ âξ dξ

N

Ω

)
−
(

Ω,
(ˆ

â∗ξ f̂ (ξ)dξ +

ˆ
âξ f̂ (ξ)dξ

)
Ω
)

=0

+

ˆ
| f̂ (ξ)|2 dξ (Ω, Ω)

=1

= ‖ f ‖2
L2 .

Hence we require ‖v̂/w‖L2 to be finite, so that the expected number of particles is finite; if the expected
number of particles is infinite, this formalism doesn’t work, and there are interesting C∗-algebraic issues.

Example 19.1. In quantum electrodynamics (QED) in 3D with a UV cutoff,

v̂(ξ) ∼ 1√
|ξ|

χ(|ξ| < Λ)

and ω(ξ) = |ξ|. In this case,
v̂
|ξ| ∼

1

|ξ|3/2 χ(|ξ| < Λ),

and ∥∥∥∥∥ 1

|ξ|3/2 χ(|ξ| < Λ)

∥∥∥∥∥
2

L2

=

ˆ
|ξ|<Λ

1

|ξ|3
dξ −→ ∞

and therefore one says this system is IR divergent: there is an issue with infinity at the low energies of the
system. (

We can also use Fock space to study (some) interacting quantum systems. The integrand of the number
operator, a∗xax physically speaking counts particles at x. So given a system with pair interactions (i.e.
between pairs of particles) specified by an interaction potential v(x − y), we add an extra term to the
Hamiltonian capturing these interactions:

(19.2) H =

ˆ
a∗x(−∆ax)dx +

ˆ
a∗xaxv(x− y)a∗yay dx dy.

The latter term creates particles immediately before it destroys them, and therefore preserves the particle
number. Alternatively, one can check that [H,N ] = 0.

In Bose-Einstein condensates, the interaction potential is very small. So we can modify (19.2) into

(19.3) H =

ˆ
a∗x(−∆ax)dx +

1
N

ˆ
a∗xaxv(x− y)a∗yay dx dy,
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with N � 1. Then, we study the Schrödinger equation on Fs:

i∂tΨ = HΨ

Ψ(t = 0) = ψ0,

where the choice of initial data is a coherent state: that is, choose a ϕ0 ∈ L2 with norm 1,28 and let
ψ0 := W(

√
NMϕ0) (so that 〈N 〉ψ0

= N).
We know formally that the solutions to the Schrödinger equation are of the form

Ψ(t) = e−itHN Ψ0,

but that’s formal and not extremely helpful in this case.

Theorem 19.4 (Hepp; Rodmianski-Schlein; Grillakis-Machedon). As N → ∞,∥∥∥e−itHN W(
√

Nϕ0)Ω−W(
√

Nϕt)eAϕt Ω
∥∥∥
Fs
−→ 0

if the Hartree equation is satisfied:

i∂t ϕt = −∆ϕt + (v ∗ |ϕ|2)ϕ

ϕ(t = 0) = ϕ0.

One says that the Hartree equation governs the mean-field theory of a QFT of interacting bosons.
The initial result was the derivation; followups provided bounds on the rate of convergence, and Grillakis-

Machedon additionally provided a physical reason for why this result exists. The first rate-of-convergence
result, due to Rodmianski-Schlein, was∥∥∥e−itHN W(

√
Nϕ0)Ω−W(

√
Nϕt)eAϕt Ω

∥∥∥
Fs
≤ eeCt

N
.

The iterated exponential indicates that the Gromov inequality was applied twice. Strickhartz inequalities
might produce a better bound on the rate, but are harder to use. These days, there are bounds which are
polynomial in t, but involve Nα for α > 1.

Strickhartz estimates. Inside Rd, let S be a codimension-1 surface, and let µS be a measure concentrated
on S. Assume S has everywhere nonzero Gauss curvature. The Fourier transform of the surface S isˆ

eiξxdµS.

You can always choose charts for a neighborhood S such that the origin is in S and the surface is the graph
of a function f : U → Rd, where U is a neighborhood of the origin in Rd−1. (This is a local parametrization of
the surface.) The Morse lemma says that if the Gauss curvature is nonvanishing, these graphs may be taken
to be quadratic: there’s some chart in which xd(x) = (x, x).

In our attempt to understand the Fourier transform, let ρ : Rd−1 → R be a smooth function. Then,ˆ
eiξxρ(x)δ(xd − x2)dxd dx =

ˆ
ei(ξx+ξd(x,Ax))ρ(x)dx,

and this is a well-understood oscillatory integral:

=
1

|ξd|d/2(det A)1/2
ei(··· )(nice stuff) + o

(
1

|ξd|d/2

)
.

Therefore ˆ
eiξxdµS .

1

|ξ|(d−1)/2
.

How does this relate to Strickhartz estimates? If you take the Fourier transform of

i∂tu = −∆u,

28Actually, ϕ0 ∈ H1, the space of L2 functions whose gradient also has finite L2 norm.
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you get

τû(τ, ξ) = ξ2û(τ, ξ).

i.e.

(τ − ξ2)û(τ, ξ) = 0.

Thus, supp û = {(τ, ξ) | τ = ξ2}, which is codimension 1. Therefore we can conclude that
ˆ

ei(τt+ξx)û(τ, ξ)dτ dξ =

ˆ
ei(ξ2t+ξx)ρ(ξ)dξ ∼ 1

td/2 .

Lecture 20.

Strichartz estimates and the nonlinear Schrödinger equation: 11/7/17

Lecture 21.

: 11/9/17

Note: I missed class on Tuesday (and will miss class again next Tuesday and Thursday).
Last time, we reviewed the Strichartz estimates and applied them to the 3D defocusing cubic nonlinear

Schrödinger equation.

Definition 21.1. We call (q, r) Strichartz admissible in dimension d if

2
q
+

d
r
=

d
2

,

where if d > 2, 2 ≤ q, r ≤ ∞, and if d = 2, 2 < q, r < ∞.

Theorem 21.2 (Strichartz estimates). Let (q, r) be Strichartz admissible. Then,∥∥∥e−it∆u0

∥∥∥
Lq

t Lr
x
. ‖u0‖L2

x
.

Dually, for any (q̃, r̃) Strichartz admissible,29∥∥∥∥ˆ t

0
ds e−i(t−s)∆F(s, x)

∥∥∥∥
Lq

t Lr
x

. ‖F‖
Lq̃′

t Lr̃′
x

.

The 3D defocusing nonlinear Schrödinger equation is

(21.3)
i∂tu = −∆u + |u|2u

u(t = 0) = u0,

where we ask for u0 ∈ H1(R3), the Sobolev space of f such that ‖∇ f ‖2
L2 + ‖ f ‖2

L2 < ∞. The defocusing is the
|u|2u term.

Mild solutions30 of (21.3) satisfy an integral equation called the Duchamel formula:

(21.4) u(t) = e−it∆u0 + i
ˆ t

0
ds e−i(t−s)∆

(
|u|2u

)
(s)

for t ∈ [0, T] for some T. This is good, ebcause we can now use the fixed-point theorem to get at u.

29TODO: are q̃′, r̃′ their Hölder conjugates? I think so, but am not certain.
30A mild solution is a Goldilocks condition: you want Strichartz estimates to imply uniqueness as well as have conservation laws

to get them. Classical solutions are too strong, and there are no conservation laws in general. Weak solutions are too permissive, and
lack uniqueness.
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Strichartz estimates appear when we try to control the norm. For example, in d = 3, (q, r) = (2, 6) is
Strichartz admissible, so

‖u‖L2
t L6

x
≤
∥∥∥e−it∆u0

∥∥∥
L2

t L6
x
+

∥∥∥∥ˆ t

0
ds e−i(t−s)∆

(
|u|2u

)
(s)
∥∥∥∥

L2
t L6

x

(21.5)

. ‖u0‖L2 + ‖|u|2u‖L1
t L2

x

. ‖u0‖L2 + T1/2‖u‖L∞
t L6

x
‖u‖L2

t L6
x

. ‖u0‖L2 + T1/2‖∇u‖2
L∞

t L2
x
‖u‖L2

t L6
x
.

Here we use a Sobolev inequality: in d = 3, ‖u‖L6 ≤ ‖∇u‖L2 .
To control ‖∇u‖L∞

t L2
x
, we’ll use energy conservation: if E[u] denotes the energy of the system, then

E[u] = E[u0] and

E[u] =
1
2

ˆ
|∇u|2

‖u‖2
Ḣ1

+
1
4

ˆ
‖u‖4

>0

= E[u0].

The second term is positive because of defocusing. We also have mass conservation:

M[u] =
ˆ
|u|2 = M[u0].

Hence, if there’s defocusing, then
‖∇u‖L∞

t L2
x
< 2E[u0]

for all t.
We can also use the Strichartz estimates on ∇u in the same way as in (21.5):

‖∇u‖L2
t L6

x
≤ ‖∇u0‖L∞

t L2
x
+

ˆ T

0
ds
∥∥∥eis∆∇(|u|2u)(s)

∥∥∥
L2

x
,

and since eis∆ is unitary, the term inside the integral is just ‖∇(|u|2u)‖L1
s L2

x
. Hence

. ‖∇u0‖L2
x
+ 2‖|u|2∇u‖L1

t L2
x
+ ‖|u|2∇u‖L1

t L2
x

. ‖u0‖L2
x
+ 3T1/2‖u‖2

L∞
t L6

x
‖∇u‖L2

t L6
x

. ‖u0‖L2
x
+ 3T1/2‖∇u‖L∞

t L2
x
‖∇u‖L2

t L6
x

. ‖u0‖L2
x
+ 6T1/2E0‖∇u‖L2

t L6
x
.

Therefore for T sufficiently small and α = 0, 1,

‖∇αu‖L2
t L6

x
≤ 1

1− T1/2CE0
‖∇αu0‖L2

x
,

and therefore the integral equation (21.4) is a contraction, so this problem is well-posted.31

This concludes our discussion of the nonlinear Schrödinger equation, though there’s plenty more
interesting questions to think about.

Fermion gases The semiclassical limit of electron gases should recover things like the Boltzmann equations
that we’re familiar with, along with other interesting phenomena.

Let’s consider a system of N indistinguishable electrons, which form a state Ψn ∈ (L2(R3))⊗a N , the
antisymmetric tensor product. The Hamiltonian includes electron-electron interactions:

HN := h̄2
N

N

∑
j=1

(−∆xj) +
1
N ∑

1≤i,j≤N
V(xi − xj).

31Technically, one should compare the distance between two functions before and after applying the integral operator, but the
argument is the same.
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The second term is a sum of N2 terms, hence is O(N). The first term is a sum of N O(N2/3) terms, hence
is O(N5/3), just as in the study of the Lieb-Thirring inequalities.

The Planck constant h̄ should be chosen to make the two terms of the Hamiltonian scale in N the same
way, hence will be hN := N−1/3.

The Schrödinger equation for this system is

(21.6)
ih̄N∂tΨN = HNΨN

ΨN(t = 0) = ΨN,0.

Let Pj := i∇j be the momentum operator, and assume there are constants A and B such that 〈x2
j 〉Ψn,0

< A

and 〈P2
j 〉ΨN,0

< BN2/3.
Work of Narnhofer-Sewell relates this to the N-particle Wigner transform

(21.7) WN(t, xN , vN) :=
ˆ

dyN ΨN

(
t, xN −

h̄NyN
2

)
ΨN

(
t, xN +

h̄NyN
2

)
eivN ·yN .

Let’s look at its Fourier transform, where xN ↔ ξN and vN ↔ ηN :

ŴN(t, ξN , ηN) = 〈exp(−i(xN · ξN + h̄NPN · ηN))〉ΨN(t).

The n-particle marginals are

W(n)
N (t, xn, vn) :=

ˆ
dxn+1 · · ·dxN dvn+1 · · ·dvNWN(t, xN , vN).

After a Fourier transform, which sends W ↔ µ,

µ̂
(n)
N (t, ξN , ηN) = 〈exp(−i(xn · ξn + h̄NPN · ηN))〉ΨN(t).

Hence

∂tµ̂
(n)
N (t, ξn, ηn) =

n

∑
j=1

ξ j∇ηjµ̂
(n)
N (t, ξN , ηN)

+
1
N ∑

1≤i<j≤n

ˆ
dq V̂(q)

(
2N1/2 sin

(
1
2

M−1/3(q · (ηi − ηj)
))

µ̂
(n)
N (t, ξn, ηn)

)
+

N − n
N ∑

1≤j≤n

ˆ
dq V̂(q)

(
2N1/2 sin

(
1
2

N−1/3q · ηj

))
µ
(n+1)
N (t; ξ1, . . . , ξ j + q, . . . , ξn − q; vN , 0).

This is a terrible-looking PDE for the n-particle marginals, but it has an interesting behavior: the n-particle
marginals depend on the (n + 1)-particle marginals. Thus these equations define a hierarchy, called the
BBGKY hierarchyfor N-fermion systems, after the people who researched it, Bogoliubov, Bonn, Green,
Kirkwood, and Yvon.

We want to understand whether this is well-posed and hence defines an initial value problem. It certainly
helps us to observe that this equation is linear for (µ(1)

N , µ
(2)
N , . . . , µ

(N)
N ).

Assume V̂ is compactly supported. Then, pointwise in ξN and ηN and assuming µ
(n)
N is sufficiently

smooth, Narnhofer-Sewell prove that as N → ∞, µ
(n)
N → µ(n) for each n ∈ N, on R3 ×R3.

The idea is to look at how each term scales in n, and use that to relate this to the infinite Vlasov hierarchy

∂tµ
(n) =

n

∑
j=1

ξ j∇ηj µ
(n) +

n

∑
j=1

ˆ
dq V̂(q)(q · ηj)µ̂

(n+1)(t; ξ1, . . . , ξ j + q, . . . , ξn − q; ηn, 0).

This is well-posed, and solutions exist and are unique. If at t = 0, µ(n) factors as a product of copies of
µ(1), then at t > 0, µ(n) remains factorized, and therefore µ(1) satisfies the Vlasov equation. This will be our
jumping-off point next time.
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Lecture 22.

: 11/14/17

Lecture 23.

: 11/16/17

Lecture 24.

Quantum electrodynamics and the isospectral renormalization group: 11/28/17

Today we’re going to discuss the quantum field theory of electromagnetism, called quantum electrody-
namics (QED). We’ll work in the simplest case, nonrelativistic QED, a theory of a single non-relativistic,
quantum-mechanical electron together with a photon field (which is relativistic).

In this case, Fock space for the photon field is

F = Γ(L2(R3,C2)) = C⊕
⊕
n≥1

(
L2(R3,C2)

)⊗sn
.

That is, this is a bosonic field, and the C2 represents the two degrees of freedom: the wave is one complex
direction, and the photon may move perpendicular to it. The canonical commutation relations for this Fock
space are

[âλ(k), â∗λ′(k
′)] = δλ,λ′δ(k− k′)(24.1)

[â]λ(k), â]λ′(k
′)] = 0.

Here λ, λ′ ∈ {0, 1}, and in (24.1), δλλ′ is a Kronecker delta and δ(k− k′) is a Dirac delta.
The Hilbert space for the electron is just L2(R3), which we’ll denote L2

el(R
3). Thus the total Hilbert space

of the system is
H := L2

el(R
3)⊗F .

The Hamiltonian for the photon field, H f : F → F , is

(24.2) H f := ∑
λ

ˆ
dk â∗λ(k)|k|aλ(k).

The electron does not change, so its Hamiltonian Hel : L2
el(R

3)→ L2
el(R

3) is the identity. But the electron
and photonic fields are coupled, so the total Hamiltonian isn’t just the tensor product of the two pieces:

(24.3) H := 1el ⊗ H f +
1

2mel

(
i∇xel ⊗ 1 f − eA f (xel)

)2
,

where mel is the electron mass, e is the electron charge, and A f is the quantized electromagnetic vector
potential

(24.4) A f (xel) = ∑
λ

ˆ
dk√
|k|

ελ(k)
(

eixelk ⊗ âλ(k) + e−ixelk ⊗ â∗λ(k)
)

.

Here, ε1 and ε2 are polarization vectors, meaning that for all k,{
ε1(k), ε2(k),

k
|k|

}
is an orthonormal basis of R3. These cannot be chosen globally, which is a consequence of the hairy ball
theorem in topology (every continuous vector field on S2 must vanish somewhere).

Unfortunately, (24.4) looks to be full of problems. The |k|−1/2 term means this integral will not converge
at 0; there are also issues for large k. Hence we regularize (24.4), adding a cutoff term (in red):

(24.5) Aσ(xel) = ∑
λ

ˆ
dk√
|k|

κσ(|k|)ελ(k)
(

eixelk ⊗ âλ(k) + e−ixelk ⊗ â∗λ(k)
)

.
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for some σ with 0 < σ� 1, and we let Hσ denote the Hamiltonian using this cutoff potential. This cutoff
function should be a smooth function that contains an infrared reglularization, growing slowly on 0 < |k| < 1:

κσ(|k|)√
|k|
∼ 1
|k|µ

for some µ < 1/2 when |k| < 1. Then, this function should die off as 1 < |k| < 2, which is an ultraviolet
regularization. These names occur because the infrared regularization corresponds to low frequencies, and
the ultraviolet regularization to high frequencies, just like infrared and ultraviolet light.

The limit σ→ 0, corresponding to fixing the infrared regularization, is understood mathematically. But
it is not known how to remove the ultraviolet regularization, even as a limiting process.

The Hamiltonian (24.5) is clearly translation-invariant in xel. Classically, Noether’s theorem uses this to
deduce conservation of momentum, and something similar happens here.

Definition 24.6. The total momentum operator for this system is

(24.7) Ptot := i∇xel ⊗ 1 f + 1el ⊗ Pf ,

where

(24.8) Pf := ∑
λ

ˆ
dk â∗λ(k)kâλ(k).

Thus if Φ ∈ F ,

(Pf Φ)(n)(k1, . . . , kn) =
n

∑
j=1

k j ·Φ(k1, . . . , kn).

Translation-invariance implies that [Hσ, Ptot] = 0, and therefore that Ptot is conserved under time-evolution
by eitHσ . We also have Spec(Ptot) = R3.

We’d like to understand the Fourier transform on H, in order to analyze this system, and in general it’s
useful to have a definition of the Fourier transform that’s natural for the system in question, to make the
analysis easier. If Φ ∈ H, the operator U : H → H defined by

(UΦ)(p) :=
ˆ

dx eix(p−Pf )Φ

is unitary, and

(U∗HσU)(p) = H f +
1

2m

(
p− Pf − eAσ(0)

)2
,

which is Hσ(p) by definition (after removing the tensor terms from (24.3), which is OK because TODO).
Letting

H :=
ˆ ⊕

dpHp,

where Hp ∼= F , then H is a fiber bundle with base R3 = Spec(Ptot) and fibers isomorphic to F . The
operator exp(itHσ) leaves the fibers invariant, and Hσ(p) ∼= Hσ|Hp .

We can use all of this to understand a fundamental question about this system — what are particles?
What is an electron?

Theorem 24.9. Let 0 < σ� 1 be fixed, and |p| < pc < 1. Then,
(1) Eσ(p) := inf Spec Hσ(p) is a non-degenerate eigenvalue with an eigenvector Ψσ(p), called the fiber ground

state,
(2) Eσ(·) is of class C2(Bpc(0)),

32 with ∥∥∥∥Eσ(p)− p2

2

∥∥∥∥
C2

< Ce2,

where e is the electron charge, and Eσ is radial in that it only depends on |p|.
(3) Uniformly in σ > 0,

1− Ce2 < ∂|p|Eσ(p) < 1.

32It’s possible to show higher regularity, and that this is uniform in σ, but these are much harder.
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(4) The limit
E(·) := lim

σ↘0
Eσ(·)

exists in C2(Bpc(0)).

The upshot is that we can plot Spec(Hσ(p)) over Spec(Ptot) ∼= R3 (or even a radial slice). The absolutely
continuous spectrum is the area above a parabola centered at 0, and the infimum produces an eigenvector
Ψσ(p). This is the electron: it’s not the naked electron we started with, but some conglomerate of it and the
photonic field.

Remark. We started with the uncoupled electron and photonic field because, in a sense, we didn’t know
any better. You could try to start a priori from the description that we just found, and this can be done, e.g.
to compute scattering states. However, only part of this has been worked out; it’s extremely technical. (

Ψσ(p) is called an infra-particle or a dressed electron state: the original isolated electron is now dressed
with photons and describes the object in real life (or at least physics) that we wanted to study. Physically, it
describes the electron surrounded by a cloud of photons at low frequence.

The photon number operator is

N f = ∑
λ

ˆ
dk â∗λ(k)âλ(k),

as with the number operator from before. We’re interested in the expectation

〈Ψσ(p),N f Ψσ(p)〉 ∼ ‖∇pEσ(p)‖
ˆ

dk κ2
σ(|k|)

(|k|1/2|k|)2

∼ ‖∇pEσ(p)‖|log σ|.
The first piece remains bounded when σ→ 0, but |log σ| → ∞. This is a little disturbing, since it tells us
Ψσ(p) fails to be an element of the Fock space when σ = 0 and p = 0.33 This is called the infrared catastrophe;
to fix it, we’ll need to take a Weyl transform and some interesting C∗-algebraic techniques. Ultimately,
the issue is that starting with a single unbound electron is not right, and we needed to begin with more
electrons.

Another way to think of this is that it’s possible to add photons of low frequency at almost no cost,
because they have no mass, so asking how many photons there are is not a well-posed question.

The infrared catastrophe is discussed in many physics textbooks, but often just on the perturbative level.
This requires less theory, which is nice, but the argument is more complicated.

The isospectral renormalization group. A lot of people have studied renormalization in this formulation
(based on projectors on Hilbert space), so there are lots of names associated with the functions.

Let H be a separable Hilbert space, P : H → H be a projector (so P2 = P), and P := 1− P. Often we
want to spectrally analyze some self-adjoint operator H on H, but this is difficult. Instead, we’d like to
reduce this problem to the spectral analysis of H on the range of P, which is cleverly chosen to make this
work, and to have small range. This is done with something called the Feshbach-Krein-Schur map.

Theorem 24.10 (Feshbach projection method). Assume (PHP − z) is invertible on the range of P, and let
R(z) := (PHP− z)−1. Let FP[H − Z] : Im(P)→ Im(P) denote the Feshbach map

FP[H − Z] := P(H − z)P− PHPR(z)PHP

and
QP[H − z] := P− PR(z)PHP.

Assume
R(z)P, R(z)PHP, PHPR(z)PHP

are bounded operators. Then,
(1) FP[H − z] is invertible on Im(P) iff H − z is invertible on H,
(2) (H − z)ψ = 0 (with ψ ∈ H) iff FP[H − z]Pψ = 0, and
(3) FP[H − z]ϕ = 0 (with ϕ ∈ Im(P)) iff (H − z)Qp[H − z]ϕ = 0.

33When p = 0, the number of photons is actually finite, because 〈N f 〉 is bounded as σ→ 0.
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This theorem is also called Feshbach isospectrality.
One uses this tool by choosing P to be small perturbations for which the assumptions of this theorem

are easy to prove, and we’ll see this next time.
One fun consequence is that if you thought some terms in the Schrödinger equation were missing, it

doesn’t affect the physical behavior of the system (as long as you’re in the same piece of the renormalization
group flow). This is what guarantees stability in the setup of quantum field theory.

Lecture 25.

More isospectral renormalization: 11/30/17

“You can see that it’s a mess. But it’s an organized mess.”
We’re studying non-relativistic quantum electrodynamics, where there’s a photonic field and an electron
which behaves quantum-mechanically, but not relativistically. The Hilbert space of states can be described
as

H = L2(R3,F ),
where

F = Γ(L2(R3,C)) =
⊕
n≥0

L2(R3,C)⊗sn

is the Fock space for the photon field. We introduced a cutoff Hamiltonian Hσ and a total momentum
operator Ptot in (24.7) satisfying [Ptot, Hσ] = 0. Thus time evolution by eitHσ leaves the momentum invariant.

When we considered H =
´ ⊕ dpHp (where Hp ∼= F ), summed over Spec(Ptot) = R3, this says that time

evolution leaves the fiber invarinat as well. On the fiber over p, the fiber Hamiltonian is

Hσ(p) := Hσ|Hp = H f +
1

2m

(
p− Pf − eAσ(0)

)2
,

where Pf was defined in (24.8),

(25.1) Aσ(0) = ∑
λ

ˆ
dk

|k|1/2 κσ(|k|)ελ(k)
(

eikx âλ(k) + h.c.
)

,

and

(25.2) H f = ∑
λ

ˆ
dk |k|â∗λ(k)âλ(k).

We want to prove that Spec(Hσ) also fibers over Spec(Ptot) = R3, and the piece above a p ∈ R3, which is
Spec(Hσ(p)), is the line above p2/2m + O(e2). The infimum is an eigenvector and everything else is the
continuous spectrum.

We’re going to prove this using isospectral renormalization group (RG) flow, and specifically the
Feshbach-Krein-Schur map.34 Recall that if H is a separable Hilbert space, P is a projector, P := 1− P,
and H is a closed operator on H, we defined two maps Fp[H − z] and Qp[H − z] in Theorem 24.10, where
z ∈ C is such that (PHP− z) is invertible on the range of P; Fp[H − z] goes from Im(P) → Im(P), and
Qp[H − z] : Im(P)→ H.

Our use of this technique depends on Theorem 24.10 to reduce our questions on the spectrum from all
of H to a subspace.

Lemma 25.3 (Composition identity). Let P1 and P2 be projectors with P1P2 = P2 (equivalently, Im(P2) ⊂ Im(P1)).
Then,

FP2 [FP1 [H − z]] = FP2 [H − z].

The proofs of the statements in Theorem 24.10 boil down to linear algebra. For example, for the first
statement, one shows that

FP[H − z]P(H − z)−1P = P,
and therefore on the range of P,

FP[H − z]−1 = P(H − z)−1P.

34This map was first studied long before renormalization, for entirely functional-analytic purposes.
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Let’s now use this to analyze QED. Fix xel = 0, so the fiber Hamiltonian is

Hσ(p) =
p2

2m
+ H f +

1
m
(p− Pf ) +

1
2m

P2
f

(1)

+
1

2m

(
(p− Pf )Aσ + Aσ(p− Pf )

)
(2)

+
1

2m
A2

σ

(3)

.

If P = (H f , Pf ), then the terms in (1) are equal to T[P ].
Aσ contains creation and annihilation operators. TODO: I’m very confused about notation here, but we

let Wm,n be an operator related somehow to Aσ, but with m creation and n annihilation operators. Then

(2) = W1,0 + W0,1 = ∑
λ

ˆ
dk

|k|1/2 κσ(|k|)a∗λ(k)W1,0[P ; k, λ]

and

(3) = W2,0 + W1,1 + W0,2.

Remark. The commutation relations tell us that

f [P ]â∗λ(k) = â∗λ f [P + (|k|, k)](25.4)

= â∗λ f [(H f + |k|, Pf + k)],

because
H f â∗λ(k) = â∗λ(k)(H f + |k|).

Similarly,

((25.5) âλ(k) f [P ] = f [P + (|k|, k)]âλ(k).

Using (25.4) and (25.5), we can shuffle the creation and annihilation operators around.

Definition 25.6. A monomial in â∗λ(k) and âλ(k) is Wick-ordered if all â∗λ terms are to the left of all âλ terms.

Definition 25.7. Let

K(m) := (k1, λ1, . . . , km, λm)

K̃(n) := (k̃1, λ̃1, . . . , k̃m, λ̃m).

The generalized Wick monomial of order (m, n) is K(m,n) := (K(m), K̃(n)). We associate to it the values

|K(m,n)| :=

(
m

∏
j=1
|k j|
)(

n

∏
`=1
|k̃`|
)

κ̃σ(K(m,n)) :=

(
m

∏
j=1

κσ(|k j|)
)(

n

∏
`=1

κσ(|k̃`|)
)

.

Therefore we may define Wm,n[P ]35 as TODO (I missed this but I did take a picture).

The renormalization group. Let P1 := χ[H f ≤ 1], so P1 is a projection.36 Define

H(1) := FP1 [Hσ(p)− z],

where z is such that (P1Hσ(p)P1 − z) is invertible on Im(P1). Therefore, by Theorem 24.10,

H(1) = P1(T(0)[P ] + W(0)[P ])P1 − P1W(0)P1R(z)P1W(0)P1.

On Im(P1),

R(z) = (P1T(0)P1 + P− 1W(0)P1 − z)−1

35So is this the definition I wanted to know earlier? Or is it something different? I’m confused about the order we’re defining
things.

36TODO: in that case, χ definitely can’t mean characteristic function. And how can we project onto a region which is presumably
nonlinear?
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and therefore we can take the Neumann series of this operator, which you might be surprised to see a use
for:

=
∞

∑
L=0

(P1T(0)P1 − z)−1
(

P1W(0)P1(P1T(0)P1 − z)−1
)L

.(25.8)

We can write this in terms of generalized Wick polynomials: since [Pf , H f ] = 0, [P1, T(0)[P ]] = 0, and
therefore P1T(0)P1 = 0, so in particular P1(H − z)P1 = P1WP1. The upshot is that

(25.8) = ∑
m+n≥0

∆W(0)
m,n[P ].

Analyzing this sum is not trivial: infinitely many terms are nonzero. But at least its norm is small: for
m, n ≥ 1,

∆W(0)
m,n[P , z] =

ˆ
dK(m,n)

|K(m,n)|
κ̃σ(K(m,n))â∗(K(m))∆wm,n[P , K(m,n)]â(K(n)),

and we have a bound ∥∥∥∆wm,n[P , K(m,n)]
∥∥∥

C2
P L∞

K(m,n)

< Ce2ξ−(m+n)

for some ξ > 1, where e is the electric charge.
For m + n = 0, we instead have

∆T(0) := ∆W(0)
0,0 [P , z]− ∆W(0)

0,0 [(0, 0), z],

and the second term is also ∆E(0)[z] ∈ C.
This gives us a description of H(1) in terms of generalized Wick monomials:

(25.9) H(1) := FP1 [Hσ(p)− z] = ∆E(0)[z] + (T(0) + ∆T(0))[P ; z] + ∑
m,n≥1

(
W(0)

m,n + ∆W(0)
m,n

)
[P ; z].

And we can apply this again: we decompose Fock space into subspaces of dyadic shells, where Pρ :=
χ[H f < ρ] for ρ < 1/2. This is a Littlewood-Paley decomposition of Fock space, and step by step one
calculates in subspaces where the photons have smaller and smaller energies, and asymptotically have zero
energy. Physics is needed to define these projections in a way that gives you the ground state rather than
nothing — eventually this will converge to something which allows you to solve the eigenvalue problem.

But this is not the best way from a technical standpoint. An alternative approach is to reduce from P1 to
Pρ (which in renormalization group theory is called decimation). Then, rescale it to size P1, decimate, rescale,
and so on. This produces a sequence H(n) of effective Hamiltonians, which all have a form line in (25.9)
and all act on Im(P1). The renormalization map is the map H(n) → H(n+1) — but now this is a discrete
dynamical system, and one can study it on the space of Hamiltonians. One is interested in fixed points,
and Hamiltonians that converge to the same fixed point are said to be in the same universality class.

Physically speaking, the fixed point determines the behavior of the system, so extra terms, or even
infinitely many Wm,n terms, don’t affect the physics if they flow to the same point. This provides a stability
under perturbations (for the particular convergence properties).

Lecture 26.

The renormalization dynamic system: 12/5/17

We’re in the middle of trying to set up isospectral renormalization to understand the spectrum in QED.
It’s difficult, and the reason it’s difficult is that the lowest eigenvalue of the Hamiltonian borders the
continuous spectrum (one says there’s no spectral gap), which makes the analysis more difficult.

We’ve been following the method established by Bach, Frölich, and Segal between 1993 and 1996, where
we set up the state space as a fiber bundle over Spec(Ptot) = R3; on the fiber above p, the fiber Hamiltonian
is

(26.1) Hσ(p) =
p2

2
+ H f +

1
m

p · Pf +
1

2m
P2

f +
1

2m

(
(p− Pf ) · Aσ + Aσ(p− Pf )

)
+

1
2m

A2
σ.
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On F = Hp, we defined the projector P1 = χ[H f < 1], for which the effective Hamiltonian is

Fp1 [Hσ(p)− z] = E : 0[z] + T(0)[P ; z] + W(0)[P ; z],

where P := (H f , Pf ) and

W(0)[P ; z] = ∑
m+n≥1

W(0)
m,n[P ; z]

and

W(0)
m,n[P ; z] =

ˆ
dK(m,n)

|K(m,n)|1/2−σ
a∗(K(m))w(0)

m,n[P ; z; K(m,n)]a(K̃(n)).

Here K(m,n) = (K(m), K̃(n)) is the generalized Wick monomial defined last time, corresponding to using
Wick ordering of m creation and n annihilation operators to account for their commutation relations.

We’re going to define a Banach space of effective Hamiltonians on which renormalization acts as a
dynamical system, which will give us some useful tools for studying it. Let

W := C⊕ T ⊕
⊕

m+n≥1

Wm,n.

An element w ∈ W will be denoted by a tuple (z, T, (wm,n)).37 This is a Banach space with the norm

‖w‖ξ := ‖T‖C2
PC1
|p|C

1
z
+ ∑

m+n≥1
ξm+n‖wm,n‖C2

PC1
K(m,n)C1

|p|C
1
z
,

as long as ξ < 1.

Lemma 26.2. Let ‖·‖op denote the operator norm for an operator Im(P1)→ Im(P1). Then there’s a constant C such
that

‖Wm,n[[wm,n]]‖op ≤ C‖wm,n‖L∞
z,P ,K(m,n)

.

Proof.

‖Wm,n[[wm,n]]‖op = sup
Φ,Ψ∈Im(P1)

‖Φ‖F=1,‖Ψ‖F=1

|(Ψ, Wm,nΦ)|

≤ sup
Φ,Ψ∈Im(P1)

‖Φ‖F=1,‖Ψ‖F=1

ˆ
dK(m,n)

|K(m,n)|1−σ

∥∥∥|K(m)|1/2a(K(m))Ψ
∥∥∥
F
|wm,n[P ; z]|

∥∥∥|K̃(n)|1/2a(K̃(n))Φ
∥∥∥
F

.

≤ sup
Φ,Ψ∈Im(P1)

‖Φ‖F=1,‖Ψ‖F=1

(ˆ
|kj |,|k̃` |<1

dK(m,n)

|K(m,n)|2−2σ

)1/2

‖wm,n‖L∞
z,P ,K(m,n)

(ˆ
dK(m)|K(m)|‖a(K(m))Ψ‖2

)1/2(ˆ
dK̃(n)|K̃(n)|‖a(K̃(n))Φ‖2

)1/2
,

giving us the desired constant. �

Next we’ll construct the renormalization map in a few steps. The first step is a complexity-decreasing
step called Feshbach decimation. Let 0 < ρ < 1/2 and Pρ := χ[H f < ρ]. Then, define FPρ [H[w]] and apply the
Neumann series and Wick ordering as we did before.38

Renormalization is not a formal process: it requires strong self-similarity properties on the space of
effective Hamiltonians. This allows us to take the next step, which is rescaling. We define a unitary operator
Γρ : F → F such that

Γρ(a]λ(k))Γ
∗
ρ = ρ−3/2aλ(ρ

−1k).

37TODO: what are T andWm,n? Presumably the space of terms T, resp. wm,n we discussed before, but I don’t know what that is.
It looks like T and wm,n are functions of z?

38Renormalization applies to different field theories, but the decimation map can look very different in different situations.
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This preserves the number operator N :

Γρ(W)Γ∗ρ = Γρ

(
∑
λ

ˆ
dk a∗λ(k)aλ(k)

)

= ∑
λ

ρ−3
ˆ

dk a∗λ(ρ
−1k)aλ(ρ

−1k) = W

by rescaling k 7→ ρk.
In particular, if f ∈ F1, then

(Γρ f )(k) = ρ−3/2 f (ρ−1k)
and

(Γρ f (n))(K(n)) = ρ−3/2 f (n)(ρ−1K(n)).

Remark. We also have39

T[P ; z] = α[z]H f + β[z]P′′f + σ(H2
f ) + σ(P2

f ) + σ(H f Pf ). (

Definition 26.3. The rescaling map is

Sρ :=
1
ρ

Γρ(. . . )Γ∗ρ .

This implies40

Sρ[T] = αH f + βP′′f + ρ(. . . ).

First, let’s define the renormalization of z, the first piece of the space of effective Hamiltonians:41

z 7−→ ẑ =Wρ[z] := z + ∆W0,0[O; z].

Definition 26.4. The renormalization map is Rρ := Eρ ◦ Sρ ◦ FPρ .

In particular, we can say that Rρ[H[w]] = H[ŵ]42 and that Rρ carries Wm,n[w] 7→ Wm,n[ŵm,n]. The
operator

FPρ : wm,n 7−→ wm,n + ∆wm,n

acts on Im(Pρ).43

Now, what does the rescaling map Sρ do?

Sρ[Wm,n[wm,n + ∆wm,n]] =
1
ρ

ˆ
dK(m,n)

|K(m,n)|1/2−σ
ρ−(3/2)(m+n)a∗(ρ−1K(m))(wm,n + ∆wm,n)[ρP ; z; K(m,n)]a(ρ−1K(n))

= ρ−1−(3/2)(m+n)+3(m+n)−(1/2−σ)(m+n)
ˆ

dK(m,n)

|K(m,n)|1/2−σ
a∗(K(m)) (wm,n + ∆wm,n)[ρP ; z; ρK(m,n)]a(K̃(n))

=: ŵm,n [P ;Z;K(m,n) ]

.

(26.5)

Thus we’ve now described Rρ : w 7→ ŵ. Lifting it to sequences, we obtain Rρ acting on the space W of
effective Hamiltonians. In particular, (W , Rρ) defines a discrete dynamical system.

This is only useful for us if repeated iterations of Rρ converge to something. We’ll argue that this does
happen: by (26.5),

ŵ ∼ ρ(1+σ)(m+n)−1(wm,n + ∆wm,n).
For all m + n ≥ 2 and σ ≥ 0, this is contractive. When m + n = 1, we need ρσ < 1, so it’s contractive when
σ > 0. Therefore as long as the cutoff σ > 0, then under repeated iteration of Rρ, wm,n → 0, and we do
have a limiting manifold described by

{α∞H f + β∞P′′f + 0}.

39TODO: ???
40TODO: What is this? What space does it operator on? What goes in the dots? What are α and β and P′′f ?
41TODO: what is O? What is ∆?
42TODO: is this a definition?
43TODO: What does ∆ mean here?
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Moreover, since the Feshbach map is isospectral, so is the entire renormalization map.
For the limiting effective Hamiltonian, the ground state is the Fock vecuum Ω. This allows one to

recursively reconstruct the ground state eigenvalues and eigenvector of Hσ(p), though we’re going to gloss
over the details.

Lecture 27.

Renormalization and eigenvalues: 12/7/17

“You know, there are entire papers written like this!”
Recall that we’re in the process of understanding the spectrum for QED, and specifically when the electron
mass is 1 and at the conserved momentum p, so we have the fiber Hamiltonian

(27.1) Hσ(p) =
p2

2
+ H f − p · Pf +

1
2

P2
f

T

+ (p− Pf ) · A +
1
2

A2

W

on the Fock space fiber F , where

H f = ∑
λ

ˆ
dk â∗λ(k)|k|aλ(k)

Pf = ∑
λ

ˆ
dk âλ(k)kâλ(k)

A = ∑
k

ˆ
dk

|k|1/2 κσ(k)(ελ(k)âλ(k) + h.c.).

We analyzed this with the Feshbach map. The first step was to let P1 := χ[H f < 1], so on Im(P1),

FP1 [Hσ(p)− z] = H(0)[z] = E[z] + T[P ; z] + ∑
m+n≥1

Wm,n[wm,n].

Here P := (H f , Pf ) and Wm,n are the Wick monomials. This is the effective Hamiltonian of the system after
a decimation step.

Subsequently, we set up the rest of renormalization. Let 0 < ρ < 1/2 and FPρ be the Feshbach map. Then
renormalization is the operator Rρ on the spaceW of effective Hamiltonians:

Rρ := Eρ ◦ Sρ ◦ FPρ .

Here Pρ := χ[H f < ρ] and Sρ is the rescaling operator

Sρ :=
1
ρ

Γρ(·)Γ∗ρ ,

where Γρ : F → F is the unitary operator

(Γρ f )(k) = ρ−3/2 f (ρ−1k).

This implies that Sρ[P ] = P and, on Im(Pρ),

Sρ[Wm,n] ∼ ρ(1+σ)(m+n)−1Wm,n,

so as σ → 0, if m + n ≥ 1, then the ρ term is less than ρσ, and if m + n ≥ 2, it’s less than ρm+n−1. The
remaining term is

E [z] : z 7−→ 1
ρ
(z + ∆W0,0[O; z]) ∈ (D \R) ⊂ C.

The renormalization map preserves the spectrum, so the effective Hamiltonian and the original Hamiltonian
are isospectral. So we can iterate this procedure, defining the nth-level effective Hamiltonian

H(n)[Zn] := Rρ ◦ Rρ ◦ · · · ◦ Rρ

n times

[H(0)[z0]],

and these are all isospectral with our original Hamiltonian.
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As you might have guessed, we’re doing this for a good reason, namely that this process considerably
simplifies the spectral analysis. Specifically, on Im(P1),

H(n)[zn] = zn + T(n)[P ; zn]

(I)

+ ∑
m+n≥1

Wm,n[w
(n)
m,n]

(II)

.

We can bound these terms:

‖(II)‖op ≤ O(ρn·σ),

and

T(n)[P ; zn] = αn[zn]H f + βn[zn]P′′f + O(H2
f ) + O(P2

f ) + O(H f Pf )

(III)

,

and

‖(III)‖op . ρ2nσ.

So we do pick up some correction terms, but they’re manageable.
Iterating Rρ defines a dynamical system on the space of effective Hamiltonians, and as n→ ∞, there’s a

limit

H(∞)[z∞] = z∞ + α∞[z∞]H f + β∞[z∞]P′′f ,

and the remaining terms go away! Moreover, we know |β∞| < α∞. For this Hamiltonian, the ground state
is the Fock vacuum Ω f , for z∞ = 0. Using isospectrality, we can therefore reconstruct the ground state
eigenvalue for Hσ(p).

Specifically, we have

z1 =
1
ρ

(
z0 + ∆W(0)

0,0 [O]
)

,

so

z0 = ρz1 − ∆W(0)
0,0 [O]

= −∆W(0)
0,0 − ρ∆W(0)

0,0 [O] + ρ2z2

z1 = ρz2 − ∆W(1)
0,0 [O] = . . .

= −
n

∑
j=0

ρj

O(e2ρ2jσ)

∆W(j)
0,0 [O]

convergent!

+ ρnzn

→0

= O(e2).

So if we let

Q(n)
Pρ

= QPρ [H
(n)] := Pρ − PρR(n)PρH(n)Pρ,

which on Im(Pρ) is equal to (Pρ H(n)Pρ)−1, then we can define

Ψn := Q(0)
P1

Q(1)
Pρ

Γ∗ρQ(2)
Pρ

Γ∗ρ · · ·Q
(n)
Pρ

Ω f ,

then as n→ ∞, Ψn converges strongly on F to Ψσ(p), the ground state of Hσ(p).
So far we’ve just been doing algebra. The analysis reemerges, as it must, when we try to understand

the correction terms ∆Wm,n. This is difficult, but offers a chance to make a connection with how physicists
think about it, via Feynman diagrams.
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Feynman diagrams Recalling the definitions of T and W from (27.1), notice that they both don’t commute
with P1.

Let’s focus on the first decimation step, for which

FP1 [Hσ(p)− z] = P1(Hσ(p)− z)P1 − P1,

and on Im(P1), this is also equal to

=
(

P1TP1 + P1WP1 − z
)−1.

Using the Neumann series,

= P1(Hσ(p)− z)P1 − ∑
L≥1

(−1)LP1WP1
(

R0[z]P1WP1
)L,

where (on Im(P1))
R0[z] = (P1TP1 − z)−1.

We would like to place all the creation and annihilation operators in the standard Wick order, but the
details of doing so in this infinite sum are a little fuzzy.

The L = 1 term is
P1(W1 + W2)P1R0[z]P1(W1 + W2)P1,

which is simpler than the general case. We can write explicit formulas for the Wick monomials. Start with

A+ := ∑
λ

ˆ
dk

|k|1/2 κσ(k)ελ(k)â∗λ(k)

and A− := A∗+.

Remark. These operators satisfy the Coulomb gauge condition A± · Pf = Pf · A±. (

Then the Wick monomials are

W1,0 = eA+(p− Pf ) W0,1 = e(p− Pf ) · A−

W2,0 =
e2

2
A+ · A+ W1,1 =

e2

2
A+ · A−.

Therefore if you normal order
P1 A−P1R0[z]P1 A+P1,

you get the following.
(27.2)

e2 ∑
λ,λ′

ˆ
dk

|k|1/2 κσ(k)
dk′

|k′|1/2 κσ(k′)P1(p− Pf ) · ελ(k)âλ(k)P1
1

P1(H f + (1/2)(p− Pf )2)P1 − z
P1 â∗λ′(k

′)ελ′(k
′)(p− Pf )P1.

This is, of course, a huge mess, and makes one glad to be a mathematician, instead of a physicist who
really has to do stuff with this equation rather than encounter it on a journey. And we’re only at L = 1; it
gets O(L!) more complicated when L increases. Some methodical people wrote out what you get for L = 3.

But! We can simplify (27.2) somewhat using the commutation relations

[âλ(k), â∗λ(k
′)] = δλλ′δ(k− k′),

where the first δ is a Kronecker delta, and the second one is a Dirac delta. Using this, and the fact that
P1 = χ[1,∞)[H f ],

(27.2) = e2 ∑
λ

ˆ
dk
|k|κ

2
σ(k)P

((p−Pf )·ελ(k))2

1 · χ[1,∞)[H f + k]
1

H f + |k|+ (1/2)(p− Pf − k)2 − z
· χ[1,∞)[H f + k]P1 + · · ·

= ∆W(0,L=1,1)
0,0 [P ; z] + ∆W(0,L=1,1)

1,1 ,

where

∆W(0,L=1,1)
0,0 [O] = e2 ∑

λ

ˆ
dk
|k|κ

2
σ(k)

(p · ελ(k))2

|k|+ (1/2)(p− k)2 − z
χ[1,∞)[|k|].
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It should be clear by now that it’s extremely unpleasant to continue, and one hopes for a simpler way to
proceed.

Feynman developed the formalism of Feynman diagrams precisely to handle these kinds of computations:
he took seriously the path-integral idea that physically meaningful terms are understood as a sum over all
configurations. Therefore one defines some basic combinatorial data encoding them. For example, the term

1
|k|+ (1/2)(p− k)2 − z

is encoded as a line
k k.

We represent the terms for A± with squiggly lines. For example,

denotes an eA+ term,

denotes an (e2/2)A+A+ term, and so on.44

Then, the sum of the terms that we need to calculate is indexed over graphs which have these as
their possible vertices, and the number of vertices denotes the order of the contribution. There are
vertex corrections w1,0 7→ w1,0 + ∆W1,0, which can be expressed purely diagramatically45, and there are
relationships between different diagrams due to gauge invariance called the Ward-Takahashi identities.

Physicists calculate these for many theories, and for higher-order theories.

44TODO: figure out how to get the rest.
45Once I figure it out!
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