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Abstract. In the presence of a nonzero B-field, the symmetries of the E8×E8

heterotic string form a 2-group, or a categorified group, as do the symmetries of

the CHL string. We express the bordism groups of the corresponding tangen-

tial structures as twisted string bordism groups, then compute them through
dimension 11 modulo a few unresolved ambiguities. Then, we use these bor-

dism groups to study anomalies and defects for these two string theories.
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0. Introduction

String theory has long been a place where higher-categorical structures in math-
ematics meet their applications. This is true for a few different reasons, but one
crucial reason is that many fields in superstring and supergravity theories have
mathematical incarnations that are higher-categorical objects, and so even pre-
cisely setting up mathematical questions coming out of string theory, let alone
solving them, often requires engaging with or developing the foundations of various
kinds of geometric objects with higher structure. This paper is concerned with
the appearance of a higher structure called a 2-group in two specific string theo-
ries, and how including this structure affects computations of bordism groups for
the tangential structures of these theories. These bordism groups control anom-
alies and extended objects for these theories. The main results of this paper are
computations of bordism groups and their generating manifolds through dimension
11, except for a few ambiguities we did not addres, for the tangential structures
underlying these two string theories.
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For the higher structures we investigate in this paper, the story begins with the
Kalb-Ramond field, or the B-field. This is an analogue of the field strength of an
electromagnetic field, represented as a closed differential 2-form with a quantization
condition. Locality of quantum field theory means expressing the field strength of
the electromagnetic field as a section of a sheaf, specifically as a connection on a
principal T-bundle, where T is the circle group. For the B-field, everything is one
degree higher: it comes to us as a closed differential 3-form with a quantization
condition, which we would like to express as a geometric object that sheafifies.
This cannot be a connection on a principal G-bundle for a finite-dimensional Lie
group G; instead, one models the B-field as a connection on a T-gerbe, which is a
categorification of a principal T-bundle. A T-gerbe on a manifold M is, roughly
speaking, a bundle of groupoids on M which is locally equivalent to pt/T. There are
several ways to make this precise; we discuss one, Murray’s bundle gerbes [Mur96],
in Definition 1.1.

In this article, we consider higher structures in two string theories: the E8×E8

heterotic string, and the Chaudhuri-Hockney-Lykken (CHL) string. The former
is a ten-dimensional superstring theory whose low-energy limit is ten-dimensional
N = 1 supergravity, and the latter is a nine-dimensional theory obtained from the
E8×E8 heterotic string theory by compactifying on a circle. Both of these theories
have B-fields, but Green and Schwarz [GS84] showed that in order to cancel an
anomaly, the B-field and the gauge field must satisfy a relation known as a Bianchi
identity. Fiorenza-Schreiber-Stasheff [FSS12] and Sati-Schreiber-Stasheff [SSS12]
describe how the Bianchi identity mixes the data of the B-field and the gauge field
into data that can be interpreted as a connection on a principal bundle for a 2-group
G, specifically a string 2-group Str(G,µ) associated to the data of a compact Lie
group G and a class µ ∈ H4(BG;Z); typically, G is the gauge group and µ is
determined by the anomaly polynomial.

2-groups have been used in the theoretical and mathematical physics literature
for some time now. This program began in earnest with work of Baez, Crans,
Lauda, Stevenson, and Schreiber [Bae02, BC04, BL04, BSCS07, BS07]; more
recently, 2-groups, their symmetries, and their anomalies have made a resurgence in
quantum field theory following work of Córdova-Dumitriescu-Intrilligator [CDI19]
and Benini-Córdova-Hsin [BCH19] identifying many examples of 2-group sym-
metries in commonly studied QFTs. See also Sharpe [Sha15] and the references
therein.

In the first part of this article, we introduce the Bianchi identity and 2-groups,
then review work of Fiorenza-Schreiber-Stasheff [FSS12] and Sati-Schreiber-Stash-
eff [SSS12] mentioned above. These authors work in the setting of stacks on the
site Man of smooth manifolds; the data of the B-field (Q,ΘQ) and the principal
G-bundle with connection (P,ΘP ) on a manifold M refine to maps from M to
classifying stacks of these data. The data of an identification of two differential
characteristic classes associated to ΘP and ΘQ gives rise to

(1) a principal Str(G,µ)-bundle lifting P for a specified choice of µ (Propo-
sition 1.35), and

(2) local data of solutions to the Bianchi identity (Proposition 1.37, [FSS12,
§6.3]).

Inspired by this, we introduce the tangential structures ξhet and ξCHL, which are
special cases of a general construction of Sati-Schreiber-Stasheff [SSS12, Definition
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2.8]: a ξhet
n -structure on a spin manifold M is data of a principal Ghet

n -bundle,
where Ghet

n := Str(Spinn × (E8 × E8 o Z/2), c1 + c2 − λ) (1.42), whose associated
Spinn-bundle via the quotient Ghet

n → Spinn is the principal Spinn-bundle of spin
frames (Definition 1.41). This is compatible as n varies, allowing us to stabilize
and define a ξhet-structure as usual. The definition of ξCHL in Definition 1.52,
which coincides with BString2a in [SSS12, (2.18), §2.2.3], is analogous. Related
tangential structures appear in [Sat11b, FSS15a, FSS15b, FSS21].

Given a tangential structure, we can compute bordism groups, and indeed the
point of this paper is to compute ξhet and ξCHL bordism groups in low dimensions.
These bordism groups can then be used to learn more about the E8 ×E8 heterotic
and CHL strings. We have two primary applications in mind.

(1) The cobordism conjecture of McNamara-Vafa [MV19] is an application
to the question of what kinds of spacetime backgrounds are summed over
in quantum gravity. Such backgrounds are often taken to be manifolds
or something closely related equipped with data of a tangential structure
ξ. The cobordism conjecture says that if ξ is the most general tangential
structure which can appear in this way in any particular d-dimensional

theory of quantum gravity, then Ωξk = 0 for 3 ≤ k ≤ d−1. We will see that

Ωξ
het

k and Ωξ
CHL

k are often nonzero in that range. This is consistent with

the cobordism conjecture: it suggests that ξhet and ξCHL are not the most
general tangential structures that can be summed over. Typically these
bordism groups are killed by allowing singular manifolds corresponding
to considering the theory with branes or other defects, so one can use
bordism computations to predict new defects in string theories.

(2) A broad class of n-dimensional quantum field theories come with data
of an anomaly, which in many cases can roughly be described an (n +
1)-dimensional invertible field theory α. In some cases one wants to
trivialize α, meaning exhibiting an isomorphism from α to the trivial
field theory. By work of Freed-Hopkins-Teleman [FHT10] and Freed-
Hopkins [FH21b], invertible field theories can be classified using bordism
group computations. For both the E8 × E8 heterotic string and the CHL
string, the bordism groups indicating a potential anomaly are nonzero,
and it would be interesting to check whether the corresponding anomalies
are nontrivial.

See §3, as well as Questions 0.1 to 0.3 below, for more on these applications and
what we can learn from our bordism computations.

Our main theorems are the following two computations of the ξhet and ξCHL

bordism groups in low dimensions.

Theorem A. For k ≤ 10, the ξhet-bordism groups are:

Ωξ
het

0
∼= Z

Ωξ
het

1
∼= Z/2⊕ Z/2

Ωξ
het

2
∼= Z/2⊕ Z/2

Ωξ
het

3
∼= Z/8

Ωξ
het

4
∼= Z⊕ Z/2
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Ωξ
het

5
∼= 0

Ωξ
het

6
∼= Z/2

Ωξ
het

7
∼= Z/16

Ωξ
het

8
∼= Z3 ⊕ (Z/2)⊕i

Ωξ
het

9
∼= (Z/2)⊕j

Ωξ
het

10
∼= (Z/2)⊕k.

Here, either i = 1, j = 4, and k = 4, or i = 2, j = 6, and k = 5.

Ωξ
het

11 is an abelian group of order 64 isomorphic to one of Z/8⊕Z/8, Z/16⊕Z/4,
Z/32⊕ Z/2, or Z/64.

This is a combination of Theorems 2.62 and 2.74. In §2.2.1, we find manifold

representatives for all classes in Ωξ
het

k for k ≤ 10 except potentially for two missing
classes X8 and X9 of dimensions 8, resp. 9 and their products with S1

nb . These
classes may or may not be zero depending on the fate of an Adams differential. In
§2.2.2, we find a manifold representing X8: if the unaddressed Adams differential
vanishes, X8 should be added to the list of generators in §2.2.1, and if the differential
does not vanish, then X8 bounds as a ξhet-manifold.

Our calculation of ξCHL-bordism builds on work of Hill [Hil09, Theorem 1.1],

who computes ΩString
∗ (BE8) in dimensions 14 and below.

Theorem B. For k ≤ 11, there is an abstract isomorphism from Ωξ
CHL

∗ to

the free and 2-torsion summands of ΩString
∗ (BE8). Therefore, by Hill’s computa-

tion [Hil09], there are isomorphisms

Ωξ
CHL

0
∼= Z Ωξ

CHL

6
∼= Z/2

Ωξ
CHL

1
∼= Z/2 Ωξ

CHL

7
∼= 0

Ωξ
CHL

2
∼= Z/2 Ωξ

CHL

8
∼= Z⊕ Z⊕ Z/2

Ωξ
CHL

3
∼= Z/8 Ωξ

CHL

9
∼= Z/2⊕ Z/2⊕ Z/2

Ωξ
CHL

4
∼= Z Ωξ

CHL

10
∼= Z/2⊕ Z/2

Ωξ
CHL

5
∼= 0 Ωξ

CHL

11
∼= Z/8.

This is a combination of Theorems 2.90 and 2.92. We also obtain some infor-
mation about manifold representatives of generators of these groups.

The computational tool we use to prove Theorems A and B is standard: the
Adams spectral sequence. This spectral sequence has seen plenty of applications
in the mathematical physics literature, and there is a standard procedure reviewed
by Beaudry-Campbell [BC18] for simplifying the E2-page for a wide class of tan-
gential structures, namely those which can be described as oriented, spinc, spin,
or string bordism twisted by a virtual vector bundle. For example, the twisted
string bordism computations of [FK96, Fan99, FW10] make use of this simpli-
fying technique. Unfortunately, this procedure is unavailable to us: in Lemma 2.2,
we prove that ξhet and ξCHL cannot be described as twists of this sort. However,
we are still able to describe them as twists in a more general sense due to Ando-
Blumberg-Gepner-Hopkins-Rezk [ABG+14a, ABG+14b]: adapting an argument



BORDISM FOR THE HETEROTIC AND CHL STRINGS 5

of Hebestreit-Joachim [HJ20], one learns that the Thom spectra for ξhet and ξCHL

can be produced as the MTString-module Thom spectra associated to certain maps
to BGL1(MTString). Using this structure, in joint work with Matthew Yu, we are
able to prove a theorem simplifying the calculation of the E2-page:

Theorem C (Debray-Yu [DY23]). In topological degrees 15 and below, the E2-
pages of the Adams spectral sequences computing 2-completed twisted string bordism
for a class of twists including those for ξhet and ξCHL can be computed as Ext over
the subalgebra A(2) of the Steenrod algebra.

What we prove is more precise and holds in more generality; see Theorem 2.20
and Corollary 2.22 for that version of the result.1

The A(2)-module Ext groups we have to compute are simpler than what one
a priori has to work with over the entire Steenrod algebra A. We do not need
this simplification at odd primes; there the full Adams spectral sequence is easier
to work with, and the absence of a simplification does not hinder us (though see
also [DY23, §3.2]).

The reason we computed these bordism groups in this paper is with applica-
tions to physics, specifically to anomalies and the cobordism conjecture, in mind.
We discuss some implications of our calculations in §3; for example, one of the

Z/2 summands of Ωξ
het

1 corresponds to the non-supersymmetric 7-brane recently
discovered by Kaidi-Ohmori-Tachikawa-Yonekura [KOTY23]. We end this section
of the introduction with some questions related to these physics predictions.

Question 0.1. What does the Kaidi-Ohmori-Tachikawa-Yonekura 7-brane corre-
spond to in Hořava-Witten theory, and what does this look like in bordism? Hořava-
Witten [HW96a, HW96b, Wit96] proposed that the E8×E8 heterotic string can
be identified with a certain limit of M-theory compactified on an interval; thus this
ought to correspond to a notion of bordism of manifolds with boundary. Conner-
Floyd [CF66, §16] define a notion bordism of compact manifolds with boundary —
is this the correct kind of bordism for applications to McNamara-Vafa’s conjecture?

We discuss some additional extended objects predicted by our bordism compu-
tations to exist in the E8 × E8 heterotic and CHL strings in §3.1.

Question 0.2. Is the Z/2 symmetry exchanging the two E8-bundles in E8 × E8

heterotic string theory anomalous? Because Ωξ
het

11 is nonzero, we were unable to
rule out this anomaly.

Witten [Wit86, §4] and Tachikawa-Yonekura [TY21] show that the E8 × E8

heterotic string is anomaly-free in certain cases, but they do not address the Z/2
symmetry.

Question 0.3. Does the CHL string have an anomaly? This anomaly could be

nontrivial, because Ωξ
CHL

10
∼= Z/2⊕ Z/2.

There is another application of twisted string bordism to physics that we did
not address in this paper: studying elliptic genera, the Witten genus and related
invariants, along the lines of, e.g., Bunke-Naumann [BN14], McTague [McT14],
Han-Huang-Duan [HHD21], and Berwick-Evans [BE23]. It would be interesting
to study whether the calculations in this paper could be applied in similar contexts.

1We also provide a proof sketch of the case we need in Remark 2.26.
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Outline. We begin in §1.1 by introducing the fields present in 10d N = 1
supergravity, the low-energy limit of heterotic string theory. We discuss how
the Green-Schwarz anomaly cancellation condition imposes an equation called the
Bianchi identity (1.10) on the fields in this theory. We then generalize this to a
twisted Bianchi identity (1.12) associated to data of a Lie group G and a class
µ ∈ H4(BG;Z). In §1.2, we relate these Bianchi identities to the presence of a
2-group symmetry in this field theory. We begin by reviewing 2-groups, their prin-
cipal bundles, and their connections, and in Example 1.22 define the string cover
S(G,µ) corresponding to a group G and a class µ ∈ H4(BG;Z). Then we review
work of Fiorenza-Schreiber-Stasheff [FSS12] and Sati-Schreiber-Stasheff [SSS12]
relating the Bianchi identity to twisted string structures. Using this, we define the
heterotic tangential structure in Definition 1.41, which is the topological part of the
structure necessary for defining N = 1 supergravity. Then, in §1.3, we introduce
the CHL string and define the CHL tangential structure using what we learned in
§1.2.

In §2, we compute the bordism groups Ωξ
het

∗ and Ωξ
CHL

∗ in low degrees. For
the latter we are able to completely compute them in dimensions 11 and below,
but for the former, we have only partial information above dimension 7, occluded
by Adams differentials and an extension problem we could not solve. We begin
in §2.1 by discussing how to simplify the Thom spectra MT ξhet and MT ξCHL; we
prove in Lemma 2.2 that a standard approach does not work, and so we use a
different idea: construct MT ξhet and MT ξCHL as MTString-module Thom spectra
using machinery developed by Ando-Blumberg-Gepner-Hopkins-Rezk. We review
this machinery and discuss how it leads to Corollary 2.22, a special case of the main
theorem of our work [DY23] joint with Matthew Yu, simplifying the calculation of
the E2-page of the Adams spectral sequence at 2 for a wide class of twisted string
bordism groups. Next, in §2.2, we undertake this computation for ξhet. We do not
have such a simplification at odd primes, so in §2.3 we press ahead directly with

the Adams spectral sequence for ξhet, proving in Theorem 2.74 that Ωξ
het

∗ lacks
odd-primary torsion in degrees 11 and below. Finally, in §2.4 we run the analogous
calculations for the CHL string, again using Corollary 2.22 at p = 2 and arguing
more directly at odd primes.

The final section, §3, is about applications to string theory. We first discuss
the cobordism conjecture of McNamara-Vafa [MV19] in §3.1, and go over a few
predictions that follow from the bordism group computations in §2. In §3.2, we
briefly introduce anomalies of quantum field theories and their bordism-theoretic
classification, and touch on questions raised by our bordism computations.
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1. Tangential structures for heterotic and CHL string theories

The goal of this section is to define the tangential structures ξhet and ξCHL that
are necessary to formulate the (low-energy limits of) the E8 × E8 heterotic string
and the CHL string. By “tangential structure” we mean the topological part of the
structure needed on a manifold to define a given field theory; see Definition 1.40
for the precise definition. The presence of a B-field in both theories means that
these tangential structures arise as classifying spaces of higher groups. First, we
introduce the heterotic string in §1.1, and see what data and conditions are told
to us by Green-Schwarz anomaly cancellation; then in §1.2, we reinterpret that
data as combining the gauge field and the B-field into a connection for a principal
bundle for a higher group. Finally, in §1.3, we use the general theory from §1.2 to
determine the tangential structure for the CHL string.

The material in this section is not new, though it was not always stated in
this form before. The fact that a Bianchi identity/Green-Schwarz mechanism is
expressing a lift to a connection for a higher-group principal bundle is well-known;
see Fiorenza-Schreiber-Stasheff [FSS12] and Sati-Schreiber-Stasheff [SSS12].

1.1. The E8×E8 heterotic string. Heterotic string theories are ten-dimen-
sional superstring theories whose low-energy limits are 10d N = 1 supergrav-
ity theories. These supergravity theories can have Yang-Mills terms, and so are
parametrized by the data of the gauge group G, a compact Lie group. However,
not all choices of G yield valid supergravity theories; there is the potential for
an anomaly that must be trivialized, and this is quite a strong constraint, imply-
ing that the connected component of the identity in G must be either E8 × E8

or G = SemiSpin32
2 [GS84, ATD10]. The anomaly cancellation mechanism it-

self, due to Green-Schwarz [GS84], combines the different fields in the theory into
a connection for a principal G-bundle, where G is a higher group;3 we use this
subsection to discuss the fields and the Green-Schwarz condition, and the next sub-
section to discuss the role of higher group. In this paper, we will focus solely on the
E8 × E8 case; it would be interesting to study the analogues of the computations
and applications in this paper in the SemiSpin32 case.

The group Z/2 acts on E8 × E8 by exchanging the two factors, and the setup
of heterotic string theory, including the low-energy supergravity limit and Green-
Schwarz’ anomaly cancellation, is invariant under this symmetry, so we can expand
the gauge group to G := (E8 ×E8)oZ/2.4 This appears to have first been noticed
by McInnes [McI99, §I]; see also [dBDH+00, §2.2.1].

Enlarging the gauge group from E8 × E8 to (E8 × E8) o Z/2 is a choice, and
requires justification — why this semidirect product, and not other or larger ex-
pansions? The answer is that Z/2 is acting through the isomorphism Z/2 ∼=

2The center of Spin4k is isomorphic to Z/2 × Z/2. Quotienting by one copy of Z/2 yields

SO4k; the quotients by the two other Z/2 subgroups are isomorphic, and are called SemiSpin4k.

See [McI99].
3Green-Schwarz’ work only cancels the perturbative part of the anomaly; see §3.2 for more

information.
4Though we often use the standard name “the E8 × E8 heterotic string” to refer to this

theory, we will always consider the larger gauge group (E8 × E8) o Z/2.
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Out(E8 × E8), meaning both that it acts nontrivially on the gauge group (and
in turn, on the fields of the theory) and that no larger group acts faithfully in this
way. Similar outer automorphism extensions have been considered in, for exam-
ple, [HLMM22, BG23].

The fields of 10d N = 1 supergravity on a manifold M include:

• a metric g,
• a spin structure on M ,
• a principal G-bundle P →M with connection ΘP ,
• a B-field or Kalb-Ramond field, a gerbe Q→M with connection ΘQ, and
• several additional fields (the dilaton, dilatino, gravitino, and gaugino)

which will not be directly relevant to this paper.

Let us say more about the B-field, since its model as a gerbe with connection may be
less familiar. A gerbe is a categorification of the idea of a principal T-bundle; here
T is the circle group. Thus, for example, a principal T-bundle P →M is classified
by its first Chern class c1(P ) ∈ H2(M ;Z), and a gerbe Q → M is classified by
its Dixmier-Douady class DD(Q) ∈ H3(M ;Z) [DD63, Bry93]. A connection on
a principal T-bundle has holonomy around loops; a connection on a gerbe has
holonomy on closed surfaces. And so on.

Gerbes were first introduced by Giraud [Gir71]. There are several different
and equivalent ways to precisely define gerbes and their connections; heuristically
you can think of a gerbe on M as a sheaf of groupoids on M locally equivalent to
the trivial sheaf with fiber pt/T. One way to make this precise is the following.

If f : Y → X is a map, we let Y [n] := Y ×X Y ×X · · · ×X Y ; Y [n] is the space
of n-simplices in the Čech nerve for f .

Definition 1.1 (Murray [Mur96]). A bundle gerbe over a manifold M is a surjec-
tive submersion π : Y →M , a T-bundle P → Y [2], and an isomorphism µ : π∗12P ⊗
π∗23P

∼=→ π∗13P of T-bundles over Y [3] satisfying the natural associativity condition
(see below) over Y [4].

Given two T-bundles P1, P2 → X, their tensor product P1 ⊗ P2 is the unit
circle bundle inside the tensor product of the Hermitian line bundles L1, L2 → X
associated to P1, resp. P2. The maps π12, π23, π13 : Y [3] →→→ Y [2] are the three face

maps in the Čech nerve Y • associated to f , given explicitly by contracting two of
the three copies of Y via Y ×X Y → Y .

The associativity condition in Definition 1.1 is a little unwieldy to state explic-
itly, but can be found in in [Mur10, Definition 4.1(2)].

Definition 1.2 ([Mur96]). A connection ΘQ on a bundle gerbe Q = (Y, P, µ) is
data of a 2-form B ∈ Ω2(Y ) and a connection ΘP on P such that if ΩP ∈ Ω2(P )
denotes the curvature of P and π1, π2 : Y [2] → Y are the two projections, then

(1.3) ΩP = π∗2B − π∗1B.
The curvature of ΘQ is ΩQ := dB, which is a closed 3-form.

The key thing to know about this definition is that, just like a principal T-
bundle P →M with connection locally has a connection 1-form A and globally has
a curvature 2-form ΩP which locally satisfies ΩP = dA, a gerbe with connection Q
locally has a connection 2-form B and globally has a curvature 3-form ΩQ which
locally satisfies ΩQ = dB. For more information, see, e.g., Brylinski [Bry93, §5.3].
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Definition 1.4. Because E8 is a simple, connected, simply connected, compact

Lie group, there is a canonical isomorphism H4(BE8;Z)
∼=→ Z. Let c denote the

generator corresponding to 1 ∈ Z. In B(E8 × E8) ' BE8 × BE8, let c1 and c2
denote the copies of c coming from the first, resp. second copies of BE8 via the
Künneth map.

The class c1 + c2 is invariant under the Z/2 swapping action, so descends via
the Serre spectral sequence to a class in H4(B((E8 ×E8)oZ/2);Z), which we also
call c1 + c2.

Definition 1.5. Spinn is also a compact, connected, simply connected simple Lie

group when n ≥ 3, and the generator of H4(BSpinn;Z)
∼=→ Z corresponding to 1 is

denoted λ.

The class λ is preserved under the standard embeddings Spinn ↪→ Spinn+k, so
we often work with its stabilized avatar λ ∈ H4(BSpin;Z). We use this to define
λ for Spinn when n < 3. Because 2λ = p1, the class λ is often denoted 1

2p1. The
mod 2 reduction of λ is the Stiefel-Whitney class w4.

Lemma 1.6 (Whitney sum formula). Let X be a topological space and E1, E2 → X
be two vector bundles with spin structure. Then λ(E1 ⊕ E2) = λ(E1) + λ(E2).

Proof. It suffices to prove the universal case, which amounts to the calculation
of the pullback of λ by the map

(1.7) ⊕ : BSpink1 ×BSpink2 −→ BSpink1+k2 .

For n ≥ 3, Spinn is a connected, simply connected, compact simple Lie group, so
H`(BSpinn;Z) vanishes for ` = 1, 2, 3 and is isomorphic to Z for ` = 0, 4. For n < 3,
H∗(BSpinn;Z) is still trivial or free abelian in degrees 4 and below. Therefore by
the Künneth formula, for all k1, k2, H4(BSpink1 × BSpink2 ;Z) is a free abelian
group, meaning that if we can show 2λ(E1 ⊕ E2) = 2λ(E1) + 2λ(E2), then we can
deduce λ(E1 ⊕ E2) = λ(E1) + λ(E2).

As 2λ = p1, we have reduced to the Whitney sum formula for p1. The Whitney
sum formula p1(E1 ⊕ E2) = p1(E1) + p1(E2) does not actually hold for all vector
bundles, but Brown [Bro82, Theorem 1.6] (see also Thomas [Tho62]) showed that
the difference p1(E1⊕E2)−p1(E1)−p1(E2) vanishes when E1 and E2 are orientable,
so in our setting of spin vector bundles, we can conclude. �

Remark 1.8. There are other ways to prove Lemma 1.6: for example, it follows
immediately from a result of Jenquin [Jen05, Corollary 4.9] in a simple generalized
cohomology theory. Johnson-Freyd and Treumann [JFT20, §1.4] sketch another
proof of Lemma 1.6.

Next, we introduce the Chern-Weil homomorphism. Let G be a Lie group
with Lie algebra g, and let f ∈ Symk(g∨), i.e. f is a degree-k polynomial function
on g which is invariant under the adjoint G-action on g. Given a manifold M , a
principal G-bundle P → M , and a connection Θ on P , let Ω ∈ Ω2

P (g) denote the
curvature 2-form. Then one can evaluate f on Ω∧k ∈ Ω2k

P (g⊗k), producing a form
f(Ω∧k) ∈ Ω2k

P ; because f is Ad-invariant, f(Ω∧k) descends to a form w(Θ) ∈ Ω2k
M ,

which is always closed. This defines a ring homomorphism, called the Chern-Weil
homomorphism [Car50, Che52],

(1.9a) w : Sym•(g∨) −→ H∗dR(M),



10 ARUN DEBRAY

which doubles the degree and is natural in M ; moreover, the de Rham class of w(Θ)
depends on P but not on the connection. Using de Rham’s theorem and naturality,
w upgrades to a ring homomorphism

(1.9b) w : Sym•(g∨) −→ H∗(BG;R),

which Chern and Weil showed is an isomorphism when G is compact [Che52,
Wei49]. Thus, when G is compact, a class x ∈ H2∗(BG;Z) defines a polynomial
CWx ∈ Sym∗(g∨), the w-preimage of the de Rham class of x. We will also write
CWx(Θ) to denote the form defined by evaluating the polynomial CWx on the
curvature form of Θ.

Returning to 10d N = 1 supergravity, Green-Schwarz [GS84] noticed that in
order to trivialize an anomaly, one has to impose a relation between P and Q and
their connections, so that Q is not quite a gerbe, but instead something twisted.
Specifically, the curvature ΩQ is no longer closed, but instead satisfies the equation

(1.10) dΩQ = CWc1+c2(ΘP )− CWλ(ΘLC),

where ΘLC is the Levi-Civita connection on the principal Spinn-bundle of frames
of M .5 This is called a Bianchi identity in the physics literature, motivating the
following definition.

Definition 1.11. Given data of a compact Lie group G and a class µ ∈ H4(BG;Z),
the twisted Bianchi identity is the equation

(1.12) dH = CWµ(ΘP ),

where H is a 3-form and ΘP is a connection on a principal G-bundle.

As in the case of (1.10), we think of this as mixing the data of two connections,
one on a principal G-bundle and one on a gerbe. In the next section, we interpret
twisted Bianchi identities as coming from connections on higher groups.

1.2. From the Bianchi identity to higher groups. In this section, we
show that the twisted Bianchi identity (1.12) is a natural consequence of combining
a principal G-bundle and a gerbe, each with connections, into a principal G-bundle,
where G is a certain Lie 2-group built from G and µ, together with additional data
that we think of as a connection on G. First we introduce 2-groups and their
principal bundles; then, following [FSS12, SSS12], we recover the twisted Bianchi
identity. As a result, we can precisely define the tangential structure for the E8×E8

heterotic string, i.e. the topological part of the data which, when put on a manifold
M , allows one to study E8 × E8 heterotic string theory on that manifold.

Definition 1.13. A 2-group G is a group object in the bicategory of small cate-
gories.

Definition 1.14. A Lie 2-group is a 2-group G whose underlying category has
been given the structure of a category object in smooth manifolds.

This means that the sets of objects and morphisms are smooth manifolds, and
assignments such as the source of a map or the composition of two maps are smooth.

5Before Green-Schwarz, it was already known that CWc1+c2 (ΘP ) and dΩQ had to mix
in order to preserve supersymmetry, thanks to work of Bergshoeff-de Roo-de Wit-van Nieuwen-

huizen [BdRdWvN82] and Chapline-Manton [CM83].
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2-groups were first introduced by Hoàng Xuân Śınh in her thesis [Hoà75], and Lie
2-groups were introduced by Baez [Bae02, §2].

We call a 2-group strict if it is strict as a monoidal category, i.e. its associators
and unitors are all identity maps. Mac Lane’s coherence theorem [Mac71, Chap-
ter 7] implies every 2-group is equivalent to a strict 2-group, but the analogous
statement is false for Lie 2-groups; see Remark 1.25.

Example 1.15. If G is a group, it defines a monoidal groupoid with G as its set
of objects, tensor product g ⊗ h := gh, and only the identity morphisms. This is a
2-group, and inherits the structure of a Lie 2-group if G is a Lie group.

This procedure embeds the bicategory of groups, group homomorphisms, and
identity 2-morphisms into the bicategory of 2-groups, and we will therefore abuse
notation and call this 2-group G again.

Example 1.16. Let A be an abelian group, and let A[1] denote the monoidal
groupoid with a single object ∗ and HomA[1](∗, ∗) := A. This is a 2-group, and if
A is Lie, A[1] is a Lie 2-group.

It turns out every 2-group G factors as an extension of these examples. Let
e be the identity object of G and π0(G) be the group of isomorphism classes of
objects in G. Then there is a short exact sequence of 2-groups

(1.17) 0 AutG(e)[1] G π0(G) 0.

The Eckmann-Hilton theorem guarantees AutG(e) is abelian. Extensions (1.17) are
classified by the data of:

(1) an action of π0(G) on AutG(e), and
(2) a cohomology class k ∈ H3(Bπ0(G); AutG(e)), called the k-invariant of

G.

When G has the discrete topology, this is unambiguous, but when G is a Lie 2-group,
one must be careful what kind of cohomology is used here. The correct notion of
cohomology is the Segal-Mitchison cohomology [Seg70, Seg75] of π0(G) valued in
the abelian Lie group AutG(e), as shown by Schommer-Pries [SP11, Theorem 1].

Now we want to discuss principal G-bundles. The idea is that if G is a group,
a principal G-bundle is a submersion which is locally trivial, and whose fibers are
G-torsors. For a Lie 2-group G, we need the fibers to locally look like G, meaning
they must be categorified somehow.

Definition 1.18 (Bartels [Bar06], Nikolaus-Waldorf [NW13, Definition 6.1.5]).
Let G be a Lie 2-group. A principal G-bundle over a smooth manifold M is a Lie
groupoid P with a surjective submersion obj(P )→M and a smooth right action ρ
of G on P such that the map

(1.19) (pr1, ρ) : P ×G −→ P ×M P

is a weak equivalence of Lie groupoids.

See Nikolaus-Waldorf [NW13, §6] for more details. The principal G-bundles
on a manifold M form a 2-groupoid BunG(X) [NW13, Theorem 6.2.1].



12 ARUN DEBRAY

Definition 1.20. Let G be a 2-group, and let CG be the bicategory with a single
object ∗ and morphism category HomCG(∗, ∗) := G. The classifying space of G,
denoted BG, is the geometric realization of the nerve of CG.6

When G is a Lie 2-group, we make the same definition. This time CG is a
topological bicategory, so its nerve is a simplicial space, and geometrically realizing,
we obtain the space BG.

Theorem 1.21 (Nikolaus-Waldorf [NW13, Theorems 4.6, 5.3.2, 7.1]). If G is a

strict Lie 2-group, then there is a natural equivalence [X,BG]
'→ π0(BunG(X)).

Nikolaus-Waldorf’s proof builds on Baez-Stevenson’s related but distinct char-
acterization of [X,BG] [BS09, Theorem 1] in terms of nonabelian Čech cohomology.

When G is an ordinary group, if G has the discrete topology, BG has only one
nonzero homotopy group, which is π1(BG) = G; likewise if G is a discrete 2-group,
πi(BG) is nontrivial only for i = 1, 2; π1(BG) = π0(G) and π2(BG) = AutG(e).
When G is a Lie 2-group, we have no control over its homotopy groups in general,
just like BG when G is positive-dimensional.

If G has the discrete topology, the data classifying (1.17), namely the action of
π0(G) on AutG(e) and the k-invariant, is equivalent to the Postnikov data of BG,
worked out by Mac Lane-Whitehead [MLW50]: this data classifies fibrations over
BG with fiber the Eilenberg-Mac Lane space K(AutG(e), 2). The total space of the
fibration with this Postnikov data is homotopy equivalent to BG.

Example 1.22. Let G be a compact Lie group; then, the Segal-Mitchison coho-
mology group H3

SM(G;T) classifying Lie 2-group extensions of G by T[1] is nat-
urally isomorphic to H4(BG;Z) [SP11, Corollary 97]. Therefore given a class
µ ∈ H4(BG;Z), we obtain a Lie 2-group Str(G,µ) fitting into a central extension

(1.23) 0 T[1] Str(G,µ) G 0,

which is sometimes called the string 2-group or string cover associated to G and λ.
Of all the string covers, the most commonly studied one is Stringn := Str(Spinn, λ),
which is called the string 2-group.

This class of 2-groups was first studied by Baez-Lauda [BL04, §8.5].
The sequence (1.23) implies that upon taking classifying spaces,

(1.24) BG −→ BG
µ−→ K(Z, 4)

is a fibration.

Remark 1.25. Theorem 1.21 classified principal G-bundles when G is a strict 2-
group, but it is a theorem of Baez-Lauda [BL04, Corollary 60] that there is no
strict Lie 2-group model for Str(G,µ) when G is simply connected and µ 6= 0.
However, there is a fix: in the setting of Fréchet Lie 2-groups, where we allow the
spaces of objects and morphisms of G to be Fréchet manifolds, there is a strict
model for Str(G,µ) [BSCS07, LW23], so BStr(G,µ) actually classifies principal
Str(G,µ)-bundles. This suffices for studying bordism groups.

6There are many different definitions of the nerve of a bicategory; the fact that their

geometric realizations are canonically homotopy equivalent is a theorem of Carrasco-Cegarra-
Garzón [CCG10], allowing us to speak about BG without specifying which kind of bicategorical

nerve to use.
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Following Sati-Schreiber-Stasheff [SSS12], we will now relate Str(G,µ) to the
twisted Bianchi identity forG and µ. To do so, we use the language of stacks and dif-
ferential cohomology, following [HS05, FH13, Sch13, BNV16, ADH21]. Make
the category Man into a site by defining the covers to be surjective submersions,
and define a stack to be a functor of ∞-categories Manop → Top which satisfies
descent for hypercovers. This defines a presentable∞-category St of stacks [Lur09,
Proposition 6.5.2.14], and the Yoneda embedding h : Man → St embeds Man as
a full subcategory. We will often simply write M for the stack h(M); we never
compare these two notions directly, so this will not introduce confusion.

For any space X, the functor Map(–, X) : Man → Top is a sheaf, and this
procedure defines a functor of ∞-categories Γ∗ : Top → St . The values of the
stacks produced by Γ∗ evaluated on manifolds M are homotopy-invariant in M .
Γ∗ has a left adjoint Γ] : St → Top (see Dugger [Dug01, Proposition 8.3], Morel-
Voevodsky [MV99, Proposition 3.3.3], and [ADH21, Proposition 4.3.1]); Γ](X)
for a stack X can be thought of as the best approximation to X by a stack whose
values on manifolds are homotopy-invariant.

Let ∆n
alg := {(t0, . . . , tn) | t0 + · · · + tn = 1} ⊂ Rn+1. These “algebraic n-

simplices” assemble into a cosimplicial manifold ∆•alg, and [ADH21, Corollary

5.1.4] there is a natural homotopy equivalence Γ](X) ' |X(∆•alg)|, where as usual

|–| denotes geometric realization.

Thus, for a manifold M , there is a natural homotopy equivalence Γ](M)
'→M ,

so a map M → X naturally induces a map M → Γ](X).

Lemma 1.26. Suppose X → Y ← Z is a diagram in St, and that Y(∆n
alg) and

Z(∆n
alg) are connected for all n. Then

(1.27) Γ](X×Y Z) ' Γ](X)×Γ](Y) Γ](Z).

Proof. Pullbacks of sheaves can be computed pointwise, then sheafifying, so
given a pullback X→ Y ← Z in St , for each n ≥ 0 the pullback of

(1.28) X(∆n
alg) −→ Y(∆n

alg)←− Z(∆n
alg)

is (X ×Y Z)(∆n
alg). The Bousfield-Friedlander theorem [BF78, Bou01] implies

that, given the hypotheses on Y and Z in the theorem statement, the homotopy
pullback of the geometric realizations of X, Y, and Z is the geometric realization
of the levelwise homotopy pullback (1.28) (see [War20, p. 14-9] for this specific
consequence of the Bousfield-Friedlander theorem). �

Example 1.29. For G a Lie group, there is a stack B∇G whose value on a manifold
M is the geometric realization of the nerve of the groupoid of principal G-bundles
on M with connection [FH13]. This object is denoted BGconn in [FSS12, SSS12,

Sch13], BG∇ in [BNV16, §5], and Bun∇G in [ADH21].

There is a natural homotopy equivalence Γ](B∇G)
'→ BG [ADH21, Corol-

lary 13.3.29], which can be interpreted as forgetting from a principal bundle with
connection to a principal bundle.

Example 1.30. For k ≥ 0, there is a stack Bk∇T whose value on a manifold M is the
geometric realization of the nerve of the ∞-groupoid of cocycles for the differential
cohomology group Ȟk+1(M ;Z). This object is studied in [FSS12, SSS12, Sch13],
where it is denoted BkU(1)conn.

Lemma 1.31. There is a homotopy equivalence Γ](B
k
∇T) ' K(Z, k + 1).
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Proof. Schreiber [Sch13, Observation 1.2.134] produces the following pull-
back square in St :

(1.32)

Bk∇T Ωk+1
c`

K(Z, k + 1) K(R, k + 1),

y

where Ωk+1
c` is the stack of closed (k + 1)-forms. For that stack and K(R, n + 1),

the values on each ∆n
alg are connected spaces, so Lemma 1.26 identifies Γ](B

k
∇T) '

K(Z, k + 1) ×K(R,k+1) Γ](Ω
k+1
c` ). To finish, observe that, essentially by the de

Rham theorem, the map Ωk+1
c` → K(R, k + 1) passes to a homotopy equivalence

after applying Γ]. This follows from [BNV16, Lemma 7.15] together with the
Dold-Kan theorem. �

These stacks are the universal setting for the Chern-Weil map.

Theorem 1.33 (Cheeger-Simons [CS85], Bunke-Nikolaus-Völkl [BNV16]). Let
G be a compact Lie group and c ∈ Hk(BG;Z), where k is even. Then there is a

map č : B∇G → Bk−1
∇ T natural in (G, c) such that for any manifold M and map

f : M → B∇G, interpreted as a principal G-bundle P →M with connection Θ,

(1) if char : Ȟ∗(–;Z) → H∗(–;Z) denotes the characteristic class map, then
char(č ◦ f) = c(P ), and

(2) if curv : Ȟ∗(–;Z) → Ω∗c` denotes the curvature map, then curv(č ◦ f) =
CWc(Θ).

Cheeger-Simons lifted the Chern-Weil map to differential cohomology; Bunke-
Nikolaus-Völkl recast it in terms of B∇G. The map char in Theorem 1.33 is the
map down the left of the square (1.32); curv is the map across the top of (1.32).

Definition 1.34 (Fiorenza-Schreiber-Stasheff [FSS12, §6.2]). Given a compact
Lie group G and a class µ ∈ H4(BG;Z), let BStr(G,µ) denote the fiber of the
map µ̌ : B∇G→ B3

∇T.

We will see momentarily that maps to BStr(G,µ) lead to solutions to the
twisted Bianchi identity for G and µ.

Proposition 1.35. There is a natural homotopy equivalence Γ](BStr(G,µ)) '
BStr(G,µ).

For this reason we think of BStr(G,µ) as the classifying stack of principal
Str(G,µ)-bundles with connection, though this is only a heuristic.7

Proof. Apply Lemma 1.26 to the diagram

(1.36) B∇G
µ̌−→ B3

∇T←− ∗,
as the values of both ∗ and B3

∇T are connected on ∆n
alg for each n. This implies

that Γ](BStr(G,µ)) is the fiber of µ : BG→ K(Z, 4), which we identified with BG
in (1.24). �

7There are at least five notions of a connection on principal G-bundles for G a 2-group: three
are discussed by Waldorf [Wal18, §5], a fourth by Rist-Saemann-Wolf [RSW22], and a fifth,

defined only for G = Stringn, by Waldorf [Wal13].
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Proposition 1.37 (Fiorenza-Schreiber-Stasheff [FSS12, §6.3]). Let G be a com-
pact Lie group, U ⊂ Rn be an open set, and P → U be a principal G-bundle
with connection Θ. A lift of the corresponding map fP,Θ : U → B∇G to a map

f̃P,Θ : U → BStr(G,µ) induces a form H ∈ Ω3(U) such that H and Θ satisfy the
twisted Bianchi identity (1.12).

The idea here is that we have specified a trivialization of the differential char-
acteristic class µ̌(P, θ). Applying the curvature map curv : B3

∇T → Ω4
c`, we have

also specified a trivialization of CWµ(Θ), which locally is the data H showing that
CWµ(Θ) is exact.

A map to BStr(G,µ) is more data than what we get from Proposition 1.37, as
we have trivialized not just the Chern-Weil form, but also the differential character-
istic class. This can be interpreted as saying the data H specifying the trivialization
is quantized to form a twisted version of a gerbe with connection.

To summarize, given a map M → BStr(G,µ), the stack which we think of as
modeling Str(G,µ)-bundles with connection, we obtain:

(1) a principal Str(G,µ)-bundle P →M by Proposition 1.35, and
(2) a “twisted gerbe with connection,” i.e. local data of a gerbe Q→M such

that ΩQ and the G-connection Θ induced by the map BStr(G,µ)→ B∇G
satisfy the twisted Bianchi identity (1.12) by Proposition 1.37.

Motivated by this, we define of the tangential structure for the E8 × E8 heterotic
string. This first appears in [SSS12, §3.2], with [Sat11b, FSS15a] considering
some related examples.

Definition 1.38. Let G := (E8 × E8) o Z/2. A differential ξhet
n -structure on a

manifold M is the following data:

(1) a Riemannian metric and spin structure on M ,
(2) a principal G-bundle P →M with connection Θ, and
(3) a lift of

(1.39) ((BSpin(M),ΘLC), (P,Θ)): M −→ B∇(Spinn ×G)

to a map M → BStr(Spinn ×G, c1 + c2 − λ).

Here BSpin(M)→M is the principal Spinn-bundle of frames of M , and ΘLC denotes
its Levi-Civita connection.

For bordism groups we want the topological version of this.

Definition 1.40. A tangential structure is a space B and a map ξ : B → BO.
Given a tangential structure ξ, a ξ-structure on a virtual vector bundle E → X is a

lift of the classifying map fE : X → BO to a map f̃E : X → B such that ξ◦f̃E = fE .
A ξ-structure on a manifold M is a ξ-structure on its tangent bundle.

We make the analogous definition with maps ξn : Bn → BOn; in this case, we
only refer to ξn-structures on n-manifolds.

Lashof [Las63] defined bordism groups Ωξ∗ of manifolds with ξ-structure, and
Boardman [Boa65, §V.1] defined a Thom spectrum MT ξ whose homotopy groups

are naturally isomorphic to Ωξ∗ via the Pontrjagin-Thom construction.8 We think

8In homotopy theory, it is common to study the Thom spectra M ξ representing ξ-structures
on the stable normal bundle νM of a manifold M , and indeed many of the results we cite about

MTSO , MTString, etc. are stated for MSO , MString, etc., or about Thom spectra M ξ in general.
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of the category of tangential structures as the category of spaces over BO, and
bordism groups and Thom spectra are functorial in this category. That is, taking
bordism groups and Thom spectra is functorial as long as one commutes with the
map down to BO.

The following definition is a special case of a definition due to Sati-Schreiber-
Stasheff [SSS12, Definition 2.8]. See [Sat11b, FSS15a, FSS21] for other related
examples.

Definition 1.41. Let Gn := Spinn × (E8 × E8) o Z/2 and

(1.42) Ghet
n := Str(Gn, c1 + c2 − λ).

The E8 × E8 heterotic tangential structure is the tangential structure

(1.43) ξhet
n : BGhet

n −→ BSpinn −→ BOn,

where the first map comes from the quotient of Ghet by T[1], followed by projection
onto the Spinn factor in Gn. We also define Ghet and ξhet analogously by stabilizing
in n.

In other words: a differential ξhet
n -structure is a lift of a map to B∇(Spin×G)

to BStr(G,µ); by Proposition 1.35, a topological ξhet
n -structure is the image of this

data under Γ]. In particular, a ξhet
n -structure on an n-manifold M includes data of

a principal Ghet
n -bundle P →M .

Taking the quotient of Ghet by T[1] induces a map of tangential structures

(1.44) φ : BGhet −→ BSpin×B(E2
8 o Z/2).

Thus, much like a spinc manifold M has an associated T-bundle P with c1(P ) mod
2 = w2(M), a ξhet-manifold has associated (E2

8 o Z/2)-bundle P . From this per-
spective, a ξhet-structure on a manifold M is the following data:

• a spin structure on M ,

• a double cover π : M̃ →M ,

• two principal E8-bundles P,Q→ M̃ which are exchanged by the noniden-
tity deck transformation of π, and

• a trivialization of the class λ(M)− (c(P ) + c(Q)) ∈ H4(M ;Z).

By a trivialization of a cohomology class α ∈ Hn(M ;A) we mean a null-homotopy
of the classifying map fα : M → K(A,n). Thus orientations are identified with
trivializations of w1, etc. To make the trivialization of λ(M) − (c(P ) + c(Q))

precise, we have to descend the class c(P ) + c(Q), a priori an element of H4(M̃ ;Z),
to H4(M ;Z). We can do this because, as noted in Definition 1.4, the class c1 + c2
descends through the Serre spectral sequence to the base.

Remark 1.45. We can combine some the data of a ξhet structure on M into a
twisted characteristic class. Let Zσ be the Z[Z/2]-module isomorphic to Z2 as an
abelian group, and in which the nontrivial element of Z/2 swaps the two factors.

Then, let Zσπ denote the local system on M which is the associated bundle M̃ ×Z/2

Zσ. A pair of classes x, y ∈ Hk(M̃ ;Z) exchanged by the deck transformation thus

define a class in Hk(M ;Zσπ), so, the classes c(P ) and c(Q) in H4(M̃ ;Z) together

This is not a problem: for any tangential structure ξ, there is a tangential structure ξ⊥ such

that a ξ-structure on TM is equivalent data to a ξ⊥-structure on νM and vice versa, so that
MTξ ' M ξ⊥, so the general theory is the same. And for ξ = O, SO, Spin, Spinc, and String,
ξ ' ξ⊥ and in those cases we can ignore the difference between M ξ and MTξ.
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define a class c̃(P,Q) ∈ H4(M ;Zσπ), which is a characteristic class of an ((E8 ×
E8) o Z/2)-bundle.

If Z denotes the Z[Z/2]-module isomorphic to Z as an abelian group and with
trivial Z/2-action, then taking the quotient of Zσ by the submodule generated by
(1,−1) defines a map of Z[Z/2]-modules q : Zσ → Z, hence also a map between the
corresponding twisted cohomology groups, and this map sends c̃(P,Q) 7→ c(P ) +
c(Q). Therefore one could recast a ξhet-structure on a spin manifold M as the data
of a principal ((E8 × E8) o Z/2)-bundle (P,Q, π) together with a trivialization of
λ(M)− q(c̃(P,Q)).

Bott-Samelson [BS58, Theorems IV, V(e)] showed that the map BE8 →
K(Z, 4) defined by the characteristic class c is 15-connected. This implies that up
to isomorphism, a principal ((E8 × E8) o Z/2)-bundle on a manifold of dimension
15 or lower is equivalent data to its characteristic class c̃.

Remark 1.46. One might want to simplify by restricting to the special case where

π : M̃ → M is trivial (as done in, e.g., [Wit86]), in which case the data of a ξhet-
structure simplifies to the data of a spin structure on M , two principal E8-bundles
P,Q → M , and a trivialization of λ(M) − c(P ) − c(Q). This corresponds to the
tangential structure ξr,het : BStr(Spin× E8 × E8, c1 + c2 − λ)→ BSpin→ BO.

1.3. The CHL string. Eleven-dimensional N = 1 supergravity admits a
time-reversal symmetry, allowing it to be defined on pin+ 11-manifolds.9 Therefore
we can compactify it on a Möbius strip with certain boundary data to obtain a
nine-dimensional supergravity theory; the goal of this subsection is to determine
the tangential structure of this theory. Eleven-dimensional N = 1 supergravity is
expected to be the low-energy limit of a theory called M-theory,10 and compactifying
M-theory on the Möbius strip is expected to produce a string theory called the
Chaudhuri-Hockney-Lykken (CHL) string [CHL95] whose low-energy limit is the 9-
dimensional supergravity theory described above; we study the tangential structure
of this supergravity theory in this subsection with the aim of also learning about
the CHL string.

However, we do not want our perspective on the CHL string to be overly one-
sided. Once and for all, choose a section s : Z/2 ↪→ (E8×E8)oZ/2 of the quotient
(E8×E8)oZ/2→ Z/2 by the normal E8×E8 subgroup. Then there is another way
to produce the CHL string by compactifying: consider the circle with its nontrivial
principal Z/2-bundle P → S1. Via the map Z/2 ↪→ Spin × ((E8 × E8) o Z/2)
sending 1 7→ (id, s(1)), this bundle defines a Spin× ((E8 ×E8) oZ/2)-structure on
S1 for which λ and c1 + c2 are both trivial, so this structure lifts to define a ξhet-
structure on S1. We will call the circle with this ξhet-structure RP1, as S1 ∼= RP1

as manifolds and the ξhet-structure comes from the double cover S1 → RP1. The
CHL string is precisely what one obtains by compactifying the E2

8 heterotic string
on RP1.

We want to determine the tangential structure ξCHL such that the product of
RP1 with a manifold with ξCHL-structure has an induced ξhet-structure. In general,
keeping track of how the tangential structure changes under compactification can

9In addition to the pin+ structure, one needs the additional data of a lift of w4(TM) to

w1(TM)-twisted integral cohomology. See [Wit97, Wit16, FH21a].
10M-theory is expected to require additional data on top of the tangential structure described

above for 11-dimensionalN = 1 supergravity. See [FSS20, Table 1] and the references listed there.
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be subtle; for a careful analysis, see Schommer-Pries [SP18, §9]. But for the
CHL string, we can get away with a more ad hoc approach: following Chaudhuri-
Polchinski [CP95] (see also [dBDH+00, §2.2.1]) we restrict to the case where
the principal Z/2-bundle on RP1 ×M obtained by the quotient map (1.44) is the
pullback of the Möbius bundle S1 → RP1 along the projection pr1 : RP1×M → RP1.

Proposition 1.47. Let M be a spin manifold and P →M be a principal E8-bundle.
The data of a trivialization s of λ(M)−2c(P ) induces a ξhet-structure on RP1×M
whose associated principal Z/2-bundle is the Möbius bundle S1 ×M → RP1 ×M .
Moreover, if dim(M) ≤ 14, this assignment is a natural bijection from the set of
isomorphism classes of data (P, s) to the set of ξhet-structures on RP1 ×M whose
associated Z/2-bundle is S1 ×M → RP1 ×M .

Proof. Let π : S1 ×M →M be the projection onto the second factor. Given
P → M and s, the pair of E8-bundles (π∗P, π∗P ) → S1 ×M are exchanged by
the deck transformation for S1 ×M → RP1 ×M , and (c1 + c2) evaluated on the
pair (π∗P, π∗P ) is 2c(P ) ∈ H4(RP1 ×M ;Z/2). Choosing the string structure on
RP1 induced from the bounding framing, we obtain a canonical trivialization of
λ(RP1 × M) − λ(M) ∈ H4(RP1 × M ;Z) from the two-out-of-three property of
string structures. Putting all of this together, we see that we have data of two
E8-bundles on S1 ×M exchanged by the deck transformation, and a trivialization
of λ− (c1 + c2) on RP1 ×M , thus defining a ξhet-structure as claimed.

To see that this produces all ξhet-structures associated with S1×M → RP1×M ,
recall from Remark 1.45 that the ((E8 × E8) o Z/2)-bundle associated to a ξhet-
structure is classified by a characteristic class in twisted cohomology. The assump-
tion that the associated Z/2-bundle is S1×M → RP1×M implies this class belongs
to H4(RP1 ×M ;Z⊕ Z), where a generator of π1(RP1) acts on Z⊕ Z by swapping
the two factors, and π1(M) acts trivially. The twisted Künneth formula [Gre06,
Theorem 1.7] gives us an isomorphism

(1.48) H4(RP1 ×M ;Z⊕ Z)
∼=−→ H4(M ;Z),

meaning that the pair of E8-bundles on the orientation double cover S1 ×M pull
back from bundles on M , which must be isomorphic in order to be exchanged by
the Z/2-action. �

The Bianchi identity corresponding to this data can therefore be simplified to
use a single bundle P →M and the class c(P ) + c(P ): we obtain

(1.49) dH = CW2c(ΘP )− CWλ(ΘLC),

i.e. the twisted Bianchi identity for G = Spin×E8 and µ = 2c−λ. Then, following
Definitions 1.38 and 1.41, we make the following definitions.

Definition 1.50. A differential ξCHL
n -structure on a manifold M is the following

data:

(1) a Riemannian metric and spin structure on M ,
(2) a principal E8-bundle P →M with connection Θ, and
(3) a lift of

(1.51) ((BSpin(M),ΘLC), (P,Θ)): M −→ B∇(Spinn × E8)

to a map M → BStr(Spinn × E8, 2c− λ).



BORDISM FOR THE HETEROTIC AND CHL STRINGS 19

What we callBGCHL
n coincides with what Sati-Schreiber-Stasheff callBString2a

[SSS12, (2.18), §2.3.3] and which also appears in work of Fiorenza-Sati-Schrei-
ber [FSS15a, Remark 4.1.1], though those papers do not discuss its relationship
with the CHL string.

Definition 1.52 (Sati-Schreiber-Stasheff [SSS12, (2.18), §2.3.3]). Let

(1.53) GCHL
n := Str(Spinn × E8, 2c− λ).

The CHL tangential structure is the tangential structure

(1.54) ξCHL
n : BGCHL

n −→ BSpinn −→ BOn,

where the first map comes from the quotient of GCHL by T[1], followed by projection
onto the Spinn factor. Stabilizing in n, we also obtain GCHL and a tangential
structure ξCHL.

A ξCHL-structure on an n-manifold M in particular comes with data of a prin-
cipal GCHL

n -bundle P → M , and can be formulated as the data of a principal
E8-bundle P →M and a trivialization of λ(M)− 2c(P ) ∈ H4(M ;Z).

Remark 1.55. Since a ξCHL structure includes data identifying λ as twice another
class, it induces a trivialization of the mod 2 reduction of λ, which is w4. That is,
a ξCHL structure induces a Spin〈w4〉 structure, where BSpin〈w4〉 is the homotopy
fiber of w4 : BSpin → K(Z, 4). This structure has been studied in, e.g. [Wit97,
KS04, FH21a] for applications to M-theory.

Remark 1.56 (Variation of the tangential structure along the moduli space).
There is a moduli space of CHL string theories, not just one, and the gauge group
depends on where in the moduli space one is; this moduli space was first studied by
Chaudhuri-Polchinski [CP95]. At a generic point, the gauge group is broken to T8,
and at various special points the gauge group enhances to E8 or other nonabelian
groups: see [FFG+21, Table 3]. We work only at the E8 point of the moduli space
in this paper; it would be interesting to apply the techniques in this paper to other
points in the CHL moduli space.

There has been quite a bit of recent research studying the moduli spaces of
compactifications of the E8 × E8 heterotic string and the CHL string, and investi-
gating which gauge groups can occur [FGN18, CDLZ20, FFG+20, CDLZ21,
FFG+21, FPDF21, MV21, CDLZ22, CGH22, CMM22, FPDF22, PDF23,
MPDF23].

2. Bordism computations

Now it is time to compute. We will use the Adams spectral sequence to compute

Ωξ
het

∗ and Ωξ
CHL

∗ ; this is a standard tool in computational homotopy theory and more
recently appears frequently in the mathematical physics literature, and we point
the interested reader to Beaudry-Campbell’s introductory article [BC18].

Applications of the Adams spectral sequence to mathematical physics questions

tend to follow the same formula. Suppose that we want to compute Ωξ∗ for some
tangential structure ξ.

(1) First, express ξ as a “twisted ξ′-structure,” where ξ′ is one of SO, Spin,
Spinc, or String: prove that a ξ-structure on a vector bundle E → M is
equivalent data to an auxiliary vector bundle V → M and a ξ′-structure
on E ⊕ V .
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This implies that MT ξ ' MT ξ′∧X for some Thom spectrum X that
is usually not too complicated.

(2) Next, invoke a change-of-rings theorem to greatly simplify the calculation
of the E2-page for ξ′-bordism of spaces or spectra. Then run the Adams
spectral sequence, taking advantage of the extra structure afforded by the
change-of-rings theorem.

This recipe goes back to work of Anderson-Brown-Peterson [ABP69] and Gi-
ambalvo [Gia73b, Gia73a, Gia76] computing twisted spin bordism. It is most
commonly used in the case ξ′ = Spin, where it has been frequently used to compute
bordism groups for tangential structures representing field theories with fermions;
ξ′ = String is less common but still appears in physically motivated examples, in-
cluding the tangential structure of the Sugimoto string [Sug99] and ξ = Stringc

[CHZ11, Sat11b].
Unfortunately, ξhet and ξCHL do not belong to this class of examples: we will

see in Lemma 2.2 that there is no way to write these tangential structures as twisted
string structures in the sense above.11,12 So we have to do something different.

At odd primes, we plow ahead with the unsimplified Adams spectral sequence,
though since we only care about dimensions 11 and below the computations are
very tractable. At p = 2, though, we can modify the above strategy to simplify
the computation: in §2.1, we generalize the notion of “twisted string bordism”
for which the change-of-rings trick works to include string covers (in the sense of
Example 1.22) of groups of the form Spin×G. This applies to both ξhet and ξCHL,
and so we are off to the races.

Remark 2.1. We are far from the first to compute bordism groups for a tangential
structure ξ : B → BO where B is the classifying space of a 2-group. For exam-

ple, ΩString
∗ has been calculated in a range of degrees by [Gia71, HR95, MG95,

Hov08]; other examples include [Hil09, KT17, WW19a, WW19b, WWZ19,
Tho20, LT21, Yu21, DL23].

2.1. Twists of string bordism.

“Started out with a twist, how did it end up like this?
It was only a twist, it was only a twist. . . ”

Once the tangential structure for a bordism question is known, the next step
is typically to prove a “shearing” theorem simplifying the tangential structure. For
example, the usual route to computing pin− bordism [Pet68, §7] first establishes
an isomorphism between pin− bordism and the spin bordism of the Thom spectrum
Σ−1MO1, and then computes the latter groups using something like the Adams or
Atiyah-Hirzebruch spectral sequence.

There are a few different approaches to shearing theorems, such as those in
[FH21b, DDHM23], but generally they work with Thom spectra of vector bun-
dles; for example, the above simplification of pin− bordism begins with the obser-
vation that a pin− structure on a bundle E → M is equivalent data to a real line
bundle L→M and a spin structure on E ⊕ L, which follows from a characteristic
class computation, and then passes the data of “L and a spin structure on E ⊕ L”
through the Pontrjagin-Thom theorem.

11The presence of the B-field, and how the Bianchi identity mixes it with the principal

Spinn-bundle of frames, rules out ξ′ = SO, Spin, or Spinc.
12This problem also happens to the tangential structures studied in [FH21a, DY22].
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This approach does not work for the heterotic and CHL tangential structures.

Lemma 2.2. There is no spin vector bundle V on B((E8 × E8) o Z/2) such that
λ(V ) = c1 + c2, and there is no spin vector bundle W on BE8 such that λ(V ) = 2c.

This means there is no way to express a ξhet-structure as “a G-bundle and a
string structure on E plus some associated bundle,” and likewise for ξCHL.

Proof. Let G be a compact, simple, simply connected Lie group and ρ : G→
SUn be a representation. H4(BG;Z) and H4(BSUn;Z) are both canonically iso-
morphic to Z, so the pullback map ρ∗ on H4 is a map Z → Z, necessarily mul-
tiplication by some integer δ(ρ). Because SUn is compact, connected, and simply
connected, the standard inclusion SUn → GL2n(R) lifts to a map SUn → Spin2n.
Choices of this lift are a torsor over H1(BSUn;Z/2) = 0, meaning that the char-
acteristic class λ is uniquely defined for SUn-representations. Moreover, λ of the
defining representation is a generator of H4(BSUn;Z); because H4(BSUn;Z) is
torsion-free, it suffices to show 2λ = p1 is twice a generator, which is standard.
The Dynkin index of G is the minimum value of |δ(ρ)| over all such representations
ρ. Laszlo-Sorger [LS97, Proposition 2.6] show that the Dynkin index of E8 is 60,
meaning that for any vector bundle V → BE8 with SU-structure induced from a
representation, λ(V ) is at least 60 times a generator.

We would like to generalize to real representations.

Lemma 2.3. The complexification map Spinn → On → Un has image contained
in SUn.

Proof. A lift of a representation ρ : G → Un has image contained in SUn if
and only if c1 of the complex vector bundle associated to ρ vanishes. When one
pulls back across the complexification map BOn → BUn, c1 is sent to the image of
w1 under the Bockstein map β : H1(BOn;Z/2)→ H2(BOn;Z); when we pull back
further to BSpinn, w1 7→ 0, so c1 = βw1 7→ 0 too. �

Thus the Dynkin index fact we mentioned above applies to complexifications
of representations landing in Spinn.

If V is a real representation of a group G, V ⊗C ∼= V ⊕V as real representations,
so using the Whitney sum formula for λ (Lemma 1.6), λ(V ⊗C) = 2λ(V ). Therefore
if V is any real spin representation of E8, λ(V ⊗C) is at least 60 times a generator,
so λ(V ) is at least 30 times a generator. Thus the class defining GCHL, which is
twice a generator, is not λ of any spin representation of E8; likewise for Ghet, as
one could restrict to either factor of E8 inside E2

8 oZ/2 and obtain a representation
with λ equal to the generator.

Finally, the Atiyah-Segal completion theorem extends this from representations
to all vector bundles. Because λ is additive (Lemma 1.6), it factors through the
Grothendieck group KSpin(BG) of spin vector bundles on BG, and similarly, eval-
uated on spin representations, λ factors through the corresponding Grothendieck
group RSpin(G). Atiyah-Segal [AS69, §7, §8] show that taking the associated bun-
dle of an arbitrary representation exhibits the Grothendieck ring KO0(BG) of all
vector bundles on BG as the completion of the representation ring RO(G) at its
augmentation ideal. Thus given a Z-valued characteristic class c of arbitrary vector
bundles of G which satisfies the Whitney sum formula, passing from representations
of G to vector bundles on BG does not decrease the minimal value of |c|.
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In order to use the Atiyah-Segal theorem, we need to get from spin represen-
tations and vector bundles to arbitrary ones. We will do so, at the cost of lowering
the minimum value of λ a little bit. For any vector bundle V , V ⊕4 admits a canon-
ical spin structure: the Whitney sum formula for Stiefel-Whitney classes shows a
spin structure exists; then choose a spin structure universally over BO. Therefore
we can define λ of an arbitrary representation of E8 or vector bundle on BE8 by
λ(V ) := 1

4λ(V ⊕4), valued in 1
4Z. Therefore passing from RO(E8) → KO0(BE8)

to RSpin(E8) → KSpin(BE8) divides the minimal value of λ by at most 4, and
now we can invoke Atiyah-Segal, so it is still not possible to get 2c and ξCHL; and
likewise for E2

8 o Z/2 in place of E8 to show that the characteristic class for ξhet

cannot be achieved. �

So we take a different approach: we cannot get Thom spectra corresponding to
vector bundles, but we can still obtain MTString-module Thom spectra. We accom-
plish this using the theory of Ando-Blumberg-Gepner-Hopkins-Rezk [ABG+14a,
ABG+14b] (ABGHR), which we briefly summarize.

The idea behind the ABGHR perspective on Thom spectra is to generalize
the notion of local coefficients to generalized cohomology theories. Given a based,
connected space X and a homomorphism ρ : π1(X)→ GL1(Z) ∼= {±1}, one obtains
a local coefficient system Zρ on X: this is a bundle on X with fiber Z, and whose
monodromy around a loop γ ∈ π1(X) is precisely ρ(γ). Given Zρ, we can take

twisted cohomology groups: if X̃ → X denotes the universal cover, then the cochain

complex C∗(X̃;Z) has a π1(X)-action induced from the π1(X)-action on X̃. If

C∗(X;Zρ) denotes the subcomplex of C∗(X̃;Z) of cochains which transform under
this π1(X)-action by ρ, then H∗(X;Zρ) := H∗(C∗(X;Zρ)).

Another way to say this is that if pt/G denotes the category with one object
∗ and Hom(∗, ∗) = G, ρ defines a pt/π1(X)-shaped diagram of chain complexes of
abelian groups:

(2.4) pt/π1(X)
ρ−→ pt/{±1} −→ ChZ,

sending pt to C∗(X̃;Z), and sending g ∈ π1(X) to the action by ρ(g). The sub-
complex of cochains that transform by ρ is precisely the limit of this diagram. For
functoriality reasons, we envision this complex as cochains on some object X which
is a colimit of a diagram akin to (2.4).

To summarize, twisted cohomology, i.e. cohomology of the Thom spectrum,
is expressed as a colimit of a diagram of chain complexes of Z-modules induced
from a map X → BAut(Z). Ando-Blumberg-Gepner-Hopkins-Rezk lift this to
spectra. Specifically, given a ring spectrum R, Ando-Blumberg-Gepner-Hopkins-
Rezk naturally associate a topological group13 GL1(R), thought of as the group of
units or group of automorphisms of R. The classifying space BGL1(R) carries the
universal local system of R-lines; a local system of R-lines over X is equivalent data
to a map X → BGL1(R).

Definition 2.5 (Ando-Blumberg-Gepner-Hopkins-Rezk [ABG+14a, Defn. 2.20]).
The Thom spectrum Mf associated to a map f : X → BGL1(R) is the colimit of
the diagram X → BGL1(R) → ModR, where we think of X as its fundamental
∞-groupoid.

13GL1(R) is not exactly a topological group, but the homotopy-coherent version thereof: a
grouplike A∞-space.
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When R = S, this is due to Lewis [LMSM86, Chapter IX]. In Definition 2.5,
we have to consider the fundamental ∞-groupoid, rather than just π1, because R
can have higher automorphisms, because spectra are derived objects.

The Thom spectrum of a map to BGL1(R) is an R-module.

Example 2.6 (Twisted ordinary cohomology). There is a homotopy equivalence
BGL1(HZ) ' K(Z/2, 1), so the ABGHR viewpoint recovers Aut(Z) and the usual
notion of cohomology twisted by a local system. To prove this homotopy equiv-
alence, use the homotopy pullback square of E∞-spaces [ABG+14b, Definition
2.1]

(2.7)

GL1(HZ) Ω∞HZ

(π0(HZ))× π0(HZ).

ϕ ψ

Ω∞HZ ' Z as E∞-spaces, and ψ is a homotopy equivalence of E∞-spaces. There-
fore ϕ is also a homotopy equivalence of E∞-spaces, and we conclude.

Example 2.8 (Thom spectra from vector bundles). Boardman’s original definition
of Thom spectra [Boa65, §V.1] associates them to virtual vector bundles V → X.
Let us connect this to the ABGHR definition. Virtual vector bundles are classified
by maps fV : X → BO, and one avatar of the J-homomorphism [Whi42] is a
map J : O → GL1(S) [ABG10, Example 3.15], which deloops to a map of spaces
BJ : BO → BGL1(S). A map with this signature is a natural assignment from
virtual vector bundles V → X to local systems of invertible S-modules, and BJ
assigns to V the local system with fiber SVx at each x ∈ X. Putting these maps
together, we have an X-shaped diagram

(2.9) X
fV−→ BO

BJ−→ BGL1(S) −→ Sp,

and the colimit of this diagram, which is a Thom spectrum in the ABGHR sense,
coincides with the Thom spectrum XV in the usual sense. This is a combination of
theorems of Lewis [LMSM86, Chapter IX] and Ando-Blumberg-Gepner-Hopkins-
Rezk [ABG+14a, Corollary 3.24].

This approach to Thom spectra plays well with multiplicative structures. If R
is an E∞-ring spectrum, then the grouplike A∞-structure on GL1(R) refines to a
grouplike E∞-structure, making GL1(R) and therefore BGL1(R) into infinite loop
spaces. For 1 ≤ k ≤ ∞, if X is a k-fold loop space and f : X → BGL1(R) is a
k-fold loop map, then the Thom spectrum Mf inherits the structure of an Ek-ring
spectrum. This is a theorem of Lewis [LMSM86, Theorem IX.7.1] for R = S and
Ando-Blumberg-Gepner [ABG18, Theorem 1.7] for more general R.

BO has an infinite loop space structure coming from the addition-like operation
onBO of direct sum of vector bundles. The J-homomorphismBJ : BO→ BGL1(S)
is an infinite loop map, so we get an E∞-ring structure on MT ξ if ξ is a tangential
structure satisfying a 2-out-of-3 property, i.e. whenever any two of E, F , and E⊕F
have a ξ-structure, the third has an induced ξ-structure. The idea is that the
2-out-of-3 property implies that ξ : B → BO is an infinite loop map, so passing
to BGL1(S) and taking the Thom spectrum, we obtain an E∞-ring spectrum.
This applies to MTO , MTSO , MTSpinc, MTSpin, and MTString ; however, some
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commonly considered tangential structures appearing in physics do not have this
property, including BPin±.

Proposition 2.10. Let B and X be infinite loop spaces and ξ : B → BO and
f : B → X be infinite loop maps, so that the fiber η : F → B of f is also a map
of infinite loop spaces. This data naturally defines twists of the Thom spectrum
M(ξ ◦ η) over X, i.e. a map X → BGL1(M(ξ ◦ η)).

Proof. The fiber of η : F → B is another infinite loop map ζ : ΩX → F , so
the induced map of Thom spectra (where the maps down to BO are ξ ◦ η ◦ ζ and
ξ ◦ η respectively) is a map of E∞-ring spectra. Because ξ ◦ η ◦ ζ is nullhomotopic,
its Thom spectrum is a suspension spectrum, so we have a map of E∞-ring spectra
Σ∞+ ΩX →M(ξ ◦ η).

Ando-Blumberg-Gepner-Hopkins-Rezk [ABG+14b, (1.4), (1.7)] prove that Σ∞+
and GL1 are an adjoint pair on the categories of infinite loop spaces and E∞-
ring spectra. Applying this adjunction, we have a map of infinite loop spaces
ΩX → GL1(M(ξ ◦ η)); deloop to obtain the map in the theorem statement. �

Theorem 2.11 (Beardsley [Bea17, Theorem 1]). With notation as in Proposi-
tion 2.10, the Thom spectrum of the “universal twist” X → BGL1(M(ξ ◦ η)) is
canonically equivalent to Mξ.

Corollary 2.12.

(1) There is a map ŵ1 : K(Z/2, 1) → BGL1(MTSO) which, after taking the
quotient MTSO → HZ, passes to the homotopy equivalence K(Z/2, 1)→
BGL1(HZ) from Example 2.6.

(2) There is a map ŵ2 : K(Z/2, 2)→ BGL1(MTSpin) which, after composing
with the Atiyah-Bott-Shapiro map MTSpin → ko [ABS64, Joa04], is the
usual map K(Z/2, 2) ↪→ BGL1(ko) [DK70, HJ20].

(3) There is a map β̂w2 : K(Z, 3) → BGL1(MTSpinc) which, after compos-
ing with the Atiyah-Bott-Shapiro map MTSpinc → ku [ABS64, Joa04,
AHR10], is the usual twist of K-theory by degree-3 classes K(Z, 3) →
BGL1(ku) [DK70, Ros89, AS04, ABG10].

(4) There is a map λ̂ : K(Z, 4) → BGL1(MTString) which, when composed
with the Ando-Hopkins-Rezk orientation MTString → tmf [AHR10], is
the Ando-Blumberg-Gepner map K(Z, 4)→ BGL1(tmf ) [ABG10, Propo-
sition 8.2].

Part (3) is a theorem of Hebestreit-Joachim [HJ20, Appendix C]. The other
parts are surely known, though we were unable to find them in the literature.

Proof. Apply Proposition 2.10 to the four maps

(1) w1 : BO→ K(Z/2, 1), whose fiber is BSO;
(2) w2 : BSO→ K(Z/2, 2), whose fiber is BSpin;
(3) β ◦ w2 : BSO → K(Z, 3), whose fiber is BSpinc, where β : Hk(–;Z/2) →

Hk+1(–;Z) is the Bockstein; and
(4) λ : BSpin→ K(Z, 4), whose fiber is BString.

All four of these are infinite loop maps, because these characteristic classes are ad-
ditive in direct sums. For compatibility with preexisting twists, we use the fact that
in the spinc and string cases, Ando-Blumberg-Gepner [ABG10, §7, §8] construct
the desired twists K(Z, 3) → BGL1(ku) and K(Z, 4) → BGL1(tmf ) in the same
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way as we construct the twists of MTSpinc and MTString , so compatibility follows
from functoriality. The cases of ko and HZ are analogous. �

The homotopy groups of the Thom spectra of the twists Corollary 2.12 have
bordism interpretations. Looking at ŵ2 for example, a spin structure on an oriented
manifold is a trivialization of w2(TM), but given a space X and a degree-2 coho-
mology class B, thought of as a map fB : X → K(Z/2, 2), the homotopy groups
of MT (ŵ2 ◦ fB) are the bordism groups of oriented manifolds M together with a
map g : M → X and a trivialization of w2(TM)+g∗B, as was shown by Hebestreit-
Joachim [HJ20, Corollary 3.3.8]. The other three cases are analogous; in particular,
we have described the Thom spectra for ξhet and ξCHL as MTString-module Thom
spectra.

These kinds of twisted bordism have been studied before: spinc structures
twisted by a degree-3 cohomology class were first studied by Douglas [Dou06, §5],
and they appear implicitly in work of Freed-Witten [FW99] on anomaly cancel-
lation. Twisted spin and string structures of the sort appearing in Corollary 2.12
were first considered by B.L. Wang [Wan08, Definitions 8.2, 8.4]. See [DFM11a,
DFM11b, Sat11a, Sat11c, Sat12, Sat15, SW15, LSW20, SY21] for more
examples of twisted generalized cohomology theories from a similar point of view
and some applications in physics.

The first case, involving twists of MTSO by degree-1 Z/2-cohomology classes,
is the notion of a twisted orientation from the beginning of this section: given a
real line bundle L→ X, we ask for data of a map g : M → X and an orientation on
TM⊕g∗(L). In the ABGHR perspective this says that the map ŵ1 factors through
BO1 as

(2.13) K(Z/2, 1)
'→ BO1 ↪→ BO→ BGL1(S)→ BGL1(MTSO).

But the others do not factor this way.

Remark 2.14. There is a complex version of (2.13). LetW denote Wall’s bordism
spectrum [Wal60], whose homotopy groups are the bordism groups of manifolds
with an integral lift of w1. Explicitly, if ξ : F → BO is the fiber of βw1 : BO →
K(Z, 2), then W := MT ξ. Proposition 2.10 then produces a map β̂w1 : K(Z, 2)→
BGL1(W), but degree-2 cohomology classes are equivalent to complex line bundles,

and β̂w1 factors as

(2.15) K(Z, 2)
'→ BT→ BO2 → BO→ BGL1(S)→ BGL1(W).

Remark 2.16. One consequence of the fact that ŵ1 (resp. β̂w1) factors as in (2.13)
(resp. (2.15)), i.e. as a twist associated to a real (resp. complex) line bundle L →
X is that the associated MTSO-module (resp. W-module) Thom spectrum splits
as MTSO ∧ XL−1 (resp. W ∧ XL−2). Working universally over BO1 and BT,
Theorem 2.11 gives us homotopy equivalences MTSO ∧ (BO1)L−1 ' MTO and
W∧ (BT)L−2 ' MTO ; the former is a theorem of Atiyah [Ati61, Proposition 4.1].

We will apply Corollary 2.12 to the degree-4 characteristic classes that the
Bianchi identity told us for the heterotic and CHL tangential structures. Given
a space X with a class µ ∈ H4(X;Z), let B(X) denote the homotopy fiber of
λ+ µ : BSpin×X → K(Z, 4), and let ξµ denote the tangential structure

(2.17) ξµ : B(X) −→ BSpin×X −→ BO.



26 ARUN DEBRAY

MT ξµ is equivalent to the MTString-module Thom spectrum associated to the

twist λ̂ ◦ µ : X → BGL1(MTString). If X = BG for a Lie group G, B(X) is
the classifying space of the string 2-group S(Spin × G,λ + µ). Let A denote the
2-primary Steenrod algebra and for n ≥ 0, let A(n) denote the subalgebra of A
generated by Sq1, . . . ,Sq2n

. In joint work with Matthew Yu [DY23], we compute
the A-module structure on H∗(MT ξµ;Z/2).

Definition 2.18. Let R denote the Z/2-algebra A(1)[S], i.e. the algebra with
generators Sq1, Sq2, and S, and with Adem relations for Sq1 and Sq2. Given X
and µ as above, define the A(1)-module T (X,µ) := H∗(X;Z/2), and give T (X,µ)
an R-module structure by defining

(2.19) S(x) := µx+ Sq4(x).

We want to think of S as Sq4 and T (X,µ) as an A(2)-module, but a priori it
is not clear that this S-action satisfies the Adem relations.

Theorem 2.20 ([DY23]).

(1) The R-module structure on T (X,µ) satisfies the Adem relations for Sq1,
Sq2, and Sq4 = S, hence induces an A(2)-module structure on T (X,µ).

(2) There is an map of A-modules

(2.21) H∗(MT ξµ;Z/2) −→ A⊗A(2) T (X,µ),

natural in the data (X,µ), which is an isomorphism in degrees 15 and
below.

We describe a proof of this theorem in Remark 2.26 different from the one
in [DY23].

Corollary 2.22. For t − s ≤ 15, the E2-page of the Adams spectral sequence
computing 2-completed ξµ-bordism is

(2.23) Et,s2 = Exts,tA(2)(T (X,µ),Z/2).

As A(2) is much smaller than A, this is much easier to work with.

Proof. This follows from the change-of-rings formula: if B is a graded Hopf
algebra, C is a graded Hopf subalgebra of B, and M and N are graded B-modules,
then there is a natural isomorphism

(2.24) Exts,tB (B ⊗C M,N)
∼=−→ Exts,tC (M,N).

This you can think of as the derived version of a maybe more familiar isomorphism

(2.25) HomB(B ⊗C M,N)
∼=−→ HomC(M,N).

In our example, B is the Steenrod algebra, which is a Hopf algebra, and C is A(2),
which is indeed a Hopf subalgebra of A, so we can invoke (2.24) and conclude. �

We will use this simplification in the cases ξµ = ξhet, ξCHL to run the Adams

spectral sequences computing Ωξ
het

∗ and Ωξ
CHL

∗ at p = 2.

Remark 2.26 (Proof sketch of Theorem 2.20). To prove (1), check the Adem
relations for A(2) directly. The first step in proving part (2) is to establish a Thom
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isomorphism for mod 2 cohomology. We make use of the Thom diagonal, a map of
MTString-modules

(2.27) MT ξµ
∆t

−→ MT ξµ ∧MTString ∧ Σ∞+ X

defined as follows: the diagonal map ∆: X → X × X is a map of spaces over

BGL1(MTString), if we give X the map λ̂ ◦ µ to BGL1(MTString) and we give

X×X the map (λ̂◦µ, ∗). Applying the MTString-module Thom spectrum functor
to ∆ produces (2.27). Smash (2.27) with HZ/2. The result is the Thom diagonal
for a twist of HZ/2, but all such twists are trivializable (i.e. all HZ/2-bundles
admit an orientation). Therefore by [ABG+14b, Proposition 3.26] the following
composition is an equivalence:

(2.28) MT ξµ ∧HZ/2 ∆t

−→ MT ξµ ∧Σ∞+ X ∧HZ/2 −→ MTString ∧Σ∞+ X ∧HZ/2,

which is the Z/2-homology Thom isomorphism. The analogous fact is true for mod
2 cohomology.

The Thom diagonal makes H∗(MT ξµ;Z/2) into a free, rank-1 module over
H∗(B(X);Z/2), generated by the Thom class U . As the Thom diagonal is a map
of spectra, we may use the Cartan formula to compute the Steenrod squares of
an arbitrary element of H∗(MT ξµ;Z/2) in terms of Steenrod squares in B(X) and
Sq(U). As both Sq(U) and our desired isomorphism in (2.21) are natural in X
and µ, it suffices to understand the universal case, where X = K(Z, 4) and µ
is the tautological class τ ∈ H4(K(Z, 4);Z). In this case, Theorem 2.11 implies
MT ξµ ' MTSpin. By work of Anderson-Brown-Peterson [ABP67], if J is the
A(1)-module A(1)/Sq3 and M is the A(1)-module Z/2⊕Σ8Z/2⊕Σ10J , then there
is a map of A-modules

(2.29) H∗(MTSpin;Z/2) −→ A⊗A(1) M

which is an isomorphism in degrees 15 and below. And Giambalvo [Gia71, Corol-
lary 2.3] shows that there is a map H∗(MTString ;Z/2) → A ⊗A(2) Z/2 which is
also an isomorphism in degrees 15 and below. Therefore by the change-of-rings
theorem (2.24) it suffices to exhibit a map of A(2)-modules

(2.30) T (K(Z, 4), τ) −→ A(2)⊗A(1) M

which is an isomorphism in degrees 15 and below. This can be verified directly, using
as input theA(2)-module structure onH∗(K(Z, 4);Z/2) calculated by Serre [Ser53,
§10].

2.2. ξhet bordism at p = 2. In this section we will first computeH∗(BG;Z/2)
as an A(2)-module in low degrees, where G := E2

8oZ/2; then, using Corollary 2.22,
we run the Adams spectral sequence computing 2-completed ξhet bordism in degrees
11 and below.

First, though, we reformulate the problem slightly. Consider the tangential

structure ξhet′ : Bhet′ → BO defined in the same manner as ξhet, but with K(Z, 4)
replacing BE8. In a little more detail, Z/2 acts on K(Z, 4)×K(Z, 4) by swapping
the two factors; taking the Borel construction

(2.31) B := (K(Z, 4)×K(Z, 4))×Z/2 EZ/2

produces a fiber bundle

(2.32) K(Z, 4)×K(Z, 4) −→ B −→ BZ/2.
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For i = 1, 2, let ci ∈ H4(K(Z, 4) × K(Z, 4);Z) be the tautological class for the
ith K(Z, 4) factor. The class c1 + c2 is invariant under the Z/2-action, so we can
follow it through the Serre spectral sequence to learn that it defines a nonzero
class c1 + c2 ∈ H4(B;Z/2). Define f : Bhet′ → BSpin × B to be the fiber of

λ − (c1 + c2) : BSpin × B → K(Z, 4); then the tangential structure ξhet′ is the
composition

(2.33) Bhet′ BSpin×B BSpin BO.
pr1f

ξhet
′

That is, a ξhet′ structure on a manifold M is a spin structure, a principal Z/2-
bundle P →M , two classes c1, c2 ∈ H4(P ;Z) which are exchanged under the deck
transformation, and a trivialization of λ(M) − (c1 + c2) (where the latter class is
descended to M). This is the same data as a ξhet structure, except that we do
not ask for c1 or c2 to come from principal E8-bundles; therefore there is a map of

tangential structures c̃ : ξhet → ξhet′, i.e. a map of spaces BGhet → Bhet′ commuting

with the maps down to BO. Like for ξhet, a ξhet′-structure is a twisted string
structure in the sense of Corollary 2.12, via the class λ− (c1 + c2) : B → K(Z, 4).

Bott-Samelson [BS58, Theorems IV, V(e)] showed that the characteristic class
c ∈ H4(BE8;Z) we defined in Definition 1.4, interpreted as a map c : BE8 →
K(Z, 4), is 15-connected. This means that the homomorphism c̃ induces on bordism

groups, c̃ : Ωξ
het

k → Ωξ
het′

k , is an isomorphism in degrees 14 and below. For our
string-theoretic purposes, we only care about k ≤ 12, so we may as well compute

ξhet′-bordism. In the rest of this subsection, we often blur the distinction between

ξhet and ξhet′; we will point out where it matters which one we are looking at.

Remark 2.34. Turning off the Z/2 symmetry switching the two E8 factors, i.e.
passing to a ξr,het-structure as in Remark 1.46, simplifies this story considerably:
the bordism groups were known decades ago. Specifically, replace BE8 with K(Z, 4)
in the definition of ξr,het to define a tangential structure ξr,het′, which on a manifold
M consists of a spin structure on M , two classes c1, c2 ∈ H4(M ;Z), and a trivial-
ization of λ(M) − c1 − c2. As Witten [Wit86, §4] noticed, this data is equivalent
to a spin structure and the single class c1, which may be freely chosen; then c2
must be λ(M) − c1. Therefore the tangential structure ξr,het′-structure is simply

BSpin × K(Z, 4) → BO, and just as for ξhet, the map MT ξr,het → MT ξr,het′ '
MTSpin∧K(Z, 4)+ is an isomorphism on homotopy groups in degrees 14 and below.

Stong [Sto86] computes ΩSpin
∗ (K(Z, 4)) in degrees 12 and below.

As we discussed in §1.2, the data of a trivial principal Z/2-bundle on a manifold
M and two principal E8-bundles P,Q → M define a principal E2

8 o Z/2-bundle
on M with c1 + c2 equal to c(P ) + c(Q); data trivializing c(P ) + c(Q) − λ(M)
therefore defines a ξhet structure. Analogously, the trivial Z/2-bundle and a pair

c1, c2 ∈ H4(M ;Z) with a trivialization of c1 + c2 − λ define a ξhet′ structure.

Lemma 2.35. A spin manifold M has a canonical ξhet′ structure specified as above
by the trivial principal Z/2-bundle, the cohomology classes c1 = λ and c2 = 0, and
the canonical trivialization of λ− λ = 0 ∈ H4(M ;Z).

This defines a map of tangential structures and therefore a map of Thom spec-

tra s1 : MTSpin → MT ξhet′. A ξhet′-structure includes data of a spin structure;
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forgetting the rest of the ξhet′-structure defines a map s2 : MT ξhet′ → MTSpin.
The composition of s1 and s2 is homotopy equivalent to the identity, because the

underlying spin structure of the ξhet′ manifold built in Lemma 2.35 is the same
spin structure we began with.

Corollary 2.36. There is a spectrum Q and a splitting

(2.37) (s2, q) : MT ξhet′ '−→ MTSpin ∨Q.

We will use this later to reduce the amount of spectral sequence computations
we have to make.

Both Lemma 2.35 and Corollary 2.36 require us to use ξhet′ and not ξhet, though
of course the consequence on low-degree bordism groups is true for both.

When K is a finite group, Nakaoka [Nak61, Theorem 3.3] proved that there
is a ring isomorphism from the mod 2 cohomology of B(Z/2 n (K × K)) to the
E2-page of the Serre spectral sequence

(2.38) Ep,q2 = Hp(BZ/2;Hq(BK ×BK;Z/2)) =⇒ Hp+q(B(Z/2n(K×K));Z/2).

Here the underline denotes the local coefficient system arising from the Z/2-action
on BK × BK by switching the two factors. Since this local coefficient system
can be nontrivial, one has to be careful defining the multiplicative structure on
the E2-page of (2.38), but here it can be made explicit. As a Z/2[Z/2]-module,
H∗(BK ×BK;Z/2) is a direct sum of:

• the subalgebra H1 of classes fixed by Z/2, which are of the form x⊗x for
x ∈ H∗(BK;Z/2); and

• the submodule H2 spanned by classes of the form x⊗y where x and y are
linearly independent.

Since Z/2 acts trivially on H1 and H1 is a ring, H∗(BZ/2;H1) has a ring structure.
And as a Z/2[Z/2]-module, H2 is of the form M ⊕M where Z/2 acts by swapping
the two factors, so H∗(BZ/2;H2) vanishes in positive degrees.14 In degree zero,
we obtain invariants, spanned by elements of the form x ⊗ y + y ⊗ x, with x, y ∈
H∗(BK;Z/2). H1 ⊕ (H2)Z/2 = E0,•

2 is a subalgebra of H∗(BK ×BK;Z/2).

So far we have specified ring structures on H∗(BZ/2;H1) ) E>0,•
2 and H1 ⊕

(H2)Z/2 = E0,•
2 , and these ring structures agree where they overlap. Therefore to

specify a ring structure on the entirety of the E2-page, it suffices to write down
the product of an element in (H2)Z/2 and an element in positive p-degree. We say
that all such products vanish; this is the ring structure that appears in Nakaoka’s
theorem.

Of course, E8 is not a finite group. Nakaoka’s theorem is true in quite great gen-
erality [Eve65, Kah84, Lea97]; the version we need is proven by Evens [Eve65],
who proves the same ring isomorphism when K is a compact Lie group. Thus this

applies to ξhet, and not necessarily to ξhet′, but since their cohomology rings are
isomorphic in degrees 14 and below, it does not matter which one we use in this
calculation.

14To see this, first observe that mod 2 group cohomology for G is additive in the Z/2[G]-
module of coefficients, so it suffices to prove that H∗(BZ/2;M ⊕M) vanishes in positive degrees
when M = Z/2. But Z/2 ⊕ Z/2 is isomorphic to Z/2[Z/2] as Z/2[Z/2]-modules (i.e. as vector

spaces with Z/2-representations, Z/2⊕ Z/2 is isomorphic to the vector space of functions on the
group Z/2), and group cohomology valued in the group ring is trivial, e.g. because the group ring
is its own free resolution.
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Now we make this ring structure and A(2)-module structure explicit. Since
c : BE8 → K(Z, 4) is 15-connected, it induces an isomorphism in cohomology in
degrees 14 and below, so we can use the cohomology of K(Z, 4) as a stand-in
for the cohomology of BE8. Serre [Ser53, §10] computed the mod 2 cohomology
of K(Z, 4). It is an infinitely generated polynomial algebra; in degrees 12 and
below the generators are: the tautological class D ∈ H4(K(Z, 4);Z/2), F := Sq2D,
G := Sq3D, J := Sq4F , and K := Sq5F .

If C is one of D, F , G, J , or K, we let C1 denote the class coming from the
first copy of BE8 and C2 denote the class coming from the second copy. Thus we
have the following additive basis for the low-degree cohomology of BG:

(1) In H1, D1D2x
k and F1F2x

k for k ≥ 0.
(2) In (H2)Z/2, D1 +D2, F1 +F2, G1 +G2, D2

1 +D2
2, J1 + J2, D1F1 +D2F2,

D1F2 +D2F1, D1G1 +D2G2, D1G2 +D2G1, K1 +K2, F 2
1 +F 2

2 , D3
1 +D3

2,
and D2

1D2 +D1D
2
2.

Next, we determine the A(2)-module structure using a theorem of Quillen.

Theorem 2.39 (Quillen’s detection theorem [Qui71, Proposition 3.1]). Let X be
a space and let Z/k act on Xk by cyclic permutations. Let Y := EZ/k ×Z/k X

k,

which is a fiber bundle over BZ/k with fiber Xk. Let i1 : Xk → Y be inclusion of
the fiber at the basepoint and i2 : BZ/k ×X → Y be induced by the diagonal map;
then

(2.40) (i∗1, i
∗
2) : H∗(Y ;Z/k) −→ H∗(Xk;Z/k)⊕H∗(BZ/k ×X;Z/k)

is injective.

For us, k = 2, X = BE8, and Y = BG. Thus, to compute Steenrod squares
for classes in H∗(BG;Z/2), we can assume we are in BE2

8 if the class is in (H2)Z/2;
for H1, we also need to know Sq(x), and i∗2 tells us Sq(x) = x + x2. Thus we can
compute the A(2)-module structure on H∗(BG;Z/2), hence also on T (−(c1 + c2));
we focus on the latter. Like most calculations of this form, it is a little tedious but
straightforward, and can be done by hand in a reasonable length of time. After
working through the calculation, we have learned the following.

Proposition 2.41. Let M be the quotient of T (−(c1 + c2)) by all elements in
degrees 14 and higher. Then M is the direct sum of the following submodules.

(1) M1, the summand containing the Thom class U .

(2) M2 := H̃∗(RP∞;Z/2) modulo those elements in degrees 13 and above.
(3) M3, the summand containing U(D2

1 +D2
2).

(4) M4, the summand containing UD1D2.
(5) M5, the summand containing UD1D2x.
(6) M6, the summand containing U(D1F1 +D2F2).
(7) M7, the summand containing U(D1D

2
2 +D2

1D2).

We draw this decomposition in Figure 1.

Recall from Corollary 2.36 that MT ξhet′ splits as MTSpin ∨ Q. Since Ωξ
het

∗ ∼=
Ωξ

het′

∗ in the range we need and ΩSpin
∗ is known thanks to work of Anderson-Brown-

Peterson [ABP67], we focus on π∗(Q). To do so, we will identify the submodule of

the E2-page of the Adams spectral sequence for ξhet′ coming from spin bordism via

s1 : MTSpin → MT ξhet′; the E2-page for Q is then a complementary submodule.
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Figure 1. The A(2)-module T (−(c1 + c2)) in low degrees. Here
α := D2

1 + D2
2. The pictured submodule contains all classes in

degrees 12 and below.

The canonical ξhet′-structure on a spin manifold from Lemma 2.35 can be
rephrased as follows: a spin structure on a manifold M is equivalent data to: a spin
structure on M , a map c : M → K(Z, 4), and a trivialization of c − λ(M). Thus
spin structures are twisted string structures in the sense of Corollary 2.12 (in fact
the universal twist in the sense of Remark 2.16), so the map

(2.42) (1, 0) : K(Z, 4) −→ (K(Z, 4)×K(Z, 4))×Z/2 EZ/2 = B

lifts to a map of MTString-module Thom spectra s1 : MTSpin → MT ξhet′. Natu-
rality of Theorem 2.20 then tells us the image of s∗1 on mod 2 cohomology, allowing
us to determine which of the summands in Proposition 2.41 correspond to MTSpin
and which correspond to Q. Specifically, the pullback map sends x 7→ 0, is nonzero
on D1, F1, G1, etc., and sends D2, F2, G2, etc., to zero. This implies that in the

direct-sum decomposition MT ξhet′ ' MTSpin∨Q, the summands M1, M3, and M6

come from the cohomology of MTSpin, and the remaining summands come from
the cohomology of Q.

In order to run the Adams spectral sequence for Q, we need to compute the
Ext of M2, M4, M5, and M7 over A(2). After we compute this, we will display
the E2-page in Figure 3. For an A(2)-module M , Ext∗,∗A(2)(M,Z/2), which we will

usually denote ExtA(2)(M) or Ext(M), is a bigraded module over the bigraded
Z/2-algebra ExtA(2)(Z/2); both the algebra and module structures arise from the
Yoneda product [Yon54, §4] (see [BC18, §4.2] for a review). This module structure
is helpful for determining differentials in the Adams spectral sequence: differentials
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are equivariant with respect to the action. The module structure also constrains
extensions on its E∞-page.

May (unpublished) and Shimada-Iwai [SI67, §8] determined ExtA(2)(Z/2). We

will only need to track the actions of three elements: h0 ∈ Ext1,1
A(2)(Z/2), h1 ∈

Ext1,2
A(2)(Z/2), and h2 ∈ ExtA(2)(Z/2). These elements are in the image of the map

ExtA(Z/2)→ ExtA(2)(Z/2) induced by the quotient A → A(2), so we do not have
to worry about whether Corollary 2.22 is compatible with the ExtA(2)(Z/2)-action
on the E2-page of the Adams spectral sequence. (It is, though.) When we draw Ext
charts as in Figure 3, we denote h0-actions as vertical lines, h1-actions as diagonal
lines with slope 1, and h2-actions as diagonal lines with slope 1/3. When one of
these lines is not present, the corresponding hi acts as 0.

Often one computes Ext groups of A(2)-modules using computer programs
developed by Bruner [Bru18] and Chatham-Chua [CC21], or tools such as the
May spectral sequence [May66] or the Davis-Mahowald spectral sequence [DM82,
MS87] (see also [BR21, Chapter 2]) to compute Ext groups of A(2)-modules, but
for the four modules we care about, we can get away using simpler calculations by
hand and computations already in the literature.

(1) Davis-Mahowald [DM78, Table 3.2] compute ExtA(2)(M2) in the degrees
we need.

(2) In degrees 13 and below, M4 is isomorphic to Σ8(A(2)⊗A(0)Z/2); therefore
the Ext groups of these two A(2)-modules, as algebras over ExtA(2)(Z/2),
are isomorphic in topological degrees 12 and below. Thus we can compute
with the change-of-rings theorem (2.24): as ExtA(2)(Z/2)-algebras,

(2.43) ExtA(2)(A(2)⊗A(0) Z/2) ∼= ExtA(0)(Z/2) ∼= Z/2[h0],

with h0 ∈ Ext1,1. This identification of ExtA(0)(Z/2) follows from Koszul
duality [BC18, Example 4.5.5].

(3) M5 looks a lot like M2, which gives us a way to compute ExtA(2)(M5).
Specifically, if τ≤kM denotes the quotient of an A(2)-module M by the
submodule of elements in degrees greater than k, then there is a short
exact sequence of A(2)-modules

(2.44) 0 Σ13Z/2 τ≤13M5 τ≤13Σ8M2 0.

We draw this sequence in Figure 2, left. (2.44) induces a long exact se-
quence in Ext groups; passage between M and τ≤13M does not change
Ext groups in degrees 12 and below, and since we only care about de-
grees 12 and below, we can and do pass between τ≤13M and M without
comment.

We already know ExtA(2)(Z/2) and ExtA(2)(M2), so we can run the
long exact sequence associated to (2.44) to compute ExtA(2)(M5) in de-
grees 12 and below; we draw this long exact sequence in Figure 2, right.
In the range we care about, there is exactly one boundary map that is not
forced to be zero for degree reasons, namely

(2.45) ∂ : Ext0,13
A(2)(Σ

13Z/2) −→ Ext1,13
A(2)(Σ

8M2);
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Figure 2. Left: the short exact sequence (2.44) of A(2)-modules.
Right: the associated long exact sequence in Ext. See the discus-
sion after (2.45) for why the pictured boundary map (black arrow)
is nonzero.

it must be nonzero, because that is the only way to obtain Ext0,13
A(2)(M5) =

HomA(2)(M5,Σ
13Z/2) = 0, and by inspection of Figure 1 this Hom group

vanishes.
(4) If Cη := Σ−2H̃∗(CP2;Z/2), there is a 14-connected quotient map M7 →

Σ12Cη, so ExtA(2)(Σ
12Cη) and ExtA(2)(M7) do not differ in the range we

care about. Bruner-Rognes [BR21, Figure 0.15] compute ExtA(2)(Cη).

Using these computations, we obtain the following description of the E2-page of

the Adams spectral sequence for the summand Q of MT ξhet′.

Proposition 2.46. The E2-page of the Adams spectral sequence for Q in topological
degrees 12 and below is as given in Figure 3. In particular, in this range, the E2-page
is generated as an ExtA(2)(Z/2)-module by eight elements: p1 ∈ Ext0,1, p3 ∈ Ext0,3,

p7 ∈ Ext0,7, a ∈ Ext0,8, b ∈ Ext2,10, c ∈ Ext0,9, d ∈ Ext0,11, and e ∈ Ext0,12.

There are plenty of differentials in this Adams spectral sequence which could be
nonzero, even when we take into account the fact that Adams differentials commute
with h0, h1, and h2:

(D1) d2 : E0,8
2 → E2,9

2 , whose value on a could be h2
2p1, h2

0p7, or a linear com-
bination of those two elements.

(D2) d2 : E1,9
2 → E3,10

2 , which could send h0a or h1p7 to h3
0p7.

(D3) d2 : E0,9
2 → E2,8

2 and d2 : E1,11
2 → E3,12

2 , intertwined by an h1-action,
which could send c 7→ b and h1c 7→ h1b.

(D4) d2 : E0,12
2 → E2,13

2 , which could send e 7→ h2
1c = h2

0d.

(D5) If the differentials in (D1) and (D2) vanish, d3 : E0,8
3 → E3,10

3 could be
nonzero on a.

(D6) If the differential in (D4) vanishes, d5 : E0,12
5 → E5,16

5 (and its image under

h0) or d6 : E0,12
6 → E6,17

6 could be nonzero.

Lemma 2.47. The differentials (D2), (D5), and (D6) vanish.

Proof. Our strategy is to use the fact that Ghet → Z/2 splits to zero out
differentials. This splitting does not extend to a splitting of MT ξhet, but it will be
close enough.

The inclusion ι : Z/2 ↪→ Ghet defines a map ι′ : MTString ∧ BZ/2 → MT ξhet

which on Adams E2-pages is precisely the inclusion of the summand Ext(M2).
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Figure 3. In Corollary 2.36, we showed MT ξhet′ ' MTSpin ∨Q;
this figure denotes the E2-page of the Adams spectral sequence
computing π∗(Q) in degrees 12 and below. This corresponds to a
subset of the summands in Figure 1. In Lemma 2.50, we show that
the solid gray differential beginning at a is nonzero; we leave open
the other two differentials, which are dashed in this figure.

Quotienting Ghet by T[1], then by E8 × E8, produces a map

(2.48) p : MT ξhet φ−→
(1.44)

MTSpin∧ (B((E8×E8)oZ/2))+ −→ MTSpin∧ (BZ/2)+,

and p◦ ι : MTString ∧ (BZ/2)→ MTSpin∧ (BZ/2)+ is the usual map MTString →
MTSpin together with the addition of a basepoint. This means that any element

of Ω̃String
∗ (BZ/2) whose image in Ω̃Spin

∗ (BZ/2) is nonzero must also be nonzero in

Ωξ
het

∗ , which kills many differentials to or from Ext(M2). To produce such elements,
study the map of Adams spectral sequences induced by p ◦ ι, which on E2-pages is
the map

(2.49) ExtA(2)(H̃
∗(BZ/2;Z/2)) −→ ExtA(1)(H

∗(BZ/2;Z/2)).

Davis-Mahowald [DM78, Table 3.2] compute ExtA(2)(H
∗(BZ/2;Z/2)) in the de-

grees we need, and Gitler-Mahowald-Milgram [GMM68, §2] provide a computation
of ExtA(1)(H

∗(BZ/2;Z/2)). We draw the map (2.49) in Figure 4. All differentials
in the spectral sequence over A(1) vanish using h0- and h1-equivariance, and by
inspection there are no hidden extensions. Therefore we can identify some classes
which survive p ◦ ι and use this to trivialize some differentials in Figure 3.

• By computing the image of p ◦ ι on Ext groups, we learn that the map

Ω̃String
7 (BZ/2) → Ω̃Spin

7 (BZ/2) can be identified with the map Z/16 ⊕
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Z/2 → Z/16 sending (1, 0) 7→ 1 and (0, 1) 7→ 0.15 Therefore, any dif-
ferential to or from the four summands in topological degree 7 linked by
h0-actions must vanish, including (D2) and (D5).

• Similarly, the map Ω̃String
11 (BZ/2) → Ω̃Spin

11 (BZ/2) can be identified with
the inclusion Z/8 ↪→ Z/128 ⊕ Z/8 ⊕ Z/2 sending 1 7→ (16, 0, 0), which
follows either by computing p◦ ι on Ext groups or computing η-invariants

on the generator of Ω̃String
11 (BZ/2), which can be taken to be the product

of RP3 with a Bott manifold.16 Thus (D6) vanishes. �

Lemma 2.50. The differential (D1) is nonzero; specifically, d2(a) = h2
2p1.

We will deduce this from the following fact.

Proposition 2.51. The map Ωξ
r,het

4 → Ωξ
het

4 is surjective after 2-completion.

Recall that ξr,het is the analogue of ξhet but with (E8×E8)oZ/2 replaced with
E8 × E8.

Proof of Lemma 2.50 assuming Proposition 2.51. In this proof, implic-
itly 2-complete all abelian groups. If d2(a) = 0, then h2

2p1 ∈ E2,9
2 survives to the

E∞-page, so the h2-action E1,5
∞ → E2,9

∞ is nonzero. This lifts to imply that tak-
ing the product with S3 with string structure induced from its Lie group framing,

which defines a map Ωξ
het

4 → Ωξ
het

7 , is also nonzero. Direct products with framed
manifolds correspond to action by elements of π∗(S) on homotopy groups, so this
product with S3 is natural with respect to maps of spectra.

Since Ωξ
r,het

4 → Ωξ
het

4 is surjective, we may compute the product with S3 as a
map

(2.52) –× S3 : Ωξ
r,het

4 −→ Ωξ
r,het

7

and then map back to Ωξ
het

7 . However, as we noted in Remark 2.34, Ωξ
r,het

7
∼=

ΩSpin
7 (K(Z, 4)), and Stong [Sto86] showed ΩSpin

7 (K(Z, 4)) = 0. Thus taking the

product with S3 is the zero map Ωξ
het

4 → Ωξ
het

7 , which is incompatible with d2(a)
vanishing. �

Proof of Proposition 2.51. Let F be the fiber of the map φ : MT ξr,het →
MT ξhet, so that there is a long exact sequence

(2.53) · · · −→ Ωξ
r,het

4

φ−→ Ωξ
het

4
∂−→ π3(F ) −→ Ωξ

r,het

3 −→ · · ·
We will show π3(F )∧2 = 0, which implies the proposition statement by exactness.
To do so, we must understand F .

(F is the fiber.)

15Alternatively, one could show that the Z/16 ⊂ Ω̃String
7 (BZ/2) is mapped injectively into

Ω̃Spin
7 (BZ/2) by checking on a generator. One can show that RP7 admits a string structure;

then the generator of that Z/16 subgroup of Ω̃String
7 (BZ/2) is RP7 with its nontrivial principal

Z/2-bundle. Its image in Ω̃Spin
7 (BZ/2) has order at least 16, because the η-invariant of a suitable

twisted Dirac operator associated to the Z/2-bundle defines a bordism invariant ΩSpin
7 (BZ/2)→

R/Z, and on (RP7, S7 → RP7), this η-invariant is `/16 mod 1 for some odd `, as follows from a
formula of Donnelly [Don78, Proposition 4.1].

16All orientable 3-manifolds have trivializable tangent bundles, hence string structures; for a
construction of a Bott manifold with string structure, see [FH21a, §5.3].
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Figure 4. Top: ExtA(2)(H̃
∗(BZ/2;Z/2),Z/2), the E2-page of the

Adams spectral sequence computing Ω̃String
∗ (BZ/2)∧2 . Filled dots

have nonzero image in ExtA(1); unfilled dots are the kernel. Bot-

tom: ExtA(1)(H̃
∗(BZ/2;Z/2),Z/2), a summand of the E2-page

of the Adams spectral sequence computing Ω̃Spin
∗ (BZ/2)∧2 . Filled

dots are in the image of the map from ExtA(2); gray dots are the
cokernel. This map of spectral sequences is used in the proof of
Lemma 2.47.

We use a standard technique.
Let V be the rank-zero stable vector bundle on BGhet classified by the map

ξhet : BGhet → BO and let σ → BGhet be the line bundle classified by the map
quotienting by T[1], then by Spin, then by E2

8:

(2.54) BGhet −→ B(E2
8 o Z/2) −→ BZ/2.



BORDISM FOR THE HETEROTIC AND CHL STRINGS 37

Then, inclusion of the zero section of σ defines a map of spaces over Z × BO:
φ : (BGhet, V )→ (BGhet, V ⊕σ). Here we use the notation (B, ξ) to denote a space
B and a map ξ : B → Z × BO, and we use Z × BO instead of BO because σ is
not rank 0. Let M− denote the Thom spectrum of V ⊕ σ : BGhet → Z × BO,

and let φ̃ : MT ξ → M− denote the map of Thom spectra induced by φ; we claim
F ' Σ−1M . To see this, we will use a theorem in [DDK+] which identifies the

fiber of φ̃ as the map MT ξr,het → MT ξhet. Specifically, [DDK+] shows that the

fiber of φ̃ is the Thom spectrum of the pullback of V to the sphere bundle S(σ) of
σ. This sphere bundle is the pullback of the universal sphere bundle over BZ/2 by
the classifying map of σ:

(2.55)

S(σ) S(L) ' EZ/2

BGhet BZ/2

y

The sphere bundle of the tautological line bundle L → BZ/2 is EZ/2 → BZ/2,
which is contractible, so the pullback diagram (2.55) simplifies to a fiber diagram,
and the sphere bundle is the fiber of (2.54). Since (2.54) was induced from a group
homomorphism by taking classifying spaces, one can compute its fiber by taking
the classifying space of the kernel of the homomorphism, which is S(Spin×E2

8, c1 +
c2 − λ). In Remark 1.46 we saw that applying the Thom spectrum functor to
BS(Spin× E2

8, c1 + c2 − λ)→ BGhet, i.e. to the map S(σ)→ BGhet, produces the

map MT ξr,het → MT ξhet, and therefore the fiber of this map is Σ−1M−.
To finish the proof, attack F with the Adams spectral sequence, using its de-

scription as the Thom spectrum Σ−1M to get a description in terms of Ext of an
A(2)-module by using [DY23] again. Recall from Figure 2, left, the A(2)-module
τ≤13M5; the result of the computation here is that the A(2)-module relevant for
computing π∗(F )∧2 agrees with Σ−9(τ≤13M5) in degrees 4 and below. Then, Fig-
ure 2, right, computes ExtA(2)(Σ

−9(τ≤13M5)), which is the E2-page of the Adams
spectral sequence computing π∗(F )∧2 , in degrees 3 and below (shift the topologi-
cal degree of everything in Figure 2, right, down by 9). The E2-page vanishes in
topological degree 3, which implies π3(F )∧2 = 0. �

Lemma 2.56. The differential (D4) vanishes.

Proof. The source of this differential is E0,12
2
∼= Z/2 · e in Adams filtration

zero. Classes α in Adams filtration 0 are canonically identified with classes cα
forming a subgroup of mod 2 cohomology, and α survives to the E∞-page if and
only if the bordism invariant

∫
cα is nonzero. Here, α = e and cα = D1D

2
2 +D2

1D2,
so our differential vanishes if and only if e survives to the E∞-page if and only if
the following invariant is nonzero:

(2.57)

∫ (
D1D

2
2 +D2

1D2

)
: Ωξ

het

12 −→ Z/2.

We will produce a manifold on which this invariant is nonzero.
The quaternionic projective plane HP2 has H∗(HP2;Z) ∼= Z[x]/(x3) with |x| =

4 and λ(HP2) = x [BH58, §15.5, §15.6] (see also [FH21a, §5.2]). The Künneth
formula tells us H∗(HP2 × S4;Z) ∼= Z[x, y]/(x3, y2), with |y| = 4; since TS4 is
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stably trivial, λ(S4) vanishes and the Whitney sum formula (Lemma 1.6) implies
λ(HP2 × S4) = x.

To define a ξhet-structure on HP2 × S4, it suffices to produce two E8-bundles
P,Q→ HP2 × S4 and a trivialization of λ(HP2 × S4)− c(P )− c(Q). Since we can
freely prescribe c(P ) and c(Q), choose P andQ such that c(P ) = y and c(Q) = x−y;
then λ(HP2 × S4) − c(P ) − c(Q) = 0, so we can choose a trivialization. Since
D1 = c(P ) mod 2 and D2 = c(Q) mod 2,

�(2.58)

∫
HP2×S4

(
D1D

2
2 +D2

1D2

)
=

(∫
HP2×S4

(yx2 + xy2)

)
mod 2 = 1.

Now we have to tackle extension questions. In this part of the computation, it
will be helpful to reference Figure 3, as we will use the description of the E∞-page
of this spectral sequence several times while addressing extension questions.

Lemma 2.59. In degrees 10 and below, all extension questions in the Adams spec-
tral sequence for π∗(Q)∧2 either split or are detected by h0 on the E∞-page, ex-
cept possibly for the extensions involving the classes c ∈ E0,9

∞ , h2
1p7 ∈ E2,11

∞ , and
h1b ∈ E3,12

∞ .

The classes h1b and c may vanish on the E∞-page, depending on the fate of
the differentials in (D3).

Proof. The h0-action alone solves all extensions in this range except in degrees
8, 9, and 10.

If the d2s in (D3) vanish, there is an extension question in degree 8. The h0-

actions in the tower generated by h0a lift to produce a Z in Ωξ
het

8 , so the only
question is whether there is an extension involving h1p7 and b. Suppose this ex-
tension does not split, so π8(Q)∧2

∼= Z⊕ Z/4. We can choose a generator x of this
Z/4 such that the image of x in the Adams E∞-page is h1p7 ∈ E1,9

∞ ; since this is
h1 times another class on the E∞-page, x is η times a class y ∈ π7(Q)∧2 , where η
is the generator of π1(S) ∼= Z/2. Since 2η = 0, 2x = 2ηy = 0; since x was supposed
to generate a Z/4, this is a contradiction, and therefore this extension splits.

The same trick splits all extensions in degree 10, and all extensions involving
the class in E4,13

∞ . �

Proposition 2.60. All extension questions in π9(Q)∧2 split, so π9(Q)∧2
∼= (Z/2)⊕4

if the differentials in (D3) vanish, and π9(Q)∧2
∼= (Z/2)⊕2 if they do vanish.

Proof. If the differentials in (D3) do not vanish, this is a consequence of
Lemma 2.59, so assume that those differentials vanish.

First suppose we can split all extensions involving c. Then the only extension
remaining is between h2

1p7 and h1b. In Lemma 2.59, we split the extension between
h1p7 and b, so the classes h1p7 and b lift to classes h1p7, resp. b, which generate a
Z/2 ⊕ Z/2 ⊂ π8(Q)∧2 . The action by h1 lifts to imply that the images of η · h1p7

and η · b in the E∞-page are h2
1p7, resp. h1b, and η carries the Z/2⊕Z/2 generated

by h1p7 and b to a Z/2⊕ Z/2 ⊂ π9(Q)∧2 generated by ηh1p7 and ηb, thus splitting

the extension between h2
1p7 and h1b.
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Figure 5. The E2-page of the Adams spectral sequence com-
puting π∗(Q′)∧2 , where Q′ is the spectrum defined in the proof
of Proposition 2.60. By comparing with the Adams spectral se-
quence for Q, we learn d2(a′) = h2

2p
′
1 from Lemma 2.50, and that

the dashed differentials (e.g. d2(c′), d2(h1c
′)) vanish if and only if

the differentials in (D3) vanish.

Now we need to prove that c lifts to a class c such that 2c = 0. Let X be the
pullback

(2.61)

X BGhet

RP2 BZ/2

y

and let ξ : X → BO be the pullback of ξhet to X. Both vertical arrows in (2.61)
are fibrations with fiber BE2

8; using the induced map of Serre spectral sequences,
we learn H∗(X;Z/2) ∼= H∗(BGhet;Z/2)/(x3), where x ∈ H1(BGhet;Z/2) is the
generator. One can replay the whole argument we ran with ξ in place of ξhet,

defining ξ′ analogously to ξhet′, and deduce the following.

(1) The map c : BE8 → K(Z, 4) induces an isomorphism Ωξ∗ → Ωξ
′

∗ in degrees
14 and below,

(2) there is a spectrum Q′ and a splitting MT ξ ' MTSpin ∨Q′, and

(3) the map X → BGhet induces a map MT ξ′ → MT ξhet′ which is the
identity on the MTSpin factors and sends Q → Q′.

The analogue of Proposition 2.41 for ξ′ is exactly the same, except replacing M2

with ΣC2 and M5 with Σ9C2, where C2 is the A(2)-module Σ−1H̃∗(RP2;Z/2).
Bruner-Rognes [BR21, §6.1] compute ExtA(2)(C2), and using that we can draw
the E2-page of the Adams spectral sequence computing π∗(Q′)∧2 in Figure 5. For
the classes p1, a, and c we considered in the E2-page of the Adams spectral sequence
for Q, let p′1, a′, and c′ be the corresponding classes in the E2-page for Q′: they
live in the same bidegrees and the map Q′ → Q carries x′ → x for x ∈ {p1, a, c}.
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The point of all of this is that if the differentials in (D3) vanish, then both c and
h2

1p7 live to the E∞-page for Q, then both c and h2
1p7 are in the image of the map Φ

on E∞-pages induced by Q′ → Q: c = Φ(c′), and Bruner-Rognes [BR21, Corollary

4.3] define a class h̃2
2 ∈ Ext2,9

A(2)(C2) = Ext2,10
A(2)(ΣC2) such that h2

1p7 = Φ(h̃2
2). And

looking at Figure 5, in the E∞-page for Q′, h1(h̃2
2) 6= 0 and h1(wp′1) 6= 0, so the

2η = 0 trick from Lemma 2.59 splits the extensions in π9(Q′)∧2 . Thus there is a
class c′ ∈ π9(Q′)∧2 such that 2c′ = 0 and the image of c′ in the E∞-page is c′.
Applying Φ(c′) = c, we learn c lifts to Φ(c′) in π9(Q)∧2 , and twice this class is 0, as
we wanted to prove. �

We have therefore proven the following theorem.

Theorem 2.62. Ignoring odd-primary torsion, there are isomorphisms

Ωξ
het

0
∼= Z Ωξ

het

6
∼= Z/2

Ωξ
het

1
∼= Z/2⊕ Z/2 Ωξ

het

7
∼= Z/16

Ωξ
het

2
∼= Z/2⊕ Z/2 Ωξ

het

8
∼= Z3 ⊕ (Z/2)⊕i

Ωξ
het

3
∼= Z/8 Ωξ

het

9
∼= (Z/2)⊕j

Ωξ
het

4
∼= Z⊕ Z/2 Ωξ

het

10
∼= (Z/2)⊕k

Ωξ
het

5
∼= 0 Ωξ

het

11
∼= A,

where:

• A is an abelian group of order 64 isomorphic to one of Z/8⊕Z/8, Z/16⊕
Z/4, Z/32⊕ Z/2, or Z/64, and

• either i = 1, j = 4, and j = 4, or i = 2, j = 6, and k = 5.

2.2.1. Some manifold generators. We finish this section by giving manifold rep-
resentatives for all the generators for the groups we found in dimensions 10 and
below, except possibly for two classes in degrees 9 and 10 if the differentials in (D3)
vanish. We also give partial information in dimension 11. In this list, we implicitly
localize at 2, though we will soon see in Theorem 2.74 that this does not lose any
information.

The map MTSpin ∨ (MTString ∧BZ/2)→ MT ξhet is surjective on homotopy
groups in degrees 7 and below, quickly giving us many of the generators we need.

The low-dimensional generators of spin bordism are standard; for Ω̃String
∗ (BZ/2),

we use the h2-action on the E∞-page together with the map Ω̃String
∗ (BZ/2) →

Ω̃Spin
∗ (BZ/2), as in the proof of Lemma 2.47 (see Figure 4), to deduce generators.

(0) Ωξ
het

0
∼= Z, generated by the point.

(1) Ωξ
het

1
∼= Z/2⊕Z/2. The first summand comes from ΩSpin

1 , hence is gener-
ated by S1

nb , the circle with ξhet-structure induced from its nonbounding
framing. The other summand, corresponding to p1 ∈ E0,1

∞ of the Adams
spectral sequence for Q, is in Adams filtration zero, hence corresponds
to a mod 2 cohomology class and is detected by that class. Looking at
Figure 1, this class is the generator of H1(BZ/2;Z/2) evaluated on the
principal Z/2-bundle associated to a ξhet-structure. Thus we can take as
our generator S1 with ξhet-structure induced by the nontrivial Z/2-bundle
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and the inclusion Z/2 ↪→ E2
8 o Z/2. We will call this generator RP1, so

that we can represent its Z/2-bundle by S1 → RP1.
(2) An action by h1 in the E∞-page of an Adams spectral sequence calculat-

ing bordism lifts to taking the product with S1
nb on manifold generators.

Acting by h1 defines an isomorphism from the 1-line of the E∞-page to
the 2-line, so we can take S1

nb×S1
nb and RP1×S1

nb to be our two generators

of Ωξ
het

2 .

(3) Ωξ
het

3
∼= Z/8; there is a generator whose image in the Adams E∞-page is

p3. The sequence of maps

(2.63) Ω̃String
3 (BZ/2)

ι−→ Ωξ
het

3

p−→ ΩSpin
3 (BZ/2)

consists of two isomorphisms Z/8
∼=→ Z/8

∼=→ Z/8, so it suffices to find a

generator of ΩSpin
3 (BZ/2) that admits a string structure. The standard

generator is RP3 with principal Z/2-bundle S3 → RP3, and because RP3

is parallelizable, it admits a string structure.

(4) Ωξ
het

4
∼= Z⊕Z/2. The free summand comes from ΩSpin

4 , hence is generated
by the K3 surface with trivial Z/2-bundle, and E8-bundles with character-
istic classes −λ(K3) and 0. Z/2 corresponds to E1,5

∞
∼= Z/2 · h2p1. Action

by h2 lifts to the product with S3 with its Lie group framing, so we can
generate this summand with S3 × RP1.

Remark 2.64. In Proposition 2.51, we established that the homomor-

phism ΩSpin
4 (K(Z, 4)) ∼= Ωξ

r,het

4 → Ωξ
het

4 is surjective; using this, we

can replace S3 × RP1, which we will need later. Stong [Sto86] showed

ΩSpin
4 (K(Z, 4)) ∼= Z ⊕ Z; one Z factor comes from ΩSpin

4 , hence is repre-
sented by the K3 surface with trivial map toK(Z, 4). The other is detected
by the bordism invariant which, given a 4-dimensional spin manifold X
and a map f : X → K(Z, 4), sends X 7→

∫
X
f∗c, where c ∈ H4(K(Z, 4);Z)

is the tautological class. For example, this invariant equals 1 on S4 with its
standard orientation and unique spin structure inducing that orientation,

with the map to K(Z, 4) given by the class 1 ∈ H4(S4;Z)
∼=→ Z.

The images of the two classes (K3, 0) and (S4, 1) in Ωξ
het

4 must gen-
erate. Unsurprisingly, the K3 surface is sent to a generator of the Z
summand we described above; this summand is detected by

∫
p1. As this

invariant vanishes on (S4, 1), surjectivity of the map on Ω4 implies that

(S4, 1) maps to the class of RP1 × S3.17 Thus the Z/2 summand in Ωξ
het

4

can be generated by S4 with trivial Z/2-bundle and two E8-bundles with
characteristic classes c = ±1 ∈ H4(S4;Z).

The map on Adams spectral sequences induced from the map of spec-
tra MT ξr,het → MT ξhet sends the class in the E∞-page representing
(S4, 1) to 0 (see Francis [Fra11, §2] or Lee-Yonekura [LY22, §3.5] for the

Adams spectral sequence for Ωξ
r,het

∗ = ΩSpin
∗ (K(Z, 4))), so the fact that

the image of (S4, 1) is nonzero in Ωξ
het

4 is analogous to a hidden extension.

(5) Ωξ
het

5 = 0.

17We thank Justin Kaidi for informing of us of this fact.
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(6) Ωξ
het

6
∼= Z/2, and the image of a generator on the E∞-page is h2p3, which

lifts to imply that we can take S3 × RP3 as a generator.

(7) Ωξ
het

7
∼= Z/16. This Z/16 is detected by ΩSpin

7 (BZ/2) much like RP3 was,

and we learn that this summand is generated by RP7 with Ghet-bundle
induced from the Z/2-bundle S7 → RP7, and is detected in the E∞-page
by p7.

(8) Ωξ
het

8
∼= Z2 ⊕ Z ⊕ Z/2 together with an additional Z/2 summand if the

differentials in (D3) do not vanish.

• The first two free summands come from ΩSpin
∗ ; their generators may

be taken to be the quaternionic projective plane HP2 and a Bott
manifold B. One can choose B to have a string structure [FH21a,
§5.3] and we do so. In both cases, the Z/2-bundle associated to
the ξhet-structure is trivial; since B is string, we give it the ξhet-
structure in which both principal E8-bundles are trivial. For HP2,
H4(HP2;Z) ∼= Z with generator x, as we discussed in the proof of
Lemma 2.56; we choose a ξhet-structure on HP2 with principal E8-
bundles P,Q→ HP2 with c(P ) = −x and Q trivial.

• The third free summand comes from the green h0-tower in topological
degree 8 in the Adams spectral sequence for π∗(Q). This summand
is detected by the bordism invariant

(2.65) f :=

∫
c(P )c(Q) : Ωξ

het

8 −→ Z,

because this quantity can be nonzero (as we show below), it vanishes
on the two generators we discovered for the other two free summands,
and because it must vanish on the remaining, torsion summand. It
is a consequence of Lemma 2.50 that the mod 2 reduction of (2.65),

which is
∫
D1D2, vanishes. This is because every class x ∈ E0,t

2 has
an associated degree-t Z/2 cohomology class cx, and x lives to the
E∞-page if and only if the bordism invariant

∫
cx is nonvanishing.

Thus the minimum nonzero value of |f(M)|, where M is a closed,
8-dimensional ξhet-manifold, is at least 2.
Recall from the proof of Lemma 2.56 that H∗(HP2;Z) ∼= Z[x]/(x3)
with |x| = 4 and λ(HP2) = x. Consider the two E8-bundles P,Q →
HP2 prescribed by c(P ) = 2x and c(Q) = −x; then λ(HP2)− c(P )−
c(Q) = 0, so this data lifts to a ξhet-structure, and

(2.66)

∫
HP2

c(P )c(Q) = 2,

achieving the minimum. Therefore HP2 with these two principal E8-
bundles generates the final free summand.

• The Z/2 summand that we know is present independent of any unre-
solved differentials is generated by h1p7, so as usual lifts to S1

nb×RP
7.

• If d2(c) 6= 0, there is an additional Z/2 summand represented in the
E∞-page by b. We will discuss this summand, and its generator X8,
in §2.2.2.

(9) Ωξ
het

9
∼= (Z/2)⊕2 ⊕ (Z/2)⊕2, and if the differentials in (D3) vanish, there

is an additional Z/2⊕ Z/2 summand.
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• Two of the Z/2 summands come from ΩSpin
9
∼= (Z/2)⊕2, where they

are represented by the generators HP2×S1
nb and B×S1

nb , with ξhet-

structure induced from the corresponding generators in Ωξ
het

8 .
• The other two Z/2 summands that are present no matter the value of

the undetermined differentials are in the image of the homomorphism

ι : Ω̃String
9 (BZ/2) → Ωξ

het

9 . The generator of the summand in lower
Adams filtration has image in the E∞-page equal to h2

1p7, so we
obtain S1

nb × S1
nb × RP7.

The summand in higher Adams filtration has nonzero image in the

group Ω̃Spin
9 (BZ/2) ∼= Z/2⊕Z/2, by inspection of Figure 4. The two

generators of Ω̃Spin
9 (BZ/2) can be taken to be HP2×RP1 and B×RP1;

to determine which we get, compose further with the Atiyah-Bott-

Shapiro [ABS64] map Ω̃Spin
9 (BZ/2) → k̃o9(BZ/2) ∼= Z/2, which

sends [HP2 × RP1] 7→ 0 and [B × RP1] to the generator. The image
of the map of Adams spectral sequence in Figure 4 is contained in
the summand whose image under the Atiyah-Bott-Shapiro map is

nonzero, the image of our generator in Ω̃Spin
9 (BZ/2) is bordant to

B×RP1; finally, since B and RP1 are both string, we can take B×RP1

as our last generator in this dimension.
• If d2(h1c) = 0, there is another Z/2 summand whose image in the
E∞-page is h1b. Thus as usual it lifts to S1

nb ×X8, where X8 is the
manifold we describe in §2.2.2.
• If d2(c) = 0, there is another Z/2 summand whose image in the E∞-

page is c. We were unable to find a manifold X9 representing this
generator. Because c is in Adams filtration 0, corresponding to the
mod 2 cohomology class D1D2x, if X9 exists then one can detect it
by showing

∫
X9
D1D2x = 1.

(10) Ωξ
het

10
∼= (Z/2)⊕3 ⊕ Z/2, together with potentially another Z/2 summand

if the differentials in (D3) vanish.

• Three of the Z/2 summands in Ωξ
het

10 come from ΩSpin
10

∼= (Z/2)⊕3.

Their generators are known to be B × S1
nb × S1

nb , HP2 × S1
nb × S1

nb ,
and a Milnor hypersurface X10, defined to be a smooth degree-(1, 1)
hypersurface in CP2 × CP4. Milnor [Mil65, §3] showed that X10

generates the last Z/2 summand in ΩSpin
10 .

• The next Z/2 summand is detected by the maps Ω̃String
10 (BZ/2) →

Ωξ
het

10 and Ωξ
het

10 → ΩSpin
10 (BZ/2), and by a similar argument to the

one we gave for the higher-filtration orange Z/2 summand in degree
9, we may choose B × RP1 × S1

nb as the generator.
• If d2(h1c) = 0, then there is an additional Z/2 summand whose image

in the E∞-page is h1c. Thus we can take S1
nb × X9 for a manifold

representative, though as discussed above we do not know what X9

is.

(11) We have not determined generators for Ωξ
het

11 , nor even its isomorphism
type. This is a question whose answer would be useful for anomaly can-
cellation for the E8 × E8 heterotic string; see Question 0.3 and §3.2.1.

Nonetheless, the Adams argument we gave above implies Ωξ
het

11 contains
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a Z/8 subgroup, the image of ι : Ω̃String
11 (BZ/2) → Ωξ

het

11 . By comparing

with the map Ω̃String
11 (BZ/2) → Ω̃Spin

11 (BZ/2) as in Figure 4, one learns

that the class of B × RP3 generates this Z/8.

2.2.2. X8, a potentially nonzero class in Ωξ
het

8 . Though we were unable to de-

termine if the class b ∈ E2,10
2 survives to the E∞-page, we are able to write down

a manifold representative X8 of the class it determines in Ωξ
het

8 ; if b does survive,
X8 should be added to the list of generators above.

Definition 2.67. Let Z/2 act on S3 × S3 × S2 by the antipodal map on S2 and
the first copy of S3, and a reflection through a plane on the second S3. This is a
free action; let X8 denote the quotient, which is a smooth manifold.

X8 is a generalized Dold manifold of the sort studied by Nath-Sankaran [NS19].
Manifolds similar to X8 frequently appear as generators of bordism groups: see
[FH21a, §5.5.1] and [DDHM23, §14.3.3] for related examples.

Lemma 2.68. X8 admits a string structure, and one can choose a string structure
on X8 so that the induced string structure on S3×S3 is the one induced by the Lie
group framing on S3 × S3 ∼= SU2 × SU2.

Proof. Adding the normal bundles for Sk−1 ↪→ Rk defines an isomorphism

(2.69) T (S3 × S3 × S2)⊕ R3 ∼=−→ R4 ⊕ R4 ⊕ R3.

To understand TX8, we will study (2.69) when we introduce the Z/2-action on
S3 × S3 × S2 whose quotient is X8. Since the outward unit normal vector field on
Sk is Ok+1-invariant, Z/2 acts trivially on the R3 on the left side of (2.69), since the
outward unit normal vector field provides the trivializations of the normal bundles
giving that R3 factor. On the right-hand side, Z/2 by the antipodal map on the
first factor of S3, so acts by −1 on each R summand of the first R4. The reflection
on the second S3 factor means Z/2 acts on the second R4 by −1, 1, 1, and 1 on
the four R summands. Finally, the antipodal map on S2 implies Z/2 acts by −1
on the remaining three R summands.

Passing from equivariant vector bundles on S3 × S3 × S2 to nonequivariant
vector bundles on the quotient, (2.69) induces an isomorphism

(2.70) TX8 ⊕ R3 ∼=−→ σ⊕8 ⊕ R3,

where σ → X9 is pulled back from the tautological line bundle σ → RP2. The
Whitney sum formula implies σ⊕8 → RP2 is spin, and since the string obstruction
lives in H4(RP2;Z) = 0, σ⊕8 is string. Thus the pullback to X8 is also string, so
TX8 is string.

For the Lie group framing string structure, use the fact that the involutions
on each S3 summand can be described in terms of Lie groups: since the quotient
of S3 ∼= SU2 by the antipodal map is RP3 ∼= SO3, the Lie group framing on S3 is
equivariant for the antipodal map. Compatibility for the reflection comes from the
action of a reflection in Pin+

3 ⊃ SU2. �

Proposition 2.71. With the string structure described in Lemma 2.68 and the Z/2-

bundle σ → X8, [X8] is linearly independent from [S1
nb × RP7] in Ω̃String

8 (BZ/2) ∼=
Z/2 ⊕ Z/2, so the image of [X8] in the E∞-page for ΩString

∗ (BZ/2) is the nonzero
class in E2,10

∞
∼= Z/2 (perhaps plus a term in lower filtration).
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Proof. Let f : Ω̃String
8 (RP2)→ Ω̃String

8 (BZ/2) be the map induced by RP2 ↪→
RP∞ ' BZ/2. The map this induces on Adams spectral sequences is not hard
to analyze: Bruner-Rognes [BR21, §4.4, Chapter 6, §12.1] run the whole Adams

spectral sequence for t̃mf ∗(RP
2), using the identification Σ∞RP2 ' ΣS/2, and as

discussed above tmf - and MTString-homology agree in degrees 14 and below.18

Likewise, Davis-Mahowald [DM78, Table 3.2] compute the E2-page of the Adams

spectral sequence for Ω̃String
∗ (BZ/2) in the range we need, and with their calculation,

hi-linearity of differentials, and the 2η = 0 trick from the proof of Lemma 2.59 one

sees that Ω̃String
8 (BZ/2) ∼= Z/2 ⊕ Z/2. As discussed in §2.2.1, one of the Z/2

summands is detected by RP7 × S1
nb , whose image in the E∞-page is in filtration

1. Consider the map

(2.72) Ψ: ExtA(2)(H̃
∗(RP2;Z/2)) −→ ExtA(2)(H̃

∗(BZ/2;Z/2))

induced by RP2 → RP∞ ' BZ/2; we draw this map in Figure 6. Ψ is also the map
between the E2-pages of these two Adams spectral sequences; looking at Figure 6,
Ψ is injective in topological degree 8, with image containing the nonzero element
of E2,10

2 but not the nonzero class in E1,9
2 . As both of these elements survive to

the E∞-page, this lifts to imply that f : Ω̃String
8 (RP2)→ Ω̃String

8 (BZ/2) is injective

and that if one wants to find a class in Ω̃String
8 (BZ/2) linearly independent from

RP7 × S1
nb , it suffices to find a nonzero class in Ω̃String

8 (RP2).

The map σ : X8 → BZ/2 factors through RP2 by definition, so we are done if we
can show X8, with its map to RP2, is nonbounding. To do so, consider the transfer
map Σ∞RP2 → Σ∞S2 associated to the double cover S2 → RP2; this induces on

string bordism a map Ω̃String
∗ (RP2) → Ω̃String

∗ (S2) sending (M,f : M → RP2) to
the double cover M ′ → M associated to the line bundle f∗σ, together to the map
M ′ → S(σ) = S2.

The map Ωξk → Ω̃ξk+`(S
`) sending M 7→ (M × S`,proj2 : M × S` → S`) (where

S` carries the bounding stable framing, which with the ξ-structure on M induces a
ξ-structure on M × S`) is always an isomorphism (e.g. check this with the Atiyah-

Hirzebruch spectral sequence), and ΩString
6

∼= Z/2×Z/2 [Gia71, §3, §4], generated
by S3×S3 with its Lie group framing, because it is represented by h2

2 in the Adams

spectral sequence. Therefore Ω̃String
8 (S2) ∼= Z/2 is generated by S3 × S3 × S2, with

the map to S2 given by projection onto the third factor. The image of X8 under
the transfer is its double cover, which is S3 × S3 × S2, with the correct string

structure and map to S2, so [X8] 6= 0 in Ω̃String
8 (RP2), which suffices to prove the

theorem. �

Finally, by looking at the map Ω̃String
∗ (BZ/2)→ Ωξ

het

∗ , we conclude:

Corollary 2.73. Suppose d2(c) = 0 in the Adams spectral sequence for ξhet. Then

[X8] 6= 0 in Ωξ
het

8 , and its image in the E∞-page is the class b ∈ E2,10
∞ (perhaps plus

some elements in lower filtration).

2.3. ξhet bordism at odd primes.

Theorem 2.74. Ωξ
het

∗ has no odd-primary torsion in degrees 11 and below.

18See also the closely related work of Beaudry-Bobkova-Pham-Xu [BBPX22], who compute
tmf ∗(RP2) using the elliptic spectral sequence.
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Figure 6. The map between the Adams spectral sequences for
reduced string bordism induced by the map RP2 ↪→ RP∞ '
BZ/2, which we use in the proof of Proposition 2.71. Top:

ExtA(2)(H̃
∗(RP2;Z/2),Z/2), the E2-page of the Adams spectral

sequence computing Ω̃String
∗ (RP2)∧2 . Filled dots have nonzero im-

age after mapping to RP∞; unfilled dots are the kernel. Bruner-
Rognes [BR21, §4.4, Chapter 6, §12.1] compute these Ext groups
and run this Adams spectral sequence; from their work we learn
there are no differentials in this range (though there are hid-
den ν-extensions that do not enter into our argument; see (ibid.,

Theorem 12.5)). Bottom: ExtA(2)(H̃
∗(BZ/2;Z/2),Z/2), a sum-

mand of the E2-page of the Adams spectral sequence computing

Ω̃String
∗ (BZ/2)∧2 . Filled dots are in the image of the map from RP2;

gray dots are the cokernel. The E2-page was computed by Davis-
Mahowald [DM78, Table 3.2], and during the proof of Proposi-
tion 2.71 we argue that there are no differentials or hidden exten-
sions by 2 in the range depicted.
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Proof. This amounts to a direct computation with the Adams spectral se-
quence. We will go over the case p = 3 in detail; for p = 5, 7 the story is similar
but easier, and for p ≥ 11 it is trivial because the degrees of the Steenrod powers
are too high for the Adams spectral sequence to produce torsion.

First we compute H∗(BGhet;Z/3) as a module over the Steenrod algebra A
in low degrees in Proposition 2.77, then we do the same for H∗(MT ξhet;Z/3) in
Proposition 2.83. Once we have this, we can run the Adams spectral sequence, and
do so in Proposition 2.86.

Throughout this subsection, Pi refers to the ith Steenrod power, a degree-4i
operation on mod 3 cohomology, and β is the Bockstein homomorphism for the
sequence 0→ Z/3→ Z/9→ Z/3→ 0.

Lemma 2.75. Let C ∈ H3(K(Z, 3);Z/3) denote the mod 3 reduction of the tauto-
logical class. Then

(2.76) H∗(K(Z, 3);Z/3) ∼= Z/3[C,P1C, βP1C, . . . ]/(C2, . . . ),

where all missing generators and relations are in degrees 14 and above.

Proof. This is a standard application of the Serre spectral sequence for the fi-
bration K(Z, 2)→ ∗ → K(Z, 3), so we will be succinct. E0,∗

2
∼= H∗(K(Z, 2);Z/3) ∼=

Z/3[x], with |x| = 2; by the E∞-page, all powers of x must be killed by differentials.

The only way to kill x is with a transgressing d3 : E0,2
3 → E3,0

3 . Let C := d3(x).
C2 = 0 follows by graded commutativity. The Leibniz rule for differentials means
that when 3 - k, d3(xk) = ±xk−1C, and if 3 | k, d3(xk) = 0.

So x3 survives to the E4-page. The only remaining differential that can kill
x3 is the transgressing d7 : E0,6

7 → E7,0
7 , so d7(x3) 6= 0; by the Kudo transgression

theorem [Kud56], because x3 = P1(x), d7(x3) = P1C. The Leibniz rule then
implies d7(x6) = x3P1C, so by the E8-page, everything on the line p = 0 in total
degree less than 18 has been killed.

Because d3(x3) = 0, x2C survives to the E4-page; the only remaining way for
it to support a differential is to have a new class w ∈ H8(K(Z, 3);Z/3) such that
d5(x2C) = w. To see that β(P1C) = ±w, compare with the analogous spectral
sequence for Z/9-valued cohomology to see that P1C is not in the image of the
mod 3 reduction map from Z/9 cohomology to Z/3 cohomology.19 �

Proposition 2.77. Let D ∈ H4(BE8;Z/3) be the mod 3 reduction of the class c
from Definition 1.4, and let D1 and D2 be the two copies of D in H∗(BE2

8;Z/3)
coming from the two factors of BE8. In degrees 13 and below, the pullback map
on Z/3 cohomology induced by φ : BGhet → BSpin × B(E2

8 o Z/2) is the quotient
ring homomorphism sending λ − D1 − D2 7→ 0, −p2 − P1(D1 + D2) 7→ 0, and
βP1(D1 +D2) 7→ 0.

Here φ is the map we constructed in (1.44) which forgets the B-field.

Proof. Throw the Serre spectral sequence at the fibration

(2.78) K(Z, 3) −→ BGhet −→ BSpin×B(E2
8 o Z/2).

19Alternatively, one could deduce this Bockstein by setting up the Serre spectral sequence for

K(Z, 3)→ ∗ → K(Z, 4) and Hill’s calculation [Hil09, Corollary 2.9, Figure 1(a)] of the low-degree
mod 3 cohomology of K(Z, 4) as an A-module: C transgresses to a degree-4 class D, and Hill shows

β(P1D) 6= 0, so by the Kudo transgression theorem [Kud56], β(P1C) 6= 0 in H∗(K(Z, 3);Z/3).
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The base space is not simply connected, so we might have to worry about local
coefficients, but this turns out not to be the case, because the Z/2 symmetry
swapping the two E8 factors, which is the origin of the π1 in the base, acts trivially
on the B-field, which gives us the fiber in (2.78).

In order to run the Serre spectral sequence for (2.78), we need to know the coho-
mology of BSpin and B(E2

8oZ/2). The former is the polynomial ring on the mod 3
reductions of the Pontrjagin classes, which is a theorem of Borel-Hirzebruch [BH59,
§30.2]; for the latter, run the Serre spectral sequence for the fibration

(2.79) BE2
8 −→ B(E2

8 o Z/2) −→ BZ/2.

Because H∗(BZ/2;Z/3) vanishes in positive degrees, this Serre spectral sequence
collapses to imply

(2.80) H∗(B(E2
8 o Z/2);Z/3)

∼=−→ H∗(BE2
8;Z/3)Z/2.

The answer now follows from the Künneth formula, the fact that we can replace
BE8 with K(Z, 4) in the range we need by the result of Bott-Samelson [BS58,
Theorems IV, V(e)] we mentioned in §2.2, and the mod 3 cohomology of K(Z, 4) in
low degrees, worked out by Cartan [Car54] and Serre [Ser52], and stated explicitly
by Hill [Hil09, Corollary 2.9].

Now back to (2.78) and its Serre spectral sequence. The fibration (2.78) is
classified by the degree-4 cohomology class λ − D1 − D2, i.e. it is the pullback of
the universal K(Z, 3)-bundle

(2.81) K(Z, 3) −→ EK(Z, 3) −→ BK(Z, 3) ' K(Z, 4)

by the map BSpin × B(E2
8 o Z/2) → K(Z, 4) classified by λ −D1 −D2.20 In the

Serre spectral sequence for (2.81), the class C ∈ E0,3
2 = H3(K(Z, 3);Z/3) must

transgress to the generator of E4,0
2 = H4(K(Z, 4);Z/3), and this generator pulls

back to λ−D1 −D2, enforcing the relation λ−D1 −D2 = 0 in the E5-page.
The other two pullbacks to zero in the theorem statement then follow from

the Kudo transgression theorem [Kud56]: P1C ∈ E0,7
2 = H7(K(Z, 3);Z/3) must

transgress to P1(λ − D1 − D2), and analogously for βP1C. To compute these,
we must determine how P1 acts on the mod 3 reductions of Pontrjagin classes.
Shay [Sha77] proves a formula for Steenrod powers of Chern classes, which yields
the formula for Pontrjagin classes by pullback. Hence, as worked out by Nord-
ström [Nor], P1p1 = p2; then an Adem relation tells us

(2.82) P1p2 = P1P1p1 = −P2p1 = p3
1,

the last equality because Pi is the cup product cube on classes of degree 2i. Thus
we see that P1C transgresses to −p2 − P1(D1 + D2) and βP1C transgresses to
βP1(D1 +D2), killing those classes by the E10-page.

Now, the Leibniz rule cleans up the rest of the Serre spectral sequence in total
degree at most 13: by the E10-page, everything in this range is concentrated on
the line q = 0. Therefore on the E∞-page, the extension question is trivial in this
range, and we conclude. �

Proposition 2.83. Let M3 denote the quotient of H∗(MT ξhet;Z/3) by all ele-
ments of degree 14 or higher, MSO

3 denote the quotient of H∗(MTSO ;Z/3) by all

20This map, and hence also the fibration, is only determined up to homotopy, but any two
choices of representative give isomorphic answers.
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elements of degree 14 or higher, and Cα denote the A-module which consists of two
Z/3 summands in degrees 0 and 4 linked by P1. Then, there is an isomorphism of
A-modules

(2.84) M3
∼=MSO

3 ⊕ Σ8Cα⊕ Σ12Z/3.

Proof. In Proposition 2.77, we discovered that the map φ : BGhet → BSpin×
B(E2

8 o Z/2)) induces a surjection on mod 3 cohomology in degrees 13 and below.
As φ commutes with the maps down to BO that are part of the definition of these
tangential structures, φ induces a map on Thom spectra

(2.85) MT ξhet → MTSpin ∧B(E2
8 o Z/2)+.

Both of these tangential structures’ maps to BO factor through BSO, so the Thom
isomorphism for mod 3 cohomology untwists. The Thom isomorphism is natural
for maps of tangential structures, so we conclude that the pullback map on mod
3 cohomology induced by (2.85) is a surjection in degrees 13 and below — and
therefore that we can compute Steenrod powers in the cohomology of the latter
Thom spectrum. And the map MTSpin → MTSO is an equivalence away from
2, so we may work with MTSO in place of MTSpin. Milnor [Mil60, Theorem 4]
computed the Steenrod module structure on H∗(MTSO ;Z/3), showing that it is a
free A/β-module. Using this, we can determine the Steenrod powers of Upi, where
U is the Thom class; and this and the Cartan formula finish the proof. �

Proposition 2.86. In topological degrees 12 and below, the Adams E2-page com-

puting (Ωξ
het

∗ )∧3 consists of h0-towers concentrated in even topological degrees, and
therefore this Adams spectral sequence collapses in degrees 12 and below.

Proof. The direct-sum decomposition in Proposition 2.83 means that it suf-
fices to prove the statement about h0-towers for MSO

3 , Σ8Cα, and Σ12Z/3 sepa-
rately. As usual, with M an A-module, we write Ext(M) to denote Ext∗,∗A (M,Z/3).
The first ingredient we need is Ext(Z/3) itself; the computation of ExtA(Z/3) in
degrees t−s ≤ 11 is due to Gershenson [Ger63]; May [May65, May66] expanded
this computation to t − s ≤ 88. In topological degrees 2 and below, Ext(Z/3)
consists of a single h0-tower in topological degree 0, implying the conclusion for
Σ12Z/3.

Next, we compute Ext(Cα) using the fact that a short exact sequence of A-
modules induces a long exact sequence in Ext groups. Specifically, factor Cα as an
extension of A-modules

(2.87) 0 Σ4Z/3 Cα Z/3 0,

which we draw in Figure 7, left, and compute the corresponding long exact sequence
in Ext in Figure 7, right. There is one potentially nonzero boundary map in range:
∂ : Ext0,4

A (Z/3) → Ext1,4
A (Z/3). This map must be nonzero because Ext0,4

A (Cα) =
HomA(Cα,Σ4Z/3) = 0. We see that in degrees 6 and below, Ext(Cα) consists
solely of h0-towers in even degrees, which implies the part of the corollary statement
coming from Σ8Cα.

Finally, MSO
3 . Milnor [Mil60, Theorem 4] showed that this module coincides

with a free A/β-module in degrees 13 and below, and proves (ibid., Lemma 5) that
the Ext groups of such a module consist solely of h0-towers in even topological
degree. Therefore in topological degrees 12 and below, Ext(MSO

3 ) also consists
solely of h0-towers in even topological degrees. �
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Σ4Z/3 Cα Z/3
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Figure 7. Left: the extension (2.87) of A-modules at p = 3.
Right: the associated long exact sequence in Ext. The dashed
gray lines are actions by elements of ExtA(Z/3) that cannot be
seen from this long exact sequence and must be deduced another
way; we do not need them in this paper, so do not go into the
details.

This suffices to prove Theorem 2.74 for p = 3: h0-towers on the E∞-page lift to

Z3 (i.e. the 3-adic integers) summands in (Ωξ
het

∗ )∧3 , so there is no 3-torsion in this
range. �

Remark 2.88. The change-of-rings technique we used at p = 2 has an analogue at
p = 3 for twists of tmf (hence also 3-local twisted string bordism in degrees 15 and
below, because the Ando-Hopkins-Rezk map [AHR10] MTString(3) → tmf (3) is

15-connected [HR95, Hil09]): using Baker-Lazarev’s version of the Adams spectral
sequence [BL01], we can take Ext over the algebra

(2.89) Atmf := π−∗Maptmf (HZ/3, HZ/3),

where HZ/3 is made into a tmf -algebra spectrum by the ring spectrum maps

tmf
τ≤0→ HZ → HZ/3, where the first map is the Postnikov 0-connected quotient

and the second map is induced from Z � Z/3. The algebra Atmf was explicitly
calculated by Henriques and Hill, using work of Behrens [Beh06] and unpublished
work of Hopkins-Mahowald; see Henriques [DFHH14, §13.3], Hill [Hil07], and
Bruner-Rognes [BR21, §13] for computations with this Adams spectral sequence.

Just like at p = 2, there is a little more work to do apply this spectral sequence
to twisted string bordism when the twist does not arise from a vector bundle. We
take up this question in joint work with Matthew Yu [DY23], where we see how
to work over Atmf for non-vector-bundle twists and that it simplifies the 3-primary

computation of Ωξ
het

∗ in degrees relevant to string theory.

2.4. ξCHL bordism. In this section, we compute the ξCHL bordism groups.
Just like for the ξhet bordism groups, we use the change-of-rings trick from Corol-
lary 2.22 at p = 2 and work more directly with the Adams spectral sequence at
odd primes. This time, however, we can deduce a lot of information from abstract
isomorphisms with the Adams spectral sequences for the string bordism of BE8,
which has been studied by Hill [Hil09].
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Figure 8. The E2-page for the Adams spectral sequence comput-
ing 2-completed ξCHL bordism. The gray summands correspond
to classes with trivial E8-bundle. See Theorem 2.90 for more in-
formation. This figure is adapted from [Hil09, Figure 3].

2.4.1. 2-primary computation.

Theorem 2.90. In degrees 11 and below, the 2-completions of the abelian groups

Ωξ
CHL

∗ and ΩString
∗ (BE8) are abstractly isomorphic.

Proof. By Corollary 2.22, the Adams E2-page in this range coincides with
the Ext of T (−2c) over A(2). The A(2)-module structure on T (µ) only depends on
the underlying group BG and on µ mod 2, and 2c mod 2 = 0, so as A(2)-modules,
T (−2c) ∼= T (0) = H∗(BE8;Z/2). So the Adams E2-page coincides in the range
we care about with the E2-page for MT ξ0 = MTString ∧ (BE8)+. Hill [Hil09,
Figure 3] computes the E2-page corresponding for the reduced string bordism of

BE8, which we use to draw the full E2-page for Ωξ
CHL

∗ in Figure 8.
This is an abstract isomorphism and does not a priori tell us about differentials

or extensions. However, quotienting by T[1] defines a map GCHL → Spin × E8,
which induces a map on Adams spectral sequences for Thom spectra of classifying
spaces, and this map of Adams spectral sequences is identified with the map induced
by MTString ∧ (BE8)+ → MTSpin ∧ (BE8)+, so any differential for the string
bordism of BE8 deduced by pulling back from the Adams spectral sequence for
MTSpin ∧BE8 remains valid in our Adams spectral sequence for ξCHL bordism.

Moreover, we can realize the part of Ωξ
CHL

∗ corresponding to the gray summands
in Figure 8 by string manifolds with trivial E8-bundle, so the gray summands split
off of the rest of the Adams spectral sequence.
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Looking at the black summands in Figure 8, linearity of differentials with re-
spect to the ExtA(Z/2)-action on the E2-page means the only possible nonzero dif-

ferentials in the range we care about are d2 : E0,10
2 → E2,11

2 and d2 : E1,12
2 → E3,13

2 .
Hill [Hil09, §3.3] uses the map to MTSpin ∧ (BE8)+ to show that these two differ-
entials are nontrivial, so as we noted above, the same is true for ξCHL bordism.

As there are no more differentials, and all extensions by 2 in range follow from
ExtA(Z/2)-action without additional information, we have proven the theorem. �

Remark 2.91. As described in Remark 1.55, the map c : BE8 → K(Z, 4) defines a
map from ξCHL structures to Spin〈w4〉 structures, i.e. the data of a spin structure
and a trivialization of w4. This is the CHL analogue of the passage from ξhet

structures to ξhet′ structures from §2.2 — and just as in that case, because c is

15-connected, the induced map Ωξ
CHL

k → Ω
Spin〈w4〉
k is an isomorphism for k ≤ 14,

so the computations in this section also give Spin〈w4〉 bordism groups.
An alternate point of view due to Sati-Schreiber-Stasheff [SSS12, (2.17)] is that

Spin〈w4〉 structures are twisted string structures in the sense of Corollary 2.12:
the trivialization of w4(M) is equivalent data to a class µ ∈ H4(M ;Z) and an
identification of 2µ and λ(M), so a Spin〈w4〉-structure is a twisted string structure
for the map −2: K(Z, 4) → K(Z, 4) (corresponding to the classifying space Sati-

Schreiber-Stasheff denote BString2DD2). See also [FH21a, Remark C.18].

The proof of Theorem 2.90 took advantage of an abstract isomorphism, so

it tells us nothing about the generators. The elements of ΩString
∗ (BE8) coming

from ΩString
∗ (pt) are represented by string manifolds with trivial E8-bundle; these

vacuously satisfy the condition 2c = λ, so define classes in Ωξ
CHL

∗ representing the

same elements under the abstract isomorphism with ΩString
∗ (BE8).

That leaves a few elements left: copies of Z in degrees 4 and 8, and copies

of Z/2 in degrees 9 and 10. We can represent the generator of Ωξ
CHL

4
∼= Z by a

K3 surface with an E8-bundle chosen to satisfy the Bianchi identity; it would be

interesting to determine generators of Ωξ
CHL

k for k = 8, 9, 10.
2.4.2. Odd-primary computation.

Theorem 2.92. For k ≤ 12, Ωξ
CHL

k has no odd-primary torsion.

Proof. First we show the result for p = 3. The mod 3 cohomology, as an
A-module, of the string cover S(G,λ) only depends on λ mod 3. Therefore in the
CHL case, where λ = 2c, we might as well work with λ = −c — or replacing
our K(Z, 4) class with its opposite, λ = c. This string cover corresponds to the
universal twist of MTString over K(Z, 4) from Corollary 2.12, which means that
by Theorem 2.11, the Thom spectrum for this twist is MTSpin again! That is, the
E2-page of the 3-primary Adams spectral sequence for CHL bordism coincides with
the E2-page for spin bordism — or for oriented bordism, because the forgetful map
MTSpin → MTSO is a 3-primary equivalence.

Milnor [Mil60, Theorem 4] shows that the mod 3 cohomology of MTSO is
free as an A/β-module on even-degree generators, where β is the mod 3 Bockstein;
then, he proves (ibid., Theorem 1) that for any spectrum with that property and
satisfying a finiteness condition, there is no odd-primary torsion in homotopy. The
CHL bordism spectrum satisfies these conditions, so we conclude.

For p ≥ 5, the argument is essentially the same as in Theorem 2.74. �
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3. Consequences in string theory

There are a few different uses of bordism groups in theories of quantum gravity.
In this section, we discuss applications and questions raised by the computations
in the previous section. Though we stay mostly mathematical, some of what we
state in this section is only known at a physical level of rigor.

3.1. The cobordism conjecture. As part of the Swampland program in
quantum gravity, McNamara-Vafa [MV19] made the following conjecture, a con-
sequence of the generally believed fact that theories of quantum gravity should not
have global symmetries:

Conjecture 3.1 (McNamara-Vafa cobordism conjecture [MV19]). Suppose we
have a consistent n-dimensional theory of quantum gravity in which the spacetime
backgrounds that are summed over carry a ξ-structure. Then, for 3 ≤ k ≤ n − 1,

Ωξk = 0.

The key here is the meaning of “the spacetime backgrounds carry a ξ-structure”
— we do not mean just that one could sum over ξ-manifolds, but that ξ is in
some to-be-specified sense the maximally general structure for which the theory
makes sense. String theorists often work with singular manifolds and even Deligne-
Mumford stacks on Man [PS05, PS06a, PS06b, DFM11a, DFM11b], and
the notion of ξ-bordism appearing in Conjecture 3.1 is expected to take this into
account, as some sort of bordism theory of generalized manifolds.

The tangential structures ξ currently known for various theories of quantum
gravity do not satisfy the vanishing criterion in Conjecture 3.1, so there must be
additional data or conditions on these theories’ backgrounds modifying ξ so as
to kill its bordism groups. These modifications often take the form of additional
extended objects in the theory.

This leads to a common application of the cobordism conjecture: compute
the bordism groups for the tangential structure ξ as we currently understand it,
and use any nonvanishing groups as beacons illuminating novel objects in the the-
ory, which one then studies. This idea has been applied in [MV19, BKRU20,
GEMSV20, DH21, MV21, Sch21, ACC22, BC22, BCKM22, DHMT22,
MR22, Wit22, DDHM23, MDL23];21 in this subsection, we will use our com-
putations from §2 and see what we can learn about the E8 × E8 heterotic string
and the CHL string.

Despite the k ≥ 3 bound in Conjecture 3.1, modifying ξ to kill classes in Ωξ1
and Ωξ2 is often physically meaningful, and can predict useful new objects in the
theory. This is a common technique in the study of the cobordism conjecture, and
we will do this too.

3.1.1. The E8 × E8 heterotic string. McNamara-Vafa [MV19, §4.5] discussed
predictions of their conjecture to the E8×E8 heterotic string theory, but after mak-
ing the simplifying assumption that the gauge (E8×E8)oZ/2-bundle is trivial; the
corresponding tangential structure is then BString. For example, their conjecture

21Despite all of this work, there are still plenty of already-worked-out computations of bor-
dism groups relevant to various string and supergravity theories whose corresponding defects have

not been determined. This includes ΩSpin
∗ (BE8) [Sto86, Edw91], applicable to the E8×E8 het-

erotic string in the absence of the Z/2 swapping symmetry; ΩDPin
∗ [KPMT20, Appendices E, F],

relevant for type I string theory; and Ωmc∗ [FH21a], useful for the low-energy limit of M-theory.
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must account for ΩString
3

∼= Z/24, generated by S3 with its Lie group framing, and
they explain how this is trivialized by taking into account the NS5-brane.

With Ωξ
het

∗ in hand, we can predict more objects. Recall the generators we
found for ξhet-bordism groups, and our notation for them, from §2.2.1.

Example 3.2. Ωξ
het

1
∼= Z/2 ⊕ Z/2, with generators S1

nb and RP1. McNamara-
Vafa already considered S1

nb , but the latter is new. If one allows manifolds with

singularities, RP1 bounds D2/(Z/2), i.e. the disc with a principal Z/2-bundle that
is singular at the origin, inflated to a singular Ghet-bundle via the inclusion Z/2 ↪→
Ghet.

This class corresponds to a 7-brane in the E8×E8 heterotic string. The world-
volume of this brane is eight-dimensional, so the link around it in ten-dimensional
spacetime is a circle. The monodromy around this circle exchanges the two E8-
bundles. This is exactly the non-supersymmetric 7-brane recently introduced and
discussed by Kaidi-Ohmori-Tachikawa-Yonekura [KOTY23].

Related 7-branes in different string theories are studied by Distler-Freed-Moore
[DFM11a] and Dierigl-Heckman-Montero-Torres [DHMT22]; the latter study a
7-brane in type IIB string theory, called an R7-brane, which in the cobordism

conjecture corresponds to [RP1] ∈ Ω
Spin-GL+

2 (Z)
1 .

As a way of better understanding Kaidi-Ohmori-Tachikawa-Yonekura’s 7-brane,
we can try to identify where it is sent under dualities between different string theo-
ries. For example, Hořava-Witten [HW96b, HW96a, Wit96] identified (a certain
limit) of E8×E8 heterotic string theory with a theory predicted to be the low-energy
limit of a compactification of M-theory on the unit interval. Under this identifi-
cation, the Kaidi-Ohmori-Tachikawa-Yonekura 7-brane ought to correspond to a
defect in M-theory associated to a 2-dimensional bordism class by the cobordism
conjecture. Because the passage from M-theory to heterotic string theory requires
compactifying on the interval, which is a manifold with boundary, one should use
a theory of bordism of compact manifolds which are not necessarily closed.22 The
bordism class should be represented by an interval bundle over RP1, so we con-
jecture that the bordism class of the Möbius strip corresponds to the avatar of
this brane in M-theory. As a check, M-theory compactified on a Möbius strip is
expected to coincide with E8 × E8 heterotic string theory compactified on RP1 —
they are both predicted to be the CHL string, as we discussed in §1.3, though as
usual only a statement about low-energy supergravity limits is known. We will not
attempt to fully resolve this question in this paper: among other things, this would
require finding “the right” notion of bordism for manifolds with boundary for this
application.

Before we leave heterotic/M-duality behind, we point out a notion of bordism of
manifolds with boundary, due to Conner-Floyd [CF66, §16], for which the Möbius
strip is nonbounding; we optimistically conjecture that this is the correct kind of
bordism of manifolds with boundary for applications to the cobordism conjecture.

Definition 3.3. Let ξ1 : B1 → BO and ξ2 : B2 → BO be tangential structures and
η : B1 → B2 be a map of tangential structures, i.e. η commutes with the maps ξi.
A ξ2/ξ1-manifold is a compact manifold M with ξ2-structure together with

22McNamara-Vafa [MV19, §5] hint at this generalization, though from the perspective of
manifolds with singularities rather than manifolds with boundary.
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(1) a ξ1-structure x on ∂M , and
(2) an identification of the ξ2-structure η(x) on ∂M with the ξ2-structure

induced by taking the boundary on M .

Conner-Floyd [CF66, §16] introduce a notion of bordism for ξ2/ξ1-manifolds,23

which we write Ω
ξ2/ξ1
∗ , such that the Thom spectrum corresponding to this notion

of bordism is MT ξ2/MT ξ1, the cofiber of η : MT ξ1 → MT ξ2. This implies the
existence of a long exact sequence

(3.4) · · · −→ Ωξ1k
η−→ Ωξ2k

j−→ Ω
ξ1/ξ2
k

∂−→ Ωξ1k−1 −→ . . .

where j regards a ξ2-manifold as a ξ2/ξ1-manifold with empty boundary.

Lemma 3.5. The class of the Möbius strip M is nonzero in Ω
Pin+/Spin
2 .24

Proof. By (3.4), it suffices to prove that [∂M ] 6= 0 in ΩSpin
1 . The boundary of

the Möbius strip is a circle, and for any pin+ structure on M , the boundary circle

has the nonbounding spin structure, i.e. is nonzero in ΩSpin
1 . This is because if ∂M

had the bounding spin structure, one could glue the disc with its standard pin+

structure to M along ∂M and thereby obtain a pin+ structure on RP2, but RP2

does not admit a pin+ structure. �

Lemma 3.5 suggests that Conner-Floyd’s notion of bordism of manifolds with
boundary could be the correct one for our application in heterotic/M-theory duality.

Example 3.6. Moving onto higher-codimension objects predicted by higher-dimen-

sional bordism groups, Ωξ
het

2 is nonzero, but can be generated by products of S1
nb and

RP1. This means that if we trivialize [RP1], [S1
nb ] ∈ Ωξ

het

1 in the sense above, namely
by allowing E8×E8 heterotic string theory to be defined on singular manifolds whose

boundaries are RP1 and S1
nb , then we can realize our chosen generators of Ωξ

het

2 as

boundaries of singular 3-manifolds: for example, we used D2/(Z/2) to realize RP1

as a boundary, so we can use S1
nb ×D2/(Z/2) to realize S1

nb × RP1 as a boundary.

Thus accounting for Ωξ
het

2 does not require adding any new kinds of defects or

singularities beyond what we used for Ωξ
het

1 .

Example 3.7. Ωξ
het

3
∼= Z/8, generated by RP3. As in Example 3.2, we can bound

RP3 by B4/(Z/2) by allowing a singularity at the origin. This bordism class should
correspond to a 5-brane distinct from the NS5-brane.

Example 3.8. Ωξ
het

4
∼= Z⊕Z/2. The Z/2 summand is generated by S3×RP1, where

S3 carries the Lie group framing, so its bordism class can be trivialized using the
objects we have already discussed, like in Example 3.6. By Remark 2.64, because
S3 × S1 is bordant as ξhet-manifolds to S4 with trivial Z/2-bundle and E8-bundles
with characteristic classes ±1 ∈ H4(S4;Z) ∼= Z, this bordism class corresponds to
the 4-brane recently found by Kaidi-Ohmori-Tachikawa-Yonekura [KOTY23].

23Conner-Floyd only consider a few examples of ξ1 and ξ2. The works [Sto68, Ale75,
Mit75, RST77, Lau00, Bun15] consider some more tangential structures.

24Strictly speaking, Pin+/Spin is not the correct tangential structure: one should replace
Pin+ with something like mc [Wit97, Wit16, FH21a], and should replace Spin with something
like ξhet, though mc- and pin+ structures on 2-manifolds are equivalent data [FH21a, §8.5.1].
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The Z summand in Ωξ
het

4 is new to us. It is generated by the K3 surface
with trivial Z/2-bundle; one E8-bundle is trivial, and the other cancels λ(K3).
McNamara-Vafa [MV19, §4.2.1] address the K3 surface without data of E8-bundles
or a nontrivial B-field, using it to exhibit a higher-form T-symmetry. Our K3
surface corresponds to a different bordism class, but McNamara-Vafa’s argument
still applies: as the K3 surface is believed to be a valid background for E8 × E8

heterotic string theory, this higher-form T-symmetry must be broken or gauged in
some way. We do not know what this would look like.

Ωξ
het

5 vanishes and Ωξ
het

6
∼= Z/2 is generated by RP3×S3, so as in Example 3.6

we can realize it as a boundary without introducing any new kinds of singularities.

Example 3.9. Ωξ
het

7
∼= Z/16, generated by RP7. This bordism class is closely

analogous to Examples 3.2 and 3.7; this time, we have a 1-brane, i.e. a string.

Remark 3.10 (Relating bordism classes by compactification25). For the cobordism

conjecture for type IIB string theory considered on spin-GL+
2 (Z) manifolds, [RPk] ∈

Ω
Spin-GL+

2 (Z)
k is nonzero for k = 1, 3, and 7 [DDHM23, §14.3.2], so we would expect

these classes to correspond to three different kinds of extended objects, akin to
Examples 3.2, 3.7, and 3.9. However, in [DDHM23, §7], it is shown that the two
higher-codimension objects can be expressed as compactifications of the R7-brane
corresponding to RP1, so there is really only one novel object. We suspect something
similar happens here: that in E8×E8 heterotic string theory, the extended objects
corresponding to RP3 and RP7 can be accounted for using previously known branes
and Kaidi-Ohmori-Tachikawa-Yonekura’s 7-brane from Example 3.2 corresponding
to RP1.

From a bordism point of view, we are saying that if we allow singular ξhet-
manifolds which locally look like Rk ×D2/(Z/2), it should be possible to not just
bound RP1, but also to bound RP3 and RP7. We leave this as a conjecture.

Example 3.11. Ωξ
het

8 , which corresponds to codimension-9 objects, is isomorphic
to either Z3 ⊕ Z/2 or Z3 ⊕ (Z/2)⊕2, depending on the fate of the differential (D3).
The generators of these four or five summands that we found are:

• HP2 with two different ξhet-structures, giving two Z summands;
• the Bott manifold, generating another free summand;
• RP7 × S1

nb generating the Z/2 summand that is present even if (D3) does
not vanish; and

• the manifold X8 that we discussed in §2.2.2, an S3×S3-bundle over RP2.
If the differential (D3) is nonzero, then X8 bounds as a ξhet-manifold.

RP6 × S1
nb is already accounted for in the sense of Example 3.6, so we focus on the

other generators.

Both B and HP2 are nonbounding in the bordism group Ω
Spin-Mp2(Z)
8 , which

appears in the study of the cobordism conjecture for type IIB string theory; see
[DDHM23, §6.9] for a discussion of defects in type IIB corresponding to these
bordism classes. Like in Example 3.8, the story in E8 × E8 heterotic string theory
is presumably not exactly the same, but it may be analogous.

Finally, X8. Following the arguments in [MV19, §4.5] and [DDHM23, §7.6,
§7.8] the description of X8 as a fiber bundle over RP2 with fiber S3 × S3 suggests

25We thank Markus Dierigl for pointing this out to us.
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the following string-theoretic construction: use the singular manifold corresponding
to the NS5-brane to bound for the first S3, compactify on the second S3, and then
fiber over D3/(Z/2) to make X8 a boundary of a singular manifold. We do not know
whether this is a valid background for the E8 × E8 heterotic string; an argument
for or against it could provide an example of a use of Conjecture 3.1 to make a
mathematical conjecture for the fate of X8 based on string-theoretic predictions.

Example 3.12. Ωξ
het

9 corresponds to zero-dimensional objects, i.e. point defects,
and is isomorphic to either (Z/2)⊕4 or (Z/2)⊕6, depending on the fate of (D3).
Three of the generators we found in §2.2.1 are of the form S1

nb times a ξhet-manifold,
so have already been accounted for in the sense of Example 3.6. The fourth gener-
ator is B × RP1, so it is also already accounted for.

The remaining two manifolds that might or might not be necessary areX8×S1
nb ,

which as usual is already taken care of, and a manifold X9 which we did not
determine.

3.1.2. The CHL string. In Theorems 2.90 and 2.92, we saw that Ωξ
CHL

∗ is

abstractly isomorphic to ΩString
∗ (BE8). Thus there is a summand corresponding

to ΩString
∗ (pt), and as we saw above, these classes can be represented by string

manifolds with trivial E8-bundle. Some of these manifolds were accounted for
by McNamara-Vafa [MV19, §4.5] in heterotic string theory, e.g. killing S3 with
its nonbounding framing using the fivebrane, and presumably a similar defect is
present in the CHL string. McNamara-Vafa leave plenty of string bordism classes’
interpretations in terms of defects open to address, and this would be interesting
to understand more in the setting of the CHL string.

We also found a few more classes in Ωξ
CHL

∗ . For example, Ωξ
CHL

4
∼= Z, generated

by a K3 surface with E8-bundle chosen to satisfy the Bianchi identity. Like in
Example 3.8, this corresponds to some codimension-4 object, though we do not
know what it will look like.

3.2. Is the Z/2 symmetry on the E8×E8 heterotic string anomalous?
Quantum field theories can come with the data of an anomaly, a mild inconsistency
in which key quantities in the field theory are not defined absolutely without fixing
additional data. For example, one wants the partition function of a QFT on a man-
ifold M to be a complex number, but an anomaly signals that the partition function
is only an element of a complex line which has not been trivialized. The process of
resolving this inconsistency, when necessary, is called anomaly cancellation.

Freed-Teleman [FT14] describe anomaly cancellation for a broad class of quan-
tum field theories as follows: an n-dimensional quantum field theory Z lives at the
boundary of an (n + 1)-dimensional invertible field theory α, called the anomaly
field theory of Z. The tangential structures of Z and α match. Anomaly cancella-
tion is the procedure of trivializing α, i.e. establishing an isomorphism from α to
the trivial theory.

We think of this from Atiyah-Segal’s approach [Ati88, Seg88] that field the-
ories are symmetric monoidal functors from (potentially geometric) bordism cat-
egories into categories such as VectC. The perspective of extended field theory
means these are often (∞, n)-categories. If C and D are two symmetric monoidal
(∞, n)-categories, the (∞, n)-category of symmetric monoidal functors F : C → D

acquires the symmetric monoidal structure of “pointwise tensor product,” specified
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by the formula

(3.13) (F1 ⊗ F2)(x) := F1(x)⊗D F2(x),

where x is an object, morphism, higher morphism, etc.

Definition 3.14 (Freed-Moore [FM06, Definition 5.7]). Let C be a symmetric

monoidal (∞, n)-category. An invertible field theory is a field theory α : Bordξn → C

such that there is another field theory α−1 : Bordξn → C such that α⊗α−1 ' 1, the
trivial theory.

The trivial theory 1 : Bordξn → C is defined to send all objects to the monoidal
unit in C and all morphisms and higher morphisms to identity morphisms, resp.
identity higher morphisms.

Therefore the classification of anomalies follows from the classification of invert-
ible field theories, and anomaly cancellation is an isomorphism from an invertible
field theory to 1. Freed-Hopkins-Teleman [FHT10] classify invertible topological
field theories using stable homotopy theory, and Grady-Pavlov [GP21, §5] gener-
alize this in the nontopological setting.

In most cases, including the supergravity theories studied in this paper, the
QFT under study is unitary, so their anomaly theories have the Wick-rotated ana-
logue of unitarity, reflection positivity. Freed-Hopkins [FH21b] classify reflection-
positive invertible field theories.

Let IZ denote the Anderson dual of the sphere spectrum [And69, Yos75].

Theorem 3.15 (Freed-Hopkins [FH21b, Theorem 1.1]). Let ξ be a tangential
structure. There is a natural isomorphism from the group of deformation classes
of (n + 1)-dimensional reflection-positive invertible topological field theories on ξ-
manifolds to the torsion subgroup of [MT ξ,Σn+2IZ].

Freed-Hopkins then conjecture (ibid., Conjecture 8.37) that the entire group
classifies all reflection-positive invertible field theories, topological or not.

IZ satisfies a universal property which leads to the existence of a natural short
exact sequence
(3.16)

0 Tors(Hom(Ωξn+1,T)) [MT ξ,Σn+2IZ] Hom(Ωξn+2,Z) 0,

and this sequence carries physical meaning for the classification of possible anom-

alies for an n-dimensional QFT Z. For example, Hom(Ωξn+2,Z) is a group of Z-
valued degree-(n + 2) characteristic classes of ξ-manifolds, and the quotient map
in (3.16) sends the anomaly field theory of Z to its anomaly polynomial. This data
can often be computed using perturbative techniques for Z, and is referred to as the
local anomaly. Consequently, one can use bordism computations to assess what the
group of possible anomalies of a QFT is, and whether a specific anomaly field theory
is trivializable; see [FH21a, TY21, DDHM22, LY22, DY22, Tac22, DOS23]
for recent anomaly cancellation theorems in string and supergravity theories using
this technique.

3.2.1. Anomalies for the E8 × E8 heterotic string. For the E8 × E8 heterotic
string, the anomaly field theory is an element of the group [MT ξhet,Σ12IZ]: the

free part is noncanonically isomorphic to the free part of Ωξ
het

12 , and the torsion

part is noncanonically isomorphic to the torsion subgroup of Ωξ
het

11 . Though we
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have not completely determined these groups, Ωξ
het

11 is nonzero, as we showed in
Theorem 2.62, so there is the possibility of a nontrivial anomaly to cancel. One
generally expects that the anomaly field theory itself is trivial, because physicists
have undertaken many consistency checks on E8 × E8 heterotic string theory, but
sometimes there is a surprise: in joint work with Dierigl, Heckman, and Mon-
tero [DDHM22], we found that the anomaly theory for the duality symmetry in
type IIB string theory is nonzero, and requires a modification of the theory to be
trivialized.

For the E8 × E8 heterotic string, there has been a fair amount of work al-
ready cancelling the anomaly in special cases, but for the full tangential structure
ξhet, the question of anomaly cancellation is open. The original work of Green-
Schwarz [GS84] shows that the anomaly polynomial vanishes, so by (3.16), we

only need to look at bordism invariants out of Ωξ
het

11 . If one ignores the Z/2 swap-
ping symmetry, the anomaly is known to be trivial: Witten [Wit86, §4] showed

that the global anomaly is classified by a bordism invariant ΩSpin
11 (BE8) → C×,

and Stong [Sto86] showed that ΩSpin
11 (BE8) = 0 (see Remark 2.34). Sati [Sat11a]

studies a closely related question in terms of ΩString
11 (BE8).

Recent work of Tachikawa-Yamashita [TY21] (see also Tachikawa [Tac22] and
Yonekura [Yon22, §4]) cancels anomalies in a large class of compactifications of het-
erotic string theory using an ingenious TMF -based argument. Their work does not
take into account the Z/2 swapping symmetry. It would be interesting to address
the full anomaly on ξhet-manifolds, either by directly computing it on generators

of Ωξ
het

11 or by adapting Tachikawa-Yonekura’s argument. If this symmetry does
have a nontrivial anomaly, this would have consequences for the CHL string, either
requiring a modification of the theory or showing that it is inconsistent.

3.2.2. Anomalies for the CHL string. Anomaly cancellation for the CHL string

has been studied less. In Theorems 2.90 and 2.92, we saw that Ωξ
CHL

11 is torsion,

so the anomaly polynomial vanishes; and we saw Ωξ
CHL

10
∼= Z/2⊕ Z/2, so there is a

potential for the anomaly field theory to be nontrivial, which would be interesting
to check.
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de l’IHÉS, 68:175–186, 1988. 57
[Bae02] John C. Baez. Higher Yang-Mills theory. 2002. https://arxiv.org/abs/hep-th/

0206130. 2, 11

[Bar06] Toby Bartels. Higher gauge theory I: 2-Bundles. PhD thesis, The University of
California, Riverside, 2006. https://arxiv.org/abs/math/0410328. 11

[BBPX22] Agnès Beaudry, Irina Bobkova, Viet-Cuong Pham, and Zhouli Xu. The topological

modular forms of RP 2 and RP 2 ∧ CP 2. Journal of Topology, 15(4):1864–1926,
2022. https://arxiv.org/abs/2103.10953. 45

[BC04] John C. Baez and Alissa S. Crans. Higher-dimensional algebra. VI. Lie 2-algebras.

Theory Appl. Categ., 12:492–538, 2004. https://arxiv.org/abs/math/0307263. 2
[BC18] Agnès Beaudry and Jonathan A. Campbell. A guide for computing stable ho-

motopy groups. In Topology and quantum theory in interaction, volume 718

of Contemp. Math., pages 89–136. Amer. Math. Soc., Providence, RI, 2018.
https://arxiv.org/abs/1801.07530. 4, 19, 31, 32
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heterotic string on S1 and the weak gravity conjecture. J. High Energy Phys.,

(6):Paper No. 83, 27, 2022. https://arxiv.org/abs/2203.01341. 19

[Che52] Shiing-shen Chern. Differential geometry of fiber bundles. In Proceedings of the
International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, pages

397–411. Amer. Math. Soc., Providence, R.I., 1952. 9, 10

[CHL95] Shyamoli Chaudhuri, George Hockney, and Joseph Lykken. Maximally super-
symmetric string theories in D < 10. Phys. Rev. Lett., 75(12):2264–2267, 1995.

https://arxiv.org/abs/hep-th/9505054. 17
[CHZ11] Qingtao Chen, Fei Han, and Weiping Zhang. Generalized Witten genus and vanish-

ing theorems. J. Differential Geom., 88(1):1–40, 2011. https://arxiv.org/abs/

1003.2325. 20
[CM83] G. F. Chapline and N. S. Manton. Unification of Yang-Mills theory and super-

gravity in ten dimensions. Phys. Lett. B, 120(1-3):105–109, 1983. 10

[CMM22] Peng Cheng, Ilarion V. Melnikov, and Ruben Minasian. Flat equivariant gerbes:
holonomies and dualities. 2022. https://arxiv.org/abs/2207.06885. 19

[CP95] Shyamoli Chaudhuri and Joseph Polchinski. Moduli space of Chaudhuri-Hockney-

Lykken strings. Phys. Rev. D (3), 52(12):7168–7173, 1995. https://arxiv.org/
abs/hep-th/9506048. 18, 19

[CS85] Jeff Cheeger and James Simons. Differential characters and geometric invariants.

In Geometry and topology (College Park, Md., 1983/84), volume 1167 of Lecture
Notes in Math., pages 50–80. Springer, Berlin, 1985. 14

[dBDH+00] J. de Boer, R. Dijkgraaf, K. Hori, A. Keurentjes, J. Morgan, D.R. Morrison,

and S. Sethi. Triples, fluxes, and strings. Adv. Theor. Math. Phys., 4(5):995–1186
(2001), 2000. https://arxiv.org/abs/hep-th/0103170. 7, 18

[DD63] Jacques Dixmier and Adrien Douady. Champs continus d’espaces hilbertiens et
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