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Note: I missed the first two lectures.

3. Holomorphic line bundles: 7/12/17

Today’s going to be about holomorphic vector bundles, with a focus on holomorphic line bundles.

De�nition 3.1. Let X be a complex manifold. A holomorphic vector bundle of rank k over E is a complex
manifold E and a holomorphic map � : E ! X such that

� � makes E ! X into a complex vector bundle of rank k, and
� E admits holomorphic trivializations, i.e. there’s an open cover U of X trivializing E such that for
each U 2 U, there’s a biholomorphic map ' : EjU ! U � Ck commuting with projection to U that is
complex linear on each fiber.

A rank-1 holomorphic vector bundle is called a holomorphic line bundle.

Equivalently, E ! X is holomorphic i� admits local holomorphic sections.

De�nition 3.2. A homomorphism of holomorphic vector bundles f : E ! F over X is a homomorphism of
complex vector bundles that is holomorphic as a map between complex manifolds.

In particular, it must commute with the projection down to X and be complex linear on each fiber. If in
addition it’s invertible on each fiber, f is called an isomorphism.

Exercise 3.3. Show that if f : E ! F is an isomorphism of holomorphic vector bundles, it’s a biholomorphism
on their total spaces.

Remark. Some authors, such as Huybrechts, add an extra condition, that the dimension of the rank of a
homomorphism of vector bundles is constant, thus ensuring the (fiberwise) kernel and cokernel of a morphism
are again holomorphic vector bundles. Other authors, such as Gri�ths-Harris, do not require this, and we’ll
follow that convention. (

In the kyperkähler geometry minicourse, we saw a di�erent definition of holomorphic vector bundles in terms
of the @E operator @E : C1(X;E)! C1(X;T 0;1X 
 E). This is equivalent, and one way to understand this
is to use a local trivialization: given a holomorphic identification EjU �= U � Ck (for an open U � X) and a
section  : U ! Ck, define

@E( ) := @ =
@ 

@z�
dz�:

Then, check that this glues on overlaps, producing a well-defined operator on smooth sections of E.
Another way to understand holomorphic vector bundles is through transition functions.

Proposition 3.4. There is a bijective correspondenc between the set of isomorphism classes of rank-k holomorphic vector
bundles on X and the set of open covers U on X and holomorphic functions 'ab : Ua \ Ub ! GLk(C) for all Ua; Ub 2 U
such that 'ab'bc = 'ac and 'aa = id, modulo equivalence on a common re�nement of the open cover.
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Proof sketch. Given a vector bundle E, let U be an open cover for which E has holomorphic local trivializations.
For Ua; Ub 2 U that intersect, 'ab : Ua \ Ub ! GLn(C) is the transition function

(Ua \ Ub)� Ck

'ab

��

EjUa\Ub

f
88

g &&
(U � a \ Ub)� Ck:

Here f is the transition function for Ua and g is the transition function for Ub.
Conversely, given the data U and f'abg, one can define

E :=
a
Ua2U

Ua � Ck=(x; v) ' (x; 'abv);

where x 2 Ua \ Ub and v 2 Ck, over all pairs Ua; Ub 2 U. Then one must check that equivalent data defines
isomophic line bundles. �

For k = 1, this proposition identifies the set of isomorphism classes of line bundles with the first Čech
cohomology �H1(X;O�

X), i.e. valued in the sheaf O�
X of holomorphic functions into C�. This is because

GL1(C) = C�.
Pretty much every natural operation you can do to vector spaces extends to holomorphic vector bundles

E;F ! X, including
� the dual E� ! X,
� the direct sum E � F ! X,
� the tensor product E 
 F ! X,
� the wedge product �rE ! X,
� the pullback f�E ! Y given a holomorphic map f : Y ! X,
� and so on.

One way to prove this is to write down their transition functions: suppose U is an open cover of X which
holomorphically trivializes both E and F (by taking common refinements, such a cover always exists), and
suppose 'ab are the transition functions for U for E, and  ab are those for F . Then,

� E� has transition functions ('Tab)
�1,

� E � F has transition functions �
'ab 0
0  ab

�
;

� E 
 F has transition functions 'ab 
  ab, and
� �rE has transisiton functions �r'ab. In particular, if r = k = rank(E), then �k'ab = det('ab).
� Given a holomorphic map f : Y ! X , f�E has transition functions 'ab � f . Hence holomorphicity of f
is necessary. This uses the trivializing open cover f�1(U).

Remark. The set of isomorphism classes of holomorphic line bundles is a group under 
, called the Picard
group Pic(X). The identity is the trivial bundle C := X � C, and the inverse of a line bundle L is L�,
because L 
 L� = End(L), which has a global nonvanishing section that’s the identity on each fiber. Hence
L 
 L� �= C. (

Example 3.5. LetX be a complex manifold. Then, the holomorphic tangent bundle T 1;0X and the holomorphic
cotangent bundle T �1;0X are holomorphic vector bundles. Hence, since the wedge product of holomorphic
vector bundles is holomorphic, the canonical bundle KX := �n;0T �X = �n(T �1;0X) is a holomorphic line
bundle. (

Proof. Let (z�) be holomorphic coordinates on (an open neighborhood of a given point in) X . This defines a
local trivialization of T 1;0X, namely �

z1; : : : ; zn;
@

@z1
; : : : ;

@

@zn

�
:
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If (w�) is another set of holomorphic coordinates, the transition functions are

@

@z�
=
X
�

@w�

@z�
@

@w�
:

This is the Jacobi matrix
�
@w�

@z�

�
, which is holomorphic. T �1;0X is similar. �

However, �p;qT �X is not a holomorphic vector bundle in general! For example, the transition functions on
T �0;1X are antiholomorphic rather than holomorphic.

Example 3.6. The tautological bundle on CPn is

OPn(�1) := f(`; v) 2 CPn � Cn+1 j v 2 `g;

i.e., a point ` 2 CPn is a line in Cn+1, hence we can say the fiber over ` is ` regarded as a line. This is a
holomorphic line bundle. The total space looks like Cn+1 with a CPn “glued in” at the origin; this is the local
model of a blowup.

We can describe the local trivializations explicitly. Let U0 = fz0 6= 0g � CPn. Then, the map U0 � C !
OPn(�1)jU0 sends

([z0 : : : : : zn]; �) 7�!

�
[z0 : : : : : zn]; � �

�
1;
z1
z0
; : : : ;

zn
z0

��
;

and you can check that the transition functions for U0 \ U1 ! C� (where U1 is the locus where z1 6= 0) is the
map [z0 : : : : : zn] 7! z1=z0, which is biholomorphic (and hence this actually is a holomorphic line bundle). (

De�nition 3.7. Using the tautological bundle, we can define a bunch of other line bundles on CPn:
� Let OPn(0) := C, the trivial bundle.
� Let OPn(1) := OPn(�1).
� If k > 0, let OPn(k) := OPn(1)


k and OPn(�k) = OPn(�1)

k.

Hence k 7! OPn(k) defines a group homomorphism �: Z! Pic(CPn).

Theorem 3.8. In fact, �: Z! Pic(CPn) is an isomorphism.

We won’t prove this. It’s nontrivial: for complex line bundles, you can use H2(CPn) �= Z, but then you have
to prove that each has a unique holomorphic structure.

Proposition 3.9. For k > 0, the space of holomorphic sections of OPn(k) is isomorphic to the space of degree-k k-
homogeneous polynomials in n+ 1 variables.

Proof sketch. Suppose we’re given such a homogeneous polynomial P (z1; : : : ; zn). On the trivialization U0 � C,
define a section by

[z0 : : : : : zn] 7�! P (1; z1=z0; : : : ; zn=z0) 2 C;

which is holomorphic. It hence su�ces to check that these local sections transform correctly according to the
transition functions. On, for example, U0 \ U1, we have that

P

�
1;
z1
z0
; : : : ;

zn
z0

�
=

�
z1
z0

�k
P

�
z0
z1
; 1;

z2
z1
; : : : ;

zn
z1

�
:

One can then show that these sections span �(CPn;OPn(k)). �

Proposition 3.10. The canonical bundle on CPn is isomorphic to OPn(�n� 1).

The proof idea is again to use the local trivialization Ui to define the local section

[1 : z1 : � � � : zn] 7�! dz1 ^ � � � ^ dzn

and compute transition functions.
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4. Positivity of holomorphic line bundles: 7/13/17

Last time, we talked about holomorphic vector bundles, and in particular holomorphic line bundles. These
are complex vector bundles together with the structure of a complex manifold, rather than just an almost
complex manifold, on the total space.

De�nition 4.1. A Hermitian metric on a holomorphic line bundle � : L ! X is a smooth function h : L !

R�0 that is homogeneous, in that h(�v) = j�j
2
h(v) for all v 2 L and � 2 C.

Remark. The definition of a Hermitian metric on a general holomorphic vector bundle is usually presented
di�erently, in terms of a smoothly varying metric on each fiber. This definition agrees for line bundles. (

You can think of h as the norm squared of an element of the fiber.
Homogeneity implies that �i@@ log h is the pullback by � of a smooth one-form !h 2 
1;1(X;C), called the

curvature form.

De�nition 4.2. We say (L ; h) is positive if !h(�; Ix�) > 0 for all � 2 TRX n 0.

The idea is that !h defines an orientation, and we want this orientation to agree with the orientation
canonically induced by the complex structure.

Lemma 4.3. !h is actually a real form, i.e. !h 2 
1;1(X;R).

Proof. This is equivalent to !h being fixed by complex conjugation. And indeed,

��!h = �i@@ log h

= i@@ log h

= �i@@ log h: �

This makes the positivity criterion more reasonable: !h(�; Ix�) 2 R.
Intuitively, positivity will mean your line bundle has lots of sections.

Example 4.4. Let’s look at the tautological bundle OPn(�1) ! CPn. Recall that the points of OPn(�1) are
pairs (`; v), where ` is a line through the origin in Cn+1 and v 2 `; thus, we can define a Hermitian metric on
OPn(�1) by

h(`; v) := jvj
2
= v � v:

Over U0 � CPn, where OPn(�1)jU0 trivializes to U0 � C, this is

h([z0 : : : : : zn]; w) = jwj
2

 
1 +

����z1z0
����2 + � � �+

����znz0
����2
!
:

Hence

��!h = �i@@ log

 
jwj

2

 
1 +

����z1z0
����2 + � � �+

����znz0 2
����
!!

:

Homogeneity allows us to simplify this to

!h = �i@@ log

 
1 +

����z1z0
����2 + � � �+

����znz0
����2
!

= �i@@ log
�
jz0j

2
+ � � �+ jznj

2
�
:

This is a description in terms of homogeneous coordinates, and therefore makes sense on all of CPn, not just U0.
When n = 1 (i.e. on the Riemann sphere), then on U0,

!h = �i@@ log
�
1 + jzj

2
�

=
�i

(1 + jzj
2
)2

dz ^ dz;
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so if z = x+ iy,

=
�2

(1 + jzj
2
)2

dx ^ dy;

so OP1(�1) is negative! (

Exercise 4.5. Show that if k > 0, then OPn(k) is positive. (Hint: think about how the metric on OPn(�1)
induces metric on duals and tensor products, and how the curvature form changes.)

Proposition 4.6. Let f : Y ! X be a holomorphic immersion between complex manifolds andL ! X be a holomorphic
line bundle with positive metric h. Then, f�L ! Y , with the pullback metric, is also positive.

Proof. The pullback metric h0 on f�L is defined as

h0(v) := h( ef(v));
where ef : f�L ! L is the map on total spaces coming from the pullback. That is, there’s a commutative
diagram

f�L
ef //

�f�

��

L

�

��
Y

f // X:
Now we compute.

��f�!h0 = �i@@ log h0 = �i@@ log h � ef
= ef�(�i@@ log h)
= ef�(��!h)
= ��f�f

�!h;

so f�!h = !h. Hence, for all y 2 Y and � 2 TyY n 0,

f�!h(�; Iy�) = !h(f��; f�Iy�)

= !h(f��; Ixf��)

because f is holomorphic. Since f is an immersion, this is positive. �

Remark. There’s a connection1 to Chern-Weil theory here: !h is a closed 1-form, and hence defines a class
[!h] 2 H

2(X). In fact, (1=2�)[!h] = c1(L ), the first Chern class of the line bundle. Positivity of this Chern
class is a necessary condition for positivity of L . (

Now we can discuss a major result, the Kodaira embedding theorem.

De�nition 4.7. A complex manifold X is projective if it admits a holomorphic embedding into some CPn.

Theorem 4.8 (Kodaira embedding theorem). Let X be a closed complex manifold. Then, X is projective i� it admits
a positive line bundle.

We’ll prove the hard direction tomorrow. But the forward direction is easy: given a holomorphic embedding
f : X ,! CPn, then by Exercise 4.5, OPn(1) is positive, and by Proposition 4.6, f�OPn(1)! X is also positive.

So far we’ve only used that X can be immersed in CPn. In fact, the proof of the other direction will show
that any X that immerses in CPn embeds in CPN for some N (which might not be n), which is independently
interesting.

For the rest of today’s lecture, we’ll lay the groundwork for the other direction in the proof.

De�nition 4.9. Let L ! X be a holomorphic line bundle and �(X;L ) denote the space of holomorphic
sections of L .

� A linear system is a complex subspace W � �(X;L ).
� A linear system W is complete if W = �(X;L ), and is a pencil if it has complex dimension 2.

1No pun intended.
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Pictorially, it’s helpful to think of an s 2 W in terms of its zero locus s�1(0). A pencil is spanned by two
sections s1 and s2, so we obtain two (generically) codimension 2 submanifolds s�11 (0) and s�12 (0) in X , and the
pencil is the span of these, which we can think about as interpolation between their zero sets. Drawing this out
with two curves is nice.

De�nition 4.10. Given a linear system W , its base or indeterminacy locus is

Bs(W ) :=
\
s2W

s�1(0):

De�nition 4.11. Let W be a linear system on X . The Kodaira map for W is 'W : X n Bs(W ) ! P(W �)
sending

x 7�! [s 7�! s(x)]:

The reason we had to remove the base locus is that it maps to 0, hence doesn’t make sense after projectivization.

De�nition 4.12.
� A linear system W is very ample if its base locus is empty and 'W : W ! P(W �) is an embedding.
� A line bundle L ! X is very ample if �(X;L ) is very ample.
� L is ample if L 
k is very ample for some k. (We think of this k as large, though it isn’t always.)

Hence, Theorem 4.8 says that L is positive i� it’s ample.
Very ampleness says there are lots of holomorphic sections, so much that the base locus vanishes. Ampleness

says there are plenty of sections, but not quite as many. The Kodaira embedding theorem says that this is the
same as positivity, so positivity means lots of sections.

Example 4.13. Let k > 0 and consider OPn(k)! CPn. In Proposition 3.9, we saw that �(OPn(k);CPn) can
be identified with the space V of k-homogeneous polynomials in n+ 1 variables, which has complex dimension�
n+k
n

�
. Thus we get a Kodaira map CPn ! CP(

n+k

n )�1, which explicitly sends

z0 : : : : : zn] 7�! [zk0 : zk1 : : : : : zk�10 z1 : z
k�1
0 z2 : : : : ]:

This is an embedding, and a well-known one, called the Veronese embedding. For example, as an embedding
CP2 ,! CP5, it sends

[x : y : z] 7�! [x2 : y2 : z2 : xy : xz : yz]: (

Example 4.14. Consider L = (��1OPn(1))
 (��2OPm(1)) on CPn � CPm. You can check this is very ample,
hence defines an embedding of CPn � CPm ,! CPnm�1 sending [z0 : : : : : zn]; [w0 : : : : : wm] to the matrix
aij = ziwj . This is called the Segre embedding, and provides a proof that a product of projective varieties is
projective. (

5. Proof of the Kodaira embedding theorem: 7/14/17

Today, we’re going to prove the Kodaira embedding theorem, Theorem 4.8. Recall that we have a holomorphic
line bundle � : L ! X over a complex complex manifold and a Hermitian metric h, from which we defined the
curvature form ��!h = �i@@ log h on L nX0. We said that (L ; h) is positive if !h(�; Ix�) > 0 for all x 2 X
and � 2 TxX .

The Kodaira embedding theorem says that X has a positive holomorphic line bundle i� it’s projective, and
equivalently that (L ; h) is positive i� L is ample.

Let’s fix � : L ! X and a positive Hermitian metric h on L as above. We’ll also need a volume form dV on
X in order to integrate some things.

The idea of the proof is, if U � X is an open set on which L jU �= U �C, then for an x 2 U and v 2 C, write

h(x; v) = e�'(x)jvj
2

for some ' 2 C1(X) Fix an x0 2 U . Then, in a manner similar to defining geodesic normal coordinates, we
can fix an x0 2 U and choose ' such that '(x0) = 0, d'x0 = 0, and '(x) � jxj

2
=2.

Let 1 denote the constant section, � be a smooth bump function supported on U such that �(x0) = 1, and
� := � � 1. Then, � is a smooth, but not holomorphic, section of L . More generally, let

(5.1) �k := � � (kn=2 � 1) 2 C1(X ! L 
k):
6



As k ! 1, this approximates a �-function, and k�kkL2 � 1 (where the norm is defined with respect to dV ).
Moreover, �k isn’t holomorphic, so @�k 6= 0, but its failure to be holomorphic is restricted to smaller and smaller
annuli, so for k� 1,

k@�kkL2 � e�k=100:

Our strategy will be to choose a e� such that

(5.2) @e� = @�;

and consider the holomorphic section � � e�. Of course, you could let e� = �, but that’s not very useful —
instead, we’ll solve (5.2) in a way that provides estimates that give us enough flexibility.

Lemma 5.3 (Kodaira vanishing with estimates). For k su�ciently lare, there’s a constant C > 0 such that for all
C1 sections � of T �0;1 
L 
k with @� = 0, there’s a C1 section � of L 
k such that

� @� = �, and
� k�kL2 � Ck�kL2 .

You should think of this as saying “@-closed implies @-exact,” but with an L2-estimate.
To prove Lemma 5.3, we’ll need a Poincaré-style inequality.

Lemma 5.4 (Poincaré-style inequality). Let @
�
: �C1(X;�p;q 
 L 
k) ! �C1(X;�p;q�1 
 L 
k) denote the

L2-adjoint to @. If k is su�ciently large, then there’s a constant C such that for all � 2 �C1(L 
k),Z
X

j�j
2
dV � C

Z �
j@�j

2
+ j@

�
�j

2
�
dV:

We’ll skip the proof, but the idea is that you integrate by parts and !h pops out. This is where we use
positivity — it allows you to clean up some of the terms and obtain the estimate.

Now we can use Lemma 5.4 to prove Lemma 5.3 with a Lax-Milgram-type argument.

Proof of Lemma 5.3. Let (–; –) denote the L2-inner product on spaces of smooth sections, and let H denote the
completion of �C1(X;L 
k) with respect to the norm

(–; –)H := (@–; @–) + (@
�
–; @

�
–):

This is a kind of Sobolev space, and Lemma 5.4 implies H ,! L2 continuously.
We want to show that for all � 2 �C1(X;�0;1 
 L 
k) with @� = 0, there’s an � 2 �C1(X;L 
k) with

@� = � and k�k . k�k.
Let’s recast the PDE @� = � variationally. Namely, consider �� := (–; �) in (L2)�. Since H � L2, then

(L2)� � H�, and thus we can consider �� 2 H�. The Reisz representation theorem produces an e� 2 H such
that �� = (–; e�)H , i.e. that (–; e�) = (–; �)L2 .

Next,

(–; �) = (@–; @e�) + (@
�
–; @

�e�)
= (–; @

�
@e�+ @@

�e�;
and hence variationally,

� = @
�
@e�+ @@

�e�:
Since @� = 0, then @@

�
@e� = 0, so @

�
@e� 2 ker(@).

A fact called the Fredholm alternative2 implies ker(@) = Im(@
�
)?, and therefore @

�
@e� = 0 and � = @@

�e�.
Let � := @

�e�.
Clearly @� = �, so let’s check the estimate:

k�kL62 = k@
�
�kL2

� ke�kH
= k��kH�

� Ck��k(L2)�

� Ck�kL2 :

2Easily my favorite band name in functional analysis.
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Since � solves the PDE in a variational sense, it’s an L2 section; there’s an additional regularity estimate to
show that since � is smooth, then � is also smooth.3 �

Remark. This � is not unique: for any � 2 ker(@), @(�+ �) = �, and by the Fredholm alterbative, � 2 Im(@
�
) =

ker(@)?, �+ � is an orthogonal sum, so k�+ �k � k�k. In this sense, we’ve constructed the smallest such �. (

Proof sketch of Theorem 4.8. Recall the section �k we defined in (5.1). Let � = @�k, and Kodaira vanishing with
� implies the existence of a e� such that @e� = @� and

ke�kL2 . k@�kkL2 � e�k=100:

Hence, � � e� is a holomorphic section of L 
k. Moreover, with a little more work you can get ke�kL2 small
enough that � � e� doesn’t vanish at x0. Since x0 was arbitrary, this means Bs(�(X;L 
k)) = ∅!

Next we need injectivity. Let � be a C1 section peaked at x0 and vanishing at y0. Then, � � e�)(x0) 6=
(� � e�)(y0). Thus we get two di�erent values, so the Kodaira map is injective. Similarly, to show it’s an
immersion, choose a � suitably peaked at x0 and specify its derivative. This will guarantee that the di�erential
doesn’t vanish as well, making the Kodaira map an embedding. �

3This is one of the nice things about the Kodaira vanishing theorem: you get a bunch of di�erent results depending on the regularity of
�.
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