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1. Comments on Global Symmetry, Anomalies, and Duality in (2 + 1)d: 1/24/18

Today’s talk was given by Val Zakharevich, on the paper [BHS17].

Definition 1.1. Let A and B be UV theories which, under renormalization group flow, flow to the same IR
theory C. Then we’ll say that theories A and B are dual.

Example 1.2. Let Nf ≤ N . Then there is a conjectured duality between SU(2)k-Chern-Simons theory
with Nf scalars, also known as Wilson-Fischer theory, and U(k)−N+Nf/2-Chern-Simons theory with Nf
fermions. (

The paper [BHS17] computes the higher symmetries and anomalies of both sides of this duality and of
several others; ’t Hooft anomaly matching tells us that these should be the same.

This is related to our overarching goal of understanding QCD4 with a single fermion ψ, which has a
Lagrangian

(1.3) L = tr(F ∧ ?F ) + ψ 6Dψ +mψψ,

where m ∈ C is a parameter whose phase diagram we’re interested in. Let m denote the mass of the domain
wall theory, which is a 3D QCD theory, so m is real. If m is real and negative, there’s a phase transition: for
m� 0, the low energy theory is believed to be trivial, and for m� 0 (m negative of larger magnitude), the
low-energy theory is believed to be SU(N)-Chern-Simons theory at level 1. The transition point, at m = 0,
should be described by SU(N)1/2 with a single fermion.

1.1. Level-rank duality. Level-rank duality is the conjecture that SU(N)k-Chern-Simons theory and
U(k)−N -Chern-Simons theory are isomorphic. A natural generalization is to consider SU(N)k together with
Nf scalar fields of mass m, where m ∈ R and Nf < N .

• If m� 0, the Higgs mechanism implies this should be the SU(N −Nf )k theory.
• if m� 0, we should expect the SU(N)k theory again.
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On the dual side, let’s consider U(k)−N−Nf/2 with Nf fermions of mass m ∈ R.

• If m� 0, we expect to get U(k)−N+Nf/2.
• If m� 0, we expect to get U(k)−N , with Lagrangian shifted by Nf :

(1.4) L =
−N +Nf

4π
tr

(
bdb− 2i

3
b3
)

+ ψ 6Dψ +mψψ + c.c.

Level-rank duality switches positive-mass scalars and negative-mass fermions, promising dualities between
SU(N −Nf )k ←→ U(k)−N+Nf/2 and SU(N)k ←→ U(k)−N .

1.2. Symmetries. We now see what symmetries these theories have. First, SU(N)k with Nf scalars. On a
3-manifold M , the fields are triples (P,A,Φ), where

• P →M is a principal SU(N)-bundle with connection,
• A is a connection on P , and
• ϕ ∈ Γ(P ×SU(N) (CN ⊗ CNf )) is the N scalar fields.

The Lagrangian is

(1.5) L(A,Φ) =
k

4π
tr

(
A ∧ dA+

2

3
A3

)
+ |DAϕ|2 +m|ϕ|2 + λ|ϕ|4.

As usual, we have an SU(N)-gauge symmetry, and there’s also a U(Nf )-symmetry acting on CNf , in which

e2πi/N1 acts by a gauge symmetry. Hence the global symmetry group (for these symmetries) is U(Nf )/(Z/N).

Ansatz 1.6. Let G be a compact Lie group and k be a level for G, and let LGk denote the Lagrangian for
Chern-Simons theory with group G and level k. Let

(1.7) 1 // G
ρ // H

σ // L // 1

be a short exact sequence of Lie groups. Then, we take as an ansatz that coupling the Gk theory to a principal
L-bundle (i.e. given a principal L-bundle P →M , we sum over the groupoid of all principal H-bundles which
quotient to L) produces a classical gauge theory for H with Lagrangian Lk̃ such that

(1.8) LGk(PG, AG) = Lk̃((PG, AG)×G H).

When G is finite (so we’re in the setting of Dijkgraaf-Witten theory) this is studied in [KT14].
In our setting, (1.7) specializes to G = SU(N), H = (SU(N)× U(Nf ))/(Z/N), and L = U(Nf )/(Z/N).

Chern-Simons theories for G are labeled by H4(BG;Z), and the map ρ : G→ H defines a pullback

ρ∗ : H4(BH;Z) −→ H4(BG;Z).

Given a k ∈ H4(BG;Z), we want to know whether we can implement the theory with a global L-symmetry;
hence we want to know whether k ∈ Im(ρ∗); the theory is anomalous iff this is not true.

If the theory is anomalous, we’d like to compute the anomaly. Suppose that we have a k̂R ∈ H4(BH;R)

such that ρ∗(k̂R) = kR (i.e. the image of k in real cohomology). Then, we can’t eliminate the anomaly, but
we can couple to a bulk theory: suppose that we can extend (P,A)→M to (PH , AH)→ X, where X is a
compact 4-manifold with ∂X = M . Then, we have an action

(1.9) “Sk̂R(AH)” : ((PH , AH)→ X) 7−→
∫
X

k̂R(FH),

where FH is the curvature of AH .
This depends on the choice of X and PH → X extending P , but we can hope that the dependence

goes away after exponentiating the action. Let X ′ be another compact 4-manifold bounding M , and let

(P ′H , A
′)→ X ′ be another extension of (P,A). Let X̂ := X ∪M X ′; then, (PH , AH) and (P ′H , A

′
H) glue to a

principal G-bundle P̃H → X̃ with connection Ã. Then we have that

(1.10) e
2πiS

k̂R
(P̃H ,ÃH)

= Sˆ
k̂
(P̃H ×H L) ∈ R/2πiZ
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for some ˆ̂k ∈ H4(BL;R/Z). This ˆ̂k tells us the anomaly, so we’re interested in computing it. Ultimately, this
comes from a question purely in algebraic topology: we have a big commutative diagram

(1.11)

H4(BL;R/Z) // H4(BH;R/Z) // H4(BG;R/Z)

H4(BH;R)

OO

// H4(BG;R)

OO

H4(BH;Z) //

OO

H4(BG;Z)

OO

Then we have ˆ̂k in the upper left, k̂R in the middle, and k in the lower right. In this case the anomaly theory
is purely topological. The computation for the dual theory follows a similar story, but is harder.

To actually calculate this, you can use the Leray-Serre spectral sequence; k ∈ H4(BG;Z) transgresses to

something in H5(BL;Z), which tells you which component ˆ̂k is in.

2. On Gauging Finite Subgroups: 1/31/18

Today’s talk was given by Dan Freed, on Tachikawa’s paper [Tac17].
Let’s start with classical electromagnetism on n-dimensional Minkowski spacetime M. Choose an A ∈

Ω1
M/dΩ0

M, and let FA = dA. Maxwell’s laws tell us that

dFA = 0

d?FA = 0,

but more generally we could let dFA = jB ∈ Ω3, a magnetic current, and d?FA = jE ∈ Ωn−1, an electric
current. If both jEand jB are nonzer, the theory has an anomaly.

We next consider the quantum theory, by doing some things such as Wick rotation, charge quantization, and
downshifting the degree of A.1 The Wick-rotated quantum theory is formulated on an oriented2 Riemannian
manifold X, and A is a map X → RZ, or its exponentiated version λ : X → T.

If we introduce point charges p1, . . . , pm ∈ X with charges k1, . . . , km ∈ Z,3 then the electric current,
inserted in the exponentiated action, is

(2.1)

m∏
j=1

λ(pj)
kj = exp

2π

m∑
j=1

ikjA(pj)

,
which has degree n with Z coefficients.

The magnetic current is defined using a circle bundle P → X with connection Θ; one can think of λ as a
section of P , and this data is used to define the kinetic term. This is a degree-2 term with Z coefficients.

If L := P ×T C is the complex line bundle associated to P , then the electric coupling is

(2.2)

m∏
i=1

λ(pi)
ki ∈

m⊗
i=1

L⊗kipi .

From this perspective, the anomaly is “
∫
X
jB · jE .”

Remark 2.3. The term λ only exists if P → X is topologically trivializable.
This is akin to something that happens in topological field theory. Let Z denote the 4D oriented TQFT

defined by summing the trivial theory over spin structures. Then Z(CP2) = 0, since CP2 admits no global
spin structure. But if one varies the manifold in a family, interesting things may nonetheless happen. (

1TODO: I have no idea what just happened.
2One could impose time-reversal symmetry and study the theory more generally on unoriented manifolds, but for our purposes

this will not be necessary.
3TODO: I may have gotten this wrong.

3



Remark 2.4. One could also replace T by any finite abelian group A. In this case a lot of things are still the
same, though we don’t choose a connection for P . In this case, the magnetic current lives in H1(X;A) rather
than H2(X;Z) (and we could have thought of it as H1(X;T) for the T-theory). However, the electric current
lives in Hn(X;A∨), where A∨ := Hom(A,T) denotes the Pontrjagin dual of A.

We could think of the magnetic current as a map X → BA; in this case the electric current is a map
X → BnA∨ := K(A∨, n). In the rest of this talk, we will adopt this more abstract approach, but you should
keep the rigid, geometric approach that we started with in mind for intuition or an example. (

From this perspective, the anomaly is a map

BA×BnA∨ −→ Bn+1T,

which is induced from the pairing A ⊗ A∨ → T. On a closed, oriented manifold X with an electric and
magnetic current we can pull this back to X and integrate it; this is the partition function for the anomaly
theory.

Gauging. Suppose T is some kind of theory (here we probably mean a Wick-rotated field theory on
Riemannian manifolds, perhaps with extra structure and background fields), and suppose it has a (global)
Γ-symmetry,4 where Γ is a finite group. This means that we can couple the theory to Γ-bundles, formulating
it on manifolds with the above data and a background principal Γ-bundle.

Sometimes this symmetry gets tangled up with other symmetries, e.g. if T is a σ-model to a space X and
Γ is a symmetry of X. Then, depending on how we implement the symmetry, we might end up with sections
of some associated bundle.

But if this is not the case (in a σ-model sense, if BΓ splits off from the target), then we can sum over the
maps to BΓ. This process is called gauging.

Now suppose A := Γ is abelian. Then the gauged theory has a higher symmetry akin to electromagnetism,
a Bn−2A∨ symmetry, and we can couple the theory to a background Bn−2A∨-field, which is exactly putting
in the electric current. If you try to gauge this symmetry, you’ll end up back where you started with, which
is a kind of Fourier transform.

On a compact oriented manifold X, the electric coupling lives in H1(X;A) × Hn−1(X;A∨); there’s a
product map

H1(X;A)×Hn−1(X;A∨) −→ Hn(X;T);

then we can evaluate on the fundamental class to obtain an element of T, which is what one inserts into the
action. This exhibits the two cohomology groups as Pontrjagin duals of each other, so the Fourier transform
is an isomorphism between spaces of functions on them.

Turning to the material in the paper, let

1 // A // Γ // G // 1

be a short exact sequence of groups, where A is abelian. In particular, A is normal in Γ; we do not assume it
is central. An example (in which A is not central) is

1 // Z/2 // S3
// Z/2 // 1.

We consider the situation of a theory T with a Γ-symmetry, hence an A-symmetry, and we assume we can
gauge A. What happens when we do this?

The new theory should have a G-symmetry, which arises as follows: given a principal G-bundle Q→ X,
we can sum over pairs (P → X,ϕ), where P → X is a principal Γ-bundle and

Q
ϕ

∼=
//

G ��

P/A

G}}
X

is an isomorphism of principal G-bundles. In this case the magnetic current arises from the map BG→ B2A
coming from extending the fiber sequence BA→ BΓ→ BG.

4“Global symmetry” is redundant, because there is no other kind of symmetry.
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There’s another symmetry associated to Bn−2A∨, which arises in a similar way as before. So, following
what we did with electromagnetism, if you try to couple the theory to BG × Bn−1A∨, two things might
happen (and are not mutually exclusive).

(1) The two symmetries might interact nontrivially, producing an extension

Bn−1A∨ // X // BG.

(2) There may be an anomaly X → Bn+1T.

For example, X might be BG, where G is an extension of G by Bn−2A∨, so an extension of a group by a
higher group.

First suppose Γ is anomaly-free, so that we can gauge it. Then, the anomaly for the theory coupled to
G-symmetry is the compositions of the maps

BG×Bn−1A∨ // B2A×Bn−1A∨ // Bn+1T,

where the first map comes from the connecting map BG → B2A and the second is the Pontrjagin dual
pairing.

Now suppose the Γ theory has an anomaly. There are different ways to produce anomalies, such as beginning
with a map MSO ∧ (BΓ)+ → Bn+1T, which produces a gauge-gravity anomaly, but let’s begin with just
BΓ→ Bn+1T, or a pure gauge anomaly. This data is equivalent to a cohomology class [α] ∈ Hn+1(BΓ;T).

The presence or absence of the anomaly arises from a filtration on Hn+1(BΓ;T) induced from the fiber
sequence BA→ BΓ→ BG: BG has a cell structure, and we can ask whether a cohomology class over the
basepoint extends over the n-skeleton. We will discuss what happens in the case when the cohomology class
is in the last two pieces of the filtration, which are simpler.

To compute this, one uses the Leray-Serre spectral sequence

Ep,q2 := Hp(G;Hq(A;T)) =⇒ grFH
p+q(Γ;T).

Here Hq(A;T) is a nontrivial G-module from the residual G-action induced by Γ. Now let’s look at the two
cases.

(1) Suppose [α] lives in the highest filtered part; then, there’s an α : BG→ Bn+1T lifting α across the
map BΓ→ BG. In this case, α is the anomaly: if you gauge the A-symmetry, the theory couples to
BG×Bn−1A∨, and the anomaly is a sum of the electromagnetic anomaly and α. This corresponds
to a transgression in the spectral sequence.

(2) If [α] lives in the next highest filtered part, we get something in Hn(G;A∨) (the underline representing
a nontrivial G-action). The paper [Tac17] considers only the special case, where A is central and we
get a bundle

BΓ×BG X ,

where BΓ→ BG is a BA-bundle and X → BG is a Bn−1A∨ bundle. Then we have maps

BG→ B2A×BnA∨ → Bn+2T,

and we consider the case where this composite is null. This means it lifts to a map

β : BΓ×BG X → Bn+1T.

Then, we take β|BΓ is the anomaly in Γ. If this was the original anomaly in Γ, then the theory
couples to the extension Bn−1A∨ → X → BG, corresponding to some kind of extension theory, and
the anomaly for this theory is β|X . Then you could gauge the subgroup Bn−1A∨ and go back to the
original theory.

(3) Suppose [α] lives in the nth piece of the filtration, and assume A is central. Then the map BΓ→ BTn+1

doesn’t descend to BG, but does descend to a map BG → E, where E fits into a sequence
Bn+1T→ E → BnA∨. This corresponds to an anomaly in a generalized cohomology theory, albeit a
relatively simple one. We could try to use this to build X . But you also have to add the electromagnetic
anomaly, and this is a little bit unclear.
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3. Theta, time-reversal, and temperature I: 2/7/18

Today’s talk was given by Andy Neitzke, on the paper [GKKS17].
The goal of this paper is to say something new about the phases of 4D Yang-Mills theory with group

G = SUN . There’s no supersymmetry here.
Before we tackle this, however, let’s look at a simpler example, a 2D U1 gauge theory with N charged

scalar fields zi, i = 1, . . . , N , subject to the constraint that
∑
|zi|2 = 1. This is equivalent data to a map to

CPN−1, and hence this model is sometimes thought of as a σ model with target CPN−1. The U1 gauge field
is denoted a, and its curvature is Fa. The action on a surface Σ is

(3.1) S =

∫
Σ

∑
i

|Daz
i|2 +

iθ

2π

∫
Σ

Fa +
1

g2

∫
Σ

Fa ∧ ?Fa.

Here θ is a real parameter, but we typically think of the θ theory as equivalent to the θ + 2π theory, because
on a closed surface Σ,

∫
Σ
Fa = 2πn ∈ 2πZ, so after exponentating, einθ = ein(θ+2π).

The first question you might ask is: what’s the (global) symmetry of this theory? The answer is PSUN ,
which might be a surprise: there’s a UN symmetry on the fields, but we gauged the U1 subgroup, so only
PSUN := UN/U1 acts faithfully on the (gauge-invariant) local operators.

Example 3.2. The operator z1 transforms nontrivially under the U1 symmetry, hence is not gauge invariant.
The operator z1z1 is gauge invariant. (

The more modern way of saying that this theory has a PSUN symmetry is to say that it couples to
background PSUN gauge fields. Let Abkgd be a PSUN -connection; we want to include Abkgd in the theory
such that if it’s the trivial connection, we get back (3.1).

Somewhat like what we did last time, instead of U1-connections, we’ll consider lifts A of Abkgd to a
UN -connection. Locally A = a · IN +Abkgd. When writing the action, the first term doesn’t change much,
but the θ term is interesting, since we no longer have a U1-connection.

If Abkgd = 0, then A = a · IN , and Fa = (1/N) tr(FA). Hence we’ll replace Fa with (1/N) tr(FA), even
when Abkgd 6= 0. That is, the new θ term is

(3.3)
iθ

2πN

∫
Σ

tr(FA).

We do something analogous for the kinetic term. But we pay a price — since we divided by N , this term
is not invariant under θ 7→ θ + 2π. Instead, it’s invariant under θ 7→ θ + 2πN . If we shift θ 7→ θ + 2π, the
exponentiated action changes by

(3.4) exp

(
2πi

N

∫
Σ

w2(Abkgd)

)
.

In particular, the change only depends on the background field. Therefore this is also true for the partition
functions:

(3.5) Z(θ + 2π,Abkgd) = Z(θ,Abkgd) · exp

(
2πi

N

∫
Σ

w2(Abkgd)

)
.

This exhibits a mixed anomaly between the shift symmetry θ 7→ θ + 2π of Z and the PSUN symmetry. You
can’t gauge both of them at once.

Remark 3.6. From the perspective of symmetries as coupling to background bundles, we want to express this
shift symmetry with a background Z-bundle. The mixed anomaly is saying that θ becomes a section of an
associated bundle, such that eiθ is still a function to U1, but not a constant function. (

Another option is to add some function of the background fields to the action; this is called a counterterm.
One natural choice is, for some p ∈ Z,

(3.7) p
2πi

N

∫
w2(Abkgd) ∈ (2πiZ)/(2πiNZ).

If we exponentiate this, it’s an N th root of unity, and therefore the theory with parameters θ and p should be
equivalent to the theory with parameters θ + 2π and p+ 1.
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One thing we can do with this is implement time reversal, thought of as reversing the orientation of Σ.
This acts on S by θ 7→ −θ. In the absence of a background PSUN field, this is only a symmetry when θ = 0
or θ = 2π, in which case the time-reversed theory is equivalent.

With a background field and the counterterm (3.7), time-reversal acts as (θ, p) 7→ (−θ,−p). Therefore
we can get time-reversal symmetry for θ = 0 and p = 0. And what about θ = π? In this case, (−π,−p) '
(π,−p+ 1), and to get this equivalent to (π, p), we need p ≡ −p+ q mod N , i.e. 2p ≡ 1 mod N . Therefore if
N is even, there’s no way to preserve time-reversal at θ = π.

This means the theory has a mixed anomaly between time-reversal symmetry and a PSUN symmetry.
Anomaly matching means this tells us something about the infrared theory. There are two possibilities.

• The IR theory “has the same anomaly,” in that it can be coupled to PSUN background fields in such
a way that, if we shift the background coupling by p, then p 7→ −1 + p under time reversal.

• At least one of the PSUN or time-reversal symmetries is broken in the infrared. This is a little weird,
and is an example of spontaneous symmetry breaking.

What actually happens is the second option, and specifically time-reversal symmetry is broken.5 The theory
is gapped, and therefore the IR theory should be an explicit topological field theory we could look at.

Back to Yang-Mills theory. Remember that we’re really interested in Yang-Mills theory with G = SUN ,
whose action is

(3.8) aS =
1

g2

∫
tr(F ∧ ?F ) +

iθ

8π2

∫
tr(F ∧ F ).

Again, after exponentiating the action, we have an equivalence between the theory with parameter θ and
the theory with parameter θ + 2π. Now there’s a Z/N one-form symmetry, or a BZ/N symmetry, so we
should be able to couple the theory to background BZ/N fields. Whatever these are, they should have a
characteristic class [B] ∈ H2(X;Z/N).

As before, this can be done, and the price is that the theory is not periodic in θ. And as before, there’s a
specific term expressing that failure: assume N is even. When we shift θ 7→ θ + 2π, eS shifts by

exp

(
2πi(N1)

2N

∫
X

P2(B)

)
,

where P2 : H2(X;Z/N)→ H4(X;Z/2N) is a cohomology operation called the Pontrjagin square. Therefore
we can regard this as an element of Z/N , and introduce a counter-term as above: (θ, p) ∼ (θ+ 2π, p+N − 1).
Therefore one can calculate that time-reversal symmetry cannot hold when N is even at θ = π.

4. Theta, time-reversal, and temperature II: 2/14/18

Today, Andy Neitzke continued to speak on [GKKS17].
Today, instead of focusing on a toy model, we will look at the case of interest, 4D Yang-Mills theory with

gauge group SUN , whose action on X has a term of the form

iθ

8π2

∫
tr(F ∧ F ).

Before coupling to background fields, the theory with parameter θ is (believed to be) equivalent to the theory
with parameter θ + 2π. We will write this as θ ' θ + 2π.

This theory has a BZ/N symmetry, i.e. a Z/N one-form symmetry; here Z/N arises as the center of SUN .
At θ = 0, π, there’s also time-reversal symmetry T : T (θ) = −θ ' θ iff θ = 0, π mod 2π. When we try to
implement both of them simultaneously, we’ll discover a mixed anomaly.

This theory couples to a background field, a Z/N -gerbe B, which is classified by its characteristic class
[B] ∈ H2(X;Z/N).6

Remark 4.1. In [GKKS17], this coupling is described explicitly, and they provide a nice model for the
background BZ/N -field, a pair (B,C) where B ∈ Ω2(X) and C is the connection of a line bundle, such that
NB = FC , where FC denotes the curvature of C. This is something kind of like Z/N de Rham differential
forms, but instead of something being exact, we want it to be N -torsion up to exact things.

In this case, if λ ∈ Ω1(X), the symmetry sends B 7→ B + dλ and C 7→ C +Nλ. (

5More generally, any continuous symmetry cannot be spontaneously broken in 2D.
6If you don’t really know what a gerbe is, that’s OK; we’re mostly just going to use its characteristic class.
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You can also add counterterms depending purely on the background field B (or its characteristic class),
such as

(4.2)
2πip

2N

∫
P2([B]),

where P2 : H2(X;Z/N)→ H4(X;Z/2N) is the Pontrjagin square, a cohomology operation, and p ∈ Z/2N ,
so that this makes sense after exponentiation.

The Pontrjagin square has an abstract definition, but in the explicit model described above,

(4.3)

∫
P2([B]) =

∫
dC ∧ dC.

Now there is an equivalence of theories

(4.4) (θ, p) ' (θ + 2π, p+N − 1)

and time-reversal symmetry acts by T (θ, p) = (−θ,−p).
So at θ = π, we need p = −p+N − 1 to implement both time-reversal and the BZ/N symmetry. If this is

not the case (e.g. N is even), time-reversal symmetry is broken by coupling to BZ/N fields, exhibiting a
mixed anomaly between these two symmetries.

This story has been an UV story so far; ’t Hooft anomaly matching posits that there are IR consequences,
which could include

(1) the vacuum supporting a TQFT which has the same anomaly (i.e. coupling the background fields in
the same way),

(2) the theory is gapless (which is regarded as unlikely, and would imply a low-energy conformal field
theory rather than a topological field theory),

(3) the theory is gapped, and the BZ/N -symmetry is broken, or
(4) the theory is gapped, and the time-reversal symmetry is broken.

So we expect there’s a TQFT (case (2) is considered unlikely), but its nature is unclear — is it invertible?
Case (1) is also considered unlikely, especially for large N . Case (3) is also unlikely, which we’ll say more
about later, which implies that time-reversal symmetry is probably broken in IR. This implies at θ = π,
time-reversal symmetri is broken and there are two vacua, exchanged by T .

Remark 4.5. In a different theory, N = 1 supersymmetric Yang-Mills theory, it’s known (at a physical level
of rigor) that there are N vacua. By adding a mass term m ∈ R+, one can perturb the theory slightly,
breaking supersymmetry. For θ 6= 0, π, you get two vacua, but at θ = 0, π, there are two degenerate vacua
and time-reversal symmetry is broken.

This parallel story is analogous to ours, and suggests that we’re on the right track. (

You can draw a phase diagram for these theories in θ: at θ = π, it looks like a quartic with two global
minima, and elsewhere it looks like a quartic with one global minimum and two local minima. At θ = 0, 2π,
the quartic has a unique local minimum. So there must be a phase transition at π.

We promised to discuss why the BZ/N symmetry is unbroken, which has something to do with confinement.
The theory has line defects with charges (a, b) ∈ (Z/N)∨ × Z/N ((Z/N)∨ ∼= Z/N abstractly, of course, but
this illustrates how it arises). The first component is an electric charge, and the second is magnetic. But
these aren’t usual line defects: for b = 0 they are, but for b 6= 0, we need additional data to formulate the
defect on a closed 1-manifold `, which is the topological data of a surface which bounds `.

Remark 4.6. If we had started with PSUN , the roles of a and b would be switched, with a 6= 0 defects arising
as line defects on boundaries of surfaces. (

If W is a Wilson line given by a representation V of SUN , then its charge (a, b) is a = V |Z/N and b = 0,
though of as charges of “probe particles” we can insert in the theory.

The basic question here is: which line bundles are confined? Here, Q is confined iff a defect L of charge Q
has

(4.7) 〈L(loop)〉 ∼ exp(−α∆X∆T )

asymptotically, i.e. the energy cost of creating the loop is linear in ∆X. Heuristically, this means that
correlation functions with an insertion of L on a line vanish. The higher-symmetry way to say this is that
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the charge Q transforms nontrivially under the unbroken 1-form symmetry. The idea is that invariant plus
transforming nontrivially forces it to be zero.

So the question of who’s confined is related to the question of which symmetries remain unbroken in a
given vacuum. There have been many numerical simulations of SUN -Yang-Mills suggesting that at any θ,
all Wilson lines are confined. In the language of higher symmetries, this implies the BZ/N symmetry is
unbroken.

5. Theta, time-reversal, and temperature III: 2/21/18

Today, Fei Yan gave the third and last talk on [GKKS17], today focusing on temperature — the point is
to use all the material that has been developed to study phases of 4D SUN Yang-Mills theory.

The action of this theory is given by

(5.1) S =

∫
X

(
− 1

4g2
tr(F ∧ ?F ) +

iθ

8π2
tr(F ∧ F )

)
.

We’ve talked about a BZ/N symmetry arising because ZN = Z(SUN ), and, at θ = 0, π, there’s a time-reversal
symmetry T : θ 7→ −θ.

For even N , at θ = π, there is a mixed anomaly between these two symmetries, and there is no counterterm
which resolves this. For odd N at θ = π, the anomaly can be resolved with a counterterm, but there is no
counterterm that works for both θ = 0 and θ = π.

In the IR limit, one of these symmetries is spontaneously broken, and there’s an argument that it’s
time-reversal symmetry for θ = π and both even and odd N . Hence we can draw a phase diagram at zero
temperature, as we discussed last time, and there is a first-order phase transition at θ = π.

Now we turn to finite temperature. That is, take a 3-manifold Y and formulate the theory on Y × S1
β

(here S1
β is a circle with circumference β), where we regard S1 as time. As β → ∞, this recovers the

zero-temperature case, and the canonical partition function at temperature T := 1/β is given by the partition
function of the theory on Y × S1

β , which justifies calling this the finite-temperature setting.7

Let’s regard this as a 3D theory in Y . What are its symmetries?

• If θ 6= 0, π, the BZ/N symmetry splits as BZ/N and Z/N symmetries (based on whether the one-form
symmetry is in the Y direction or the S1

β direction).

• If θ = 0, π, we have BZ/N and Z/N symmetries as before, and the time reversal symmetry T passes
to a global Z/2 symmetry by reversing the orientation on S1

β .8

Recall that in the 4D theory, we had line operators charged by (a, b) ∈ (Z/N)∨ × Z/N , and the genuine line
operators are those with b ≡ 0 mod N (i.e. not coupled to some surface), which are Wilson lines. When
b 6= 0 mod N , the line has to bound a surface. When we dimensionally reduce, we could wrap a genuine line
operator around S1, obtaining a point operator, or we could not wrap, getting a line operator. But if b 6= 0,
things are slightly different: you could not wrap around the S1, getting the same thing back, or we could
wrap around S1, getting a point operator attached to a line.

There are special local operators, called Polyakov loops P , which are Wilson loops wrapped around S1.
These detect confinement at finite temperature, which happens iff 〈P 〉 = 0. As you increase the temperature,
the theory deconfines, which is a phase transition called (unsurprisingly) the confinement-deconfinement
phase transition.

Akin to the mixed BZ/N and T symmetry in 4D, the 3D theory has a mixed anomaly between the BZ/N
symmetry, the Z/N symmetry, and the Z/2 symmetry. We’ve already studied this in the low-temperature
limit, so let’s turn to the high-temperature limit, where β � Λ−1

YM (here Λ−1
YM is the dynamical scale of the

Yang-Mills theory). The high-temperature limit of Yang-Mills was studied in the 1980s, which is convenient
for us.

Let N = 2. Then Z/2 acts in two different ways; let (Z/2)C denote the symmetry arising through the
center of SU2 and (Z/2)T denote the symmetry coming from time-reversal on S1. Let g2

3d ∼ g2
YM,4dβ

−1 be
an SU2 gauge field, and Φ be an adjoint scalar. Let

(5.2) U = Pei
∮
S1 A := eiβΦ,

7This is an instance of a very general fact about quantum mechanics: the partition function Z = tr(e−βH) is the partition

function for the system at temperature 1/β.
8There’s another symmetry given by orientation-reversal on Y (after Wick rotation?), but it doesn’t enter the discussion.
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where P = trU , and pick a gauge

(5.3) Φ =

(
φ(x) 0

0 −φ(x)

)
,

where φ ∼ φ+ 2π/β.

There are two minima of V φeff : βφ = 0 (U = I) and βφ = π (U = −I). In this case (Z/2)c sends φ 7→ φ/β
and U 7→ −U , and the BZ/2 and (Z/2)T symmetries are unbroken (the latter when θ = 0, π). The argument
uses Polyakov loops: since trU is the expectation of a Polyakov loop, but is nonzero, then the (Z/2)C

symmetry is broken. The argument is similar for general N .
To study phase transitions, let’s organize this all into a table.

• The BZ/N symmetry is unbroken at all values of θ for the high-temperature and low-temperature
cases.

• The Z/N symmetry is broken for all θ in the high-temperature case, and is preserved in the low-
temperature case.

• The (Z/2)T symmetry is unbroken at θ = 0, π in the high-temperature case, but is only unbroken at
θ = 0 in the low-temperature case.

This makes the mixed anomaly apparent: at θ = π, in both the high-temperature and low-temperature cases,
at least one symmetry is broken in the IR theory.

This tells us information about a two-dimensional phase diagram in θ and T = 1/β. We know at low
temperature there’s a phase transition at θ, and at some high temperature there’s a confinement-deconfinement
phase transition. For N = 2 confinement-deconfinement is second-order, and for N > 2 it’s first-order.9

What happens when these two phase transitions meet? Let’s specialize to N = 2 for a bit. To answer the
question, we can gauge the BZ/2 symmetry in 3D. A general fact about higher-form (global) symmetry is
that if you gauge a discrete q-form symmetry, what you get has a (d− q − 2)-form symmetry. With d = 3
and q = 1, we expect a 0-form Z/2-symmetry, which we’ll call (Z/2)B .

However, this does not happen everywhere. It does happen when θ 6= 0, π, so we obtain a (Z/2)C × (Z/2)T

synmmetry. At θ = 0, we have (Z/2)C × (Z/2)B × (Z/2)T , and at θ = π, we get a D8 symmetry, arising
through the extension

(5.4) 1 // (Z/2)C × (Z/2)T // D8
// (Z/2)B // 1.

The appearance of this D8 is a bit of a surprise, and has something to do with the anomaly. There are two
proofs present in [GKKS17].

Let c be a generator of the (Z/2)C symmetry, and define b and t similarly. The Polyakov loop is given
by the loop with charge (1, 0). We’re also interested in the twisted sectors A := (0, 1) and B := (1, 1) — A
generates the BZ/2 symmetry, which we’ve wrapped around the circle, and similarly with B.

To see why we get a D8, we’ll compute how c, b, and t act on A and B.

• Explicitly, c is the non-identity central element of SU2. Thus it sends A 7→ A and B 7→ −B.
• Since both A and B were twisted operators attached to a line, b maps A 7→ −A and B 7→ −B.
• Since t comes from time-reversal, we recall that θ 7→ θ + 2π shifts your line operators by (a, b) 7→

(a+ b, b). The upshot is that t exchanges A and B.

Therefore tct = cb, tbt = b, and bc = bc, so if you think of A,B,−A,−B as the vertices of a square, you get
all of the symmetries of the square from c and b, and therefore get a D8.

We want to use this to understand the phase diagram. The analysis of this D8-action indicates that (Z/2)B

must be spontaneously broken near the intersection of the two phase transitions.

• Below the confinement-deconfinement transition at θ < π, we have two vacua spanned by A and B,
with c acting by A 7→ −A.
• Below the confinement-deconfinement transition at θ > π, we have the same, but with cb = bc acting

by B 7→ −B.
• Above the confinement-deconfinement transition, these two vacua separate into four vacua (±A,±B).

9This was concluded using lattice simulations; it’s not clear if there’s a continuum argument for it.
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If the two phase transitions didn’t intersect, you would be able to show that the D8 symmetry is completely
unbroken, so they must intersect, and the θ = π phase transition comes up to meet the confinement-
deconfinement one. For N = 2, at least, it goes slightly higher, but in general we don’t know whether it just
meets it.

Remark 5.5. Some of these arguments are definitely true for large N , but require an assumption on the
breaking of the D8 symmetry for smaller N . You could relax that assumption and end up with a more exotic
phase diagram. (

6. 2-groups: 2/28/18

These are Arun’s prepated notes for his talk in GST, on 2-groups. Today, all categories are small categories.

6.1. 2-groups and crossed modules. There are many ways to define 2-groups and a web of equivalences
between them. We’ll discuss a few of them in this part of the talk.

Various notions of 2-groups were introduced and compared by Whitehead [Whi46], Mac Lane-Whitehead,
Brown-Spencer [BS76], Hoàng [Hoà75], Joyal-Street, and Baez-Lauda [BL04]. The definition given here,
following Baez-Lauda, encodes the philosophy that a group is a monoid in which every element is invertible.

Definition 6.1. A monoidal category (C,⊗, 1, α, `, r) is:

• a category C,
• a functor ⊗ : C× C→ C,
• an identity object 1 ∈ C,
• and natural isomorphisms

αx,y,z : (x⊗ y)⊗ z
∼=−→ x⊗ (y ⊗ z),(6.2a)

`x : 1⊗ x
∼=−→ x,(6.2b)

rx : x⊗ 1
∼=−→ x,(6.2c)

subject to two coherence conditions that we won’t write down (but can be found in [BL04, §2]).

In general, categorification turns conditions into data: associativity is implemented by choosing α, and
similarly with identity. Here’s another example.

Definition 6.3. Let (C1,⊗1) and (C2,⊗2) be monoidal categories. A monoidal functor is a functor F : C1 →
C2 together with natural isomorphisms F (x)⊗2F (y) ∼= F (x⊗1y) and F (1C1

) ∼= 1C2
such that (some coherence

conditions in [BL04, §2]).

There is a similar notion of a monoidal natural transformation; again see [BL04, §2].

Definition 6.4. A 2-group G is a monoidal category such that for every object x ∈ G, there’s a y ∈ G such
that x⊗ y ∼= 1 and y ⊗ x ∼= 1.

A morphism of 2-groups is a monoidal functor. We also have monoidal natural transformations, which
means that there’s a 2-category of 2-groups. Approximately what this means is that there objects and
morphisms as usual, but given morphisms f, g : x→ y, there can be “2-morphisms” H : f ⇒ g.10

Example 6.5. Since 2-groups are supposed to describe mixed 0-form and 1-form symmetries, they should
specialize to ordinary groups if one of the symmetries is trivial.

(1) Given a group G, let G be the category whose objects are the elements of G and with only identity
morphisms. Group multiplication defines a monoidal structure on G, making it into a 2-group.
Heuristically, we’ve forgotten about the level-1 information, leaving just level-0 information.

(2) Dually, given a group G, we can consider the category BG with a single object and HomBG(∗, ∗) = G
(as a set, then with composition defined by group multiplication). This also defines a 2-group (e.g.
the associator uses the associativity of G), which we can think of as having a trivial level-0 part and
G for its level-1 part. (

10Making this precise, and even precisely defining 2-categories, requires some effort. We will avoid such questions while

noting that good solutions exist.
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An alternative perspective on 2-groups is to switch the role of the group and the category. If C is a small
category, let C0 denote its set of objects and C1 its set of morphisms. Then we have two maps s, t : C1 ⇒ C0

sending an arrow to its source, resp. target, and a map i : C0 → C1 sending x 7→ idx. It’s possible to encode
the axioms of a category (composition, identity, etc.) into properties of s, t, and i.

If G is a 2-group with objects G0 and G1, then G0 and G1 are groups under tensor product, and s, t, and
i are group homomorphisms, so in some sense the diagrams that encode (G,⊗) are formulated entirely in the
category of groups! Such a diagram is called an internal category in Grp.

However, we now have access to more structure: we can define a Lie 2-group to be a pair of Lie groups
G0 and G1 and Lie group homomorphisms s, t, : G1 → G0 and i : G0 → G1 satisfying the relations encoding
associativity, etc.

Proposition 6.6. This construction extends to an equivalence of 2-categories between 2-groups and internal
categories in Grp.

See [FB02, §3] for a proof. This in particular implies that every diagram of groups and group ho-
momorphisms (G0, G1, i, s, t) satisfying the axioms defining a category arises in this way from a 2-group
G.

Example 6.7. Let X be a topological space with basepoint x. The fundamental 2-group of X, denoted
π1,2(X,x) is the 2-group whose objects are loops in X based at x and whose morphisms are equivalence
classes of homotopies between paths (where two homotopies are equivalent if they are themselves homotopic).
The monoidal structure arises by composition of paths. Every 2-group arises in this way. (

6.2. Classifying spaces and 2-gauge fields. A third perspective on 2-groups in algebraic topology is that
they describe spaces with only two nontrivial homotopy groups, through their classifying spaces. This leads
to notions of principal 2-bundles and connections on them (though we won’t have a lot to say about this).
Fix a 2-group G (i.e. a discrete 2-group: we want G0 and G1 to be discrete).

We will describe a connected space BG such that π1(BG) ∼= H1 := π0G and π2(BG) ∼= H2 := Aut(1G). One
such choice is K(H0, 1)×K(H1, 2),11 but this is wrong: heuristically, it’s telling us that the two symmetries
don’t mix at all. In particular, a map from a space X to this space is data of a principal H0-bundle and an
H1-gerbe, corresponding in physics to an H0 symmetry and a BH1-symmetry, but they don’t mix at all.

Instead, the mixing of these two symmetries is encoded by making BG a fiber bundle over K(H0, 1)
with fiber K(H1, 2). We specify the fiber bundle p : BG → K(H0, 1) by its homotopy cofiber, a map
k : K(H0, 1)→ ΣK(H1, 2) ' K(H1, 3) called the k-invariant of the space BG. Namely, the associator of G
defines a map H1×H1×H1 → H2, which is a cocycle for H3(H0;H1) = H3(BH0;H1). Since BH0 ' K(H0, 1)
and cohomology is represented by maps into Eilenberg-Mac Lane spaces, we have a natural identification
H3(H0;H1) ∼= [K(H0, 1),K(H1, 3)] sending the associator of G to the k-invariant of BG.
BG is an example of a homotopy 2-type, i.e. a homotopy type with only two nontrivial homotopy groups.

This generalizes the fact that if G is a discrete group, πi(BG) is only nontrivial when i = 1.

Proposition 6.8. Every homotopy 2-type is the classifying space of some 2-group, and there is an equivalence
of 2-categories between 2-groups and homotopy 2-types.

If G is an (ordinary) compact Lie group, its classifying space BG is a moduli space for principal G-bundles,
meaning that every principal G-bundle P → X is the pullback of the universal bundle EG→ BG along a
map X → BG, together with a uniqueness condition. We would like something similar to be true for 2-groups,
but this is a place in which categorification makes things much harder: this is spelled out by Bartels [Bar04],
Baez-Scheiber [BS04], and Baez-Stevenson [BS08], but the interactions between category theory and topology
were complicated enough that I didn’t figure out anything useful.

As a substitute, if G is finite, we can use the Postnikov tower of BG to describe principal G-bundles.
Here’s what we want.

• Over any space X, isomorphism classes of principal G-bundles are in bijection with [X,BG].
• If the 2-group symmetry is really just an G0-symmetry for some group G0, principal G-bundles should

be the same as principal G0-bundles.

11Here, K(G,n) is an Eilenberg-Mac Lane space, which we’ve been more frequently denoting BnG in this seminar; the

notation K(G,n) is more common in algebraic topology.
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• If the 2-group symmetry is really just a BG1-symmetry, then principal G-bundles should be the same
as G1-gerbes.

We also want the k-invariant to appear somehow.
Given a map X → BG, we can compose with the projection and obtain a map X → BH0, so we get a

principal H0-bundle P . But we can also pull back BG → BH0 to X, producing a fiber bundle with fiber
K(H1, 2), i.e. an H1-gerbe Q. The k-invariant provides a constraint on how these are related — unfortunately,
I wasn’t able to figure out how this goes, but it’s going to go something like this: given three loops `1, `2, `3
in X with a common basepoint, they have monodromies h1, h2, h3 ∈ H0 for P . The k-invariant, as a cocycle
for group cohomology, defines a g = k(h1, h2, h3) ∈ H1, and this should be some kind of monodromy around
a higher-dimensional sphere for Q that’s related to `1, `2, and `3.

6.3. 2-group symmetries in physics. In the remainder of this talk we will discuss examples of 2-group
symmetries in physics.

Example 6.9 (The Yetter model). For any finite 2-group G, there’s a TQFT called the Yetter model with
a G-symmetry, defined in much the same way as Dijkgraaf-Witten theory.12 This model was developed
by Yetter [Yet93], Birmingham-Rakowski [BR96], and Mackaay [Mac99], and is a special case of a general
construction of Quinn (TODO: cite).

Fix a finite 2-group G and a cohomology class α ∈ Hn(BG;R/Z). Then α defines a characteristic class
for principal G-bundles: if P → M is a principal G-bundle, it defines up to homotopy a classifying map
fP : M → BG; we let α(P ) := f∗Pα ∈ Hn(M ;R/Z).

The Yetter model is the n-dimensional, oriented TQFT with a fluctuating G-gauge field P and whose
action is α(P ). Thus its partition function on a closed n-manifold M is summed over BunG(M) using the
“2-groupoid measure,” so that

((6.10) ZG,α(M) = “

∫
BunGM

eiπ〈α(P ),[M ]〉 dP ′′ =
∑

P∈π0BunG(M)

|2Aut(P )|
|Aut(P )|

exp(iπ〈α(P ), [M ]〉).

Remark 6.11. I wanted to say something about the QED-like theories with 2-group symmetries discussed
in [CDI18], but ran out of time, and also didn’t completely understand the examples given. (

7. Phases of 4D QCD, I: 3/7/18

“I’m about to say what you’re about to say, but in a better way.”

Today, Jacques Distler spoke about phases of QCD theory in 4D. We’ll follow Seiberg’s convention that
dymanical fields are lowercase and background fields are uppercase. In this convention, the Yang-Mills action
that we’ve been learning about is

(7.1) SE =

∫
X

tr

(
− 1

4g2
f ∧ ?f +

iθ

8π2
f ∧ f

)
.

Here a is an SU(Nc) connection and f is the field strength (the curvature of a). Here g2 isn’t really a
parameter — it’s not invariant under renormalization, and it will be traded for a dimensionful parameter
Λ. We’ve discussed a BZ/Nc symmetry acting on Wilson lines in this theory, along with a time-reversal
symmetry when θ = 0, π.

Next, we’ll introduce Weyl fermions, which are Grassmann-valued sections of S+(X), and eventually couple
them to background fields. One important takaeaway is that the Z/Nc centers of the U(Nf )L and U(Nf )R

U(Nf )L U(Nf )R SU(Nc)
ψ Nf 1 Nc
ψ̃ 1 Nf N c

Table 1. TODO: I don’t know what this means.

are identified, so we really have a symmetry by something like U(Nf )L ×Z/Nc U(Nf )R.

12This is not the same thing as the Crane-Yetter model!
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The action is

(7.2) Sfermions =

∫
X

ψ†iσ ·Dψ + ψ̃†iσ ·Dψ̃.

Using this, one can calculate that

(7.3) b1 =
1

3
(−11Nc + 2Nf ),

and if you only take 1-loop terms, you get an expression for Λ.

(7.4)
1

g2(m)1-loop
= − b1

8π2
log
(µ

Λ

)
.

When Nf ≥ (11/2)Nc this theory is IR free. There’s an N∗ such that if N∗ ≤ Nf < (11/2)Nc, you get a
conformal field theory in the IR, and for N < N∗ the theory is confining. This was discovered by Banks-
Zaks [BZ82], who showed it for large Nc; it’s believed to persist for finite Nc. The precise value of N∗ is
unknown, but we do know that

(7.5) N∗ =
34

13
N

(
1 +

3

13Nc
+O

(
1

N2
c

))
.

We will assume Nf < N∗. For large Nc, one can send Nc →∞ holding λ = g2NC fixed, and trade it for Λ as
before. In this case 1/N2

c is a small parameter.
The global U(Nf )L×Z/NcU(Nf )R symmetry we discussed above is anomalous. We can describe it concretely

via its anomaly polynomial

(7.6)
1

48π3
tr(F 3) =

Nc
48π3

(
tr(F 3

L)− tr(F 3
R)
)

+
1

16π3
(tr(FL)− tr(FR)) tr(F 2).

In particular, if α : U(Nf )L ×Z/Nc U(Nf )R → U(1)A sends

(7.7) α : gL, gR 7−→ det(gL)det gR,

then α is surjective and (7.6) explicitly breaks the U(1)A symmetry. Given an eiβ ∈ U(1)A, we get an
identification of the theory with parameter θ and the theory with parameter θ −Nfβ.

We can extract more insight if we turn on a mass term

(7.8) Sm =

∫
X

ψψ̃ + h.c..

In this case eiβ ∈ U(1)A provides an identification (θ,m) ' (θ −Nfβ, eiβm). This theory also breaks the
U(Nf )L ×Z/Nc U(Nf )R symmetry down to the diagonal, which will be important later.

Let θ := θ +Nf arg(m). Then the physics of the theory only depends on mNf = mNf eiθ = |m|Nf eiθ.
As usual, we’re going to do ’t Hooft anomaly matching, but unlike the fancy anomalies we’ve been seeing

this semester with their fancy low-energy topological field theories with the same symmetries, this can be
attacked by older methods. The first term tells us that even though the theory confines, it cannot be gapped
(here Nf > 1). Hence in the IR, G := ker(α) must be spontaneously broken to H = U(Nf )∆/Z/Nc, where
U(Nf )∆ denotes the diagonal inside U(Nf )L ×Z/Nc U(Nf )R. There must be propagating degrees of freedom,
which are massless Goldstone bosons (or pions). These are described on X by a σ-model into G/H, or more
generally, sections of a G/H-bundle over X.

In our case, G/H is noncanonically isomorphic to SU(Nf ), so we can introduce a dimensionless SU(Nf )-
valued field Σ and write the action as

(7.9) S =

∫
f2
π

2
tr
(
DµΣ†DµΣ

)
+ Sanom + . . . ,

where fπ ∼ 4πΛ and Sanom contains an explicit breaking of G-gauge invariance, but is itself H-gauge-invariant.
For m 6= 0, there’s an explicit breaking of G→ H, but for |m| � Λ, the σ-model description is still good.

The mass term is now

(7.10) Smass =

∫
K tr

(
mΣ +m∗Σ†

)
,

where K ∼ Λ3
QCD, and the minimum is at Σ = π. Thus the pions are massive. For |m| � ΛQCD, we could

have integrated out the fermions, and therefore the IR physics reduces to pure Yang-Mills theory.
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Now let’s suppose Nc is large. In this case, the U(1)A-symmetry breaking that comes from the anomaly
changes. Instead, the full U(Nf )×Z/Nc U(Nf ) symmetry is broken to H, which implies there’s N2

f , rather

than N2
f − 1, bosons.

The cheap, but not completely correct, argument as to why: in Euclidean signature, the Schwarz inequality
implies that

(7.11)

∫
tr(f ∧ ?f) ≥

∣∣∣∣∫ tr(f ∧ f)

∣∣∣∣,
with equality when f = ±?f . This can be used to show that

(7.12) exp

(
− 1

4g2

∫
tr(f ∧ ?f)

)
≤ exp

(
−2π2

λ
Nc|ν|

)
.

This argument is a bit too näıve: the mass of the additional Goldstone boson m2
η ∼ 1/Nc, so it does go away,

but at a different rate.

Remark 7.13. Some of these particles, e.g. pions, really exist in the real world! Part of the reason these kinds
of questions were originally studied in the 1970s was to understand how the masses, etc. of these particles
(and therefore the physics of the real world) depended on the initial parameters of the theory. (

So you can write down the action as
(7.14)

S =
f2
π

2

∫ (
tr
(
∂µΣ†∂µΣ

)
+ · · ·+ c1

Nc

(
tr(Σ†∂µΣ)

)2
+ c2Λ

(
m tr Σ +m∗ tr Σ†

)
− c3Λ2

Nc
(θ + i log det Σ)

2

)
.

This looks a little crazy – the logarithm is multivalued, and θ is supposed to be an angle, hence only well
defined mod 2π. Fortunately, these issues cancel themselves out, because the ambiguity that different branches
of the logarithm give you is 2πn for some n ∈ Z.

If you minimize (7.14), you get

(7.15) V (Σ) =
f2
π

2

(
−c2Λ|m| tr(Σ + Σ†) +

c3Λ3

Nc
(θ + i log det Σ)

2

)
.

Specializing to Nf = 1, we get the potential for η′, where Σ = eiθ
′/fπ :

(7.16) V (η′) = f2
πΛ

(
−c2|m| cos(η′/fπ) +

c3Λ

2Nc
(θ − η′/fπ)

2
)
.

This provides a concrete interpretation to the lines in the phase diagrams for QCD4 that we’ve been seeing.13

Now let’s try to minimize this. We want

(7.17) 0 = c2|m| sin v −
c3Λ

Nc
(θ − v),

where v := (η′/fπ)min. Therefore

(7.18) m2
η′ =

(
1 +

c1
Nc

)−1(
c2|m|Λ cos v +

c3Λ2

Nc

)
.

In the limit |m| → 0, v ≈ θ, so

(7.19) m2
η′ =

c3A
2

Nc
+ c2|m|Λ cos θ + . . . .

This is another way to see the phase diagram that we’ve been discussing (with the same caveat) — we’re
arguing for large Nc, but there’s an argument is that it should persist for finite Nc as well.

We’ve seen that for pure Yang-Mills theory at θ = π, there’s two vacua with a domain wall between
them, and a BZ/Nc symmetry with an ’t Hooft anomaly coming from the bulk, hence cannot be a trivial
theory on the domain wall. Instead, it’s some 3D TQFT, specifically SU(N)1-Chern-Simons theory (this is
in [GKKS17]).

13Well, we were looking at Nf = 0, where there’s no scalar potential. But for Nc large enough, the phase diagrams for
Nf = 0 and Nf = 1 look very similar, so we were drawing something which looks like this potential, and in this case it makes

sense.
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Near m0 := |m|eiθ, the low-energy physics is described by an effective Lagrangian for φ = η′ − fπv, with
potential

(7.20) V (φ) = cΛ(m+m0)φ2 − c′φ4 + · · · ,
and this implies we get a second-order phase transition, with IR trivial domain wall. Therefore at some
mt < 0, there’s a phase transition between these domain walls, while nothing happens on the bulk. The
answer argued for in [GKKS17] is an SU(N)1/2-Chern-Simons theory with a fermion ψ.

8. Phases of 4D QCD, II: 3/28/18

Today Mario Martone spoke. I missed the first 10 minutes, which was mostly review of previous talks.
As usual we have the U(Nf ) × U(Nf ) global symmetry, as well as time-reversal T : θ 7→ −θ, which

is a symmetry for θ = 0, 2π. There are several phases: if Nf > 11N/2, then the theory is IR-free; if
NCFT ≤ Nf < 11N/2, there’s a nontrivial fixed point, and if Nf < NCFT, the theory confines with confining
scale ΛQCD. Below this scale, there’s chiral symmetry breaking, and even for M = 0, the U(Nf )× U(Nf )
symmetry is broken to U(Nf ). In this case, the theory is described by a nonlinear σ-model, and the relevant
degrees of freedom are the Goldstone bosons G→ H.

Today, we’re going to do a more careful analysis of this phase. We’ll start by thinking about the U(1)A
anomaly, and how it implies that the theory only depends on a single parameter m exp(iθ/Nf ). When m = 0,
the theory is completely independent of θ, but in general this is not true.

Explicitly, the U(1)A anomaly is that an eiβ ∈ U(1)A sends the theory with (θ,m) 7→ (θ −Nfβ, eiβm).

Remark 8.1. We’d like to mix this with time-reversal symmetry. If we put these together, we get a time-
reversal symmetry squaring to the fermion counting operator, rather than 1. This means that it should be
able to make sense of this theory, with this symmetry, on Pin+ manifolds. The time-reversal symmetry would
switch left-handed fermions and right-handed fermions.14 (

Time-reversal acts by θ 7→ −θ and m 7→ m, so in particular we have to assume θ = 0 or θ = π. We can
write the Lagrangian in terms of a field U : X → G/H; then

(8.2) L =
f2
π

2
tr(∂U∂U†)− V,

where

(8.3) V := −1

2
f2
πΛmeiθ/Nf trU + c.c.

This comes from (I think?) 〈ψ | ψ̃〉 = f2
πΛ. The U(Nf )×U(Nf ) symmetry sends U 7→M†1UM2, where M1 is

in the first copy of U(Nf ) and M2 is in the second copy.
At θ = 0, we have

(8.4a) V = −mNff2
πΛ cos

(
2πk

Nf

)
,

so k = 0. For θ = π,

(8.4b) V = −mNff2
πΛ cos

(
π(2k + 1)

Nf

)
,

so k = 0 or k = −1 (two different vacua, with a domain wall, as we saw before in the simpler case).
Therefore θ 7→ θ + 2π can be implemented by

(8.5) U 7−→ exp 2πi/NfU.

For θ = 0, T : U 7→ U†; for θ = π, U 7→ exp(−2πi/Nf )U†.
If U = 1 and θ = 0, then time-reversal symmetry isn’t spontaneously broken. But at θ = π, there are two

vacua which T permutes, which are U = 1 and U = exp(−2πi/Nf )1. Therefore T is spontaneously broken.
There is a 3D theory on the domain walls between these two vacua at θ = π.
TODO: I’m not sure what happened next, but if we want U to be diagonal in this 3D theory, we can

assume that k = Nf − 1, and U is diagonal with diagonal entries eiα, . . . , eiα, eiβ . This breaks SU(Nf ) to

S(U(1)×U(Nf − 1)). In particular, we get a σ-model into CPNf−1 = SU(Nf )/S(U(1)×U(Nf − 1)).

14In that case, the anomaly theory should be some explicit 5D Pin+ invertible TQFT, right? Which one is it?
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This is in accordance with results about 3D Chern-Simons theory that we’ll talk about next time: we’ll
see the theory is SU(N)1−Nf/2 Chern-Simons theory together with Nf fermions.

9. QCD4 with 1 < Nf < NCFT: 4/4/18

Today, Mario Martone spoke again, a continuation of last time’s talk.
The restriction 1 < Nf < NCFT means the IR theory is confined. If we turn on a mass term, the theory

depends not exactly on θ, nor on the mass m > 0, but on the parameter m̃ := mNf eiθ ∈ C×. Namely, we
have the following three cases.

• If m̃ ∈ R and is positive, time-reversal symmetry is unbroken (this is the case θ = 0), and there’s a
single vacuum.

• If m̃ ∈ R and is negative, time-reversal symmetry is spontaneously broken (this is the case θ = π).
This means there are two vacua, and time-reversal symmetry exchanges them.
• If m̃ 6∈ R, time-reversal symmetry is explicitly broken.

Remark 9.1. Strictly speaking, this is an approximation of the actual phase diagram; it becomes more
accurate for Nf � 0. (

For the case m̃ < 0, we might ask if there’s a domain wall between the two vacua. This is some 3D theory,
though it sometimes only makes sense as a boundary theory.

In 3D, we have some dualities between Chern-Simons-matter theories. For Nf ≤ 2k, the SU(N)−k-Chern-
Simons theory with Nf fermions is dual to the |U(k+Nf/2)N theory with Nf scalars. For 2k < Nf ≤ N∗(N, k)
(for some N∗), this is still a conjecture, and N∗ should have something to do with NCFT.

One interesting aspect of this is that on the bosonic side of the theory, the U(k + Nf/2) theory, with
positive masses not too large, does something weird aroiund Nf ≈ 2k. For smaller Nf , it flows to a TQFT,
namely SU(N)k+Nf/2, but for larger Nf , it flows to a nonlinear sigma model with target U(Nf )/(U(Nf/2 +
k)×U(Nf/2− k)), together with a Wess-Zumino term Γ.

This additional phase should also appear on the fermionic side, and it’s conjectured to; see [KS18, BHS17].
Okay, back to 4D. Recall that the global symmetries for QCD4 in the UV is GUV = U(Nf )L×U(Nf )R×Z/2,

where the Z/2 is time-reversal; the U(1)A-symmetry is anomalous, as we saw last month. There is an energy
level Λ such that for energy levels below Λ, the theory confines, and in the IR is a nonlinear σ-model with
target SU(Nf ), so the GUV symmetry breaks to U(Nf )V × Z/2.

For θ = π and m� Λ, there are two vacua, U1 = 1 and U2 = e2πi/Nf1, and time-reversal exchanges them.
The U(Nf )V symmetry is unbroken. We have a Lagrangian

(9.2) L =
f2
π

2

(
tr(∂U∂U†)−mΛeiθ/Nf trU + c.c.

)
.

We want a Ũ (t) interpolating between the two vacua, so it’s Ui at time t = i− 1. Specifically, we want Ũ (t)

to be diagonal, with diagonal entries exp(iαj(t)). Since det Ũ (t) = 1,
∑
αi(t) = 0 mod 2π, and we have some

other information about the components:

α
(t)
1 = α

(t)
2 = · · · = α

(t)
k

α
(t)
k+1 = α

(t)
k+2 = · · · = α

(t)
Nf
.

At 1, we have

α
(1)
1 = α

(1)
2 = · · · = α

(1)
k = − 2π

Nf

α
(1)
k+1 = α

(1)
k+2 = · · · = α

(1)
Nf

= − 2π

Nf
+

2π

Nf − k
≡ − 2π

Nf
mod 2π.

Therefore we can conclude Nf − k = 1.
This means that for m� Λ, we have a nonlinear σ-model with target SU(Nf )/S(U(Nf − 1)×U(1)) ∼=

CPNf−1, which is nice.
For m� Λ, we should get exactly pure 4D Yang-Mills at θ = π, which has SU(N)1-Chern-Simons theory

on its domain wall.
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10. A symmetry-breaking scenario for QCD3: 4/11/18

Today, Shehper spoke about [KS18]. We consider SU(N) gauge theory with Nf fermions in the fundamental
representation and with Chern-Simons level k. We can think of this as starting with some bare level kbare ∈ Z;
integrating out a massive fermion with positive mass does not affect the level, and integrating out a fermion
of negative mass decreases the level by 1. This is because

(10.1)

∫
DψDψ e−ψi6Dψ±|m|ψψ = exp

(
−1

2
CS(A)± 1

2
CS(A)

)
,

so to ensure the action is properly quantized, we need to decrease the level for negative mass. Therefore
k = kbase −Nf/2. After integrating, k 7→ k ± sign(m)Nf/2.

Now we have a bunch of (conjectured?) dualities for various values of m, where Nf ≤ 2k and k 6= 0.

• If m� 0, we have SU(N)k+Nf/2-Chern-Simons theory and U(k +Nf/2)−N -Chern-Simons theory.
• If m� 0, we have U(k −Nf/2)−N -Chern-Simons and SU(N)k−Nf/2-Chern-Simons.
• The theories SU(N)k with Nf fermions and U(k +Nf/2)−n with Nf scalars are IR dual.

As the mass decreases (?), these three dualities should change at some critical points. The conjecture is that
the critical point for the two massive theories is the same, and the two theories have the same phase diagram/

We’d like to extend this conjecture to the regime where 2k < Nf < N∗(N, k) for some N∗. The problem
with this is that for large negative m2, the U(k +Nf/2) theory with Nf scalars has a σ-model phase in IR

when Nf > 2k: we have v ∼ µDi
jD

j
i , where

(10.2) Di
j =

Nf∑
s=1

φisφjs −mδij ,

where i, j = 1, . . . , k +Nf/2. To minimize this, we need to look for k +Nf/2 orthogonal vectors in CNf , so
the result is a σ-model with target

(10.3) M(Nf , k) := Gr(k +Nf/2, Nf ) ∼=
U(Nf )

U(Nf/2 + k)×U(Nf/2− k)
.

Therefore, Komargodski-Seiberg [KS18] conjecture that for N∗ > Nf > 2k, there is a σ-model phase for
SU(N)k with Nf fermions with target space M(Nf , k). For small |m|, the theory is strongly coupled, and
the phase diagram appears to be a TQFT for large |m| and a σ-model near the origin.

The reason this happens is symmetry breaking: ψψ† is a diagonal matrix with Nf/2 + k entries of one
number, and Nf/2− k of another. This breaks the symmetry from U(Nf ) to U(Nf/2 + k)×U(Nf/2− k).

If we add a Wess-Zumino term ±NΓ (here Γ is the Wess-Zumino term), the phase diagram looks a little
more complicated, according to another conjecture. Here 2k < Nf < N∗.

• For m� 0, we have the duality between the SU(N)k+Nf/2 and U(Nf/2 + k)−N theories.
• Below that, there’s the critical point for the U(Nf/2 + k)−N theory with Nf scalars, which is the

same as a critical point for the SU(N)k theory with Nf fermions.
• Below that there’s a σ-model with target M(Nf , k), and with an NΓ term.
• Below that there’s the other critical point of the SU(N)k theory with Nf fermions, which should be

the same as that of the U(Nf/2− k)N theory with Nf scalars.
• Below that, we have the duality between the U(Nf/2− k)N and SU(N)k−Nf/2 theories.

Let’s look at the M(Nf , k) σ-model when Nf/2− k = 1, so the target is CPNf−1. In this case, if π is in the
bi-fundamental representation for U(Nf/2 + k)×U(Nf/2− k),

(10.4) LKinetic ∼ tr
(
∂π∂π†(1 + ππ†)−1 − ∂ππ†(1 + ππ†)−1π∂π†(1 + ππ†)−1

)
,

and the Kähler potential is

(10.5) K = tr log(1 + π†π).

For k 6= 0, the theory is time-reversal invariant, and for k = 0, there’s a Z/2-symmetry exchanging the two
U(Nf/2) subgroups.

For Nf/2− k = 1, the Wess-Zumino term is

(10.6) LWZ ∼ N
∫

d3x εµνρ
(
∂µπ

† · π
)(
∂νπ

† · ∂ρπ
)
.
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For the |U(1)N theory with Nf scalars, the action on a spin manifold is

(10.7)
N

4π
bdb+

1

2π
B db,

where b is a background gauge field and B is a fluctuating gauge field. In this case, db = ω + · · · , where ω is
the Kähler 1-form on CPNf−1. Hence if M = ∂W for a compact 4-manifold W , we can reexpress this as

(10.8)
N

4π

∫
w

ω ∧ ω +
1

2π

∫
M

ω ∧B.

Since H4(CPNf−1) has one generator but H4(M(Nf , k)) has two generators, we get an additional constraint
on the theory: it’s a gauged linear σ-model with a trF ∧ trF term.

Since π2(M(Nf , k)) ∼= Z, there are topological solitons, which are called skyrmions. One claim is that
these are the same as baryons, as the quantum numbers agree, and another is that these are the same as
monopoles.

11. Abelianization of classical complex Chern-Simons theory: 4/18/18

Today Andy spoke about a long-running project with Dan Freed, albeit with a new spin enriched by our
perspective this semester.

If you take one thing away from this talk, let it be this: a relationship between a topological field theory

with a global GL1(C)-symmetry on a manifold M̃ , i.e. it couples to a background principal GL1(C)-bundle;

and a topological field theory with a global GL2(C)-symmetry on M , where there is a double cover M̃ →M .15

These theories are very simple: they’re invertible, though hopefully it’s true in a more general setting than
that.

You might expect such a relationship from string theory, where it’s not uncommon to have a relationship
between branes on a k-fold cover and a Uk-symmetry on the base space.

The invertible theories we’re going to study are classical Chern-Simons theories. Given a compact spin
3-manifold M and a GLk(C)-connection ∇ on M , this TQFT associates a nonzero complex number CS(M,∇).
If ∇ = d +A, where A ∈ Ω1

M (glk(C)), this is

(11.1) CS(M,∇) = exp

(
1

4πi

∫
M

tr

(
A ∧ dA+

2

3
A ∧A ∧A

))
.

For a nontrivial principal bundle, the formula can be more complicated. There are similar formulas for SLk(C),
PSLk(C), and sometimes on manifolds with boundary: in general, this formula isn’t gauge-invariant, unless
∇|∂M is strictly upper triangular. Usually, we’re used to integrating over all connections in Chern-Simons
theory, but here we’re not.

Remark 11.2.

(1) The critical points of CS(M,∇) are the flat connections.
(2) Suppose M is hyperbolic. Then it comes with a flat PSL2(C)-connection ∇hyp arising from the

description of M as a quotient of H3 (which comes with a connection) by a finite subgroup of PSL2(C).
Then the Chern-Simons invariant of (M,∇hyp) captures its hyperbolic volume (which by hyperbolic
rigidity is a topological invariant):

(11.3) CS(M,∇hyp) = exp

(
−vol(M)

2π
+ i(. . . )

)
.

So there’s a canonical complexification of the volume of a hyperbolic manifold, and it’s a stronger
invariant than the hyperbolic volume.

(3) Suppose M can be triangulated. Then, many flat connections can be described in terms of the
triangulation, with (k3 − k)/6 parameters χi ∈ C×, and in this case they also provide an explicit
formula for the Chern-Simons invariant:

(11.4) CS(M,∇) = exp

(
1

2πi

∑
Li2(χi)

)
.

15There are analogues for k-fold covers M̃ →M and a theory with GLk(C)-symmetry on M .
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Here Li2 is the dilogarithm. This is work of many people, starting with Thurston, Dupont, Neumann,
Dimofte-Gabella-Goncharov, . . . .

For example, if M is the complement of the figure-8 knot, it admits a triangulation by two
tetrahedra, which leads to

((11.5) CS(M,∇hyp) = exp

(
1

2πi

(
Li2(eπi/3) + Li2(eπi/3)

))
.

These facts are all somewhat mysterious, and part of the purpose of this talk is to shed some light on
them using the duality mentioned at the beginning.

Specialized to flat connections, the Chern-Simons invariant fits into an invertible spin TQFT with GLk(C)
global symmetry.16 This means it assigns higher-categorical information in lower dimensions: to a closed
2-manifold it assigns a 1-dimensional vector space; to a closed 1-manifold it assigns something like a Picard
category, and to a point it should assign. . . something, but it’s not quite clear what. And on a compact
manifold M with boundary ∂M , the Chern-Simons invariant of M is an element of the line CS(∂M).

Deformed Chern-Simons theory. Now we consider what is almost a manifold M̃ with a flat GL1(C)-

connection ∇̃, except at some singular points Hn ∈ M̃ : usually, the boundary of an ε-neighborhood of a

point is a sphere, but at each Hi we’ll ask for it to be a torus. On this torus, ∇̃ will have nontrivial holonomy:
around one fundamental cycle, it has holonomy χ ∈ C×, and around the other, it has holonomy 1− χ.17 You
can think of this as collapsing a small framed loop in your manifold to a point.

So now we have a whole new category of manifolds with dimension at most 3 and these singularities; we
think of the singularities as living in codimension 3, so they are not present on lower-dimensional manifolds.

There is a natural reason to think about these almost-manifolds: the connections ∇̃ arise as critical points
of a deformed GL1(C)-Chern-Simons action: given a spin 3-manifold M with embedded loops Li,

(11.6) S =
1

4πi

∫
M

A ∧ dA+
1

2πi

∑
i

Li2(holLi∇
χi

).

If in a neighborhood of a point x¡ ∇ = d +A, the variation of this action is

(11.7)
δS

δA(x)
=

1

2πi
F (x) +

1

2πi

∂ Li2(χi)

∂χi

∂χi
∂A(x)

,

where F denotes curvature. So this contains a δ-function supported on the loops Li. Then you get a
log(1− χi)δLi-term, which justifies the unexpected holonomy condition at the singularities.

Anyways, in this case, there is a well-defined Chern-Simons invariant C̃S(M̃, ∇̃) ∈ C×. This is nontrivial:
the deformed action (11.6) is not gauge-invariant, and one has to choose a branch cut for the dilogarithm
function. But it turns out these two cancel out.

Remark 11.8. This looks a lot like adding a Wilson line, but it isn’t: you’d need to add a log(χ) to (11.6). (

For GLk(C), one can deform the Chern-Simons action again, but the abelianized theories end up equivalent.
The universality of the GL1(C) theory is an interesting facet of the deformed theories.

Remark 11.9. This deformation of Chern-Simons theory arises naturally in the discussion of the topological
string (A-type). In this case, we consider our 3-manifold M as a Lagrangian submanifold of a symplectic
6-manifold N . You can formulate the A-model topological string on N (mathematically, this is akin to
studying Gromov-Witten theory on N) with a D-brane on M̃ .

Witten argued that the string field theory (low-energy field theory of this topological string) is Chern-Simons
theory on M̃ plus deformations coming from holomorphic discs with boundary on M̃ . Then Ooguri-Vafa
figured out that an isolated holomorphic disc contributes Li2(χ), suggesting (11.6), at least when the loops
are unlinked. (

16Since a flat GLk(C)-connection is equivalent data to a principal GLk(C)-bundle with the discrete topology, this really is

topological.
17So we need a little extra data to determine a basis of H1 of the torus neighborhood, but this is OK.
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Now, suppose M is ideally triangulated. Then we can produce a branched double cover M̃ →M , with
an Hi in each tetrahedron, and a map from singular flat GL1(C)-connections on M̃ to honest flat SL2(C)-

connections on M , such that CS(M̃, ∇̃) = CS(M,∇), and this extends to an equivalence of topological field
theories!

Let’s describe this in more detail. ∇ comes with a convenient gauge-fixing: on each face of the tetrahedron,
we can put some “walls” from the vertices to the branch point for M̃ → M . If ∇ = d + A, then A is
diagonal away from three cuts (from the branch point to the edges), and the walls, where it also has a nice

description. With this description, you can explicitly construct ∇̃ by removing the unipotent matrices on
the walls. Ultimately, unipotent matrices don’t contribute to the Chern-Simons action, which leads to the
equivalence of topological field theories.

This has something to say about the mysterious shape parameters and dilogarithms: they are just shape

parameters of ∇̃ and pieces of the deformed Chern-Simons action, respectively. Thus, the appearance of
dilogarithms comes from the fact that lots of connections can be described in this way.

12. 2-group symmetries, I: 4/25/18

Today, Sebastian spoke about the more mathematical aspects of 2-group symmetries in quantum field
theory, following Benini-Córdova-Hsin [BCH18], and Kapustin-Thorngren [KT13] for additional details.

Recall that a group can be understood as a category with a single object, and such that all morphisms are
invertible. This motivates the following generalization.

Definition 12.1. A 2-group is a weak18 2-category with a single object, such that all 1-morphisms are
weakly invertible and all 2-morphisms are invertible.

That is, a 2-group is a group object in the category of groupoids.
Concretely, we can represent 2-groups as crossed modules, data (G0, G1, t, α), where t : G1 → G0 and

α : G0 → Aut(G1) are group homomorphisms, subject to the conditions that

(1) t(α(g0)(g1)) = g0t(g1)g−1
0 , and

(2) α(t(g1))(g′1) = g1g
′
1g
−1
1 .

These arise because of interactions between horizontal and vertical composition in the 2-category. They imply
in particular that the image of t is a normal subgroup of G0.

Example 12.2.

(1) Let G0 be a Lie group and t : G1 → G0 be a covering map. Then we can define

(12.3) α(g0) := g1 7−→ g̃0g1g̃
−1
0 ,

where g̃0 ∈ t−1(g0) (the choice is arbitrary).
(2) The simplest nontrivial example has G0 = G1 = Z/4, t(n) := 2n, and α(n)(m) := (−1)nm.19 (

Many 2-group symmetries arise in physics in the following way: there is a symmetry group acting on a
quantum system, which has an unbroken subgroup G0. Im(t) C G0 is the confined part, and coker t is the
low-energy gauge group. The kernel of t is called the magnetic gauge group (though its interpretation in
terms of electromagnetism might depend on what dimension you’re in.)

In physics, we will only know our 2-groups up to equivalence. This means we can use different models for
them which determine 2-groups up to equivalence, but not necessarily isomorphism. For example, [BCH18]
use the following, slightly different model for finite 2-groups: a 2-group is the data (G,A, ρ, β), where

• G is a finite group and A is a finite abelian group,
• ρ : G→ Aut(A) is a group homomorphism, and
• β ∈ H3(BG;A).

18We’re not going to worry much about strictness issues, and they won’t appear in obvious ways in the physics, but if you
like categorical things, you might need to be careful about them.

19The classifying space of this 2-group has homotopy groups π1 = Z/2 and π2 = Z/2, and k-invariant Sq2 : K(Z/2, 1) →
K(Z/2, 3). This is why there can’t be anything interesting with G or H smaller: one of the homotopy groups would have to

vanish.
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Given a crossed module, we can obtain G := coker(t) and A := ker(t), and obtain ρ from α. Seeing β is a
little harder, but the idea is that H3(BG;A) classifies double extensions, i.e. exact sequences

(12.4) 1 // A // H ′
t′ // G′ // G // 1,

such that (G′, H ′, t′, α′) is a crossed module. Then, β corresponds to the sequence

(12.5) 1 // ker(t) // G1
t // G0

// coker t // 1.

Example 12.6. Let (X,x0) be a pointed, connected space. Then there is a 2-group associated to X, called
its fundamental 2-group, where G0 is the group of loops based at x0 under composition and G1 is the group of
equivalence classes of homotopies between loops. Passing to the above description, we obtain G = π1(X,x0),
A = π2(X,x0), ρ as the monodromy action of π1 on π2, and β ∈ H3(Bπ1, π2) is the Postnikov invariant or
k-invariant, which is a standard construction in algebraic topology. (

Now we’ll discuss zero- and one-form symmetries in physics. Let M be a d-manifold with a good cover
U = {Vi | i ∈ I}, indexed by an ordered set i ∈ I, such that all intersections VJ :=

⋂
j∈J Vj for all J ⊂ I are

either empty or contractible. Given this cover, we can define a simplicial complex with a vertex j inside Vj ,
and k-cells corresponding to k-fold intersections.

Zero-form symmetries for a group G can be understood in terms of symmetry defects, which are unitary
operators Ug for g ∈ G supported on codimension-1 manifolds Xd−1. These act on local operators: as a local
operator O moves through Xd−1, it becomes UgO. These can couple to a flat G-bundle, which is described
simplicially by Aij ∈ G over all edges i→ j, subject to the cocycle condition AijAjk = Aik.

One-form symmetries for a group A, necessarily abelian, admit a similar description. We have unitary
operators Wa indexed by a ∈ A, which are supported on codimension-2 manifolds Yd−2. These act on line
operators L(`):

(12.7) 〈WaL(`) · · ·〉 = e2πiΘ(a)〈L(`) · · ·〉,

where Θ ∈ Â := Hom(A,R/Z) is the Pontrjagin dual group.
One-form symmetries couple to A-gerbes, which can be described by combinatorial data Bijk ∈ A on triple

intersections Vijk, subject to the constraint

(12.8) (dB)ijk` := Bjk` −Bik` +Bij` −Bijk = 0.

Now let’s consider a 2-group symmetry, with zero-form part G, one-form part A, and some kind of interaction,
which arises by the map ρ : G→ Aut(A). First let’s suppose β = 0. In this case, when a one-form operator
Wa on a codimension-2 submanifold passes through Xd−1 acting by Ug, it turns into Wρg(a). This can couple
to pairs of a flat G-bundle an an A-gerbe, where now

(12.9) (dAB)ijk` := ρg(Aij)Bjk` −Bik` +Bij` −Bijk = 0.

If β 6= 0, we can see it physically from a picture where four codimension-1 sheets meet, and are labeled by g,
h, k, and ghk. In this setting, if a one-form operator Wa moves around here, there may be an issue caused
by a lack of associativity: what we get by gluing g and h, then k might be different than what we get by
gluing h and k, then gluing g with that. This is mediated by β(g, h, k), which is a cocycle in cohomology
with twisted coefficients, which means that

(12.10) dρβ(g, h, k, `) := ρgβ(h, k, `)− β(gh, k, `) + β(g, hk, `)− β(g, h, k`) + β(g, h, k) = 0.

This looks like an anomaly, but isn’t really: it’s not coming from anomaly inflow from a bulk, but is rather
some kind of connection on a principal 2-bundle.

The equation (12.10) admits a geometric description in terms of five sheets meeting at two intersection
points. Then we get a description of what kinds of pairs of fields we can couple to, which is similar to (12.9)
but with dAB := A∗β, where A : Md → BG is the map classifying the principal bundle.

13. 2-group symmetries, II: 5/2/18

Today, Shehper spoke about the physics side of the last talk, on 2-group symmetries in physics. Recall
that a finite 2-group is specified by data (G,H, ρ, [β]), where G and H are finite groups, H is abelian,
ρ : G→ Aut(H) is a group homomorphism, and [β] ∈ H3(BG;H) is called the Postnikov class.
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From a physics perspective, G is the zero-form symmetry group of a 2-group symmetry and H is the one-
form symmetry group. The zero-form symmetries can act on particles charged under the one-form symmetry,
and ρ specifies this action. The Postnikov class is the most difficult to interpret from this perspective; it
arises as a codimension-2 defect that appears in an F -move (an associator for (gh)k to g(hk) of some sort).

One example that will make the appearance of the Postnikov class clearer is quantum field theory with a
symmetry group Γ, where Γ is an extension of G by an abelian group A:

(13.1) 1 // A // Γ // G // 1.

This induces a group action G → Aut(A), and also defines a cohomology class [ω] ∈ H2(BG;A). These
suffice to recover (13.1) up to equivalence. The extension defines a product rule on Γ. As a set, it’s A×G,
but ω twists the product such that

(13.2) (0, g) · (0, h) = (ω(g, h), gh).

Here we have to choose a cocycle representative for [ω], but this choice ends up not mattering: we end up
with isomorphic Γ. Physically, (13.2) can be thought of as expressing that in a collision between particles
charged as g and h under the G-symmetry produces particles charged under gh and ω(g, h), and ω(g, h) is a
codimension-1 defect (foreshadowing the codimension-2 defect we’re going to see for a 2-group symmetry).

Next let’s step this up to 2-groups. Let H be a finite abelian group and BH denote its classifying space.
Then we can regard G = (G, 0, 1, 0) and BH = (1, H, 1, 0) as 2-groups and consider an extension of 2-groups

(13.3) 1 // BH // Γ // G // 1,

which is determined by the Postnikov class [β] ∈ H3(BG;H). This is not a sequence of groups (even though
BH and G are groups)!

Remark 13.4. Another way to interpret this is through topology: there is a notion of a classifying space BΓ
associated to a 2-group Γ, and in this setting (13.3) means a fibration of pointed topological spaces

((13.5) B2H // BΓ // BG.

We can think of Γ as having a twisted product, akin to (13.2), in which for g, h, k ∈ G,

(13.6) (0, (gh)k) = (β(g, h, k), g(hk)),

where β is a cocycle representative for [β].

Example 13.7. Let’s consider U(1)-Chern-Simons theory at level k together with Nf scalars of charge q > 1,
formulated on a 3-manifold M . The charge is quantized, so q ∈ Z; assume k = q` for some ` ∈ Z. This has
multiple zero-form symmetries:

• G := U(Nf )/(Z/`), the faithful symmetry.
• Gn := SU(Nf )×U(1)M , the näıve symmetry, where U(1)M has current

(13.8) jµ :=
1

4π
εµνλFνλ.

Here’s why the faithful symmetry arises. For a monopoleM with monopole number 1, Chern-Simons coupling
implies a charge of k (with respect to the gauge group U(1)). Let

(13.9) N :=Mφ1 · · ·φpφT
1 · · ·φT

p+`.

Under the Z(SU(Nf )) symmetry, N transforms as

(13.10) N 7−→ e−2πi`/NfN .

Since M has charge 1 under U(1)M , then γ := (e2πi/Nf , e2πi`/Nf ) ∈ SU(Nf )×U(1)M leaves N invariant.

Let U(1)`M denote the `-fold cover of U(1)M . Then we can write γ as (e2πi/Nf , e2πi/Nf ) ∈ SU(Nf )×U(1)`M ,
so we have a “less näıve” U(Nf )-symmetry, and therefore a faithful symmetry of U(Nf )/(Z/`).

There is a one-form BZ/q symmetry: given e2πi/q ∈ Z/q and a Wilson loop L, we have

(13.11)
〈
ei

∮
L
AeiQ

∮
L
A
〉

= e2πiQ/q
〈
eiQ

∮
L
A
〉
.
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Geometrically, you can think of this as having a principal U(1)-bundle with connection A and a principal
U(1)-bundle with flat connection whose holonomies are qth roots of unity (so, really, a principal Z/q-bundle
induced along Z/q ↪→ U1).

When we couple to a background G-gauge field, we’re going to obtain a 2-group global symmetry. Under
Z/` ⊂ U(Nf ), φi 7→ e2πi/`φi. (Here φi is one of the scalar fields.) Under Z/q` ⊂ U(1)dyn, φi 7→ e2πiq/(q`)φi.
This suggests we can identify these two actions, meaning we should couple to bundles with structure group

(13.12)
U(Nf )×U(1)dyn

Z/`
.

We have an action of e2πi/q ∈ Z/q` on Wilson lines.
There are two possible cases depending on the bundle P →M in question.

(1) If the U(Nf )/(Z/`)-bundle can be lifted to a U(Nf )-bundle, then its characteristic class [w
(`)
2 ] = 0 in

H2(M ;Z/`) and
∫
F ∈ 2πZ/q`.

(2) If not, then [w
(`)
2 ] ∈ H2(M ;Z/`) is nonzero and

∫
F ∈ 2πn/q`.

Case (2) is the general case, in that [w
(`)
2 ] ∈ H2(BG;Z/`) is nonzero. In this case, Z/q-gerbe fields transform

nontrivially under G-gauge transformations, which is ultimately because the Postnikov class [w
(`)
2 ] doesn’t

vanish. More specifically, associated to the short exact sequence

(13.13) 1 // Z/q // Z/q` // Z/` // 1

there’s a Bockstein B : H2(BG;Z/`) → H3(BG;Z/q) and [β] = B[ω
(`)
2 ]. In particular, we have a 2-group

symmetry for Γ = (G,Z/q, ρ, [β]), where ρ arises from the action of Z/q` on the scalars. (
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