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Abstract. Freed-Hopkins [FH19a] give a mathematical ansatz for classifying gapped invertible phases of
matter with a spatial symmetry in terms of Borel-equivariant generalized homology. We propose a slight
generalization of this ansatz to account for cases where the symmetry type mixes nontrivially with the spatial
symmetry, such as crystalline phases with spin-1/2 fermions. From this ansatz, we prove as a theorem a
“fermionic crystalline equivalence principle,” as predicted in the physics literature. Using this and the Adams
spectral sequence, we compute classifications of some classes of phases with a point group symmetry; in cases
where these phases have been studied by other methods, our results agree with the literature.
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0. Introduction

The classification of topological phases of matter has been the subject of intensive research in condensed-
matter physics and nearby areas of mathematics for the last decade, but difficult problems still remain: for
example, there is not yet an accepted mathematical definition of a topological phase of matter, so researchers
must study these systems using ansatzes or heuristic definitions of phases. Restricting to invertible phases,
also known as symmetry-protected topological (SPT) phases, simplifies the classification question, but defining
these phases precisely is also still an open problem. Freed-Hopkins [FH16a] make an ansatz modeling SPT
phases using reflection-positive invertible field theories (IFTs), then classify these IFTs using homotopy
theory. This approach has been successfully employed in several cases to study examples of SPTs, as in
[FH16a, Cam17, WWW18, FHHT20, GOP+20, PW20].

Condensed-matter physicists are also interested in invertible phases in more general settings, including
invertible phases on a particular space Y , as in [Ran10], or invertible phases symmetric for a group G acting
on space, such as phases on the plane which have a rotation symmetry and the examples in [SMJZ13]. These
spatial symmetries are often present in real-world examples of topological phases of matter (see [WACB16,
MYL+17] for one example), and can be modeled by lattice Hamiltonian systems in which the symmetry
group also acts on the lattice, though again providing precise definitions is still open. In the case where
G is a crystallographic group acting on Y = Rd, these systems are called crystalline SPT phases. Freed-
Hopkins’ field-theoretic approach does not directly generalize to this setting, but there is a general ansatz
of Kitaev [Kit13, Kit15] that groups of phases on Y for a fixed symmetry type should define a generalized
homology theory. Freed-Hopkins [FH19a] apply this to propose a classification of invertible phases in the
presence of a G-action on space using equivariant generalized homology.
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Researchers interested in computing groups of crystalline SPT phases provide crystalline equivalence
principles, including the first such proposal of Thorngren-Else [TE18] and subsequent work in [JR17, CW18,
FH19a, ZWY+20, ZYQG20]. Crystalline equivalence principles are arguments that groups of crystalline
SPT phases are isomorphic to groups of ordinary SPT phases, where the symmetry type is modified. The
theory is well-understood for symmetry types such as On and SOn, corresponding to the physicists’ notion of
bosonic SPT, but for fermionic SPTs, corresponding to symmetry types such as Spinn, Spincn, Pin±n , etc., the
story is more complicated. Cheng-Wang [CW18], Zhang-Wang-Yang-Qi-Gu [ZWY+20], and Zhang-Yang-
Qi-Gu [ZYQG20] study examples of fermionic crystalline SPTs, and show cases of a fermionic crystalline
equivalence principle. Crucially, their work implies any fermionic crystalline equivalence principle must
address fermionic phases in which the spatial symmetry mixes with fermion parity, which goes beyond the
scope of Freed-Hopkins’ ansatz.

The purpose of this paper is to formulate and prove such a fermionic crystalline equivalence principle
(FCEP). To do so, we provide an ansatz expressing groups of invertible phases on a G-space Y in which the
symmetry type can be merely locally constant over space and can mix with G, including as a special case
spatial symmetries mixing with fermion parity. Given data L expressing this mixing and variance of the
symmetry type, we define phase homology groups of Y , denoted PhG∗ (Y,L), and our ansatz predicts that the
group of such invertible phases is isomorphic to PhG0 (Y,L). Providing this ansatz is an additional goal of this
paper, and is necessary input for our FCEP: the ansatz reexpresses the FCEP as an isomorphism between
certain phase homology groups and groups of IFTs, as we state and prove in Theorem 2.8. This is the first
homotopy-theoretic account of an FCEP, and to the best of our knowledge is the first fully general version of
the FCEP in the literature.

As a corollary of the FCEP, the computation of phase homology groups that represent groups of point-
group-equivariant fermionic phases reduces to computations of bordism groups; this paper’s third goal is
to make these computations in several examples, both for the purpose of testing our ansatz by comparing
it to established predictions in physics, and for making additional predictions of groups of crystalline SPT
phases in as yet unstudied settings. For symmetry types that have been studied before by other methods, our
computations agree with the literature, bolstering our ansatz.

Now we go into a little more detail about these ansatzes and theorems. Freed-Hopkins [FH19a] formulate
an ansatz for invertible phases of matter on a topological space Y equipped with an action of a compact
Lie group G. First, specify the symmetry type of the theory as a map ρ : H → O, where O := lim−→n

On is the
infinite orthogonal group and H is a topological group. From this data we can form a Madsen-Tillmann
spectrum MTH , whose homotopy groups compute the bordism groups of manifolds with an H-structure on
the tangent bundle. Let IZ denote the Anderson dual of the sphere spectrum and E := Map(MTH ,Σ2IZ).

Ansatz 0.1 (Freed-Hopkins [FH19a, Ansatz 3.3]). The abelian group of isomorphism classes of phases on
Y equivariant for a G-symmetry that does not mix with the symmetry type H is the Borel-equivariant
Borel-Moore homology group EhG0,BM(Y ).

We will define equivariant Borel-Moore homology in the generality we need in Definition 1.17.
When G is trivial and Y = Rn, the group of phases in Ansatz 0.1 is naturally isomorphic to [MTH ,Σd+2IZ],

which Freed-Hopkins [FH16a] show is the classification of invertible field theories with symmetry type H.1
When Y = Rd and G is a crystallographic group, this group of phases is expected to model the classification
of crystalline SPT phases with this symmetry type, and indeed, Freed-Hopkins [FH19a, Example 3.5] prove a
version of the bosonic crystalline equivalence principle of Thorngren-Else [TE18] as a consequence of their
ansatz, matching physicists’ predictions.

For fermionic phases, Ansatz 0.1 is not the full answer, and providing the full answer is a major goal of
this paper. Physicists distinguish between phases with “spinless fermions” and “spin-1/2 fermions”, asking
how the spatial symmetry group G mixes with fermion parity. For example, one could consider phases on
the plane equivariant for a C4 rotation symmetry, and either ask that fermions’ spin is unaffected by the
spatial rotations, or that a full spatial rotation flips the spin on the fermion. This is reminiscent of the
better-understood dichotomy of fermionic phases with a time-reversal symmetry T : one may have T 2 = 1 or

1This result is conditioned on a conjecture about non-topological invertible theories; at present, we have as a theorem only
that the invertible TFTs are classified by the torsion subgroup of this group. This is discussed by Freed-Hopkins [FH16a, §5.4]
and Freed [Fre19, Lecture 9].

https://arxiv.org/pdf/1604.06527.pdf#page.35
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T 2 equal to the fermion parity operator. These two classes of phases are modeled with different symmetry
types, and similarly we use different data to model crystalline phases with spinless vs. spin-1/2 fermions.

To accommodate this mixing between the internal symmetry type H and the spatial symmetry group G,
we generalize Freed-Hopkins’ setup slightly using parametrized homotopy theory, considering local systems f
of symmetry types over the base Y . These give rise to local systems of Thom spectra; if Y has a G-action we
obtain from f a local system L′ of Borel-equivariant Thom spectra, modeled as a functor from Y , thought of
as an ∞-groupoid, to the ∞-category SpG of Borel-equivariant spectra. Let L := Map(–,Σ2IZ) ◦ L′ as maps
Y → SpG, where IZ has trivial G-action. We define the equivariant phase homology PhG∗ (Y ; f) to be the
equivariant Borel-Moore homology of the local system L : Y → SpG.

Ansatz 1.22. The group of G-equivariant invertible phases on Y for this data is isomorphic to the equivariant
phase homology group PhG0 (Y ; f).

When f is trivializable, this reduces to Ansatz 0.1; in general, though, it allows the symmetry type to mix
with the spatial symmetry, or to be merely locally constant on Y .

Now we specialize to the cases of spinless and spin-1/2 fermions. For spinless fermions, G and H do not
mix, so we use the data of a constant local system of symmetry types and recover Freed-Hopkins’ original
ansatz. For spin-1/2 fermions, we specify data of an extension of G by H

(0.2) 0 // H // H̃ // G // 0,

together with a representation λ : G→ Od dictating how G acts on space.2 In the cases we consider in this
paper, H = Spin or H = Spinc, and we specify H̃ by way of the central extension

(0.3) 0 // µ2 // G̃ // G // 0

whose isomorphism class is picked out by w2(Vλ) +w1(Vλ)2 ∈ H2(BG;µ2), where Vλ → BG is the associated
vector bundle to the representation λ and µ2 is the group of square roots of unity. Then, H̃ := H ×µ2 G̃.
Using this data, we build an equivariant local system f of symmetry types, obtaining a phase homology
group PhG0 (Rd, f) that we predict is isomorphic to the group of invertible phases for this data.

The FCEP, previously studied in special cases by [CW18, TE18, ZWY+20, ZYQG20], identifies groups of
crystalline SPT phases with groups of fermionic SPT phases with an internal G-symmetry — but exchanging
symmetry types: spinless crystalline phases correspond to spin-1/2 internal phases, and vice versa. Freed-
Hopkins [FH16a] model groups of SPT phases with an internal G-symmetry using IFTs, and following
Freed-Hopkins [FH16a] and the excellent overview by Beaudry-Campbell [BC18], these groups of TFTs can
be expressed in terms of bordism groups of certain Thom spectra. Standard techniques in algebraic topology,
notably the Adams spectral sequence over A(1), can be used to compute these bordism groups, so one
application of a general version of the FCEP is to provide access to tractable tools for computing groups of
crystalline SPT phases.

One of the major aims of this paper is to state and prove as a theorem a version of the FCEP, identifying
phase homology groups with groups of IFTs; then Ansatz 1.22 translates this into a statement about crystalline
SPTs and ordinary SPTs. In Definitions 2.3 and 2.4, we define the symmetry types for spinless and spin-1/2
fermions for a purely internal G-symmetry. In general these definitions are a little technical, but when the
spatial representation λ factors through SOd ⊂ Od, the spinless internal symmetry type is H ×G→ O and
the spin-1/2 symmetry type is H ×µ2 G̃→ O, with the maps induced by the projection onto the first factor.

Theorem 2.8 (Fermionic crystalline equivalence principle). Fixing data of G, H, λ, etc. as above, let f0, f1/2
denote the local systems of symmetry types for the case of spinless, resp. spin-1/2 fermions. Then PhG0 (Rd; f0)
is isomorphic to the group of deformation classes of d-dimensional IFTs for the spin-1/2 internal symmetry
type, and PhG0 (Rd, f1/2) is isomorphic to the group of deformation classes of d-dimensional IFTs for the
spinless internal symmetry type.

The proof has two key steps.
(1) Phase homology groups are defined using equivariant parametrized homotopy theory. Proposi-

tion 1.32 reexpresses them using ordinary homotopy theory, as homotopy groups of a Thom spectrum

2We also specify some additional data; see Data 2.1 in §2 for the full details.
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built from a virtual vector bundle over BH̃. The proof uses the Ando-Blumberg-Gepner-Hopkins-
Rezk [ABG+14a, ABG+14b] approach to Thom spectra.

(2) Then, in Theorems 2.11 and 2.24, we “shear” this Thom spectrum, writing down a map H̃n → Hn+d×G
and showing that it induces a homotopy equivalence on Thom spectra, implying that phase homology
groups are determined by H-bordism groups of a Thom spectrum over BG. Our proof is modeled on
a fairly general shearing theorem in Freed-Hopkins [FH16a, §10].

After these two steps, the proof of Theorem 2.8 amounts to looking at the Thom spectra for the internal
symmetry types and noticing that we end up with equivalent Thom spectra over BG in the cases we want to
equate.

With this tool in hand, we can compute phase homology groups for point groups acting on Rd, which are
our model for groups of fermionic phases equivariant for point group symmetries. We do these computations
for many 2d and 3d point groups, for both spinless and spin-1/2 fermions, and in Altland-Zirnbauer classes D
and A (corresponding to H = Spin, resp. Spinc). Our computations use two avatars of the Adams spectral
sequence. It is well-known that low-dimensional spin bordism can be computed using connective ko-homology
and the Adams spectral sequence over A(1), and there is an excellent introduction to this technique by
Beaudry-Campbell [BC18], but we also use a variant, computing spinc bordism via ku-homology and the
Adams spectral sequence over E(1), e.g. in §4.4.3. This is hardly a new idea, but there appear to be no
examples of this specific kind of computation in the literature before now. We hope that our computations
serve as useful examples of how to use this version of the Adams spectral sequence for spinc bordism; this
could be of independent interest.

For 2d point groups, these phases have been studied in the physics literature using very different methods.
We compare our results with those of other researchers in §4.1.4, §4.2.4, §4.3.4, and §4.4.5, and find agreement,
providing evidence in favor of Freed-Hopkins’ ansatz and our generalization. However, there is not yet work
on fermionic crystalline SPT phases for most 3d point groups, so our computations are predictions. We do
many computations and make many predictions, and in §3.1 we collect a few that we think are relatively
interesting or accessible. For example:

Theorem. Let A4 act on R3 as the orientation-preserving symmetries of a tetrahedron. Then PhA4
0 (R3; f)

vanishes, where f is the local system of symmetry types for either spinless or spin-1/2 fermions in both
Altland-Zirnbauer classes D and A.

This is a combination of Theorems 5.4, 5.6, and 5.8. Therefore, assuming Ansatz 1.22, there are no
nontrivial spinless nor spin-1/2 fermionic SPT phases equivariant for a chiral tetrahedral symmetry in
Altland-Zirnbauer classes D or A. It would be interesting to see this prediction studied using lattice methods
for fermionic crystalline phases.

In §6, we leave behind the FCEP and consider a different class of examples, SPTs equivariant for a glide
reflection symmetry, providing a test for Freed-Hopkins’ ansatz for a crystallographic group that is not a
point group. Lu-Shi-Lu [LSL17] conjecture a general classification of these SPTs: that if TPd(H) denotes the
group of d-dimensional SPT phases with symmetry type H, then the group of d-dimensional glide SPTs is
isomorphic to TPd−1(H)⊗ Z/2. Xiong-Alexandradinata [XA18] derive this classification using physics-based
arguments. We use Freed-Hopkins’ ansatzes [FH16a, FH19a] to translate Lu-Shi-Lu’s conjecture into a
statement about phase homology groups and prove it.

Recall E := Map(MTH ,Σ2IZ) and let P̂hZ
∗(Rd, E) denote the kernel of the forgetful map from Z-equivariant

phase homology to nonequivariant phase homology, where Z acts on Rd by glide translations, and E → Rd is
the constant local system. This kernel models Lu-Shi-Lu’s group of glide SPTs, as they require glide SPTs to
be trivial in the absence of the glide symmetry.

Theorem 6.4. There is a natural isomorphism P̂hZ
0 (Rd;E) ∼= E−(d−1) ⊗ Z/2.

This provides additional evidence in favor of the ansatz.
We want to mention that there are other homotopy-theoretic approaches to the study of phases of matter

with a spatial symmetry, including those of Antolín Camarena, Sheinbaum, and collaborators [AACSS16, SC20]
and Cornfeld-Carmeli [CC21]. These authors deal with free fermion phases, which are out of scope of this
paper, though see §7.1.

0.1. Reader’s guide to the different sections. Overview:

https://arxiv.org/pdf/1604.06527.pdf#section.10
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• In §§1–2 we discuss general aspects of our model for phases on a G-space Y and prove the FCEP.
These sections involve the most homotopy theory.
• In §§3–5 we make phase homology calculations which according to Ansatz 1.22 calculate groups
of fermionic crystalline SPT phases for which the symmetry group is a point group. We collect
the results of these computations in Tables 1, 2, 3, 4, 5, and 6, and summarize the methods of
computation in §3.2.

• In §6 we consider phases on Rd with a glide symmetry, and prove a theorem computing the corre-
sponding phase homology classification.

Now a little more detail. In §1, we use Borel-equivariant parametrized homotopy theory to state a mild
generalization of Freed-Hopkins’ ansatz on invertible phases with spatial symmetry. In §1.1, we consider
phases on a space Y without a group action, using local systems of symmetry types (Definition 1.3). We
define phase homology and in Ansatz 1.10 express the group of invertible phases for such a local system
in terms of phase homology. This is a slight generalization of [FH19a, Ansatz 2.1]. In §1.2, we allow
group actions, defining equivariant local systems of symmetry types and equivariant Borel-Moore homology
for a local system for the purpose of formulating Ansatz 1.22 expressing groups of invertible phases for a
spatial symmetry in terms of equivariant phase homology. This is a minor generalization of Freed-Hopkins’
ansatz [FH19a, Ansatz 3.3] to the parametrized setting. Then, in §1.3, we specialize to the case relevant to
the FCEP, defining the local systems of symmetry types for spatial symmetries that mix with fermion parity.
We prove Proposition 1.32 expressing the phase homology groups for this data in terms of nonequivariant,
nonparametrized homotopy theory, and do not need equivariant or parametrized homotopy theory in the rest
of the paper.

Next, §2, whose goal is to state and prove the FCEP. We begin in Definitions 2.2, 2.3, and 2.4 by defining
the spinless and spin-1/2 local systems of symmetry types for both equivariant (i.e. G acting on space)
and internal (G not acting on space) symmetries, and use these definitions to state our FCEP theorem in
Theorem 2.8, identifying phase homology groups for these local systems in terms of groups of IFTs. As
mentioned, the nontrivial part of the proof runs a shearing argument to simplify a Thom spectrum over
BH̃ into a smash product of MTSpin and a Thom spectrum over BG. In §2.1, we prove Theorem 2.11
accomplishing this in class D, for which H = Spin. Then, in §2.2, we prove Theorem 2.24, which is the
analogous theorem in class A, i.e. for H = Spinc, via a similar proof. Finally, in §2.3, we combine these
arguments to prove Theorem 2.8.

In §3, we address a few generalities related to the FCEP before studying it in examples. First, in §3.1,
we provide a summary of some phases or phenomena newly predicted by our computations which might be
interesting to investigate further. In §3.2, we introduce and review the tools from algebraic topology we need
to make these computations: the Adams and Atiyah-Hirzebruch spectral sequences. In §3.3, we discuss how
to use the Adams filtration to detect when an invertible TFT of H̃-manifolds only depends on the underlying
SO ×G-structure, which is believed to correspond to detecting which fermionic phases are really bosonic
phases that are fermionic in a trivial way. Finally, in §3.4, we state and prove several lemmas needed in the
computations in the next sections.

Then, in §§4–5, we implement this in examples, computing phase homology groups of Rd equivariant
for two- and three-dimensional point-group symmetries, which in Ansatz 1.22 are interpreted as groups
of point group equivariant fermionic phases on Rd. In all cases we consider Altland-Zirnbauer classes D
and A (corresponding to symmetry types spin and spinc, respectively), and consider phases with spinless
fermions and spin-1/2 fermions. These computations amount to computing spin and spinc bordism groups
of Thom spectra of vector bundles over BG, where G is the point group of interest; we use the Adams and
Atiyah-Hirzebruch spectral sequences to determine these bordism groups.

In §4, we consider Z/2 acting by a reflection (§4.1) and by an inversion (§4.2), as well as Cn acting by
rotations (§4.3) and D2n acting by rotations and reflections on R2 (§4.4) or purely by rotations on R3 (§4.5).
The results of these computations can be found in Tables 1, 2, 3, 4, and 5. Most of these symmetry types
have been studied in the physics literature, and we compare our results with other researchers’.

In §5, we study many 3d point groups, including chiral tetrahedral symmetry (§5.1), pyritohedral symmetry
(§5.2), full tetrahedral symmetry (§5.3), chiral octahedral symmetry (§5.4), full octahedral symmetry (§5.5),
chiral icosahedral symmetry (§5.6), and full icosahedral symmetry (§5.7). In all cases, we study phases with
spinless and spin-1/2 fermions in Altland-Zirnbauer types D and A. Our predictions in this section are new
as far as we can determine. See Table 6 for the results of the computations.
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In §6, we discuss phases equivariant for a glide reflection symmetry. Lu-Shi-Lu [LSL17] conjecture a
general classification of such phases, and we translate their conjecture into a statement on phase homology
groups using Freed-Hopkins’ ansatz, then prove that statement. Finally, in §7, we suggest some directions for
further research.
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1. Phases on a G-space: the general principle

We reprise the ansatz of Freed-Hopkins [FH19a, Ansatzes 2.1, 3.3] on invertible phases on a G-space,
though we need to generalize it: physicists often consider crystalline phases in which the symmetry acting on
spacetime mixes with the internal symmetry (e.g. a reflection squaring to (−1)F ), leading us to generalize
from homology to twisted homology.

What we do not do is define a phase of matter. Precisely defining topological phases of matter, even in
the absence of spatial symmetries, is a difficult open question. Our ansatz is a heuristic that these objects
can be classified with what we call phase homology, which we do define.

1.1. Invertible phases on a space. Let Y be a locally compact topological space and C an ∞-category.3
Following Ando-Blumberg-Gepner [ABG10, ABG18], we say a C-valued local system on Y is a functor
L : π≤∞Y → C here π≤∞Y is the fundamental ∞-groupoid of Y .4 If L : Y → Sp is a local system of
spectra, the homology of Y valued in L is L∗(Y ) := π∗(hocolimL), and the cohomology of Y valued in L is
L∗(Y ) := π∗(holimL); this generalizes (co)homology with local coefficients.

Given a subspace j : Y ′ ↪→ Y , we also define relative homology groups: j induces a map j∗ : hocolimY ′ L|Y ′ →
hocolimY L, and we define L(Y, Y ′) := π∗(cofib(j∗)). Relative cohomology is analogous.

Definition 1.1. Assume that the one-point compactification Y of Y is a finite CW complex and L extends
to a local system L : Y → Sp. Choose such an extension L over the basepoint ∗. The Borel-Moore homology
of Y valued in L is
(1.2) LBM,∗(Y ) := L∗(Y , ∗).

Definition 1.1 appears to depend on the choice of extension of L to Y , but given two choices of extension, the
cofibers of the induced maps hocolimL|∗ → hocolimL are equivalent, hence compute the same Borel-Moore
homology groups.

When L is constant, this recovers the usual notion of Borel-Moore (generalized) homology [BM60, Mil95].
Recall that a symmetry type is a space B with a map f : B → BO.

Definition 1.3. A local system of symmetry types over the space Y is a local system on Y valued in the
∞-category of spaces with a map to BO.

This is closely related to Raptis-Steimle’s definition of parametrized tangential structures [RS17, §2].
Symmetry types often arise as the stabilizations in n of maps Bρn : BHn → BOn induced from representa-

tions ρn : Hn → On; see [FH16a, §2] for a general discussion. Likewise, the local systems of symmetry types
we consider arise from BH-bundles over Y .

We repeatedly use the notion of Thom spectra; the definition given by Freed-Hopkins [FH16a, §6.1.4]
covers the cases we need.5

3There are different definitions of∞-categories; we work with quasicategories as developed by Joyal [Joy02] and Lurie [Lur09],
so as to follow [ABG10, ABG18]. However, this paper does not depend on implementation-specific details. See [ABG18, §2] for
more information and some useful references.

4This is not the only approach to parametrized homotopy theory; see also May-Sigurdsson [MS06] and Braunack-Mayer [BM19].
5Thom spectra have been heavily studied in homotopy theory; key references include Thom [Tho54], Atiyah [Ati61],

May-Quinn-Ray-Tornehave [May77], and Ando-Blumberg-Gepner-Hopkins-Rezk [ABG+14a, ABG+14b].

https://arxiv.org/pdf/1604.06527.pdf#section.2
https://arxiv.org/pdf/1604.06527.pdf#page.40
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Definition 1.4. Given a representation ρn : Hn → On or ρ : H → O, where O := lim−→n
On, we introduce

notation for several Thom spectra. Let Vn → BOn and V → BO denote the tautological vector bundle, resp.
the tautological stable vector bundle. By convention, V → BO has rank zero.

(1) The Thom spectra MHn, resp. MH , are the Thom spectra of (Bρn)∗Vn → BHn, resp. (Bρ)∗V → BH.
(2) TheMadsen-Tillmann spectra [MT01, MW07] MTHn, resp. MTH , are the Thom spectra of (Bρn)∗(−V )→

BHn, resp. (Bρ)∗(−V )→ BH.

We will use H ∈ {O,SO,Spin,Spinc,Pin±,Pinc}; in all of these cases, ρ is the usual map H → O used in,
e.g., [FH16a].

Remark 1.5. Some Thom spectra go by many names. The notation RP∞n denotes (BO1)nV1 , and similarly
CP∞n := (BSO2)nV2 . Thus, for example, Σ2MTSO2, Σ2MTU 1, and Σ2CP∞−1 all refer to (BSO2)2−V2 .

Definition 1.6. The Anderson dual of the sphere spectrum [And69, Yos75] is a spectrum IZ satisfying the
universal property that for any spectrum X, there is a natural short exact sequence

(1.7) 0 // Ext(πn−1(X),Z) // [X,ΣnIZ] // Hom(πn(X),Z) // 0.

As all such spectra are equivalent, we refer to “the” Anderson dual of the sphere spectrum to mean any
particular choice of IZ.

(1.7) splits, but not naturally, implying a non-natural isomorphism from [X,ΣnIZ] to the direct sum of the
torsion summand of πn−1(X) and the free summand of πn(X). We often use this fact implicitly, calculating
π∗(X) but depending on the reader to rearrange it into [X,Σ∗IZ]. For more on IZ and its appearance in this
context, see Freed-Hopkins [FH16a, §5.3, §5.4].

Let Th: Top/BO → Sp denote the Thom spectrum functor and I : Spop → Sp denote the functor
Map(–,Σ2IZ).

Definition 1.8. Let Y be a locally compact space and f : Y → Top/BO be a parametrized symmetry type
on Y . The phase homology of this data, denoted Ph∗(Y ; f), is the Borel-Moore homology

(1.9) Ph∗(Y ; f) := (I ◦ Th ◦ f)BM,∗(Y ).

Ansatz 1.10. With Y and f as in Definition 1.8, the group of invertible topological phases on Y for the
local system of symmetry types f is the phase homology group Ph0(Y ; f).

Again, this is not a mathematical definition, but rather a heuristic.

Remark 1.11. When f is constant, Ansatz 1.10 is the original ansatz of Freed-Hopkins [FH19a, Ansatz 2.1]. In
that case, the ansatz builds on the idea that invertible phases on Y are related to families of reflection-positive
invertible field theories on Y . The generalization to nonconstant f allows one to prescribe how the symmetry
type of the family varies along Y . For example, one might want to consider families of phases in which the
monodromy around a loop in Y acts by orientation reversal.

1.2. Invertible phases on a G-space. Our model for invertible crystalline phases requires considering the
case where a compact Lie group G acts on Y . Again we closely follow Freed-Hopkins [FH19a, §3] but using
twisted Borel-Moore homology.

Throughout this section, G is a Lie group; unlike in [FH16a, FH19a], we do not need G to be compact.
Indeed, in the study of crystalline phases, G is often an infinite discrete subgroup of Isom(En), and we
will consider one such example in §6. We work with the ∞-category SpG of Borel G-equivariant spectra,
whose objects can be modeled by data of a sequence of G-spaces Xn together with G-equivariant maps
ΣXn → Xn+1.6 Notions of homotopy equivalence, etc., are as in [FH16a, 6.1], and do not require their
compactness assumption on G.

6There are a few different notions of G-spectra in the equivariant homotopy theory literature, and their names can be
confusing. Borel G-equivariant spectra can be thought of as “spectra with a G-action” or “spectra living over BG,” and are
different from genuine G-spectra, which have a richer structure. To a geometer, “equivariant (generalized) cohomology” usually
means the Borel theory, but to a homotopy theorist, it means the genuine theory. See [Sul20, §2.1] for a detailed introduction
into the different names and notions of G-spaces and G-spectra.

https://arxiv.org/pdf/1604.06527.pdf#page.33
https://arxiv.org/pdf/1604.06527.pdf#page.35
https://arxiv.org/pdf/1604.06527.pdf#section.6
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Definition 1.12. Suppose G admits a finite-dimensional, real orthogonal representation λ : G→ Od. The
one-point compactification of Rd with this G-action is a G-space denoted Sλ and called a representation
sphere.

The suspension functor Σλ := Sλ ∧ – is not invertible in G-spaces, but upon stabilization is invertible
in Borel G-spectra; we denote its inverse by Σ−λ. Given a virtual G-representation V = λ − µ (i.e. a
formal difference of two finite-dimensional real orthogonal representations), we define the Borel G-spectrum
SV := Σ−µΣ∞Sλ. We will let S denote the sphere spectrum with trivial G-action.

Definition 1.13. Let Y be a G-space and L : Y → SpG be a local system. The (Borel-)equivariant homology
of Y with respect to L is denoted LG∗ (Y ) and defined to be
(1.14) LG∗ (Y ) := π∗(MapSpG(S,hocolimL)hG),

where (–)hG : SpG → Sp denotes the homotopy fixed-points functor.
If j : Y ′ ↪→ Y is an inclusion of G-spaces, it induces a map

(1.15) j∗ : MapSpG(S,hocolim
Y ′

L|Y ′)hG −→ MapSpG(S,hocolim
Y

L)hG,

and we define the relative (Borel-)equivariant homology
(1.16) LG∗ (Y, Y ′) := π∗(cofib(j∗))
as in the nonequivariant case.

Definition 1.17. Let Y be a G-space and L : Y → SpG be an SpG-valued local system. Assume that the
one-point compactification Y of Y is a CW complex and L extends to a local system L : Y → SpG. Choose
such an extension L. The equivariant Borel-Moore homology of Y valued in L is
(1.18) LGBM,∗(Y ) := LG∗ (Y , ∗).

Just like Definition 1.1, this does not actually depend on the choice of extension.

Definition 1.19. Let Y be a G-space. A G-equivariant local system of symmetry types is a G-space B and
a G-equivariant map f : B → Y ×BO, where BO has a trivial G-action.

Taking the Thom spectrum of the map to BO defines a local system Th ◦ f : Y → SpG.

Definition 1.20. Let Y be a G-space whose one-point compactification is a finite CW complex, and let
f : B → Y ×BO be a G-equivariant local system of symmetry types for Y . The G-equivariant phase homology
of this data, denoted PhG∗ (Y ; f), is the equivariant Borel-Moore homology
(1.21) PhG∗ (Y ; f) := (I ◦ Th ◦ f)GBM,0(Y ).

Ansatz 1.22. With Y and f as in Definition 1.20, the group of invertible topological phases on Y for the
equivariant local system of symmetry types f is the G-equivariant phase homology group PhG0 (Y ; f).

Again, this is a heuristic and not a definition. When G is a discrete subgroup of Isom(En) (e.g. a wallpaper
or space group) acting on Y = En, these phases are called crystalline SPT phases in the physics literature.

1.3. Mixing internal and crystalline symmetries. The fermionic crystalline equivalence principle is
about invertible topological phases in which an internal symmetry mixes with the symmetry group acting on
space. In this section, we construct the equivariant local systems of symmetry types for these phases. First,
we review how mixing of symmetries is handled in the purely internal case in Example 1.23; then we address
the case of spatial symmetries in Proposition 1.32, showing how to reduce the computation of the relevant
equivariant phase homology groups to a nonparametrized question. We will simplify these computations
further in §2 when we discuss the FCEP in more detail, then study several examples in §§4–5.

Example 1.23 (Mixing for internal symmetries). In the study of SPTs, one commonly encounters symmetry
types where there are two different symmetries present, such as time reversal and fermion parity, but they
mix, meaning the group they generate is not a product of the individual symmetry groups, but rather an
extension. For example, we could ask for a generator T of the group of time-reversal symmetries to square to
the fermion parity (−1)F , via the extension 0 → Z/2 → Z/4 → Z/2 → 0, rather than considering phases
where T 2 = 1, corresponding to the split extension 0→ Z/2→ Z/2× Z/2→ Z/2→ 0.
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Freed-Hopkins [FH16a] make the ansatz that SPT phases are classified up to equivalence by their low-energy
limits, which are invertible field theories. The symmetry type is expressed as an Hn-structure, where Hn is a
group with a map to On; mixing manifests as an extension involving the base symmetry type (e.g. Spinn
for fermionic phases) and the additional symmetry. For example, the two cases of time-reversal symmetry
squaring to the identity or to fermion parity are represented by the extensions

1 // Spinn // Pin+
n

// Z/2 // 1(1.24a)

1 // Spinn // Pin−n // Z/2 // 1,(1.24b)

respectively, together with the standard maps Pin±n → On.

When one of the groups we want to mix acts on space, we can specify a mixed symmetry type by the
following data:

• a symmetry type ρn : Hn → On, called the base symmetry type,
• the point group symmetry λ : G→ Od,
• an extension

(1.25) 1 // Hn
// H̃n

// G // 1
specifying how they mix, and

• an extension ρ̃n : H̃n → On of ρn : Hn → On.
Freed-Hopkins [FH16a, §9.2] relate Altland-Zirnbauer’s symmetry classes of condensed-matter systems [Zir96,
AZ97] to ten symmetry types in topology.7 Using this, we call the case H = Spin the class D case and
H = Spinc the class A case.

Let Y be a G-space. Then the map
(1.26) Y × EH̃n/Hn −→ Y

is a G-equivariant fiber bundle with fiber BHn, and the total space maps to BOn as specified by the virtual
vector bundle
(1.27) f : −(Y × (EH̃n ×Hn Rn)) −→ Y × EH̃n/Hn.

After stabilizing (i.e. letting n→∞), this is an equivariant local system of symmetry types over Y , so has
equivariant phase homology groups PhG∗ (Y ; f). Under Ansatz 1.22, PhG0 (Y ; f) models the group of invertible
topological phases on Y in which fermion parity mixes with the spatial symmetry as specified by (1.25).
The notion of G-equivariant phases for this symmetry type (without a reference space Y ) is taken to mean
G-equivariant phases on Rd, where G acts on Rd through λ.

Remark 1.28 (Change of symmetry type). We would like to be able to move information between instances of
this data: for example, there should be forgetful maps from equivariant phases on a space to nonequivariant
ones, and we model them with maps between phase homology groups for the two local systems of symmetry
types.

Suppose we are given two instances of the data above. That is, we ask for a commutative diagram of Lie
groups

(1.29)

1 // Hn
//

ϕ

��

H̃n
//

ϕ̃
��

G //

ϕG

��

1

1 // H ′n // H̃ ′n // G′ // 1

together with maps ρn : Hn → On and ρ′n : Hn → On, λ : G→ Od and λ′ : G′ → Od, and ρ̃n : H̃n → On and
ρ̃′n : H̃ ′n → On which commute with the vertical maps in (1.29). Fix a G′-space Y ; then through (1.27) this
defines equivariant local systems of symmetry types f for G, resp. f ′ for G′. The maps between the data
induce a pullback or forgetful map ϕ∗ : PhG

′

∗ (Y ; f ′) → PhG∗ (Y ; f), where G acts on Y through ϕG. Using

7This “tenfold way” is a relativistic version of Dyson’s threefold way [Dys62], and appears in many contexts in physics,
including [Kit09, RSFL10, FM13, WS14, FH16a, KZ16, GM20, IT20].

https://arxiv.org/pdf/1604.06527.pdf#page.77
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Ansatz 1.22, we interpret this pullback map realizing an invertible phase on Y with a G′-symmetry to a
phase with a G-symmetry.

The construction of ϕ∗ amounts to checking that diagrams you would expect to commute do in fact
commute. The data we gave induces a commutative diagram

(1.30)

−(Y × (EH̃n ×Hn Rn)) //

��

Y × EH̃n/Hn

��
−(Y × (EH̃ ′n ×H′n Rn)) // Y × EH̃ ′n/H ′n.

The rows define equivariant local systems symmetry types; then f and f ′ are the maps to Y × BO. Let
ϕ◦ : SpG

′ → SpG be the map in which G acts on Borel G′-spectra through ϕ; then, upon applying I ◦Th, we
obtain local systems L, resp. L′ of Borel G-, resp. G′-spectra. To define phase homology, we assumed that an
extension L of L to Y exists, so choose such an extension; then L′ := L ◦ ϕ◦ is an extension of L. We obtain
from the inclusion ∗ ↪→ Y a commutative diagram of spectra

(1.31)

MapSpG′ (S,hocolim
∗

L′|∗)hG
′ //

��

MapSpG(S,hocolim
∗

L|∗)hG

��
MapSpG′ (S,hocolim

Y
L′)hG′ // MapSpG(S,hocolim

Y
L)hG.

Thus, we get a map between the cofibers of the vertical arrows, and π∗ of that map is the desired map on
phase homology.

For us there are two particularly important examples.
(1) Let H ′n = Hn and G = 1, which forces ϕ̃ : H̃n → H̃ ′n to be the inclusion H ′n → H̃ ′n. The above

construction produces a map from H-equivariant phase homology to nonequivariant phase homology
on Y , which we interpret as modeling the forgetful map from phases with a G-symmetry to phases
without a G-symmetry.

(2) Let G′ = G, H ′n = SOn. and Hn be either Spinn or Spincn, with ϕ the usual map. In this case
the pullback map goes from equivariant phase homology where the base symmetry type is SO to
equivariant phase homology where the base symmetry type is Spin or Spinc. We interpret this in
physics as modeling the procedure that regards a bosonic phase as a fermionic phase by adding some
trivial fermionic degrees of freedom. This is analogous to the procedure which regards an oriented
TFT as a spin TFT that does not depend on the spin structure.

Crucially for computations, we can simplify the equivariant phase homology groups for the symmetry
types in (1.27) into a description not requiring equivariant or parametrized stable homotopy theory.

Proposition 1.32. There is an isomorphism

(1.33) PhG0 (Rd; f)
∼=−→ [(BH̃)d−λ−ρ̃,Σd+2IZ]

natural for changing the symmetry type in the sense of Remark 1.28.

Proof. We want to compute the twisted equivariant Borel-Moore homology for this equivariant local system
of symmetry types, where Y = Rd with G acting through λ. This amounts to the following: one-point
compactify to a local system over Sλ; take the colimit of the local system and call it E; then compute [S, E]G
(in the notation of [FH19a]; this means π0(Map(S, E)hG)). Now, the local system (I ◦ Th ◦ f) : Sλ → SpG
is nonequivariantly the trivial local system with fiber Map(MTH ,Σ2IZ), so E ' Sλ ∧Map(MTH ,Σ2IZ); in
general, G can act nontrivially on both Sλ and MTH , but always acts trivially on Σ2IZ. Therefore we may
follow [FH19a, (3.6)] and identify

(1.34) Map(S, Sλ ∧Map(MTH ,Σ2IZ)) ' Map(Sd−λ ∧MTH ,Σd+2IZ),
though the G-action on Sd−λ ∧MTH is not the diagonal action, but rather the induced G-action on the
Thom spectrum of the G-equivariant virtual bundle (d− λ− ρ)→ BH (see [FH16a, §6.2.2]).

https://arxiv.org/pdf/1604.06527.pdf#page.44
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Since G acts trivially on Σd+2IZ,

(1.35) Map(Sd−λ ∧MTH ,Σd+2IZ)hG ' Map((Sd−λ ∧MTH )hG,Σd+2IZ).

It now suffices to show that

(1.36) (Sd−λ ∧MTH )hG ' (BH̃)−ρ̃−λ+d.

Ando-Blumberg-Gepner-Hopkins-Rezk [ABG+14a, Proposition 1.20] show that the Thom spectrum of a
virtual bundle V → X, identified with a map V : X → BO, is the homotopy colimit

(1.37) XV ' hocolim
(
X

V //BO BJ //BGL1(S) //Sp
)
,

where the notation means to interpret X as, through its fundamental ∞-groupoid, providing a diagram in the
∞-category Sp of spectra. Here BGL1(S) is the classifying space of stable spherical fibrations [Sta63, May77]
and BJ : BO → BGL1(S) is a form of the J-homomorphism [Whi42, May77]. Heuristically, (1.37) says
that the virtual vector bundle V defines a local system of ∧-invertible spectra, with the fiber at a point
x ∈ X given by SVx , and that the Thom spectrum is obtained from an associated bundle construction.
See [ABG+14a, ABG+14b] for more detail on this approach to Thom spectra.

Homotopy quotients are also homotopy colimits, meaning

(Sd−λ ∧MTH )hG = hocolim
pt/G

(
hocolim

(
BH

d−λ−ρ//BO BJ //BGL1(S) //Sp
))
,(1.38a)

where G acts on the spectra in the diagram through its action on λ, as well as on BH, as prescribed by
the extension (1.25). This in particular implies the double homotopy colimit above simplifies into a single
homotopy colimit over a BH̃-shaped diagram:

' hocolim
(
BH̃

d−λ−ρ̃//BO BJ //BGL1(S) //Sp
)
,(1.38b)

which by (1.37) is the Thom spectrum for d− λ− ρ̃→ BH̃, proving (1.36). �

Our next step in §2 is to simplify (BH̃)d−λ−ρ̃. This allows both for a general formulation of the fermionic
crystalline equivalence principle as well as explicit calculations.

The following lemma will be helpful for simplifying Thom spectra.

Theorem 1.39 (Relative Thom isomorphism). Let ρ : H → O be a symmetry type with the two-out-of-three
property, i.e. an H-structure on any two of E, F , or E ⊕ F induces one on the third. If V,W → X are
virtual vector bundles such that V has an H-structure, then there is an equivalence

(1.40) MTH ∧XW '−→ MTH ∧XV⊕W .

Proof. The two-out-of-three property gives MTH an E∞-ring structure, which is needed for some of the
constructions we employ from [ABG+14a, ABG+14b] below.

Up to equivalence, the Thom spectrum of a virtual vector bundle E → X depends only on the homotopy
class of the map fE : X → BO → BGL1(S), where the first map is given by E, and the second map
is the J-homomorphism, as in (1.37). Smashing with MTH corresponds to composing fE with the map
BGL1(S)→ BGL1(MTH ) induced by the Hurewicz map S→ MTH [ABG+14b, §1.4], and in particular, up
to equivalence, MTH ∧XE only depends on the homotopy type of the map X → BGL1(MTH ).

Because MTH is an E∞-ring spectrum, BGL1(MTH ) is a grouplike E∞-space, and the composition
ψ : BO→ BGL1(S)→ BGL1(MTH ) is a map of grouplike E∞-spaces, where BO carries the E∞ structure
coming from direct sum. This means that [X,BGL1(MTH )] is naturally an abelian group, and that if we
define classes in this group using virtual vector bundles V,W → X to map to BO then composing with ψ,
the class of E ⊕ F is the sum of the classes of V and W .

An H-structure on V trivializes the map X → BO ψ→ BGL1(MTH ) defined by V , so the class of the map
defined by V ⊕W is equal to the class of the map defined by W in the abelian group [X,BGL1(MTH )]. �
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2. The fermionic crystalline equivalence principle

In this section, our goal is to state and prove the FCEP, Theorem 2.8, identifying phase homology groups
in classes D and A with groups of deformation classes of invertible field theories. Assuming Ansatz 1.22, this
leads to the more familiar version of the FCEP: crystalline equivalence principles are first introduced by
Thorngren-Else [TE18]: the idea is to equate the classification of crystalline topological phases of matter for
some group G acting on spacetime with a classification of a different kind of topological phases of matter, in
which G is part of the internal symmetry group. Then one may use preexisting techniques for phases without
a spatial symmetry to classify phases with the specified G-action on space.

The best-understood crystalline equivalence principles are for bosonic SPTs, as first considered by Thorngren-
Else [TE18]. “Bosonic” does not have a precise mathematical translation here; these are phases for which the
symmetry type is built using SO or O rather than Spin, Spinc, Pin±, and so on. If a group G acts on space by
orientation-preserving symmetries and H is SO or O, the classification of crystalline SPTs in dimension n with
symmetry type H and this G-action is identified with the classification of SPTs for H = SO×G. To what
extent this is an ansatz or a theorem depends on one’s model for crystalline SPTs: Freed-Hopkins [FH19a,
Example 3.5] derive it as a corollary of their ansatz.8 For other derivations of the bosonic crystalline
equivalence principle from different ansatzes, see Jiang-Ran [JR17] and Thorngren-Else [TE18, ET19].

The fermionic analogue of this statement is more complicated because there are more ways for G to
mix with the symmetry type. Thorngren-Else [TE18, §VII.B], Cheng-Wang [CW18], Zhang-Wang-Yang-Qi-
Gu [ZWY+20], and Zhang-Wang-Yang-Gu [ZYQG20, §V] all study examples in which an FCEP holds, and
each paper discusses that such a principle would have to account for the different ways in which G mixes
with H: crystalline phases for which the spatial G-symmetry does not mix with fermion parity correspond to
phases with an internal G-symmetry that does mix with fermion parity, and vice versa. Examples of this
twisted correspondence also appear in work of Freed-Hopkins [FH19a, Example 3.5], Guo-Ohmori-Putrov-
Wan-Wang [GOP+20], and Mao-Wang [MW20], though until now there was no precise general version of the
FCEP.

Our version of the FCEP applies in Altland-Zirnbauer classes A and D (i.e. H = Spin or H = Spinc), for
all compact Lie groups G acting on faithfully on space, and all ways in which G may mix with fermion parity.
The slogan “mixed crystalline goes to unmixed internal, and vice versa” is a little hard to glean from the
result when the G-action includes reflections, but we obtain an equivalence from phase homology groups
for certain equivariant local systems of symmetry types, which under Ansatz 1.22 stands in for groups of
crystalline SPT phases, to groups of deformation classes of IFTs, which under Freed-Hopkins’ ansatz [FH16a]
model groups of phases without spatial symmetries.

To precisely state our FCEP, we must fix some data.

Data 2.1.
• Let H denote the base symmetry type, which today is either of the infinite-dimensional topological

groups Spin or Spinc.
• Let G be a compact Lie group, λ : G→ Od be a faithful representation, and Vλ := EG×G Rd → BG
be the associated vector bundle.

• Let ξ : G → Od′ be another faithful representation and Vξ → BG be the associated vector bundle.
Let 1 → µ2 → G̃ → G → 1 be the central extension classified by w2(Vλ) + w1(Vλ)2 ∈ H2(BG;µ2).
Here µ2 denotes the group of square roots of unity.

• Let H̃ := H ×µ2 G̃. Let ρ be the composition H̃ → H → O and V → BH̃ be the associated
tautological vector bundle.

For us, ξ and λ are usually the same, but they differ when G = Z/2 acts on Rd by inversion in the case of
spin-1/2 fermions: here ξ is the sign representation σ : Z/2→ O1, but λ = dσ. See §4.2 for more detail.

Definition 2.2. The spin-1/2 equivariant local system of symmetry types for the above data is the G-
equivariant parametrized symmetry type f1/2 : BH̃ → Rd′ ×BO which sends x 7→ (0, Bρ(x)), and in which
G acts on Rd through λ. The spinless equivariant local system of symmetry types f0 is defined in the same
way, except using H ×G instead of H̃.

8If G acts by reflections, almost as nice of a story is still true, but the internal G-symmetry mixes with H. Thorngren-
Else [TE18] and Freed-Hopkins [FH19a, Example 3.5] discuss this case too.
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Definition 2.3. Recall that H is either Spin or Spinc. Let † ∈ {−, c} be − if H = Spin and c otherwise.
The spinless internal symmetry type is the symmetry type

• (−V, d− Vλ) : BH ×BG→ BO, if λ is pin†, or
• (−V, Vξ + Det(Vξ)− Vλ) : BH ×BG→ BO, if λ is not pin†.

For shorthand, we denote this symmetry type ρ(0) : BH ×BG→ BO.

Definition 2.4. The spin-1/2 internal symmetry type is the symmetry type

(2.5) (−V, d− Vλ) : BH ×BG→ BO.

For shorthand, we denote this symmetry type ρ(1/2) : BH ×BG→ BO.

Remark 2.6. The internal symmetry types probably look pretty arbitrary. This is because of the generality
of our setup: in some cases of interest, we can rewrite these symmetry types in ways which more closely
resembles the proposals of Thorngren-Else [TE18, §VII.B], Cheng-Wang [CW18], and Zhang-Wang-Yang-Qi-
Gu [ZWY+20] for the FCEP in specific cases.

Suppose λ = ξ and Im(λ) ⊂ SOd but does not lift across Spind � SOd. Then, the spinless internal
symmetry type simplifies to BH ×BG→ BO, where the map is just projection onto the first factor followed
by the usual map BH → BO. That is, for representations with image contained in SOd, the FCEP switches the
“unmixed” (i.e. BH ×BG) and “mixed” (i.e. B(H ×µ2 G̃)) symmetry types when passing between crystalline
and internal phases. This matches predictions by Thorngren-Else [TE18] and Cheng-Wang [CW18].

Freed-Hopkins [FH16a, Corollary 8.21] show that the group of deformation classes of reflection-positive
IFTs with symmetry type ρ′ : H ′ → O in (space) dimension n is naturally isomorphic to9

(2.7) [MTH ′,Σd+2IZ].

Theorem 2.8 (Fermionic crystalline equivalence principle). There are isomorphisms

PhGk (Rd; f0)
∼=−→ [MTρ(1/2),Σd+k+2IZ](2.9a)

PhGk (Rd; f1/2)
∼=−→ [MTρ(0),Σd+k+2IZ].(2.9b)

Assuming Ansatz 1.22, the physics implication of this theorem is that the abelian group of crystalline SPT
phases for the spinless equivariant local system of symmetry types is naturally isomorphic to the abelian group
of deformation classes of IFTs for the spin-1/2 internal symmetry type; and the classification of crystalline
SPT phases for the spin-1/2 equivariant local system of symmetry types is naturally isomorphic to the abelian
group of deformation classes of IFTs of the spinless internal symmetry type.

We break the proof of Theorem 2.8 down into a few steps. First, Proposition 1.32 simplifies the question
into one of ordinary stable homotopy theory.10 We obtain Thom spectra for vector bundles over BH̃, and to
finish we must compare these spectra to MTH ∧ (BG)E , where E → BG is some rank-zero virtual vector
bundle. This comparison, in the form of shearing arguments, is the core of the proof: we prove Theorem 2.11
(H = Spin) and Theorem 2.24 (H = Spinc) establishing the homotopy equivalences we need, and after
that proving Theorem 2.8 amounts to verifying that the outputs of Theorems 2.11 and 2.24 simplifying
the crystalline symmetry types match the Thom spectra for the internal symmetry types in Definitions 2.3
and 2.4.

The proofs of Theorems 2.11 and 2.24 resemble the proofs of the more standard equivalences

MTPin+ ' MTSpin ∧ (BZ/2)1−σ(2.10a)
MTPin− ' MTSpin ∧ (BZ/2)σ−1(2.10b)
MTPinc ' MTSpinc ∧ (BZ/2)±(1−σ)(2.10c)

MTSpinc ' MTSpin ∧ (BSO2)±(2−V2),(2.10d)

9Strictly speaking, Freed-Hopkins’ theorem classifies only the invertible topological field theories, which form the torsion
subgroup of (2.7), and they conjecture that the entire group classifies all reflection-positive IFTs.

10For the spinless equivariant symmetry type, this is just [FH19a, Example 3.5].

https://arxiv.org/pdf/1604.06527.pdf#page.65
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where σ → BZ/2 and V2 → BSO2 denote the respective tautological line bundles. These decompositions
were first proven by Kirby-Taylor [KT90a, Lemma 6] (pin+), Peterson [Pet68, §7] (pin−), and Bahri-
Gilkey [BG87a, BG87b] (spinc and pinc). For a unified proof of all of these equivalences, see Freed-
Hopkins [FH16a, §10].

2.1. Case H = Spin.

Theorem 2.11 (Shearing, class D). Let V → BH̃ be the tautological bundle.
(1) Suppose Vξ admits a pin− structure. Then there is an equivalence

(2.12) (BH̃)d−Vλ−V '−→ MTSpin ∧ (BG)d−Vλ .

(2) If Vξ does not admit a pin− structure, there is an equivalence

(2.13) (BH̃)d−Vλ−V '−→ MTSpin ∧ (BG)Vξ+Det(Vξ)−Vλ−d′−1+d.

We will most often consider case (2) with λ = ξ, in which case we learn (BH̃)d−λ−V ' MTSpin ∧
(BG)Det(Vλ)−1.

Proof. Case (1) is by far the easier of the two: Vξ admits a pin− structure iff w2(Vξ) + w1(Vξ)2 = 0 iff
the extension 1 → µ2 → G̃ → G → 1 splits. Since µ2 ⊂ G̃ is central, a splitting induces isomorphisms
G̃ ∼= µ2 ×G and H̃n

∼= Spinn ×G. Passing to classifying spaces, this identifies d− Vλ − V : BH̃ → BO with
−V � (d− λ) : BSpin×BG→ BO; then take Thom spectra.

On to case (2). In this case, inH2(BH̃;µ2), w2(Vξ)+w1(Vξ)2 = w2(V ), so the map V +Vξ+Det(Vξ) : BH̃ →
BSO lifts across BSpin→ BSO. Choose such a lift.

Proposition 2.14. The induced map

(2.15) (V + Vξ + Det(Vξ), ξ) : BH̃ −→ BSpin×BG
is a homotopy equivalence commuting with the maps to BSO.

The proof is due to Freed-Hopkins [FH16a, §10].

Proof. We will show that the commutative square

(2.16a)

BH̃ //

B(π1⊕π2)
��

BSpin

��
BSO×BG B(id⊕ξ)// BSO

is homotopy Cartesian. Any two homotopy pullbacks of the same diagram are weakly equivalent, with the
weak equivalence intertwining the maps to BSO. Since there is also a homotopy pullback square

(2.16b)

BSpin×BG //

��

BSpin

��
BSO×BG B(id⊕ξ)// BSO,

then BH̃ ' BSpin × BG; this equivalence is realized by (2.15) because that is the only possibility that
intertwines the maps in (2.16a) and (2.16b).

To fulfill the promise that (2.16a) is a homotopy pullback square, begin with the commutative diagram of
short exact sequences

(2.17)

1 // µ2 // H̃n

(π1,π2) //

��

SOn ×G //

id⊕ξ
��

1

1 // µ2 // Spinn+d // SOn+d // 1.

https://arxiv.org/pdf/1604.06527.pdf#section.10
https://arxiv.org/pdf/1604.06527.pdf#section.10
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This induces a map of fiber sequences

(2.18)

BH̃
B(π1,π2)//

��

BSO×BG

B(id⊕ξ)
��

w2 // K(µ2, 2)

BSpin // BSO w2 // K(µ2, 2),

e.g. BH̃ is the fiber of w2 : BSO×BG→ K(µ2, 2). The left square in such a pullback is always homotopy
Cartesian, and in (2.18) the left square can be identified with (2.16a). �

Including the maps down to BSO produces the commutative diagram

(2.19)
BH̃

(V+Vξ+Det(Vξ),ξ)
'

//

−V ##

BSpin×BG

−V+Vξ+Det(Vξ)xx
BSO.

Taking Thom spectra of the vertical maps, the shearing map induces a homotopy equivalence

(2.20) (BH̃)−V '−→ MTSpin ∧ (BG)Vξ+Det(Vξ)−d′−1.

To finish, we subtract Vλ from the vertical arrows in (2.19), then take Thom spectra again. �

2.2. Case H = Spinc. Let H̃n := Spincn ×µ2 G̃, and define H̃ similarly. The shearing argument is scarcely
different than for Theorem 2.11, but it will be useful to rephrase H̃n using the circle group T instead of µ2.

The extension of G by µ2 defines an extension of G by T by pushing forward along the inclusion µ2 ↪→ T:

(2.21)

1 // µ2� _

��

// G̃

��

// G // 1

1 // T // Ĝ // G // 1.

In cohomology, this construction is classified by the Bockstein map H2(BG;µ2)→ H3(BG;Z). Let Ĥn :=
Spincn ×T Ĝ and Ĥ := Spinc ×T Ĝ. The map G̃→ Ĝ induces maps ϕn : H̃n → Ĥn and ϕ : H̃ → Ĥ; ϕ is the
colimit of the ϕns.

Lemma 2.22. The maps ϕn : H̃n → Ĥn are isomorphisms of Lie groups.

Proof. Write down the commutative diagram

(2.23)

1 // µ2 // H̃n

ϕ

��

// SOn × T×G // 1

1 // µ2 // Ĥn
// SOn × T×G // 1

and apply the five lemma. �

And now we shear. Recall our notation from Data 2.1.

Theorem 2.24 (Shearing, class A).
(1) Suppose Vξ admits a pinc structure. Then there is an equivalence

(2.25) (BĤ)d−Vλ−V '−→ MTSpinc ∧ (BG)d−Vλ .
(2) If Vξ does not admit a pinc structure, there is an equivalence

(2.26) (BĤ)d−Vλ−V '−→ MTSpinc ∧ (BG)Vξ+Det(Vξ)−Vλ−d′+1−d.

Again, we most often use case (2) when λ = ξ, in which case the right-hand side simplifies to MTSpinc ∧
(BG)Det(Vλ)−1.
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Proof. The proof is barely different than that of Theorem 2.11; we indicate only the differences. In that
theorem, the engine of the proof when Vξ was not pin− was the map (2.15) from B(Spin×µ2 G̃)→ BSpin×BG.
Here, Vξ is not pinc, so Vξ ⊕Det(Vξ) is oriented but not spinc. We have that if β : H2(BĤ;µ2)→ H3(BĤ;Z)
is the Bockstein, β(w2(Vξ) + w1(Vξ)2 + w2(V )) = 0, so V + Vξ + Det(Vξ), interpreted as a map BĤ → BSO,
lifts to BSpinc. Our analogue of (2.15) is

(2.27) (V + Vξ + Det(Vξ), ξ) : BĤ −→ BSpinc ×BG.
As in Proposition 2.14, this is a homotopy equivalence commuting with the maps down to BSO. The proof is
almost the same, though we replace Spin with Spinc in (2.16a) and (2.16b), µ2 with T in (2.17), and K(µ2, 2)
with K(Z, 3) in (2.18). �

2.3. Putting it together. The hard work of the proof is already done.

Proof of Theorem 2.8. By Proposition 1.32,
(2.28) PhG0 (Rd; f1/2) ∼= [X,Σd+1IZ],

where X := (BH̃)d−Vλ−V . Then Theorem 2.11 (H = Spin) and Theorem 2.11 (H = Spinc) split this into
MTH ∧ (BG)E for some rank-zero virtual vector bundle E. For f0, because H̃ ∼= H ×G, Proposition 1.32
gets us to MTH ∧ (BG)E without having to shear. The only thing left to do is compare these Thom spectra
to Definitions 2.3 and 2.4, and sure enough, they match. �

3. Computations in examples: summary of results and some generalities

In the next two sections, we study the fermionic crystalline equivalence principle in many examples where
the symmetry is given by a two- or three-dimensional point group. Here, we summarize the results and some
takeaways for researchers interested in crystalline phases; for more detailed results of computations of groups
of phases, see Tables 1, 2, 3, 4, 5, and 6.

In §3.1, we indicate some example phases predicted by our phase homology calculations that have not been
previously studied to our knowledge, and which might have accessible or interesting lattice realizations. We
also summarize which of our calculations correspond to phases already studied in the literature. In §3.2, we
briefly review the computational techniques we use to study phase homology groups, namely the Adams and
Atiyah-Hirzebruch spectral sequences. In §3.3, we use the Adams filtration to characterize which invertible
field theories with H̃-structure actually only require weaker structure, such as an SO × G-structure; this
is believed to model the phenomenon in physics of phases which appear to be fermionic, but are in fact
bosonic phases that are not fermionic in an interesting way. Finally, in §3.4, we gather some lemmas we
use repeatedly in the coming sections. The reader interested in the computations can read §3.1 and §3.2,
returning to the other sections later.

3.1. Some interesting phases to study. In §§4–5, we compute equivariant phase homology groups for
many 2- and 3-dimensional point groups. Using Ansatz 1.22, these computations yield predictions of groups
of invertible topological phases. This is a lot of data, so we take the opportunity here to highlight which of
our predictions would be interesting to study by other means, e.g. by arguing on the lattice.

We first study some cases already present in the literature and find agreement, including reflections in
Altland-Zirnbauer classes D and A (§4.1), inversions in classes D and A (§4.2), cyclic groups acting by
rotations in classes D and A (§4.3), and dihedral groups acting by rotations and reflections in class D (§4.4).
In all cases we consider both spinless and spin-1/2 fermions.

In addition, we study rotations in class A and many three-dimensional point group symmetries in classes D
and A: dihedral groups acting by rotations, pyritohedral symmetry, and chiral and full tetrahedral, octahedral,
and icosahedral symmetries. We consider symmetry types with both spinless and spin-1/2 fermions. To the
best of our knowledge, these symmetry types have not been studied in the literature, so we indicate some of
our predictions that might be interesting to study.

(1) In §4.4.3 and §4.4.4, we compute phase homology groups for the local systems of symmetry types
corresponding to class A phases in which the dihedral group D2n acts by rotations and reflections.
(a) In dimension d = 2, we predict using Theorems 4.46 and 4.53 a phase generating a Z/2n for

even n with spinless fermions.
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(b) In dimension d = 3, we would be interested in the predicted Z/8⊕ Z/2 for n odd, with either
spin-1/2 or spinless fermions (based on (4.45), Theorem 4.45), as well as a phase generating a
Z/4 for n even with spin-1/2 fermions (based on Theorems 4.57 and 4.60).

(2) We predict using §5.2 a Z/2⊕ Z/2 of 3d class D phases with a pyritohedral symmetry and spinless
fermions. In class A, we predict a phase generating a Z/4 subgroup, again with spinless fermions.

(3) In §5.1, we calculate equivariant phase homology groups on R3 for A4 acting by tetrahedral symmetry
and find that for classes A and D and the spinless and spin-1/2 cases, the zeroth phase homology
groups all vanish. Under our ansatz, this predicts there are no nontrivial fermionic phases equivariant
for a tetrahedral symmetry in these cases. Can this be seen using a lattice argument?

(4) We predict in §5.3.1 that for 3d class D phases with a full tetrahedral symmetry (i.e. including
reflections) and spinless fermions, there is a phase generating a Z/4 subgroup. This phase homology
calculation required the most involved mathematical argument, and it would be interesting to see
a physical description. A physical interpretation of Proposition 5.46 specifically or an argument
averting it would provide some insight into the meaning in physics of the Adams spectral sequence as
a tool for studying fermionic phases.

Our computations predict plenty of other phases, but many of them either have Adams filtration zero (see
§3.3) and therefore are not predicted to be intrinsically fermionic, or have more complicated symmetry types,
such a full octahedral symmetry, that would be harder to study on the lattice.

Remark 3.1. In the computations we make in the next several sections, we generally report more bordism
groups than we need to determine the phase homology groups corresponding to groups of invertible phases:
to compute the group of n-dimensional invertible field theories with symmetry type H → O, we need the
torsion subgroup of πn(MTH ) and the free summand in πn+1(MTH ). Bordism has other applications in
geometry and physics, so we usually report all bordism groups πk(MTH ) that follow from the calculations
that we need for crystalline phases. When k ≥ n+ 1, these provide information about higher-dimensional
crystalline phases; for k < dim(λ), though, it is not clear what a crystalline phase could mean when there are
not enough space dimensions for G to act by λ, and we do not give a physical meaning to these computations.
See [GOP+20] for some discussion when spacetime is dim(λ)-dimensional.

3.2. Methods of computation. In this section, we summarize the techniques we use to make these
computations, and gather a few auxiliary lemmas we need along the way. Most of our computations can be
reframed as computing certain twisted ko- and ku-homology groups of finite groups in low degrees; the reader
interested in learning how to perform such computations is encouraged to refer to the monographs of Bruner-
Greenlees [BG03, BG10] on connective ko- and ku-theory, as well as Beaudry-Campbell’s article [BC18] on
using the Adams spectral sequence to compute ko-theory.
Computing spin bordism: Let ko denote the connective real K-theory spectrum. Anderson-Brown-

Peterson [ABP67] show that the Atiyah-Bott-Shapiro map MTSpin → ko [ABS64] is 7-connected,
meaning that for any space or spectrum X, the induced map ΩSpin

k (X)→ kok(X) is an isomorphism
for k ≤ 7. We often pass between spin bordism and ko-theory without comment. We compute the
free and 2-torsion summands of ko∗(X) using the Adams spectral sequence; see below. The forgetful
map MTSpin → MTSO induces an equivalence on odd-primary torsion, so to compute odd-primary
torsion, we typically compute ΩSO

∗ (X) via the Atiyah-Hirzebruch spectral sequence, which we also
discuss below.

Computing spinc bordism: Let ku denote connective complexK-theory. Anderson-Brown-Peterson [ABP67]
also produce a 7-connected map MTSpinc → ku ∨ Σ4ku; we will also use the Adams spectral se-
quence to determine the free and 2-torsion summands of ku∗(X), as described below. The forgetful
map MTSpinc → MTSO ∧ (BU1)+ induces an equivalence on odd-primary torsion, so we compute
ΩSO
∗ (X ×BU1), typically with the Atiyah-Hirzebruch spectral sequence.

Now we briefly introduce the Adams and Atiyah-Hirzebruch spectral sequences in the ways that we use them.

3.2.1. The Adams spectral sequence. The (2-primary) Adams spectral sequence [Ada58, Theorems 2.1, 2.2]
computes the 2-completion of the homotopy groups of a pointed space or spectrum X. Its E2-page is

(3.2) Es,t2 = Exts,tA (H̃∗(X;Z/2),Z/2) =⇒ πt−s(X)∧2 .
Here A is the 2-primary Steenrod algebra.



18 ARUN DEBRAY

Remark 3.3. The usual bigrading convention for Adams spectral sequences places Es,tr at coordinates (t−s, s).
We follow this convention. The topological degree of an element at coordinates (t− s, s) in an Adams spectral
sequence refers to t− s, and s is called its filtration.

There is a general change-of-rings theorem, where if B is a graded Hopf algebra, C ⊂ B is a graded Hopf
subalgebra, and M and N are graded B-modules, then there is a natural isomorphism

(3.4) Exts,tB (B ⊗C M,N)
∼=−→ Exts,tC (M,N).

When X = ko ∧ Y or ku ∧ Y , this greatly simplifies the E2-page of (3.2). Inside the mod 2 Steenrod
algebra A, define the subalgebras A(1) := 〈Sq1,Sq2〉 and E(1) := 〈Q0, Q1〉;11 then, Stong [Sto63] showed
H̃∗(ko;Z/2) ∼= A⊗A(1) Z/2 and Adams [Ada61] showed H̃∗(ku;Z/2) ∼= A⊗E(1) Z/2. Both A(1) and E(1) are
Hopf subalgebras of A so (3.4) says we need only consider

Es,t2 = Exts,tA(1)(H̃
∗(X;Z/2),Z/2) =⇒ k̃ot−s(X)∧2(3.5a)

Es,t2 = Exts,tE(1)(H̃
∗(X;Z/2),Z/2) =⇒ k̃ut−s(X)∧2 .(3.5b)

This line of reasoning, first used by Davis [Dav74], is by now a standard trick in algebraic topology. For further
reading, we recommend the paper of Beaudry-Campbell [BC18], who go into detail about how to define and
calculate these Ext groups and work several examples over A(1). There are fewer worked examples of (3.5b)
in the literature; see Bruner-Greenlees [BG03], Nguyen [Ngu09], Francis [Fra11, §5] and Al-Boshmki [AB16]
for closely related calculations.

Our notation is standard in the A(1)-case, but since examples for E(1) are sparser, we record here a
few notational conventions for working with E(1)-modules and this spectral sequence. When we draw E(1)-
modules, we will use solid straight lines to denote Q0-actions and dashed curved lines to denote Q1-actions.
Therefore, for example, E(1) as a module over itself looks like this.

(3.6)

For any E(1)-module M , H∗,∗(E(1)) := Ext∗,∗E(1)(Z/2,Z/2) acts on Exts,tE(1)(M,Z/2), analogously to the case of
A(1)-modules; if M = H̃∗(X;Z/2), then just as over A(1), tracking this action through the Adams spectral
sequence provides information about the action of ku∗ on k̃u∗(X). Differentials are equivariant for this action,
just like for the Adams spectral sequence over A(1). Since E(1) is an exterior algebra, Koszul duality provides
an isomorphism of bigraded algebras
(3.7) H∗,∗(E(1)) ∼= Z/2[h0, v1],
where |h0| = (1, 1) and |v1| = (1, 3) [BC18, Example 4.5.6]. We will denote an h0-action by a vertical line,
and a v1-action by a lighter diagonal line. Like for ko, h0 lifts to multiplication by 2; v1 lifts to the action of
the Bott element β ∈ ku2 [BG03, §2.1].

We will often write ExtA(1)(M) for Exts,tA(1)(M,Z/2), and similarly for E(1); when it is clear which
subalgebra we are working over, we will just write Ext(M).

By now there is a large body of work using the Adams spectral sequence, especially over A(1), to
compute things related to invertible field theories or invertible phases. This includes [Sto86, Kil88, Hil09,
Fra11, FH16a, Cam17, BC18, GPW18, Guo18, FH19b, WW19a, WW19b, WWZ19, DL20a, DL20b, DL20c,
GOP+20, KPMT20, LOT20, LT20, WW20a, WW20b, WW20c, WWZ20].

3.2.2. The Atiyah-Hirzebruch spectral sequence. The (homological) Atiyah-Hirzebruch spectral sequence [AH61]
for oriented bordism has signature

(3.8) E2
p,q = H̃p(X; ΩSO

∗ ) =⇒ ΩSO
p+q(X).

11These generators are given in two different bases of A; the relations between them are Q0 = Sq1 and Q1 = Sq1Sq2 +Sq2Sq1.
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In general, using the Atiyah-Hirzebruch spectral sequence can feel different depending on application-specific
details, so we point the reference-minded reader to García-Etxebarria-Montero [GEM19, §2.2.2, §3] for an
introduction and some examples which may be helpful.

There are many references using the Atiyah-Hirzebruch spectral sequence to compute things related to
invertible field theories or invertible phases, such as [Kil88, Edw91, Mon15, Cam17, KT17, Mon17, Hsi18,
SdBKP18, SSG18, Ste18, STY18, SXG18, Xio18, ET19, FH19a, GEM19, MM19, OSS19, Shi19, TY19,
BLT20, DGL20, DH20, DL20c, ETS20, GOP+20, HH20, HKT20, Hor20, HTY20, JF20a, JF20b, KPMT20,
LOT20, LT20, SFQ20, Tho20, TW20, WW20b, Yu20, DGG21, KLST21].

We use a few other spectral sequences in our computations, but only for one-off computations, so we
address them when we get to them.

3.3. Adams filtration 0 phases are secretly bosonic. In Remark 1.28, we defined a map from phase
homology with symmetry type SO to phase homology with symmetry types Spin or Spinc and interpreted it
as regarding bosonic SPT phases as fermionic SPT phases in a trivial way. Physicists studying fermionic
SPT phases are often interested in the cokernel of this map, which is thought of as the group of intrinsically
fermionic SPT phases. Because bosonic crystalline phases are relatively well-understood, e.g. in the work of
Hermele, Huang, Song, and their collaborators [HSHH17, SHFH17, HH18, SHQ+19, SFQ20, SXH20] and via
the bosonic crystalline equivalence principle of Thorngren-Else [TE18], we are most interested in intrinsically
fermionic SPT phases.

The structure of the Adams spectral sequence allows us to identify the image of this bosonic-to-fermionic
map on phase homology with little extra work. For more about the Adams spectral sequence, see §3.2; for
now, we need only that phase homology groups, reinterpreted through Theorem 2.8 as groups of invertible
field theories, are computed as homotopy groups of spectra, and that the homotopy groups of any spectrum
M come with a canonical filtration called the (mod 2) Adams filtration

(3.9) πnM = F 0
n ⊇ F 1

n ⊇ F 2
n ⊇ · · ·

For more information, see [BC18, §4.7]. This has two properties which are important for us.
(1) The Adams spectral sequence computes the Adams filtration: after 2-completing, the associated

graded of (3.9) is the E∞-page of the Adams spectral sequence, in that Es,t∞ = grsπt−sM .
(2) If M = MTH is a Thom spectrum whose homotopy groups compute bordism groups, elements of the

associated graded in degree 0 correspond to the 2-primary part of the group of deformation classes of
invertible TFTs which depend on something weaker than an H-structure, such as a spin IFT which is
defined by evaluating an oriented IFT on spin manifolds.

This means we can identify which invertible TFTs really use the H-structure, and which do not.
Now a little more detail. We do not need to say much more about (1): we depict Adams spectral sequences

on a grid with coordinates (t−s, s), such as in Figure 1, right, so F 0
n/F

1
n is found in the E∞-page at coordinate

(n, 0).
For (2), we make a simplifying assumption: that for the specific degree n we are investigating, πnMTH is

2-torsion. This assumption holds in all cases where we want to study the Adams filtration in this article,
but if you want to relax it, see Remark 3.18. The assumption implies that up to extension questions on the
E∞-page, the mod 2 Adams spectral sequence fully determines πnMTH ,12 and that the natural map

(3.10) (πn(MTH ))∨ := Hom(πn(MTH ),C×) −→ [MTH ,Σn+1IZ]

is an isomorphism.
To pass from bordism groups to isomorphism class of invertible field theories, we must take character duals

A 7→ A∨ := Hom(A,C×). This is a good thing, actually: a degree-0 element of gr•πn(MTH ) does not usually
uniquely lift to an element of πnMTH : the ambiguity is F 1

n . But in (πn(MTH ))∨, we get a subgroup: the
surjection

(3.11a) πn(MTH ) −� πn(MTH )/F 1
n
∼= gr0πn(MTH )

12Some extension questions can be addressed using the H∗,∗(A(1))-action on the E∞-page, but there are also hidden
extensions which are harder to address. None of the calculations we make in this article manifest hidden non-split extensions;
one example where they do occur is H = Spin×Z/2 Z/8 [DDHM].
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passes under character duality to an inclusion
(3.11b) (gr0πn(MTH ))∨ ↪−→ (πn(MTH ))∨.
Therefore, in a mild abuse of notation, we refer to this subgroup of (πn(MTH ))∨, identified with a subgroup
of the group isomorphism classes of invertible TFTs with H-structure, as the group of Adams filtration 0
invertible TFTs with H-structure.

It is a theorem [FH19b, §8.4] that this subgroup consists of theories closely related to classical Dijkgraaf-
Witten theories [FQ93, §1].13 Isomorphism classes of these invertible TFTs are determined by their partition
functions [FH16a, §5.3], so we specify these theories by their partition functions, which are bordism invariants
ΩHn → C×.

For the Adams spectral sequence, E0,n
2 = Ext0,n

A (H̃∗(MTH ;Z/2);Z/2) is canonically identified with

(3.12) HomA(H̃∗(MTH ;Z/2),ΣnZ/2),
which is a subspace of
(3.13) HomAb(H̃n(MTH ;Z/2),Z/2) ∼= (H̃n(MTH ;Z/2))∨.
The fourth quadrant of the Adams spectral sequence is empty, so E0,n

∞ is a subspace of E0,n
2 . Take the

sequence of maps
(3.14a) gr0πn(MTH ) = E0,n

∞ ↪−→ E0,n
2 ↪−→ (H̃n(MTH ;Z/2))∨

and apply character duality:
(3.14b) (gr0πn(MTH ))∨ �− (E0,n

2 )∨ �− H̃n(MTH ;Z/2).
Now compose with the Thom isomorphism to obtain
(3.14c) ζ : Hn(BH;Z/2) −� (gr0πn(MTH ))∨.
That is, a degree-n mod 2 cohomology class of BH determines an isomorphism class of Adams filtration 0
invertible TFTs, and all Adams filtration 0 invertible TFTs arise in this way. The map need not be injective,
e.g. by the Wu formula when H = O.

Tracing this through Thom’s collapse map tells us that given a cohomology class θ ∈ Hn(BH;Z/2),
the partition function ζ(θ) is the bordism invariant which takes a closed n-manifold with H-structure
(M,f : M → BH) and returns
(3.15) ζ(θ)(M,f) = (−1)〈f

∗θ,[M ]〉.

That is, use the H-structure to pull θ back to M , then evaluate it on the mod 2 fundamental class. This
construction uses some aspects of the H-structure onM , but in the cases relevant to this paper, it is insensitive
to the difference between Spin and O, which is believed to pass to the physicists’ distinction between fermionic
and bosonic phases.

Lemma 3.16. If H = Spin×µ2 G̃ or H = Spinc ×µ2 G̃, where G̃ is in Data 2.1, and H ′ := O×G, then the
map H → H ′ of tangential structures induces a surjective map H∗(BH ′;Z/2)→ H∗(BH;Z/2), and therefore
the partition functions (3.15) of the Adams filtration 0 theories only depend on the underlying H ′-structure of
an H-manifold.

Proof. First, the Spin case. We established a shearing equivalence MTH ∼= MTSpin ∧ X, where X is a
Thom spectrum of a rank-zero virtual vector bundle over BG, and this equivalence fits into a homotopy
commutative diagram

(3.17a)

MTH ' //

��

MTSpin ∧X

��
MTO ∧ (BG)+ // MTO ∧X.

13These theories are not quite the same thing as classical Dijkgraaf-Witten theories, which are TFTs of oriented manifolds with
a principal G-bundle, and which use R/Z-valued cohomology, rather than Z/2-valued cohomology. Unoriented generalizations
of classical Dijkgraaf-Witten theory are studied in more detail in work of Kim [Kim18, §6], the author [Deb20, §3.1], and
You [You20].
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Apply mod 2 cohomology and invoke the Thom isomorphism to obtain a commutative diagram

(3.17b)

H∗(BH;Z/2) H∗(BSpin×BG;Z/2)
∼=oo

H∗(BO×BG;Z/2)

OO

H∗(BO×BG;Z/2)idoo

ξ

OO

The map H∗(BO;Z/2) → H∗(BSpin;Z/2) is surjective, so the Künneth formula implies ξ is too, so the
left-hand arrow H∗(BH ′;Z/2)→ H∗(BH;Z/2) is as well.

For H = Spinc, the proof is the same – BSpinc has an additional characteristic class c1 ∈ H2(BSpinc;Z),
but its mod 2 reduction is w2, so ξ is still surjective. �

Remark 3.18. In all cases that one might reasonably encounter, the bordism group πnX is finitely generated,
so we can ask what happens if it contains p-torsion for an odd prime p or free summands. For a p-torsion
summand, the story is very similar: one instead uses the mod p Adams filtration on πnM∧p , which is detected
by the Z/p-Adams spectral sequence. This has almost the same signature as the Z/2-Adams spectral sequence
we use in this paper, except that Z/2 is replaced with Z/p and the Steenrod algebra is over Z/p instead of
Z/2. Because the mod p Thom isomorphism requires an orientation, the story is a little more nuanced for
tangential structures which do not induce an orientation.

For free summands in πnM , there is no analogous story. The invertible field theories in question are not
topological, and at present their classification is still a conjecture [Fre19, Lecture 9]. Assuming this conjecture,
though, the Adams filtration does not tell the whole story. For example, consider 3d invertible spin field
theories, (conjecturally) classified by

(3.19) [MTSpin,Σ4IZ]
∼=−→ Hom(ΩSpin

4 ,Z) ∼= Z,

generated by the map ϕ sending a spin 4-manifold to its signature divided by 16 [Roh52]. As the signature
does not depend on the spin structure, 16ϕ generates Hom(ΩSO

4 ,Z),14 and therefore the image of the forgetful
map [MTSO,Σ4IZ]→ [MTSpin,Σ4IZ] is identified with the subgroup 16Z. That is, assuming the conjecture
on the classification of not-necessarily-topological invertible field theories, a 3d spin invertible field theory
only depends on the underlying orientation iff it is q times a generator, where 16 | q. So for free summands in
the abelian group of isomorphism classes of invertible field theories, the Adams filtration approach does not
work, and one must use other methods.

3.4. A few utility lemmas.

Definition 3.20. Let A be an abelian group, X be a connected space, and α ∈ H1(X;Z/2). Then Aα
denotes the local system on X given by the Z[π1(X)]-module with underlying abelian group A and in which
g ∈ π1(X) acts on A by (−1)α(g), where we interpret α as a map π1(X) → Z/2 under the identification
H1(X;Z/2) ∼= Hom(π1(X),Z/2).

Usually α will be the first Stiefel-Whitney class of a vector bundle, as in the following lemma.

Proposition 3.21. Let σ → BZ/2 denote the tautological line bundle.
(1) Hk(BZ/2;Zw1(σ)) is isomorphic to Z/2 in odd degrees and 0 in even degrees.
(2) If n is odd, Hk(BZ/2; (Z/n)w1(σ)) ∼= 0 for all k.
(3) If n is even, Hk(BZ/2; (Z/n)w1(σ)) ∼= Z/2 for all k.

Proof. Use RP∞ := lim−→n
RPn as our model for BZ/2. Let A be any abelian group. Given k, choose a very

large even m; then, the map RPm ↪→ BZ/2 induces an isomorphism Hk(RPm;Aw1(σ))
∼=→ Hk(BZ/2;Aw1(σ)).

Since m is even, RPm is unorientable, and Zw1(σ) is isomorphic to the orientation local system for RPm, so
there is a Poincaré duality isomorphism Hk(RPm;Aw1(σ)) ∼= Hm−k(RPm;A). �

We will repeatedly use the following theorem to show some differentials and extensions are trivial in the
Adams spectral sequence.

14This follows from the fact that the signature defines an isomorphism σ : ΩSO
4 → Z, which follows from the fact that CP2,

with signature 1, generates ΩSO
4 [Tho54, Remarque following Corollaire IV.18].
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Theorem 3.22 (Margolis [Mar74]). Let B be a sub-Hopf algebra of Steenrod algebra and Y be a spectrum
with H̃∗(Y ;Z/2) ∼= A⊗B Z/2 (so that the change-of-rings trick works for computing 2-completed Y -homology).
For any spectrum X, there is a splitting

(3.23) Y ∧X ' F ∨X,

where F is an Eilenberg-Mac Lane spectrum for a graded Z/2-vector space and H̃∗(X;Z/2) has no free
summands as an A-module.

The upshot is that in the Adams spectral sequence for computing π∗(Y ∧X)∧2 , the piece of the E2-page
coming from free summands of H̃∗(X;Z/2) as a B-module do not emit or receive nontrivial differentials, and
do not participate in nontrivial extensions.

Lemma 3.24. Let G be a finite group and E → BG be a rank-zero virtual vector bundle.
(1) If 4 | n, k̃on(BGE)⊗Q ∼= H0(BG;Qw1(E)); if 4 - n, k̃on(BGE) is torsion.
(2) The same is true for k̃un(BGE), except divisibility by 4 is replaced by divisibility by 2.

Proof. Atiyah-Hirzebruch [AH61] proved that the Chern character defines an equivalence

(3.25) ch : ku ∧HQ '−→
∨
k≥0

Σ2kHQ.

The Thom isomorphism theorem establishes that H̃∗(BGE ;Q) ∼= H∗(BG;Qw1(E)), and since G is finite, this
vanishes above degree zero by Maschke’s theorem.

The proof for ko-theory is the same, except first using the complexification map c : ko → ku:

�(3.26) ch ◦ c : ko ∧HQ '−→
∨
k≥0

Σ4kHQ.

Choosing E to be the trivial bundle shows the conclusions also hold for the torsion in k̃o∗(BG) and
k̃u∗(BG).

Lemma 3.27 (Adem-Milgram). Fix a prime p, and let H be a subgroup of a finite group G with [G : H]
coprime to p and P be a Sylow p-subgroup of H. Assume P is abelian and that NH(P )/P = NG(P )/P ; then
the restriction map ρH,G : H∗(BG;Z/p)→ H∗(BH;Z/p) is an isomorphism.

Proof. This is a slight strengthening of theorems of Swan [Swa60] and Adem-Milgram [AM04, Theorems
II.6.6 and II.6.8], who prove that if K is a finite group with abelian p-Sylow subgroup P , then the re-
striction map H∗(BK;Z/p) → H∗(BP ;Z/p)NK(P ) is an isomorphism. In our setting, the data of P and
N(P )/P are identical for G and H, so both restriction maps rP,G : H∗(BG;Z/p) → H∗(BP ;Z/p)N and
rP,H : H∗(BH;Z/p)→ H∗(BP ;Z/p)N are isomorphisms. Since rP,G = rP,H ◦ ρG,H , we are done. �

Lemma 3.28 (Bock-to-Sq1 lemma). Let β : Hk(–;Z/2)→ Hk+1(–;Z) denote the integral Bockstein. Then
β(x) mod 2 = Sq1(x).

Proof. The commutative diagram of short exact sequences

(3.29)

0 // Z 2 //

��

Z //

��

Z/2 //

��

0

0 // Z/2 2 // Z/4 // Z/2 // 0

induces a commutative diagram of their induced long exact sequences in cohomology; in particular, β mod 2
equals the Bockstein for the bottom short exact sequence, which is Sq1. �

In the mixed unoriented case, Theorems 2.11 and 2.24 ask us to study Thom spectra for determinants of
representations. We use the following lemma to simplify them.
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Lemma 3.30. Let λ : G→ Od be a faithful representation whose image contains a reflection and Vλ → BG
be the associated vector bundle. Then the splitting of the surjection

(3.31) G
λ //Od

π0 //Z/2

lifts to a splitting of the Thom spectrum (BG)Det(Vλ)−1 as

(3.32) (BG)Det(Vλ)−1 '−→ (BZ/2)σ−1 ∨M,

and the inclusion H̃∗(M ;Z/2) ↪→ H̃∗((BG)Det(Vλ)−1;Z/2) is injective with image a complementary vector
space to the subspace spanned by {Uw1(Vλ)k | k ≥ 0}.
Proof. Let g ∈ G be an element sent to λ by a reflection. Then g2 = 1, so the maps 〈g〉 ↪→ G � Z/2
compose to an isomorphism. Upon taking Thom spectra, these can be identified with maps (BZ/2)σ−1 →
(BG)Det(Vλ)−1 → (BZ/2)σ−1 composing to (a map homotopy equivalent to) the identity, which splits
off (BZ/2)σ−1. The image of the map H̃∗((BZ/2)σ−1;Z/2) → H̃∗((BG)Det(Vλ)−1;Z/2) is spanned by
{Uw1(Vλ)k | k ≥ 0}, and the image of H̃∗(M ;Z/2) is a complementary subspace. �

4. Examples: rotations and reflections

4.1. Warmup: reflections. The simplest example of the fermionic crystalline equivalence principle occurs
when the spatial symmetry is Z/2 acting by a reflection. This symmetry can mix with µ2 ⊂ Spind, and
there are two cases. The following principle is well-established in physics literature; see Shiozaki-Shapourian-
Ryu [SSR17b] and Song-Huang-Fu-Hermele [SHFH17, §VII].

• If Z/2 and µ2 do not mix (often written that the reflection squares to 1), then the classification
matches the classification of pin+ invertible field theories.

• Conversely, if Z/2 and µ2 do mix (often written that the reflection squares to (−1)F ), the classification
matches that of pin− invertible field theories.

Condensed-matter theorists also study theories with time-reversal symmetry. Though this is also an antiunitary
symmetry that can mix with µ2, the classification in terms of pin structures is opposite that of reflections:
when time-reversal symmetry does not mix with fermion parity, we get pin−, and when it does mix, we get pin+.
This is also well-established in physics, and is discussed by Kapustin-Thorngren-Turzillo-Wang [KTTW15],
Freed-Hopkins [FH16a], and others.

The difference between these two correspondences is a first hint that the fermionic crystalline equivalence
principle must be more complicated than the bosonic version; this point is raised by Thorngren-Else [TE18,
§V.A] and Cheng-Wang [CW18, §II.C].

d Class D, spinless Class D, spin-1/2 Class A
§4.1.1 §4.1.2 §4.1.3

1 Z/2 Z/8 Z/4
2 Z/2 0 0
3 Z/16 0 Z/8⊕ Z/2
4 0 0 0

Table 1. Z/2-equivariant phase homology groups for the cases in which Z/2 acts by a
reflection. As discussed in §4.1, these arise as the homotopy groups of the Anderson duals
of MTPin+, MTPin−, and MTPinc. For this group action, the spinless and spin-1/2
classifications in class A coincide.

4.1.1. Class D, spinless. When the reflection does not mix with the internal symmetry group, our ansatz is
exactly that of Freed-Hopkins. In this setting, Z/2 acts on Rd as (d− 1) + σ, where k denotes the rank-k
trivial representation and σ denotes the sign representation. Let fD0 denote the equivariant local system of
symmetry types for the class D spinless case. Arguing as in [FH19a, (3.6)], in space dimension d we see that

(4.1) PhZ/2
0 (Rd; fD0 ) ∼= [MTSpin ∧ (BZ/2)1−σ,Σd+2IZ].
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Using (2.10a), MTSpin ∧ (BZ/2)1−σ ' MTPin+, identifying these phase homology groups as homotopy
groups of the Anderson dual of MTPin+, as expected. Finally, to obtain the specific groups in Table 1, we
use the preexisting calculations of pin+ bordism from [Gia73b, KT90a, KT90b].

4.1.2. Class D, spin-1/2. Again Z/2 acts by d− 1 + σ, and this time, reflection mixes with fermion parity.
Let fD1/2 denote the equivariant local system of symmetry types for this case. The associated bundle to the
Z/2-representation given by reflection is not pin−, so by Theorem 2.11,

(4.2) PhZ/2
0 (Rd; fD1/2) ∼= [MTSpin ∧ (BZ/2)Det(σ)−1,Σd+2IZ].

Because σ is a line bundle, Det(σ) = σ. Using (2.10b), MTSpin ∧ (BZ/2)σ−1 ' MTPin−, so these phase
homology groups are identified with homotopy groups of the Anderson dual of MTPin− as predicted. These
bordism groups are calculated in [ABP69, KT90b].

4.1.3. Class A. For spinc phases (those of Altland-Zirnbauer class A), the spinless and spin-1/2 classifications
coincide: Vλ is pinc, so Theorem 2.24 tells us to consider MTSpinc ∧ (BZ/2)1−σ in both cases, and by (2.10c),
this spectrum is equivalent to MTPinc.

Bahri-Gilkey [BG87a, BG87b] compute pinc bordism groups,15 giving us the phase homology groups in
Table 1.

4.1.4. Comparison with prior work. Reflection-equivariant fermionic phases have been studied by many teams
of researchers with many methods. Their results agree with each other, and with us.
Class D, spinless: These phases, especially the Z/16 in d = 3, are studied by Song-Huang-Fu-Hermele [SHFH17,

§V.A], Hsieh-Cho-Ryu [HCR16, §IV], Shiozaki-Shapourian-Ryu [SSR17b, §II.B, §II.D], Guo-Ohmori-
Putrov-Wan-Wang [GOP+20, §10.7], and Mao-Wang [MW20].

Class D, spin-1/2: Song-Huang-Fu-Hermele [SHFH17, §V.B], Shapourian-Shiozaki-Ryu [SSR17a, SSR17b],
Guo-Ohmori-Putrov-Wan-Wang [GOP+20, §10.7], and Bultinck-Williamson-Haegeman-Verstraete [BWHV17,
§IX].

Class A: These phases have been studied by Isobe-Fu [IF15], Hong-Fu [HF17], Shapourian-Shiozaki-
Ryu [SSR17a, SSR17b], Song-Huang-Fu-Hermele [SHFH17, §4], and Shiozaki-Shapourian-Gomi-
Ryu [SSGR18, §V].

4.2. Inversions. Inversion symmetry is the Z/2-symmetry on Rd acting by (x1, . . . , xd) 7→ (−x1, . . . ,−xd).
This offers another relatively simple example of the FCEP, but with a new feature in the spin-1/2 case: the
classes in H2(BZ/2;Z/2) specified by the extension 1→ Z/2→ G̃→ Z/2→ 1 and by w2(λ) + w1(λ)2 are
not always equal. This does not change very much, as we explain in §4.2.2 below.

d Class D, spinless Class D, spin-1/2 Class A
§4.2.1 §4.2.2 §4.2.3

1 Z/2 Z/8 Z/4
2 Z Z⊕ Z/8 Z2 ⊕ Z/4
3 0 Z/16 Z/8⊕ Z/2
4 0 Z⊕ Z/16 Z2 ⊕ Z/8⊕ Z/2

Table 2. Z/2-equivariant phase homology groups for the cases where Z/2 acts as inversion.
The symmetry type whose Thom spectrum determines these groups depends on d; see the
referenced sections for which symmetry types appear.

15In low degrees, Beaudry-Campbell [BC18, §5.6] compute low-degree pinc bordism groups using the Adams spectral sequence
over A(1), using that MTPinc ' MTSpin ∧ Σ−2MU1 ∧ Σ−1MO1. One can also compute using the Adams spectral sequence
over E(1), as in §4.4.3; we found this to be a fun and useful exercise for getting comfortable with this variation of the Adams
spectral sequence.
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4.2.1. Class D, spinless case. First, the case for which inversion symmetry and fermion parity do not mix.
The Z/2-action on Rd is a direct sum of d copies of the sign representation σ, so as a Z/2-space, Rd is denoted
dσ. This case is covered by Freed-Hopkins [FH19a, Example 3.5], and the phase homology groups are
(4.3) [MTSpin ∧ (BZ/2)d−dσ,Σd+2IZ].
The spectra MTSpin ∧ (BZ/2)d−dσ are periodic in d.

Lemma 4.4. If d′ − d is divisible by 4, MTSpin ∧ (BZ/2)d(1−σ) ' MTSpin ∧ (BZ/2)d′(1−σ).

Proof. This is an instance of Theorem 1.39, using that spin structures satisfy the 2-out-of-3 property and
that, since 4σ is spin, so is (d′ − d)(1− σ). �

Thus we have only to determine MTSpin ∧ (BZ/2)d(1−σ) for small d.
• When d = 0, we get MTSpin ∧ (BZ/2)+.
• When d = 1, (2.10a) tells us MTSpin ∧ (BZ/2)1−σ ' MTPin+.
• For d = 2, we have MTSpin ∧ (BZ/2)2−2σ.16

• When d = −1, (2.10b) gives MTSpin ∧ Σ−1(BZ/2)σ−1 ' MTPin−.
The low-degree homotopy groups of these spectra that we need are computed by Giambalvo [Gia73b] and
Kirby-Taylor [KT90a, KT90b] (the pin+ case); Anderson-Brown-Peterson [ABP69] and Kirby-Taylor [KT90b]
(the pin− case); Giambalvo [Gia73a] (the case d = 2); and Mahowald-Milgram [MM76] (the spin× Z/2 case).
Thus we obtain the phase homology groups for the spinless class D case in Table 2.

4.2.2. Class D, spin-1/2 case. Now we consider the case where the inversion symmetry and µ2 ⊂ Pin−d mix
as specified by the nontrivial extension 1 → µ2 → Z/4 → Z/2 → 1. This is not classified by w2 + w2

1 of
the associated bundle to the spatial representation: in the language of §2, λ 6∼= ξ. Instead, this extension
is classified by w2(σ) + w1(σ)2, and σ is not pin−, so if fD1/2 denotes the class D spin-1/2 equivariant local
system of symmetry types on Rd, Theorem 2.11 computes PhZ/2

∗ (Rd; fD1/2) using the Thom spectrum of the
virtual bundle
(4.5) − V � (σ + σ − dσ) ∼= −V � (d− 2)(1− σ).
Thus
(4.6) PhZ/2

0 (Rd; fD1/2) ∼= [MTSpin ∧ (BZ/2)(d−2)(1−σ),Σd+2IZ],
and Lemma 4.4 says the domain is again 4-periodic, but differently from the spinless case.

• When d = 0, we have MTSpin ∧ (BZ/2)2−2σ.
• When d = 1, we have MTSpin ∧ (BZ/2)σ−1 ' MTPin−.
• When d = 2, we have MTSpin ∧ (BZ/2)+.
• When d = −1, we have MTSpin ∧ (BZ/2)1−σ ' MTPin+.

In the degrees we need, these bordism groups are computed in the same references we gave above in §4.2.1,
and the relevant phase homology groups appear in Table 2.

Remark 4.7. This fourfold periodicity in the tangential structure appears in a few other contexts in mathe-
matical physics, such as recent work of Hason, Komargodski, and Thorngren [HKT20, §4.4] and Córdova,
Ohmori, Shao, and Yan [COSY20] applying it to the study of anomalies of domain wall theories as well as
work of Tachikawa and Yonekura [TY19, §3] studying anomalies arising in string theory.

4.2.3. Class A. In class A, whether with spinless or spin-1/2 fermions, the FCEP predicts by way of
Theorem 2.24 that an inversion symmetry in dimension d leads us to study MTSpinc ∧ (BZ/2)d−dσ. For
any vector bundle V → X, V ⊕ V ∼= V ⊗ C, and complex vector bundles are spinc, so by Theorem 1.39,
we can remove factors of 2 − 2σ from d − dσ without changing the Thom spectrum, so we want to study
MTSpinc ∧ (BZ/2)+ when d is even and MTSpinc ∧ (BZ/2)1−σ ' MTPinc when d is odd.

We discussed pinc bordism in §4.1.3. Bahri-Gilkey [BG87a, BG87b] also compute ΩSpinc
∗ (BZ/2): they

establish that the Smith homomorphism Ω̃Spinc
n (BZ/2)→ ΩPinc

n−1 , which sends a spinc manifoldM and principal

16Campbell [Cam17, §7.8] shows this spectrum is equivalent to MT(Spin×Z/2 Z/4). Bordism for this symmetry type, called
spin-Z/4 bordism or spinc/2 bordism, is used in several places in recent mathematical physics literature, including [Cam17,
Hsi18, FH19a, GEM19, TY19, DL20a, GOP+20, HKT20, WW20a, Wan20, MV21].
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Z/2-bundle P →M to the induced pinc structure on a smooth submanifold representative of the Poincaré
dual of w1(P ) ∈ H1(M ;Z/2), is an isomorphism for all n; thus we get the groups in Table 2 by applying the
universal property (1.7) of IZ to either ΩPinc

∗ or ΩSpinc
∗ ⊕ ΩPinc

∗−1 , depending on dimension.

4.2.4. Comparison with prior work. Inversion-symmetric SPT phases are pretty well-studied, even in the
fermionic case, and our phase homology calculations reproduce classifications of inversion-symmetric phases
in the literature.
Class D, spinless: These phases are studied by Shiozaki-Xiong-Gomi [SXG18, §V.B] and Cheng-Wang [CW18,

§III].
Class D, spin-1/2: These phases are studied by You-Xu [YX14, §III], Shiozaki-Shapourian-Ryu [SSR17a,

SSR17b], Cheng-Wang [CW18, §III], and Shiozaki-Xiong-Gomi [SXG18, §V.A].
Class A: These phases are studied by You-Xu [YX14, §IV.A.3], Shiozaki-Shapourian-Ryu [SSR17b, §V.B],

and Song-Huang-Fu-Hermele [SHFH17, §IV]. Shiozaki-Shapourian-Ryu also study the phases corre-
sponding to the Z/2k+2 summand in [MTPinc,Σ2k+3IZ] in arbitrary odd dimensions.17

Remark 4.8. Guo-Ohmori-Putrov-Wan-Wang [GOP+20, §10.8] also study inversion-symmetric fermionic
phases from a bordism-theoretic perspective, in both the spinless and spin-1/2 cases. Their results disagree
with ours, and with the rest of the literature, because they use different symmetry types to model inversion-
equivariant fermionic phases.

4.3. Rotations. We turn to the case of phases equivariant for the cyclic group Cn acting by rotation on a
plane. These phases have been studied by several groups of authors, and our results are consistent with prior
work; see §4.3.4 for more information.

Let λ : Cn → SO2 denote this representation and Vλ → BCn be the associated vector bundle. One can
directly check that Cn → SO2 lifts across Spin2 → SO2 iff n is odd.

Class D, spinless Class D, spin-1/2 Class A
d n §4.3.1 §4.3.2 §4.3.3
2 0 mod 4 Z⊕ Z/(n/2) Z⊕ Z/2n⊕ Z/2 Z2 ⊕ Z/2n⊕ Z/(n/2)

2 mod 4 Z⊕ Z/(n/2) Z⊕ Z/4n Z2 ⊕ Z/2n⊕ Z/(n/2)
1, 3 mod 4 Z⊕ Z/n Z⊕ Z/n Z2 ⊕ Z/n⊕ Z/n

3 0 mod 4 0 0 0
2 mod 4 0 0 0

1, 3 mod 4 0 0 0
Table 3. Cn-equivariant phase homology groups for the cases in which Cn acts by rotations.
Classification of fermionic phases with a Cn rotation symmetry. For the spinless class
D case, these are classified by [MTSpin ∧ (BCn)2−Vλ ,Σd+1IZ]; for spin-1/2 class D, by
[MTSpin ∧ (BCn)+,Σd+1IZ]; and for class A, both spinless and spin-1/2, by [MTSpinc ∧
(BCn)+,Σd+1IZ].

4.3.1. Class D, spinless case. In this case, Cn does not mix with µ2 ⊂ Spin, and Theorem 2.11 reduces
Ansatz 1.22 to the computation of [MTSpin ∧ (BCn)2−Vλ ,Σd+2IZ] if n is even, or [MTSpin ∧ (BCn)+], if n
is odd.

Lemma 4.9. ΩSO
3 (BCn) ∼= Z/n, ΩSO

4 (BCn) ∼= Z, and ΩSO
5 (BCn) is torsion.

Proof. Compute with the Atiyah-Hirzebruch spectral sequence for oriented bordism; it collapses for p+ q ≤ 4,
and the 5-line of the E2-page is torsion, implying ΩSO

5 (BCn) is torsion. �

Corollary 4.10 (Bruner-Greenlees [BG10, Example 7.3.2, §12.2.D], García-Etxebarria and Montero [GEM19,
§C.2]). For n odd, ΩSpin

3 (BCn) ∼= Z/n, ΩSpin
4 (BCn) ∼= Z, and ΩSpin

5 (BCn) is torsion.
17The presence of this summand follows from the existence of a Z/2k+2 summand in ΩPinc

2k+2, which is proven by Bahri-
Gilkey [BG87b].
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Proof. Because n is odd, BCn is stably trivial at 2, and MTSpin → MTSO is an equivalence away from
2. �

Theorem 4.11. If n is even, Ω̃Spin
3 ((BCn)2−Vλ) ∼= Z/(n/2), Ω̃Spin

4 ((BCn))2−Vλ) ∼= Z, and Ω̃Spin
5 ((BCn)2−Vλ)

is torsion.

Proof. The computation breaks into 2-primary and odd-primary pieces. The forgetful map ΩSpin
∗ → ΩSO

∗ is an
odd-primary isomorphism, and because 2−Vλ is orientable, there is a Thom isomorphism Ω̃SO

∗ ((BCn)2−Vλ) ∼=
ΩSO
∗ (BCn). Thus, Lemma 4.9 takes care of the odd-primary part.
Write n = 2`m, where m is odd. Then the map BC2` → BCn is a stable 2-primary equivalence, because it

induces an isomorphism on mod 2 cohomology, so for the 2-primary piece it suffices to understand the case
n = 2`. Campbell [Cam17, Theorem 1.8] studies ΩSpin

d ((BC2`)2−Vλ), obtaining Z/2`−1 when d = 3, Z when
d = 4, and torsion when d = 5, which suffices.18 �

4.3.2. Class D, spin-1/2 case. Theorem 2.11 asks us to compute [MTSpin ∧ (BCn)+,Σd+2IZ], which (1.7)
tells us in terms of ΩSpin

∗ (BCn). For n odd, we already saw this in Corollary 4.10.

Proposition 4.12. Let n ≡ 2 mod 4. Then ΩSpin
3 (BCn) ∼= Z/4n, ΩSpin

4 (BCn) ∼= Z, and ΩSpin
5 (BCn) is

torsion.

Proof. Inclusion BC2 → BCn is a 2-local equivalence, so the fact that the 2-torsion is Z/8 in degree 3 and
vanishes in degree 4 follows as soon as we know that for ΩSpin

∗ (BC2). This was originally done by Mahowald-
Milgram [MM76] but has been computed in a few other places, including Mahowald [Mah82, Lemma 7.3],
Bruner-Greenlees [BG10, Example 7.3.1], Siegemeyer [Sie13, Theorem 2.1.5], and García-Etxebarria and
Montero [GEM19, (C.18)]. What remains is odd-primary information, which is equivalent to the odd-primary
part of oriented bordism, which we computed in Lemma 4.9. �

Proposition 4.13. For n ≡ 0 mod 4, ΩSpin
3 (BCn) ∼= Z/2 ⊕ Z/2n, ΩSpin

4 (BCn) ∼= Z, and ΩSpin
5 (BCn) is

torsion.

Proof. Write n = 2`m, where m is odd. As in the proof of Theorem 4.11, the 2-primary part of the
answer is detected by BC2` → BCn, and the odd-primary part of the answer is detected oriented bordism.
Davighi-Lohitsiri [DL20a, §A.3] compute ΩSpin

k (BC2`) for k ≤ 6, giving the 2-primary summand, and for the
odd-primary part we use Lemma 4.9. �

Botvinnik-Gilkey-Stolz [BGS97, Theorem 2.4], Bruner-Greenlees [BG10, Example 7.3.3], and Siege-
meyer [Sie13, §2.2] do special cases of this computation, by a variety of methods.

4.3.3. Class A. The representation of Cn on R2 by rotations is unitary (under the standard identification
R2 = C), hence spinc, so in both the spinless and spin-1/2 cases, we consider MTSpinc ∧ (BCn)+: in the
spinless case, we have a Thom isomorphism MTSpinc∧(BCn)2−Vλ '→ MTSpinc∧(BCn)+, and in the spin-1/2
case, Det(Vλ) is trivial, so Theorem 2.24 also gives us MTSpinc ∧ (BCn)+.

Theorem 4.14. The first few spinc bordism groups of BCn are

ΩSpinc
0 (BC2k) ∼= Z ΩSpinc

0 (BC2k+1) ∼= Z

ΩSpinc
1 (BC2k) ∼= Z/2k ΩSpinc

1 (BC2k+1) ∼= Z/(2k + 1)

ΩSpinc
2 (BC2k) ∼= Z ΩSpinc

2 (BC2k+1) ∼= Z

ΩSpinc
3 (BC2k) ∼= Z/4k ⊕ Z/k ΩSpinc

3 (BC2k+1) ∼= (Z/(2k + 1))⊕2

ΩSpinc
4 (BC2k) ∼= Z2 ΩSpinc

4 (BC2k+1) ∼= Z2,

and ΩSpinc
5 (BCn) is torsion for all n.

18There are a few other computations of Ω̃Spin
∗ ((BC2`)2−Vλ) in low degrees by other methods. For ` = 1, see Gi-

ambalvo [Gia73b], García-Etxebarria and Montero [GEM19, (C.21)], and Freed-Hopkins [FH19a, §5]. For ` > 1, see Botvinnik-
Gilkey [BG97, §5] and Davighi-Lohitsiri [DL20a, §A.4]; Botvinnik-Gilkey only report the orders of the bordism groups, but their
computations show that the groups we need are cyclic. Be aware that Campbell and Davighi-Lohitsiri consider a different vector
bundle than 2− Vλ, though their calculations apply to this case.
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Proof. Write n = 2` ·m, where m is odd. It suffices to compute the 2-primary piece and ΩSpinc
∗ (BCn)⊗Z[1/2].

The inclusion C2` → Cn is stably a 2-primary equivalence, so for the 2-primary piece it suffices to determine
ΩSpinc
∗ (BC2`). Bahri-Gilkey [BG87b, Theorem 1] compute these groups; when ` = 0 they are ΩSpinc

∗ (pt),
which begins Z, 0, Z, 0, Z2, 0; and when ` 6= 0 we have the same free summands as when ` = 0, but additional
torsion summands: ΩSpinc

1 (BC2`) ∼= Z/2`, and ΩSpinc
3 (BC2`) ∼= Z/2`−1 ⊕ Z/2`+1.

After smashing with HZ[1/2], the forgetful map MTSpinc → MTSO ∧ (BU1)+ is an equivalence, so
MTSO ∧ (BU1)+ detects all odd-primary torsion in spinc bordism. To compute this, we use the Atiyah-
Hirzebruch spectral sequence

(4.15) E2
p,q = Hp(BU1 ×BCn; ΩSO

q (pt)) =⇒ ΩSO
p+q(BU1 ×BCn).

The Künneth theorem implies the first few homology groups of BU1 ×BCn are H0 = Z, H1 = Z/n, H2 = Z,
H3 = (Z/n)⊕2, H4 = Z, and H5 = (Z/n)⊕3. When we feed this to the spectral sequence (4.15), there are
no nonzero differentials to or from any element in total degree p + q < 5: because ΩSO

i = 0 for i = 1, 2, 3,
the only possible nonzero differential would be a d4 : E2

5,0 → E2
0,4, but the splitting ΩSO

∗ (BU1 × BCn) =
ΩSO
∗ (pt)⊕ Ω̃SO

∗ (BU1 ×BCn) splits off the q = 0 line splits off from the rest of the spectral sequence, killing
this d4. This tells the odd-primary torsion in degrees 0 through 4, and since the 5-line of the E2-page is
torsion, ΩSO

5 (BU1 ×BCn) is also torsion. �

4.3.4. Comparison with prior work. Rotation-equivariant phases in class D have been studied by several
groups, including Shiozaki-Shapourian-Ryu [SSR17b, §IV.C], Guo-Ohmori-Putrov-Wan-Wang [GOP+20,
§10.9], and Freed-Hopkins [FH19a, §5], who all restrict to the case n = 2, and most comprehensively by
Cheng-Wang [CW18, §IV, §V], who consider arbitrary n and both the spinless and spin-1/2 cases in d = 2, 3.
Freed-Hopkins begin from the same ansatz as us so agreement is no surprise. In the remaining cases, there is
almost complete agreement: all classifications compute the same torsion summands, but they all miss the
free summand in d = 2. This is not a discrepancy, however: many authors restrict to considering phases
whose low-energy effective theories are expected to be topological field theories, which in the ansatz of
Freed-Hopkins [FH16a, §§5.3–5.4] amounts to considering the torsion subgroup of the classification using
IZMTH . The non-topological theories corresponding to the free summand have been discussed in a few
references, including Freed [Fre19, Lecture 9] and Wan-Wang [WW20a, §7.1]; at present, their mathematical
description remains partly conjectural.

Rotation-equivariant phases in class A are studied by Shiozaki-Shapourian-Ryu [SSR17b, §IV.D], Shiozaki-
Xiong-Gomi [SXG18, §V.C.1], and Lu-Vishwanath-Khalaf [LVK19]. Shiozaki-Shapourian-Ryu and Lu-
Vishwanath-Khalaf’s classifications agree with us on torsion but miss the free summand as before, and
Shiozaki-Xiong-Gomi’s computation completely matches ours. Again, the free summand corresponds to
non-topological invertible field theories.

4.4. Rotations and reflections. In this section, we compute the phase homology groups corresponding to
phases on Rd equivariant for the D2n-action of rotations and reflections in a given plane. Zhang-Wang-Yang-
Qi-Gu [ZWY+20] also study these phases for d = 2 and in class D; we compare our results to theirs in §4.4.5.

Let λ be the standard real 2-dimensional representation of D2n and Vλ → BD2n be the associated
vector bundle. Let s be a reflection in D2n and r a rotation through the angle 2π/n. Then, define
x, y ∈ H1(BD2n;Z/2) = Hom(D2n,Z/2) by

x(s`rm) := ` mod 2(4.16a)
y(s`rm) := m mod 2.(4.16b)

In the representation λ, s`rm ∈ D2n acts by an orientation-reversing endomorphism iff ` is odd, so w1(Vλ) = x.

Proposition 4.17 ([Sna13, Theorem 4.6], [Tei92, §2.3], [Han93, Theorems 5.5 and 5.6]).
(1) If n is odd, H∗(BD2n;Z/2) ∼= Z/2[x].
(2) If n ≡ 0 mod 4, H∗(BD2n;Z/2) ∼= Z/2[x, y, w]/(xy + y2), where |w| = 2 and w = w2(Vλ).
(3) If n ≡ 2 mod 4, H∗(BD2n;Z/2) ∼= Z/2[x, y].

Lemma 4.18. For n ≡ 2 mod 4, w2(Vλ) = xy + y2.

https://arxiv.org/pdf/1604.06527.pdf#page.20
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Class D, spinless Class D, spin-1/2 Class A, spinless Class A, spin-1/2
d n §4.4.1 §4.4.2 §4.4.3 §4.4.4
2 0 mod 4 (Z/2)⊕2 (Z/2)⊕2 Z/2n Z/(n/2)⊕ (Z/2)⊕2

2 mod 4 Z/2 (Z/2)⊕2 Z/2n Z/n⊕ Z/2
1, 3 mod 4 Z/2 0 Z/n Z/n

3 0 mod 4 (Z/2)⊕4 0 (Z/2)⊕4 Z/8⊕ Z/4⊕ Z/2
2 mod 4 (Z/2)⊕3 0 (Z/2)⊕4 Z/8⊕ Z/4⊕ Z/2

1, 3 mod 4 Z/16 0 Z/8⊕ Z/2 Z/8⊕ Z/2
Table 4. D2n-equivariant phase homology groups, where D2n acts through rotations and
reflections. These arise as homotopy groups of Anderson duals of MTSpin ∧ Xn and
MTSpinc ∧ Xn, where Xn is one of (BD2n)2−Vλ or (BD2n)Det(Vλ)−1. See §4.4 for details
and proofs.

Proof. Since s, rn/2 ∈ D2n commute, there is a map j : Z/2×Z/2→ D2n sending (1, 0) 7→ s and (0, 1) 7→ rn/2.
The pullback map j∗ : H∗(BD2n;Z/2) → H∗(BZ/2 × BZ/2;Z/2) sends x and y to linearly independent
elements of H1(BZ/2 × BZ/2;Z/2): one way to see this is to identify the pullback map with the map
Hom(D2n,Z/2) → Hom(Z/2 × Z/2,Z/2) given by precomposing with j. Thus j∗ is an isomorphism on
H1(–;Z/2). For both BD2n and BZ/2×BZ/2, the mod 2 cohomology ring is the free symmetric algebra on
H1(–;Z/2), so j∗ is an isomorphism of cohomology rings.

Thus we can compute w2(Vλ) by regarding λ as a Z/2×Z/2 representation. Let `1 ⊂ λ be the fixed locus of
s, which is a subspace, and `2 be its orthogonal complement. Then λ = `1⊕ `2 as (Z/2×Z/2)-representations.
Both s and rn/2 act nontrivially on `2; on `1, s acts trivially and rn/2 acts nontrivially. Thus w(`1) = 1+j∗(y),
w(`2) = 1 + j∗(x) + j∗(y), and

�(4.19) w2(j∗Vλ) = w2(`1) + w1(`1)w1(`2) + w2(`2) = j∗(y(x+ y)).

Lemma 4.20. Suppose n is odd and i : Z/2 ↪→ D2n is the inclusion of 〈s〉. Let V → BD2n be a virtual
vector bundle such that w1(V ), as an element Hom(D2n,Z/2), is nonzero on s. Then, the induced map of
Thom spectra ı̂ : (BZ/2)i∗V → (BD2n)V is a 2-primary homotopy equivalence.

Proof. By the homology Whitehead theorem, it suffices to show ı̂ induces an isomorphism on mod 2 cohomology.
The Thom isomorphism rewords our question to be about the map H∗(BD2n;Z/2)→ H∗(BZ/2;Z/2), and
Proposition 4.17 tells us that both H∗(BZ/2;Z/2) and H∗(BD2n;Z/2) are abstractly isomorphic to Z/2[x]
with |x| = 1; we will show i∗xBD2n = xBZ/2, implying i∗ is a ring isomorphism. Since x is the only nonzero
degree-one element and V and i∗V are both unorientable, x = w1(V ) and i∗x = w1(i∗V ) 6= 0. �

We will need the next calculations to determine the odd-primary torsion subgroups of the phase homology
groups we calculate. Recall that x ∈ H1(BD2n;Z/2) is equal to w1(Vλ).

Lemma 4.21 (Handel [Han93, Theorems 5.8, 5.9]).

(4.22) H∗(BD2n; (Z[1/2])x) ∼=
{
Z/n, n ≡ 1 mod 4
0, otherwise.

Handel calculates H∗(BD2n;Zx); use the universal coefficient theorem to switch to Z[1/2]-homology.

Proposition 4.23. Suppose V → BD2n is a rank-zero virtual vector bundle with w1(V ) = x. Then the
odd-torsion subgroup of Ω̃Spin

k ((BD2n)V ) is isomorphic to the odd-torsion subgroup of Z/n for k = 1, and
vanishes for k = 0, 2, 3, and 4.

Proof. Apply the Atiyah-Hirzebruch spectral sequence for the completion of spin bordism at primes other than
2. Since w1(V ) = x, the Thom isomorphism identifies H̃∗((BD2n)V ) ∼= H∗(BD2n;Zx), and by Lemma 4.21
we know these groups away from 2. The only nonzero entry in the E2-page of total degree less than 5 is
E2

1,0
∼= Z/n, so the spectral sequence collapses in the desired range and we conclude. �
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Proposition 4.24. With V as in Proposition 4.23, the odd-torsion subgroup of Ω̃Spinc
k ((BD2n)V ) is isomor-

phic to the odd-torsion subgroup of Z/n for k = 1 and 3, and vanishes for k = 0, 2, and 4.

Proof. Use the Atiyah-Hirzebruch spectral sequence for the completion of MTSpinc at odd primes, just as
for Proposition 4.23. �

4.4.1. Class D, spinless case. Since we are considering spinless fermions, the FCEP tells us to compute
[MTSpin ∧ (BD2n)2−Vλ ,Σd+1IZ].

Proposition 4.25. For n odd, the first few spin bordism groups of Xn are

Ω̃Spin
0 (Xn) ∼= Z/2

Ω̃Spin
1 (Xn) ∼= Z/n

Ω̃Spin
2 (Xn) ∼= Z/2

Ω̃Spin
3 (Xn) ∼= Z/2

Ω̃Spin
4 (Xn) ∼= Z/16,

and Ω̃Spin
5 (Xn) is torsion.

Proof. To compute the 2-torsion subgroups of these bordism groups, apply Lemma 4.20 with 2− Vλ to get a
2-primary stable equivalence (BD2n)2−Vλ ' (BZ/2)1−σ, then (2.10a) to get MTSpin∧(BZ/2)1−σ ' MTPin+.
Low-degree pin+ bordism groups are calculated in [Gia73b, KT90a, KT90b]. For the odd-torsion subgroups,
use Proposition 4.23. �

Now we turn to the case where n ≡ 2 mod 4.

Theorem 4.26. When n ≡ 2 mod 4, the first few spin bordism groups of Xn are

Ω̃Spin
0 (Xn) ∼= Z/2

Ω̃Spin
1 (Xn) ∼= Z/n

Ω̃Spin
2 (Xn) ∼= Z/2

Ω̃Spin
3 (Xn) ∼= Z/2

Ω̃Spin
4 (Xn) ∼= (Z/2)⊕3,

and Ω̃Spin
5 (Xn) is torsion.

As usual, this together with the universal property (1.7) of IZ gives the n ≡ 2 mod 4 entries in Table 4.

Proof. We will use the Adams spectral sequence at the prime 2 to compute Ω̃Spin
d (Xn) for d ≤ 7. This only sees

2-primary information, but we already calculated the odd-torsion subgroup in Proposition 4.23. Recall that
w1(Vλ) = x and (from Lemma 4.18) w2(Vλ) = xy + y2; thus w1(2− Vλ) = x and w2(2− Vλ) = x2 + xy + y2.
This tells us the Steenrod squares in H̃∗(Xn;Z/2), e.g. Sq1(U) = Ux and Sq2(U) = U(x2 + xy + y2).
Continuing in this vein determines the A(1)-module structure on H̃∗(Xn;Z/2) in low degrees, as shown in
Figure 1, left. We obtain a splitting as A(1)-modules:

(4.27) H̃∗(Xn;Z/2) ∼= A(1)⊕ ΣR0 ⊕ Σ2A(1)⊕ Σ4A(1)⊕ Σ4A(1)⊕ P.
The A(1)-module R0 is defined to be H̃∗((BZ/2)1−σ;Z/2); the copy appearing here is the indecomposable
summand containing Uy. The submodule P contains no elements of degree below 6, so is irrelevant for our
low-degree computations; we need to determine Ext(M) for the remaining summands. For ΣkA(1), there is a
single Z/2 summand in topological degree k and filtration 0, and for ΣR0, see [GMM68, §2] or [BC18, Figure
24]. Putting these together, we display the E2-page of this Adams spectral sequence in Figure 1, right. In
this range, a combination of h1-equivariance and Margolis’ theorem (Theorem 3.22) forces all differentials to
vanish, and Margolis’ theorem implies there are no hidden extensions, so we are done. �

Finally, consider the case that n ≡ 0 mod 4.
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Figure 1. Left: the A(1)-module structure on H̃∗((BD2n)2−Vλ ;Z/2) in low degrees, when
n ≡ 2 mod 4. Here α := x4y + y5. The submodule pictured here contains all elements
of degree at most 5. Right: the E2-page of the corresponding Adams spectral sequence
computing ko-theory.

Theorem 4.28. Let n ≡ 0 mod 4.
Ω̃Spin

0 (Xn) ∼= Z/2

Ω̃Spin
1 (Xn) ∼= Z/n

Ω̃Spin
2 (Xn) ∼= Z/2

Ω̃Spin
3 (Xn) ∼= (Z/2)⊕2

Ω̃Spin
4 (Xn) ∼= (Z/2)⊕4,

and Ω̃Spin
5 (Xn) is torsion.

Proof of Theorem 4.28. First, by Proposition 4.23, the only odd-primary torsion in Ω̃Spin
k (Xn) for k ≤ 4 is in

degree 1. Draw the Atiyah-Hirzebruch spectral sequence
(4.29) E2

p,q = H̃p(Xn; ΩSpin
q ) =⇒ Ω̃Spin

p+q (Xn).
After applying the Thom isomorphism, this needs as input H∗(BD2n;Zx) and H∗(BD2n;Z/2). The former
can be determined using Handel’s calculation [Han93, Theorem 5.8] of H∗(BD2n;Zx), and the latter can be
determined from Proposition 4.17; in both cases use the universal coefficient theorem to pass from homology
to cohomology. We obtain E2

1,0
∼= Z/n and E2

0,1
∼= Z/2, so there are three options for Ω̃Spin

1 (Xn): Z/n,
Z/n⊕ Z/2, or Z/2n. We will address this ambiguity later.

Using Proposition 4.17, w1(2 − Vλ) = x and w2(2 − Vλ) = w + x2. Hence Sq1(U) = Ux and Sq2(U) =
U(w + x2). We also need the Steenrod squares of x, y, and w. For degree reasons, Sq(x) = x + x2 and
Sq(y) = y + y2.

Lemma 4.30 ([Mal11, §4.1]). Sq(w) = w + wx+ w2.

These and the Cartan formula determine the A(1)-module structure on H̃∗(Xn;Z/2). In Figure 2, left, we
display this structure in low degrees.

In particular,
(4.31) H̃∗(Xn;Z/2) ∼= A(1)⊕ ΣR2 ⊕ Σ2Z/2⊕ Σ4J ⊕ Σ4A(1)⊕ Σ4A(1)⊕ Σ5 Q⊕ P,
where P is 5-connected, and we define R2, J , and

Qas follows. First, R2 is defined to be the kernel of the
augmentation map A(1) → Z/2; the indecomposable summand in (4.31) isomorphic to ΣR2 is generated
by Uy and Uy2. The Joker is the A(1)-module J := A(1)/(Sq3); here it is generated by Uw2. Finally,
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Figure 2. Left: the low-degree mod 2 cohomology of (BD2n)2−Vλ over A(1), n ≡ 0 mod 4.
This summand contains all elements in degrees 5 and below. The dashed line indicates that
the Z/2r Bockstein maps Uy to Uw, which we need in Lemma 4.32. Right: the E2-page of
the Adams spectral sequence computing k̃o∗((BD2n)2−Vλ)∧2 . See Lemma 4.32 for how to
address the differential in topological degree 2 and Lemma 4.35 to show the differential in
topological degree 5 vanishes.

Q:= A(1)/(Sq1,Sq2Sq3) and is called the upside-down question mark; here it is generated by Uw2y. For
each of these summands M in (4.31), Exts,tA(1)(M,Z/2) is known in the degrees relevant to us – except for P ,
which is too high-degree to affect our calculations anyways.

• For ΣkA(1) there is a single Z/2 in bidegree s = 0, t = k.
• For R2, J , and

Q, see [BC18, Figure 29].19

• For Z/2, see [BC18, Figure 20].
Put these together to obtain the E2-page as in Figure 2, right. Lemma 3.24 tells us the E∞-page is torsion,
so there must be nonzero differentials in the range shown, though not necessarily the d2s pictured.

The first nonzero differential is a dr from the 2-line to the 1-line; by h0-equivariance, it kills the entire
yellow tower in the 2-line. Since a dr differential decreases t− s by 1 and increases s by r, on the Er+1-page,
the 2-line contains only the first r summands of the orange tower, and the 3-line contains only the orange
Z/2 summand in degree s = 0. There can be no further differentials to or from the 1- or 2-lines, so we obtain
Z/2r in degree 1 and Z/2 in degree 2.

Lemma 4.32. 2r is the largest power of 2 dividing n, i.e. Ω̃Spin
1 (Xn) ∼= Z/n.

Proof. The May-Milgram theorem [MM81] identifies Adams spectral sequence differentials between towers
with Bockstein spectral sequence differentials. What it means here is that the lemma statement is equivalent
to the statement that the Bockstein map β : H1(–;Z/2r)→ H2(–;Z/2) associated to the short exact sequence

(4.33) 0 // Z/2 // Z/2r+1 // Z/2r // 0

carries a preimage of Uy to Uw. Both of these classes are in the image of the pullback map induced by
(BZ/n)2−V → (BD2n)2−V , and the Bockstein is natural with respect to the Thom isomorphism, so we just
have to check this in the cohomology of BZ/n, where it is true [Cam17, DL20a]. �

The next differential that might be nonzero, and which is the only possibly nonzero differential to or from
an element of degree 3 or 4, is d2 : E0,5

2 → E2,6
2 . If this d2 = 0, there is also an extension problem in degree

t− s = 4 of the form

(4.34) 0 // Z/2 // Ω̃Spin
4 (Xn) // Z/2⊕ Z/2⊕ Z/2 // 0.

19The first calculations of Exts,tA(1)(R2,Z/2) and Exts,tA(1)(J,Z/2) that we know of are due to Adams-Priddy [AP76, §3].
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Lemma 4.35. This d2 vanishes, and the extension (4.34) splits.
Proof. We will prove this by mapping to a simpler Adams spectral sequence that has already been studied,
as depicted in Figure 3.

Because Vλ is the pullback of the tautological bundle V2 → BO2 along Bλ : BD2n → BO2, we obtain a
map of Thom spectra f : Xn = (BD2n)2−Vλ → (BO2)2−V2 ; the codomain is often denoted Σ2MTO2. Under
f , our Uw ∈ H̃2(Xn;Z/2) is the pullback of Uw2 ∈ H̃2(Σ2MTO2).

The spin bordism of Σ2MTO2 is identified with the bordism theory of the group Pinc̃+ := (Pin+nSpin2)/µ2.
Invertible field theories for this tangential structure are believed to correspond to invertible topological phases
of Altland-Zirnbauer type AII [FH16a, (9.25), (10.2)].20

Several authors study the Adams spectral sequence for ΩPinc̃+

∗ ∼= Ω̃Spin
∗ (Σ2MTO2) in low degrees, in-

cluding Freed-Hopkins [FH16a, Figure 5, case s = −2], Campbell [Cam17, Example 6.10], and Wan-Wang-
Zheng [WWZ20, §6.2.3]. Their work shows Uw2 ∈ H̃2(Σ2MTO2;Z/2) generates a Σ2Z/2 summand as
an A(1)-submodule of H̃∗(Σ2MTO2;Z/2), and therefore f∗ restricts to an isomorphism from that Σ2Z/2
summand to our Σ2Z/2 summand generated by Uw. This means the submodule of the E2-page for Ω̃Spin

∗ (Xn)
coming from Σ2Z/2 maps isomorphically onto the submodule of the E2-page for Ω̃Spin

∗ (Σ2MTO2) coming
from the Σ2Z/2 generated by Uw2 — and crucially, in that spectral sequence, E0,5

2
∼= 0. See the commutative

diagram of pink arrows in Figure 3. Thus the image of our d2 under f vanishes, and the map between these
spectral sequences on E2,6

2 s (the targets of these d2s) is an isomorphism, so our d2 also vanishes.

Figure 3. The map Xn → Σ2MTO2 induces a map between the Adams spectral sequences
computing their ko-theory groups. We use this in Lemma 4.35 to show the pictured d2
vanishes, as the square of pink arrows in the above figure is commutative. The right-hand side
of this figure, which displays Ext(H̃∗(Σ2MTO2;Z/2)), is adapted from Campbell [Cam17,
Figure 6.9].

Now suppose (4.34) does not split; then, there are elements x, y ∈ Ω̃Spin
4 (Xn) such that x = 2y and the image

of x image in the E∞-page of the Adams spectral sequence is the nonzero element of E2,6
∞ ∼= Z/2. Then f maps

this Z/2 isomorphically onto a Z/2 in the E∞-page for Σ2MTO2, so f∗(x) 6= 0. But ΩPinc̃+

4
∼= (Z/2)⊕3 [FH16a,

Theorem 9.87], so no matter where y maps to, 2y = x 7→ 0, which is a problem. �

We have thus determined Ω̃Spin
d (Xn)∧2 for d = 3, 4, so we are done. �

4.4.2. Class D, spin-1/2 case.

Lemma 4.36. Vλ is not pin−.

Proof. For n even, this follows by pulling back along BCn → BD2n: we saw in §4.3 that the pullback is not
spin, so Vλ cannot be pin−. For n odd, pull back along the map BZ/2→ BD2n induced by the inclusion of
a reflection; the pullback is not pin−, so neither is Vλ. �

Therefore by Theorem 2.11, we consider Xn := (BD2n)Det(Vλ)−1.

20For further discussion, see also Metlitski [Met15] and Seiberg-Witten [SW16, §A.4].

https://arxiv.org/pdf/1604.06527.pdf#page.77
https://arxiv.org/pdf/1604.06527.pdf#page.95
https://arxiv.org/pdf/1604.06527.pdf#page.97
https://arxiv.org/pdf/1604.06527.pdf#page.91
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Proposition 4.37. For n odd, the first few spin bordism groups of Xn are
Ω̃Spin

0 (Xn) ∼= Z/2

Ω̃Spin
1 (Xn) ∼= Z/2n

Ω̃Spin
2 (Xn) ∼= Z/8

Ω̃Spin
3 (Xn) ∼= 0

Ω̃Spin
4 (Xn) ∼= 0,

and Ω̃Spin
5 (Xn) is torsion.

Proof. To compute the 2-torsion subgroups of these bordism groups, apply Lemma 4.20 with Det(Vλ)− 1 get
a 2-primary stable equivalence (BD2n)Det(Vλ)−1 ' (BZ/2)σ−1, then (2.10b) to get MTSpin ∧ (BZ/2)1−σ '
MTPin−. Low-degree pin− bordism groups are calculated in [ABP69, KT90b]. For the odd-torsion subgroups,
use Proposition 4.23. �

Theorem 4.38. When n ≡ 2 mod 4, the first few bordism groups of Xn are
Ω̃Spin

0 (Xn) ∼= Z/2

Ω̃Spin
1 (Xn) ∼= Z/n⊕ Z/2

Ω̃Spin
2 (Xn) ∼= Z/8⊕ Z/4

Ω̃Spin
3 (Xn) ∼= Z/2⊕ Z/2

Ω̃Spin
4 (Xn) ∼= 0,

and Ω̃Spin
5 (Xn) is torsion.

Proof. We establish a 2-primary equivalence MTSpin ∧Xn ' MTPin− ∧ (BZ/2)+, so the free and 2-torsion
part of the spin bordism groups of X are isomorphic to the pin− bordism groups of BZ/2. Once we finish
this, we use work of Guo-Ohmori-Putrov-Wan-Wang [GOP+20, §7.2.1] computing ΩPin−

k (BZ/2) in degrees 5
and below to get the 2-primary part; for the odd-primary torsion, we use Proposition 4.23 as usual.
Lemma 4.39. The inclusion i : Z/2× Z/2 ↪→ D2n given by a reflection and a half-turn induces a 2-primary
equivalence of Thom spectra (B(Z/2× Z/2))i∗Det(Vλ)−1 '→ (BD2n)Det(Vλ)−1.
Proof. The map Bi : B(Z/2× Z/2)→ BD2n induces an equivalence on mod 2 cohomology, and therefore by
the Thom isomorphism theorem also induces an equivalence on the mod 2 cohomology of the Thom spectra
in question. This suffices by the stable Whitehead theorem. �

The stable bundle i∗Det(Vλ) → B(Z/2 × Z/2) splits as an exterior direct sum σ � 0, where σ → BZ/2
is the tautological line bundle. Therefore the Thom spectrum also splits: (B(Z/2 × Z/2))i∗Det(Vλ)−1 '
(BZ/2)σ−1 ∧ (BZ/2)+. Therefore by (2.10b),

�(4.40) MTSpin ∧ (BD2n)Det(Vλ)−1 ' MTSpin ∧ (BZ/2)σ−1 ∧ (BZ/2)+ ' MTPin− ∧ (BZ/2)+.

Finally, let n ≡ 0 mod 4. Recall H∗(BD2n;Z/2) ∼= Z/2[x, y, w]/(xy + y2) with |x| = |y| = 1 and |w| = 2,
so Sq(x) = x+ x2 and Sq(y) = y + y2, and from Lemma 4.30, Sq(w) = w + wx+ w2. The Stiefel-Whitney
classes of Det(Vλ) tell us that if U is the Thom class, Sq1(U) = Ux and Sq2(U) = 0 in the cohomology of Xn.
Theorem 4.41. For n ≡ 0 mod 4, the first few bordism groups of Xn are

Ω̃Spin
0 (Xn) ∼= Z/2

Ω̃Spin
1 (Xn) ∼= Z/n⊕ Z/2

Ω̃Spin
2 (Xn) ∼= Z/8⊕ Z/4

Ω̃Spin
3 (Xn) ∼= Z/2⊕ Z/2

Ω̃Spin
4 (Xn) ∼= 0,

and Ω̃Spin
5 (Xn) is torsion.
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Proof. First, by Proposition 4.23, the only odd-primary torsion in Ω̃Spin
k (Xn) for k ≤ 4 is in degree 1. Draw

the Atiyah-Hirzebruch spectral sequence

(4.42) E2
p,q = H̃p(Xn; ΩSpin

q ) =⇒ Ω̃Spin
p+q (X).

After applying the Thom isomorphism, this needs as input H∗(BD2n;Zx) and H∗(BD2n;Z/2). The former
can be determined using Handel’s calculation [Han93, Theorem 5.8] of H∗(BD2n;Zx), and the latter can be
determined from Proposition 4.17; in both cases use the universal coefficient theorem to pass from homology
to cohomology. Since E2

1,0
∼= Z/n and E2

0,1
∼= Z/2, there are three options for Ω̃Spin

1 (Xn): Z/n, Z/n⊕ Z/2,
or Z/2n. We will learn which one is correct in our analysis of the 2-primary part below.

For the 2-primary part, we use the Adams spectral sequence as usual. By Lemma 3.30, a choice of a
reflection in D2n induces a splitting

(4.43) Xn
'−→ (BZ/2)σ−1 ∨Mn,

such that the map H̃∗(Mn;Z/2) → H̃∗(Xn;Z/2) is injective with image complementary to the subspace
spanned by {Uxi | i ≥ 0}. We focus on MTSpin ∧Mn, adding in the summands arising from MTSpin ∧
(BZ/2)σ−1 ' MTPin− at the end. The A(1)-module structure on H̃∗(Mn;Z/2) is determined by its image
in H̃∗(Xn;Z/2), which we know using Sq1 and Sq2 of x, y, w, and U via the Cartan formula. Using this, we
draw this A(1)-module structure in Figure 4, left.
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Figure 4. Left: the A(1)-module structure on H̃∗(Mn;Z/2) in low degrees. The pictured
summand contains all elements in degrees 4 and below. Right: the Ext of this module, which
is the E2-page of the Adams spectral sequence converging to k̃o∗(Mn). See the proof of
Theorem 4.41 for more information.

As A(1)-modules,

(4.44) H̃∗(Mn;Z/2) ∼= ΣR1 ⊕ Σ2 Q⊕ Σ3A(1)⊕ Σ3A(1)⊕ P,
where P is 4-connected; we will see below that the 4-line is empty, so there are no nonzero differentials
from Ext(P ) to anything we care about. Here ΣR1 is the indecomposable summand containing Uy. For the
ΣkA(1) summands, we know the Ext; for ΣR1, see [BC18, Figure 26], and for Σ2 Q, see [BC18, Figure 29].
Assembling these, we display the E2-page for t− s ≤ 5 in Figure 4, right. Lemma 3.24 implies Ω̃Spin

5 (Xn) is
torsion, as claimed, and that there must be a differential dr from the infinite tower in topological degree 2 to
the infinite tower in topological degree 1, though it might not be the d2 pictured.21 Margolis’ theorem and
h0-equivariance rule out any other nonzero differentials to or from elements with t− s ≤ 4. Therefore in this
range, Er+1 = E∞. The infinite tower in topological degree 2 is killed by the differential, as are all but r
of the Z/2 summands of the infinite tower in topological degree 1. The first few 2-completed spin bordism
groups of Mn are therefore Z/2r in degree 1, Z/4 in degree 2, Z/2⊕Z/2 in degree 3, and 0 in degrees 0 and 4.

21In fact, r is the largest number such that 2r | n. Like in the proof of Lemma 4.32, one can deduce this using the Bockstein
from Uy to Uw and the May-Milgram theorem.
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Finally, we add in the pin− bordism summands as computed in [ABP69, KT90b]: a Z/2 in degrees 0 and
1, a Z/8 in degree 2, and 0 otherwise. In particular, since the 2-torsion subgroup of Ω̃Spin

1 (Xn) is of the form
Z/2⊕ Z/2r, Ω̃Spin

1 (Xn) ∼= Z/n⊕ Z/2. �

4.4.3. Class A, spinless case. In this case, Theorem 2.24 asks us to consider Xn := MTSpinc ∧ (BD2n)2−Vλ .

Theorem 4.45. For n odd, the first few spin bordism groups of Xn are

Ω̃Spinc
0 (Xn) ∼= Z/2

Ω̃Spinc
1 (Xn) ∼= Z/n

Ω̃Spinc
2 (Xn) ∼= Z/4

Ω̃Spinc
3 (Xn) ∼= Z/n

Ω̃Spinc
4 (Xn) ∼= Z/8⊕ Z/2,

and Ω̃Spinc
5 (Xn) is torsion.

Proof. To compute the 2-torsion subgroups of these bordism groups, apply Lemma 4.20 with 2−Vλ to get a 2-
primary stable equivalence (BD2n)2−Vλ ' (BZ/2)1−σ, then (2.10c) to get MTSpinc ∧ (BZ/2)1−σ ' MTPinc.
The pinc bordism groups we need are calculated by Bahri-Gilkey [BG87a, BG87b]. For the odd-torsion
subgroups, use Proposition 4.24. �

Theorem 4.46. Let n ≡ 2 mod 4; then the low-degree spinc bordism of Xn is

Ω̃Spinc
0 (Xn) ∼= Z/2

Ω̃Spinc
1 (Xn) ∼= Z/n

Ω̃Spinc
2 (Xn) ∼= (Z/2)⊕2

Ω̃Spinc
3 (Xn) ∼= Z/2n

Ω̃Spinc
4 (Xn) ∼= (Z/2)⊕4,

and Ω̃Spinc
5 (Xn) is torsion.

Proof. First, Proposition 4.24 computes the odd-torsion subgroups: a Z/n in degrees 1 and 3, and nothing
else below degree 5.

To compute the 2-primary information we use the Adams spectral sequence over E(1), which converges to
k̃u∗(Xn), together with Anderson-Brown-Peterson’s isomorphism Ω̃Spinc

n (Xn)
∼=→ k̃un(Xn)⊕ k̃un−4(Xn) for

n ≤ 7 [ABP67].
The A(1)-module structure on H̃∗(Xn;Z/2) that we calculated in (4.27) and displayed in Figure 1, left,

determines the E(1)-module structure: as E(1)-modules, A(1) ∼= E(1)⊕ Σ2E(1). Therefore

(4.47) H̃∗(Xn;Z/2) ∼= E(1)⊕ ΣR0 ⊕ Σ2E(1)⊕ Σ2E(1)⊕ Σ4E(1)⊕ Σ4E(1)⊕ Σ4E(1)⊕ P,
where P is 5-connected; we draw a picture of this E(1)-module in Figure 5, left.

Next Ext. For ΣkE(1), there is a unique Z/2 summand, in degree s = 0, t = k; for ΣR0, we must work a
little harder.

Proposition 4.48. Exts,tE(1)(R0,Z/2) is given in Figure 6, right.

Proof. Our proof uses as input ExtE(1)(N1), where N1 is defined to be the A-module Σ−1H̃∗(RP2;Z/2), with
two Z/2 summands connected by a Sq1; this in turn defines its A(1)- and E(1)-module structures. Davis-
Mahowald [DM81, §2] calculate ExtE(1)(N1) as a graded vector space but we also need its H∗,∗(E(1))-module
structure.

Let 〈Q1〉 ⊂ E(1) denote the subalgebra generated by Q1, which is a two-dimensional vector space over Z/2.
As E(1)-modules, N1 ∼= E(1)⊗〈Q1〉 Z/2, so by the change-of-rings theorem (3.4), there are isomorphisms of
H∗,∗(E(1))-modules
(4.49) ExtE(1)(N1) ∼= Ext〈Q1〉(Z/2) ∼= Z/2[v1],
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Figure 5. Left: the E(1)-module structure on H̃∗((BD2n)2−Vλ ;Z/2), n ≡ 2 mod 4, in low
degrees. The pictured submodule contains all elements in degrees 5 and below. Right: the
Adams E2-page computing k̃u∗((BD2n)2−Vλ).

with v1 ∈ Ext1,3
E(1)(N1,Z/2). The rightmost isomorphism in (4.49) uses Koszul duality [BC18, Remark 4.5.4],

which applies because 〈Q1〉 is an exterior algebra.
Now for R0, we use the extension of E(1)-modules

(4.50) 0 // Σ2R0 // R0 // N1 // 0,

drawn in Figure 6, left.

Σ2R0 R0 N1

s ↑
t− s→ 0 1 2 3 4 5 6

0
1
2
3

Figure 6. Left: the extension (4.50). Right: the long exact sequence it induces of Ext
groups. See the proof of Proposition 4.48 for why the long exact sequence looks like this; the
key feature is that there are no elements in odd topological degree, so all boundary maps
vanish. The dashed lines are h0-extensions which are not implied by the long exact sequence,
but are shown in the proof of Proposition 4.48.

At first, all we know is Ext(N1). Because this lives solely in even topological degrees, and Σ2R0 is
2-connected, the long exact sequence diagram is empty in topological degree 1, so the boundary map
(4.51) δ : Exts,s+1

E(1) (R0,Z/2)→ Exts,sE(1)(N1,Z/2)

vanishes, which tells us the line t−s = 0 in Ext(R0) consists of a single Z/2 summand in filtration 0. Therefore
the line t − s = 2 in the long exact sequence diagram consists of two Z/2 summands: one in filtration 1
coming from N1, and one in filtration 0 coming from Σ2R0. Since the 1-line of the diagram is empty and
Ext(N1) is concentrated in even degrees, the 3-line of the diagram is empty, so there are no differentials to
the 2-line. Continuing in this way produces Figure 6, right.

Finally, acting by h0 ∈ H∗,∗(E(1)) defines an isomorphism

(4.52) Ext0,2
E(1)(R0,Z/2)→ Ext1,3

E(1)(R0,Z/2).
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This can be checked directly from the definition: begin with the unique nontrivial map R0 → Σ2Z/2 and act
on it by an extension representing h0 (namely the extension 0→ ΣZ/2→ N1 → Z/2→ 0); the result is a
nontrivial extension. �

With Ext(ΣR0) in hand, we return to our goal of computing k̃u∗(Xn). We draw the E2-page of the Adams
spectral sequence in (5), right. Margolis’ theorem (Theorem 3.22) forces all differentials in this range to
vanish, except possible differentials with target the 7-line, and there can be no hidden extensions in the range
depicted. Thus for n = 2k < 7, k̃u∗(Xn) ∼= (Z/2)⊕k+1 and for n = 2k + 1 < 8, k̃u∗(Xn) ∼= Z/2k+1; we finish
with the fact that the map MTSpinc → ku ∨Σ4ku is 7-connected, so we can read off the spinc bordism groups
from the ku-homology groups. �

Theorem 4.53. If n ≡ 0 mod 4, write n = 2km with m odd. The first few spinc bordism groups of Xn are

Ω̃Spinc
0 (Xn) ∼= Z/2

Ω̃Spinc
1 (Xn) ∼= Z/n

Ω̃Spinc
2 (Xn) ∼= (Z/2)⊕2

Ω̃Spinc
3 (Xn) ∼= Z/2n

Ω̃Spinc
4 (Xn) ∼= (Z/2)⊕4,

and Ω̃Spinc
5 (Xn) is torsion.

Proof of Theorem 4.53. By Proposition 4.24, the odd-primary torsion is isomorphic to the odd-primary
torsion of Z/n in degrees 1 and 3 and vanishes in degrees 0, 2, and 4.

At 2, we use the Adams spectral sequence. We described the A(1)-module structure on H̃∗(X;Z/2) in (4.31)
and draw it in Figure 2; this determines the E(1)-module structure, with isomorphisms of E(1)-modules
A(1) ∼= E(1)⊕ Σ2E(1), R2 ∼=

Q⊕ ΣE(1) and J ∼= E(1)⊕ Σ2Z/2. Hence as E(1)-modules,

(4.54) H̃∗(X;Z/2) ∼= E(1)⊕ Σ Q⊕ Σ2E(1)⊕ Σ2E(1)⊕ Σ2Z/2⊕ Σ4E(1)⊕ Σ4E(1)⊕ Σ4E(1)⊕ Σ5 Q⊕ P,
where P is 5-connected. We draw this E(1)-module in Figure 7, left.
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Figure 7. Left: the E(1)-module structure on H̃∗((BD2n)2−Vλ ;Z/2), n ≡ 0 mod 4, in low
degrees. The pictured submodule contains all elements in degrees 5 and below. The gray
dashed line indicates that the Z/2r Bockstein maps a preimage of Uy to Uw, which we use in
the proof of Theorem 4.53. Right: the E2-page for the Adams spectral sequence computing
k̃u∗((BD2n)2−Vλ). The two pictured differentials are related by a v1-action.

We calculated Ext(Z/2) in (3.7), and Adams-Priddy [AP76, §3] show
(4.55) Exts,tE(1)(

Q

,Z/2) ∼= Exts+1,t+1
E(1) (Z/2,Z/2),

with the isomorphism intertwining the H∗,∗(E(1))-actions. We can therefore draw the E2-page of the Adams
spectral sequence in Figure 7, right. We hide most v1-actions to declutter the diagram.
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The first differential that could be nonzero is from the 2-line to the 1-line; as differentials are h0-equivariant,
if a dr differential is nonzero on one summand in the tower on the 2-line, then it is nonzero on the entire tower, so
we refer to differentials between towers. The May-Milgram theorem [MM81] characterizes differentials between
towers: there is a dr differential between those two towers iff the Bockstein β : H1(–;Z/2r) → H2(–;Z/2)
carries a preimage of Uy to Uw. The Thom isomorphism is natural with respect to this Bockstein, so it
suffices to know whether β(y) = w in H2(BD2n;Z/2), and we saw this in the proof of Lemma 4.32, where r
is the largest number such that 2r | n. This means that the 2-torsion in Ω̃Spinc

1 (Xn) is isomorphic to that of
Z/n, so along with our odd-torsion computation we see that Ω̃Spinc

1 (Xn) ∼= Z/n.
The other differential we need to resolve in range goes from the tower in the 4-line to the tower in the

3-line. Action by v1 ∈ ku2 carries the tower in the 2-line to the tower in the 4-line, and the tower in the
1-line to the tower in the 3-line, and differentials are v1-equivariant, so there is also a dr differential between
these towers. As seen in Figure 7, right, on the E∞-page there are r + 1 Z/2 summands on the 3-line, all
connected, so together with our odd-torsion computation we see that Ω̃Spinc

3 (Xn) ∼= Z/2n.
There can be no other nonzero differentials in range, and Margolis’ theorem precludes any hidden extensions,

so we are done. �

4.4.4. Class A, spin-1/2 case.

Lemma 4.56. Vλ is pinc iff n is odd.

Proof. For n odd, we saw that inclusion of a reflection defines a map BZ/2→ BD2n which is an isomorphism
on mod 2 cohomology. Therefore we can compute Stiefel-Whitney classes of Vλ by pulling back to BZ/2, and
we saw that the pullback bundle is stably equivalent to a line bundle, so w2 = 0.

For n even, recall that Vλ is pinc iff β(w2(Vλ)) = 0, where β : Hk(–;Z/2) → Hk+1(–;Z) is the integral
Bockstein. Lemma 3.28 means it suffices to show Sq1(w2(Vλ)) 6= 0. In the notation of Proposition 4.17, for
n ≡ 2 mod 4, w2(Vλ) = xy + y2, and Sq1(xy + y2) = x2y + xy2 6= 0. For n ≡ 0 mod 4, w2(Vλ) = w, and by
Lemma 4.30, Sq1(w) 6= 0. �

Therefore for n odd, we consider Xn := (BD2n)2−Vλ . We computed ΩSpinc
k (Xn) for k ≤ 4 in Theorem 4.45.

For n even, Theorem 2.24 directs us to the spinc bordism of Xn := (BD2n)Det(Vλ)−1.
Theorem 4.57. If n ≡ 2 mod 4, the first few spinc bordism groups of Xn are

Ω̃Spinc
0 (Xn) ∼= Z/2

Ω̃Spinc
1 (Xn) ∼= Z/n

Ω̃Spinc
2 (Xn) ∼= Z/4⊕ Z/2

Ω̃Spinc
3 (Xn) ∼= Z/n⊕ Z/2

Ω̃Spinc
4 (Xn) ∼= Z/8⊕ Z/4⊕ Z/2.

Because Lemma 3.24 implies Ω̃Spinc
5 (Xn) is torsion, the phase homology groups for this symmetry type are

Z/n⊕ Z/2 for d = 2 and Z/8⊕ Z/4⊕ Z/2 for d = 3.

The 2-local equivalence MTSpin ∧Xn ' MTPin− ∧ (BZ/2)+ we used in Theorem 4.38 implies a 2-local
equivalence MTSpinc ∧Xn ' MTPinc ∧ (BZ/2)+, so when n = 2, these are also the pinc bordism groups of
Z/2. This may be of independent interest.

Proof. We can read the odd-primary torsion off of Proposition 4.24. For 2-primary torsion we use the
Adams spectral sequence over E(1) as usual. Recall from the proof of Theorem 4.38 that (BD2n)Det(Vλ)−1 '
(BZ/2)σ−1 ∧ (BZ/2)+. Guo-Ohmori-Putrov-Wan-Wang [GOP+20, §7.2.1] determine the A(1)-module struc-
ture on H̃∗((BZ/2)σ−1 ∧BZ/2;Z/2) in low degrees. Using their work, and the isomorphisms of E(1)-modules
A(1) ∼= E(1)⊕ E(1) and R5 ∼= E(1)⊕ ΣR0, there is an isomorphism of E(1)-modules
(4.58) H̃∗((BZ/2)σ−1 ∧BZ/2;Z/2) ∼= ΣE(1)⊕ Σ2R0 ⊕ Σ3E(1)⊕ Σ3E(1)⊕ P,
where P is 4-connected. Since we began with (BZ/2)σ−1 ∧ (BZ/2)+, this does not account for everything;
the disjoint basepoint gives us another summand equivalent to
(4.59) MTSpinc ∧ (BZ/2)σ−1 ' MTPinc
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by (2.10c). We will add in the pinc bordism groups coming from this summand, which can be read off from
the work of Bahri-Gilkey [BG87a, BG87b], after running the Adams spectral sequence for the other summand.

Returning to (4.58), we will see momentarily that Es,t2 is empty when t− s = 4 and s ≥ 2, which precludes
differentials from the 5-line to the 4-line and therefore means that P does not affect the calculations we make.
In Figure 8, left, we draw (4.58). We computed Ext(R0) in Proposition 4.48, so we can draw the E2-page of
the Adams spectral sequence for k̃u∗((BZ/2)σ−1 ∧BZ/2), as in Figure 8, right. In the degrees we care about,
this collapses, and we deduce the spinc bordism of (BZ/2)σ−1 ∧BZ/2 and combine it with pinc bordism to
conclude. �
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Figure 8. Left: the E(1)-module structure on H̃∗((BZ/2)σ−1 ∧BZ/2;Z/2) in low degrees.
The pictured submodule contains all elements in degrees 4 and below. Right: Ext of this
submodule, which is the E2-page of the Adams spectral sequence computing k̃u∗(Mn) for
t− s ≤ 4. See the proof of Theorem 4.57 for more information.

Theorem 4.60. If n ≡ 0 mod 4, the first few spinc bordism groups of Xn are

Ω̃Spinc
0 (Xn) ∼= Z/2

Ω̃Spinc
1 (Xn) ∼= Z/n

Ω̃Spinc
2 (Xn) ∼= Z/4⊕ Z/2

Ω̃Spinc
3 (Xn) ∼= Z/(n/2)⊕ (Z/2)⊕2

Ω̃Spinc
4 (Xn) ∼= Z/8⊕ Z/4⊕ Z/2.

Because Lemma 3.24 implies Ω̃Spinc
5 (Xn) is torsion, the phase homology groups for this symmetry type are

Z/(n/2)⊕ (Z/2)⊕2 for d = 2 and Z/8⊕ Z/4⊕ Z/2 for d = 3.

Proof. We closely follow the proof of Theorem 4.41. For odd-primary torsion, use Proposition 4.24 to see
that the odd-primary torsion in the range we care about is isomorphic to the odd torsion in Z/n in degrees 1
and 3, and is 0 in degrees 0, 2, and 4.

On to the prime 2. In Theorem 4.41, we established a splitting Xn ' (BZ/2)σ−1∨Mn, allowing us to focus
solely on Ω̃Spin

∗ (Mn): MTSpinc ∧ (BZ/2)σ−1 ' MTPinc (2.10c), and we know pinc bordism groups thanks to
Bahri-Gilkey [BG87a, BG87b]. In (4.44), we determined the A(1)-module structure on H̃∗(Mn;Z/2) in low
degrees, and the isomorphisms of E(1)-modules R1 ∼= Z/2⊕ ΣR0 and A(1) ∼= E(1)⊕ Σ2E(1) mean that as
E(1)-modules,

(4.61) H̃∗(Mn;Z/2) ∼= ΣZ/2⊕ Σ2R0 ⊕ Σ2 Q⊕ Σ3E(1)⊕ Σ3E(1)⊕ P,
where P is 4-connected. A priori, Ext(P ) could have nonzero differentials to elements of the 4-line, but we
will see that this does not happen without needing to compute Ext(P ). In Figure 9, left, we draw (4.61). To
determine the E2-page of the Adams spectral sequence, see (3.7) for Ext(Z/2), Proposition 4.48 for Ext(R0),
and (4.55) for Ext( Q). We draw the E2-page of the Adams spectral sequence for k̃u∗(Mn), as in Figure 9,
right — though for legibility, most v1-actions are hidden. Lemma 3.24 implies there must be differentials in
this range, though not necessarily the d2s pictured.
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Figure 9. Left: the E(1)-module structure on H̃∗(Mn;Z/2) in low degrees. The pictured
submodule contains all elements in degrees 4 and below. The dashed line indicates a Z/2r
Bockstein, which we use to resolve a differential. Right: Ext of this submodule, which is the
E2-page of the Adams spectral sequence computing k̃u∗(Mn) for t− s ≤ 4. Most v1-actions
are hidden for readability. See the proof of Theorem 4.60 for more information.

For Ω̃Spinc
1 (Mn) to be torsion, there must be a differential dr from the 2-line to the 1-line; then, Ω̃Spinc

1 (Mn) ∼=
Z/2r, and since ΩPinc

1
∼= 0, Ω̃Spinc

1 (Mn) ∼= Z/2r as well. Differentials between towers, such as this dr,
are characterized by the May-Milgram theorem [MM81], and just as in the proof of Theorem 4.53, we
conclude r is the largest natural number such that 2r | n. Combining this with our odd-torsion calculation,
Ω̃Spinc

1 (Mn) ∼= Z/n.
Continuing in increasing topological degree, this dr kills the entire orange tower in the 2-line, and we

infer Ω̃Spinc
2 (Mn) ∼= Z/2. The green and blue summands in the 3-line survive and split off by Margolis’

theorem. v1-equivariance of differentials implies that dr : Es,4+s
2 → Es+2,s+3

2 is nonzero, and again maps
the orange tower to the dark red tower, leaving a single Z/2 summand in E1,4

3 . There can be no further
differentials to the 3-line, so Ω̃Spinc

3 (Mn)∧2 ∼= Z/2r−1 ⊕ (Z/2)⊕2. Our odd-primary calculation then tells us
that Ω̃Spinc

3 (Mn) ∼= Z/(n/2)⊕ (Z/2)⊕2. Finally, the orange tower in the 4-line is killed by the dr we most
recently discussed, and the two light red Z/2 summands in the 4-line cannot emit or receive differentials.
Thus as promised Ext(P ) does not have nonzero differentials to the 4-line, so we conclude by adding the pinc
bordism summands back in. �

4.4.5. Comparison with [ZWY+20]. Interacting fermionic phases equivariant for a dihedral group D2n acting
by rotations and reflections have also been studied by Zhang-Wang-Yang-Qi-Gu [ZWY+20], who considered
both spinless and spin-1/2 phases in dimension 2 + 1 for all n, and in Altland-Zirnbauer class D. They
also study systems without a spatial symmetry, using the extended supercohomology classification of Wang-
Gu [WG18, WG20] to classify these phases and discuss the FCEP for dihedral groups. We find complete
agreement with their results except for phases with spinless fermions when n ≡ 0 mod 4, where we predict
Z/2 ⊕ Z/2 and they predict Z/2. This appears to arise from a calculation error: as we note below in
Remark 4.62, the comparison map between supercohomology and the Anderson dual of spin bordism is an
isomorphism for this symmetry type.

Remark 4.62. The phases we classify are realized by the extended supercohomology classifications of Wang-
Gu [WG18, WG20] and Kapustin-Thorngren [KT17].22 Gaiotto-Johnson-Freyd [GJF19, §§5.4–5.6] determine
that the extended supercohomology classification à la [KT17, WG18] is the cohomology of (BD2n)2−Vλ or
(BD2n)Det(Vλ)−1 with respect to a spectrum they call fGP×≤2, which is equivalent to the (−3)-connected cover
of IZMTSpin. Wang-Gu’s refinement in [WG20] corresponds instead to the spectrum fGP×, equivalent to
the (−7)-connected cover of IZMTSpin.23

22These classifications concern phases with an internal D2n symmetry, but the fermionic crystalline equivalence principle
allows us to pass back and forth.

23The reader may at this point wonder why our classification is a generalized homology theory, while these extended
supercohomology classifications are generalized cohomology theories. This is a subtle point. The passage between homology and
cohomology occurs because in these dimensions, we may approximate MTSpin by KO due to Anderson-Brown-Peterson’s [ABP67]
study of the connectivity of the Atiyah-Bott-Shapiro map [ABS64], then use that KO is shifted Anderson self-dual [And69,
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The connective covering maps induce comparison maps from the classifications of fermionic phases using
extended supercohomology to the classification of fermionic phases under our ansatz. For fGP×, the map is
sufficiently connected as to be an isomorphism between the classifications of (d+ 1)-dimensional phases for
all d ≤ 5. For fGP×≤2, the map is not always an isomorphism even for d = 2: the cokernel when computing
supercohomology of X is H̃0(X;Z), and this is nonzero e.g. for X = (BCn)2−Vλ from §4.3. But for dihedral
groups, H̃0((BD2n)ξ;Z) vanishes whenever ξ → BD2n is a rank-0 unorientable virtual vector bundle, so in
this case the comparison map is an isomorphism.

4.5. D2n acting by rotations. The dihedral group D2n can act on R3 in an orientation-preserving manner,
where Cn ⊂ D2n acts by rotations in a plane and a preimage of the generator of D2n/Cn ∼= Z/2 acts by
a rotation perpendicular to that plane. Said differently, this point group is defined by a representation
λ : D2n → SO3 which decomposes as ρ ⊕ σ, where ρ is the standard two-dimensional representation by
rotations and reflections, and σ : D2n → O1 is the sign representation, which is the determinant of ρ.
Confusingly, this point group is sometimes called “three-dimensional dihedral symmetry;” in this convention,
the three-dimensional action by ρ⊕ R is called pyramidal symmetry.

As far as we know, interacting fermionic phases for this D2n symmetry have not been studied in the
literature before.

Class D, spinless Class D, spin-1/2 Class A, spinless Class A, spin-1/2
n §4.5.1 §4.5.2 §4.5.3 §4.5.4

0 mod 4 Z/2 (Z/2)⊕2 0 (Z/2)⊕2

2 mod 4 0 (Z/2)⊕2 0 (Z/2)⊕3

1, 3 mod 4 0 0 0 0
Table 5. D2n-equivariant phase homology groups, where D2n acts faithfully on R3 by
rotations. These arise as homotopy groups of Anderson duals of MTSpin∧Xn and MTSpinc∧
Xn, where Xn is one of (BD2n)3−Vλ or (BD2n)+. See §4.5 for details and proofs.

For any representation φ : D2n → Od, let Vφ → BD2n denote the associated vector bundle.

Lemma 4.63.
(1) If n is odd, Vλ is pinc but not pin−.
(2) If n is even, Vλ is not pinc.

Proof. For (2), we show that if β is the integral Bockstein, βw2(Vλ) 6= 0. By Lemma 3.28, it suffices to show
Sq1(w2(Vλ)) 6= 0. For n ≡ 2 mod 4,

(4.64a) w2(Vλ) = w2(Vρ) + w1(Vρ)w1(Vσ) + w2(Vσ) = x2 + xy + y2,

and Sq1(x2 + xy + y2) = x2y + xy2. For n ≡ 0 mod 4,

(4.64b) w2(Vλ) = w2(Vρ) + w1(Vρ)w1(Vσ) + w2(Vσ) = w + x2,

and Sq1(w + x2) = wx, so in neither case is Vλ pinc.
Now (1). Choose i : Z/2 ↪→ D2n given by a splitting of D2n � D2n/Cn ∼= Z/2; restricting to Z/2 along i,

λ decomposes as 2σ⊕R. Therefore i∗Vλ → BZ/2 is spinc but not spin: w2(2Vσ) = w1(Vσ)2 = x2, and for any
vector bundle V , V ⊕ V admits a complex structure, hence a spinc structure. In particular, β(w2(i∗Vλ)) 6= 0.
The maps Z/2 ↪→ D2n � Z/2 compose to the identity, so the induced maps on cohomology also compose to
the identity. Therefore β(w2(Vλ)) 6= 0 too. �

These propositions are the analogues of Propositions 4.23 and 4.24, helping us calculate odd-primary
torsion in phase homology groups.

FMS07, HS14, Ric16, HLN20] to pass between IZKO-homology and Σ4KO-cohomology. See Freed-Hopkins [FH19a, §5.1] for
further discussion.
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Lemma 4.65 (Handel [Han93, Theorems 5.2, 5.3]).

(4.66) H̃k(BD2n;Z[1/2]) ∼=
{
Z/n, k ≡ 3 mod 4
0, otherwise.

As usual, Handel computes H∗(BD2n;Z), and it is up to us to change to homology with Z[1/2] coefficients.
Proposition 4.67. Suppose V is a rank-zero oriented virtual vector bundle.

(1) The odd-torsion subgroup of Ω̃Spin
k ((BD2n)V ) is isomorphic to the odd-torsion subgroup of Z/n when

k = 3 and vanishes for all other k ≤ 6.
(2) The odd-torsion subgroup of Ω̃Spinc

k ((BD2n)V ) is isomorphic to the odd-torsion subgroup of Z/n when
k = 3 and k = 5 and vanishes for all other k ≤ 6.

Proof. It suffices to work at odd primes. There are odd-primary equivalences MTSpin → MTSO and
MTSpinc → MTSO ∧ (BU1)+; moreover, since V is oriented, there is a Thom isomorphism MTSO ∧
(BD2n)+

'→ MTSO ∧ (BD2n)V . Therefore it suffices to study Ω̃SO
∗ (BD2n) for (1) and Ω̃SO

∗ (BD2n ∧ BU1)
for (2) after completing at an odd prime p. Using Proposition 4.67 for input, as well as the Künneth formula
to determine H∗(BD2n ∧BU1)∧p , one sees that the Atiyah-Hirzebruch spectral sequences computing these
bordism groups collapse for degree reasons in total degree 6 and below. �

4.5.1. Class D, spinless case. Let fD0 denote the equivariant local system of symmetry types for this case.
Theorem 2.11 tells us that to compute PhD2n

∗ (R3, fD0 ), we should study the spin bordism of Xn := (BDn)3−Vλ .
Proposition 4.68. Suppose n is odd. Then

Ω̃Spin
0 (Xn) ∼= Z

Ω̃Spin
1 (Xn) ∼= Z/4

Ω̃Spin
2 (Xn) ∼= 0

Ω̃Spin
3 (Xn) ∼= Z/n

Ω̃Spin
4 (Xn) ∼= Z

Ω̃Spin
5 (Xn) ∼= Z/16

Ω̃Spin
6 (Xn) ∼= 0,

and therefore PhD2n
0 (R3, fD0 ) ∼= 0.

Proof. Proposition 4.67 shows that Ω̃Spin
k (Xn) lacks odd-primary torsion for k = 4, 5, so it suffices to work at

2. The inclusion Z/2 ↪→ D2n induces an isomorphism H∗(BD2n;Z/2)→ H∗(BZ/2;Z/2), as we saw in the
proof of Lemma 4.20, hence by naturality of the Thom isomorphism gives an isomorphism

(4.69) H̃∗(Xn;Z/2)
∼=−→ H̃∗((BZ/2)3−Vλ|BZ/2 ;Z/2).

Restricted to Z/2, λ ∼= 2σ⊕R, so by the stable Whitehead theorem, (4.69) gives a stable 2-primary equivalence
Xn ' (BZ/2)2−2σ. Campbell [Cam17, §7.8] computes Ω̃Spin

k ((BZ/2)2−2σ), obtaining the free and 2-torsion
summands we claim in the theorem statement.24 �

Proposition 4.70 (Pedrotti [Ped17, Theorem 8.0.8]). For n ≡ 2 mod 4, Ω̃Spin
4 (Xn) ∼= Z, and by Lemma 3.24

Ω̃Spin
5 (Xn) is torsion. Therefore PhD2n

0 (R3, fD0 ) vanishes.
Remark 4.71. Pedrotti reports this computation in terms of w1 and w2 of 3− Vλ, rather than λ itself, so we
should check that our characteristic classes agree with his: we want w1(3−Vλ) = 0 and w2(3−Vλ) = x2+xy+y2.
Indeed Im(λ) ⊂ SO3, so Vλ is orientable, and from (4.64a) that w2(Vλ) = x2 + xy + y2. Since w1(Vλ) = 0,
these are also w1 and w2 of 3− Vλ, as desired.
Proposition 4.72 (Pedrotti [Ped17, Theorem 9.0.14]). For n ≡ 0 mod 4, Ω̃Spin

4 (Xn) ∼= Z ⊕ Z/2, and by
Lemma 3.24 Ω̃Spin

5 (Xn) is torsion. Therefore PhD2n
0 (R3, fD0 ) ∼= Z/2.

24Campbell computes only through dimension 5, and Beaudry-Campbell [BC18, Figure 26] shows how to extend Campbell’s
computation to dimension 6.
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Pedrotti takes as input w1(3 − Vλ) = 0 and w2(3 − Vλ) = w + x2, which agrees with the classes of Vλ
(e.g. (4.64b)). Beware that what we call x he calls y, and vice versa!

4.5.2. Class D, spin-1/2 case. Let fD1/2 denote the equivariant local system of symmetry types for this case.
Lemma 4.63 and Theorem 2.11 tell us that to compute PhD2n

∗ (R3, fD1/2), we should study the spin bordism of
(BDn)Det(Vλ)−1. Since Vλ is orientable, this is isomorphic to ΩSpin

4 (BD2n).

Proposition 4.73. Suppose n is odd. Then ΩSpin
4 (BD2n) ∼= Z and ΩSpin

5 (BD2n) ∼= 0, so PhD2n
0 (R3, fD1/2) ∼= 0.

Proof. The proof is almost the same as that of Proposition 4.68: by Proposition 4.67, there is no odd-primary
torsion, and BZ/2→ BD2n induces an isomorphism on mod 2 cohomology, hence also on 2-local spin bordism,
and Mahowald-Milgram [MM76] show ΩSpin

4 (BZ/2) ∼= Z and ΩSpin
5 (BZ/2) ∼= 0.25 �

Proposition 4.74. For n even, ΩSpin
4 (BD2n) ∼= Z⊕ (Z/2)⊕2.

Proof. Pedrotti [Ped17, Theorems 8.0.4 and 9.0.3] shows ΩSpin
4 (BD2n) ∼= Z⊕H4(BD2n;Z), and the latter is

computed by Handel [Han93, Theorem 5.2]. �

Bruner-Greenlees [BG10, Corollary 8.5.9] also compute this when n is a power of 2.
By Lemma 3.24, ΩSpin

5 (BD2n) is torsion, so PhD0 (R3, fD1/2) ∼= Z/2⊕ Z/2.

4.5.3. Class A, spinless case. Let fA0 denote the equivariant local system of symmetry types in the spinless
type A case. By Lemma 4.63, we should compute Ω̃Spinc

∗ (Xn), where Xn := (BD2n)3−Vλ .
When n is odd, Vλ is spinc, so there is a Thom isomorphism MTSpinc ∧Xn ' MTSpinc ∧ (BD2n)+.

Theorem 4.75. Suppose n is odd. Then

ΩSpinc
0 (BD2n) ∼= Z

ΩSpinc
1 (BD2n) ∼= Z/2

ΩSpinc
2 (BD2n) ∼= Z

ΩSpinc
3 (BD2n) ∼= Z/4n

ΩSpinc
4 (BD2n) ∼= Z2

ΩSpinc
5 (BD2n) ∼= Z/8n⊕ Z/2

ΩSpinc
6 (BD2n) ∼= Z2.

Therefore PhD2n
0 (R3, fA0 ) ∼= 0.

Proof. Proposition 4.67 accounts for the odd-primary torsion, so we just have to work at 2. The map Z/2 ↪→
D2n induced by a choice of reflection defines an isomorphism on mod 2 cohomology, therefore by the stable
Whitehead theorem is a 2-local stable equivalence. Therefore it defines an isomorphism ΩSpinc

∗ (BZ/2)∧2 →
ΩSpinc
∗ (BD2n)∧2 , and the spinc bordism of BZ/2 is computed by Bahri-Gilkey [BG87a, BG87b]. �

Theorem 4.76. Suppose n ≡ 2 mod 4. Then the first few spinc bordism groups of Xn are

Ω̃Spinc
0 (X) ∼= Z

Ω̃Spinc
1 (X) ∼= (Z/2)⊕2

Ω̃Spinc
2 (X) ∼= Z

Ω̃Spinc
3 (X) ∼= Z/n⊕ (Z/2)⊕2

Ω̃Spinc
4 (X) ∼= Z2,

and Ω̃Spinc
5 (X) is torsion.

25This is also been computed by other methods by Mahowald [Mah82, Lemma 7.3], Bruner-Greenlees [BG10, Example 7.3.1],
Siegemeyer [Sie13, Theorem 2.1.5], and García-Etxebarria and Montero [GEM19, (C.18)].
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Proof. The odd-torsion subgroups can be read off of (4.67). For the 2-primary part, we use the Adams
spectral sequence over E(1). Letting U denote the Thom class, we saw w1(Vλ) = 0, so Sq1(U) = 0, and (4.64a)
w2(Vλ) = x2 + xy + y2, so Sq2(U) = U(x2 + xy + y2). Using this and the Cartan formula, we have an
E(1)-module isomorphism
(4.77) H̃∗(Xn;Z/2) ∼= Q⊕ ΣE(1)⊕ ΣE(1)⊕ Σ3E(1)⊕ Σ3E(1)⊕ Σ3E(1)⊕ P,
where P is 4-connected. We draw this in Figure 10, left. A priori Ext(P ) could have nonzero differentials to
the 4-line and therefore affect our computation, but we will see that this cannot happen without needing to
determine Ext(P ).
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t− s→ 0 1 2 3 4

0

1

2

Figure 10. Left: the E(1)-module structure on H̃∗(Xn;Z/2) when n ≡ 2 mod 4. The
pictured summand contains all elements in degrees 4 and below. Right: the E2-page of the
corresponding Adams spectral sequence computing k̃u∗(Xn)∧2 .

We calculated ExtE(1)(
Q) in (4.55), so we can draw the E2-page of the Adams spectral sequence in

Figure 10, right. h0-equivariance rules out nonzero differentials in degrees 3 and below, but a priori there
could be a nonzero differential from the 5-line to then 4-line. To rule this out, use Lemma 3.24 to see
that k̃u4(Xn) has one free summand. Therefore there cannot be any nonzero differentials to the 4-line:
h0-equivariance would mean that if there were such a differential, it would kill all but finitely many summands
in the 4-line of the E2-page, preventing k̃u4(Xn) from having a free part. �

Theorem 4.78. When n ≡ 0 mod 4, the first few spinc bordism groups of Xn are

Ω̃Spinc
0 (Xn) ∼= Z

Ω̃Spinc
1 (Xn) ∼= (Z/2)⊕2

Ω̃Spinc
2 (Xn) ∼= Z

Ω̃Spinc
3 (Xn) ∼= Z/n⊕ (Z/2)⊕2

Ω̃Spinc
4 (Xn) ∼= Z2,

and Ω̃Spinc
5 (Xn) is torsion. Therefore PhD2n

0 (R3, fA0 ) ∼= 0.

Proof. The odd-torsion subgroups are calculated in Proposition 4.67. For the 2-torsion, we use the Adams
spectral sequence over E(1). Recall that w1(Vλ) = 0 and (from (4.64b)) w2(Vλ) = w + x2, so w1(3− Vλ) = 0
and w2(3− Vλ) = w + x2. Thus in H̃∗(Xn;Z/2), Sq1(U) = 0 and Sq2(U) = U(w + x2). Using this and the
Cartan formula, we can compute the E(1)-action on H̃∗(Xn;Z/2), and find that
(4.79) H̃∗(Xn;Z/2) ∼= Q⊕ ΣE(1)⊕ ΣE(1)⊕ Σ3E(1)⊕ Σ3E(1)⊕ Σ3Z/2⊕ Σ4 Q⊕ P,
where P is 4-connected. We draw this in Figure 11, left. We will see in a moment that Ext(P ) has no
nonzero differentials to elements in degree 4 and below, which means we can ignore it in our computations.
We calculated ExtE(1)(

Q) in (4.55), so we can draw the E2-page of the Adams spectral sequence in Figure 10,
right. Margolis’ theorem (Theorem 3.22) implies the only possible nonzero differentials from an element of
topological degree 4 or below are the differentials from a tower in the 4-line to the blue tower in the 3-line,
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Figure 11. Left: the E(1)-module structure on H̃∗(Xn;Z/2) when n ≡ 0 mod 4. The
pictured summand contains all elements in degrees 4 and below. The gray dashed line
indicates a Z/2r Bockstein, where r is the largest number for which 2r | n; this is not part of
the E(1)-module structure, but we use it in Theorem 4.78 to resolve a differential. Right: the
E2-page of the corresponding Adams spectral sequence computing k̃u∗(Xn)∧2 ; v1-actions are
hidden for legibility. We will see in Theorem 4.78 that there is a dr from the purple tower in
the 4-line to the 3-line, though it is not always the d2 pictured.

and Lemma 3.24 implies k̃u4(Xn) has free rank 1, so for some r this differential dr is nonzero. Moreover, its
source must be the purple tower: the red tower is in the image of v1 : Es,s+2

2 → Es+1,s+5
2 , so if dr(x) = y for

any element x of the red tower in degree 4, then y is also in the image of v1, but the blue tower is not in this
image. Therefore we know that dr kills the entire purple tower in degree 4, and the red tower survives to the
E∞-page: the red tower supports no nonzero differentials to the 3-line, and if there were a differential from
the 5-line to the red tower, h0-linearity guarantees it would kill all but finitely many summands of the red
tower, contradicting Lemma 3.24.

It remains only to determine the value of r. In H∗(BD2n;Z/2), the Z/2k Bockstein carries (a preimage
of) wy to w2, where k is the largest number such that 2k | n. This can be checked by, e.g., pulling back to
BCn, where this Bockstein is discussed by [Cam17, DL20a]. The Thom isomorphism theorem implies the
Z/2k Bockstein sends (a preimage of) Uwy to Uw2, and therefore by the May-Milgram theorem [MM81],
r = k. �

4.5.4. Class A, spin-1/2 case. Let fA1/2 denote the equivariant local system of symmetry types in the spin-1/2
type A case. In this case the ansatz tells us to study ΩSpinc

∗ (BD2n).

Proposition 4.80. For n odd, PhD2n
0 (R3, fA1/2) = 0.

Proof. This follows from our computation of ΩSpinc
k (BD2n) in Theorem 4.75. �

Theorem 4.81. Suppose n ≡ 2 mod 4. Then

ΩSpinc
0 (BD2n) ∼= Z

ΩSpinc
1 (BD2n) ∼= (Z/2)⊕2

ΩSpinc
2 (BD2n) ∼= Z⊕ Z/2

ΩSpinc
3 (BD2n) ∼= Z/n⊕ (Z/4)⊕2 ⊕ (Z/2)⊕2

ΩSpinc
4 (BD2n) ∼= Z2 ⊕ (Z/2)⊕3

ΩSpinc
5 (BD2n) ∼= Z/n⊕ (Z/8)⊕2 ⊕ Z/4⊕ (Z/2)⊕5

ΩSpinc
6 (BD2n) ∼= Z2 ⊕ (Z/2)⊕6.

Proof. We calculated the odd-primary torsion in these bordism groups in Proposition 4.67; now the 2-primary
part. The inclusion Z/2×Z/2→ D2n given by a reflection and a rotation by π induces an isomorphism on mod
2 cohomology, so by the stable Whitehead theorem, BD2n → B(Z/2×Z/2) is an equivalence after stabilizing
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and 2-completing. Therefore ΩSpinc
∗ (BD2n)∧2

∼=→ ΩSpinc
∗ (B(Z/2× Z/2))∧2 ; since MTSpinc → ku ∨ Σ4ku is an

isomorphism in degrees 8 and below, it suffices to know ku∗(B(Z/2× Z/2)).
Ossa [Oss89, Proposition 3] computes ku∗(B(Z/2× Z/2)) by establishing an equivalence

(4.82) ku ∧BZ/2 ∧BZ/2 ' (ku ∧ Σ2BZ/2) ∨ Σ2H(Z/2[u, v]),
where the third term refers to a generalized Eilenberg-Mac Lane spectrum on the graded abelian group
Z/2[u, v].26 Using the stable splitting
(4.83) Σ∞(BZ/2×BZ/2)+ ' S ∨ Σ∞BZ/2 ∨ Σ∞BZ/2 ∨ Σ∞(BZ/2 ∧BZ/2),
we see that ku∗(B(Z/2× Z/2)) can be assembled from the following pieces.

(1) ku∗(pt), which contributes Z in even degrees and 0 in odd degrees.
(2) Two copies of k̃u∗(BZ/2). Hashimoto [Has83, Theorem 3.1] shows each copy vanishes in even degrees

and is isomorphic to Z/2k+1 in odd degree 2k + 1.
(3) k̃u∗(Σ2BZ/2). Hashimoto (ibid.) shows this vanishes in even degrees and is isomorphic to Z/2k in

odd degree 2k + 1.
(4) π∗(Σ2HZ/2[u, v]), which contributes 0 in degrees 0 and 1 and (Z/2)⊕(k−1) in degrees k ≥ 2.

Putting this together and adding in the odd-primary torsion, we obtain kuk(BD2n) for k ≤ 6; using the
Anderson-Brown-Peterson isomorphism ΩSpinc

k (BD2n) ∼= kuk(BD2n) ⊕ kuk−4(BD2n), valid for k < 8, we
obtain the bordism groups in the theorem statement. �

Theorem 4.84. Suppose n ≡ 0 mod 4. Then

ΩSpinc
0 (BD2n) ∼= Z

ΩSpinc
1 (BD2n) ∼= (Z/2)⊕2

ΩSpinc
2 (BD2n) ∼= Z⊕ Z/2

ΩSpinc
3 (BD2n) ∼= Z/n⊕ (Z/4)⊕2

ΩSpinc
4 (BD2n) ∼= Z2 ⊕ (Z/2)⊕2,

and ΩSpinc
5 (BD2n) is torsion. Therefore PhD2n

0 (R3, fA1/2) ∼= (Z/2)⊕2.

Proof. Since ΩSpinc
∗ (BD2n) ∼= ΩSpinc

∗ (pt)⊕Ω̃Spinc
∗ (BD2n), we will focus on Ω̃Spinc

∗ (BD2n), adding on ΩSpinc
∗ (pt)

at the end. We also focus on the 2-primary story: the odd-primary torsion is calculated in Proposition 4.67.
Recall from Proposition 4.17 that H∗(BD2n;Z/2) ∼= Z/2[x, y, w]/(xy+ y2), with |x| = |y| = 1 and |w| = 2.

A choice of reflection induces a section of BD2n → BZ/2, and therefore there is a spectrum Mn and a
splitting

(4.85) Σ∞BD2n
'−→Mn ∨ Σ∞BZ/2,

such that as a subspace of H̃∗(BD2n;Z/2), H̃∗(Mn;Z/2) is complementary to the subspace S spanned
by {xn | n ≥ 0}, because S is the image of the pullback map H̃∗(BZ/2;Z/2) → H̃∗(BD2n;Z/2). Bahri-
Gilkey [BG87a, BG87b] show that Ω̃Spinc

4 (BZ/2) ∼= 0, so we just have to understand Ω̃Spinc
4 (Mn).

We will use the Adams spectral sequence over E(1) to show that k̃u0(Mn) ∼= 0 and k̃u4(Mn) ∼= (Z/2)⊕2,
which suffices to prove the theorem. For degree reasons, Sq(x) = x+x2 and Sq(y) = y+y2, and in Lemma 4.30
we saw Sq(w) = w + wx+ w2. Using this, we find that as E(1)-modules,

(4.86) H̃∗(Mn;Z/2) ∼= ΣR0 ⊕ Σ2E(1)⊕ Σ3 Q⊕ Σ4Z/2⊕ Σ4E(1)⊕ Σ4E(1)⊕ P,
where P is 5-connected, and therefore too highly connected to affect our calculations. We draw this in
Figure 12, left. We have already computed Ext(M) for the remaining summands M : see Proposition 4.48 for
Ext(R0), (4.55) for Ext( Q), and (3.7) for Ext(Z/2). Therefore we obtain the E2-page of the Adams spectral
sequence in Figure 12, right.

26Ossa’s splitting (4.82) or its analogue on homotopy groups has also been proven in several other ways: see Johnson-
Wilson [JW97], Bruner [Bru99, Corollary 3.3], Bruner-Greenlees [BG03, Example 4.11.2], Powell [Pow14], and Bruner-Mira-
Stanley-Snaith [BMSS15, Theorem 2.12].
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Figure 12. Left: the E(1)-module structure on H̃∗(Mn;Z/2) in low degrees. The gray
dashed line indicates a Z/2r Bockstein, where r is the largest number such that 2r | n;
this is not part of the E(1)-module structure, but we will use it in Theorem 4.84 to resolve
a differential. Right: the E2-page of the Adams spectral sequence computing k̃u(Mn)∧2 .
v1-actions are hidden for readability. We will see in Theorem 4.84 that there is a nonzero
differential from the 4-line to the 3-line, though it is not necessarily the d2 pictured.

The 0-line is empty, so k̃u0(Mn) ∼= 0, as promised. Lemma 3.24 implies k̃u3(Mn) is torsion; therefore
there must be a nonzero differential dr from the purple tower in the 4-line to the yellow tower in the 3-line.
As in previous examples (Lemma 4.32 and Theorems 4.53 and 4.60), k is the largest number such that
2k | n: the Z/2k Bockstein sends a preimage of wy to w2, which can be checked after pulling back to BCn
as usual. The May-Milgram theorem [MM81] then identifies r = k. Therefore from the Er+1-page onward,
the green tower is gone, and the 4-line consists only of the two Z/2 summands in Adams filtration zero, so
k̃u4(Mn) ∼= (Z/2)⊕2. �

5. Examples: tetrahedral, octahedral, and icosahedral symmetries

Point group Ref. Class D, spinless Class D, spin-1/2 Class A, spinless Class A, spin-1/2
Chiral tet. (A4, T ) §5.1 0 0 0 0
Pyrit. (A4 × Z/2, Th) §5.2 (Z/2)⊕3 Z/2 Z/4⊕ (Z/2)⊕3 Z/8⊕ (Z/2)⊕3

Full tet. (S4, Td) §5.3 Z/4⊕ (Z/2)⊕2 0 (Z/2)⊕4 Z/8⊕ (Z/2)⊕2

Chiral oct. (S4, O) §5.4 0 Z/2 0 Z/2
Full oct. (S4 × Z/2, Oh) §5.5 (Z/2)⊕4 (Z/2)⊕2 Z/4⊕ (Z/2)⊕4 Z/8⊕ Z/4⊕ (Z/2)⊕4

Chiral icos. (A5, I) §5.6 0 0 0 0
Full icos. (A5 × Z/2, Ih) §5.7 (Z/2)⊕3 Z/2 Z/4⊕ (Z/2)⊕3 Z/8⊕ (Z/2)⊕3

Table 6. Phase homology groups in dimension 3 + 1 equivariant with respect to various
tetrahedral, octahedral, and icosahedral symmetries and the ways they can mix with fermion
parity. See the referenced sections for how the fermionic crystalline equivalence principle
associates this data with symmetry types for invertible TFTs.

5.1. Chiral tetrahedral symmetry. We compute phase homology groups equivariant for a chiral tetrahe-
dral symmetry λ : A4 → SO3. As far as we know, this point group has not yet been considered by physicists
in the setting of fermionic phases. We will show that our ansatz implies there are no nontrivial phases with
either spinless or spin-1/2 fermions in both class D and class A. As usual, Vλ → BA4 denotes the vector
bundle associated to λ.

Proposition 5.1. H∗(BA4;Z/2) ∼= Z/2[u, v, w]/(u3 + v2 + w2 + vw), where |u| = 2 and |v| = |w| = 3.
Sq(u) = u+ v + w + u2, Sq(v) = v + u2 + uw + v2, and Sq(w) = w + u2 + uv + w2.
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Except for the Steenrod operations, this result can be found in several places, such as [Kin] and [AM04,
Theorem III.1.3], so we will be brief.

Proof sketch. Use the Lyndon-Hochschild-Serre spectral sequence [Lyn48, Ser50, HS53] for the short exact
sequence 1→ Z/2× Z/2→ A4 → Z/3→ 1; the mod 2 cohomology of Z/3 is trivial, so the spectral sequence
collapses, and
(5.2) H∗(BA4;Z/2) ∼= H0(BZ/3;H∗(BZ/2×BZ/2;Z/2)) = H∗(BZ/2×BZ/2;Z/2)Z/3.
We can choose this Z/3-action to be such that a generator of Z/3 acts on Z/2 × Z/2 = {1, α, β, α + β}
by α 7→ α + β, β 7→ α, and α + β 7→ β. In a mild abuse of notation, we identify Z/2 × Z/2 with
H1(BZ/2×BZ/2;Z/2) ∼= Hom(Z/2× Z/2,Z/2): these are dual Z/2-vector spaces, and we have a basis for
one, which we identify with the dual basis vectors of the other. Thus H∗(BZ/2×BZ/2;Z/2) ∼= Z/2[α, β].

The unique nonzero degree-2 cohomology class fixed by Z/3 is u := α2 + αβ + β2, and two linearly
independent degree-3 classes fixed by Z/3 are v := α3 + α2β + β3 and w := α3 + αβ2 + β3, whence the
relation.

For the Steenrod squares, the identification in (5.2) of H∗(BA4;Z/2) as a subalgebra of H∗(BZ/2 ×
BZ/2;Z/2) is the pullback map for BZ/2×BZ/2→ BA4, hence A-equivariant, so we can compute Sq(u) in
H∗(BZ/2×BZ/2;Z/2); the computation follows from Sq(α) = α+ α2 and Sq(β) = β + β2. �

Lemma 5.3. w1(Vλ) = 0 and w2(Vλ) = u.

Proof. Since Vλ is orientable, w1(Vλ) = 0, and since Vλ is not spin, w2(Vλ) 6= 0. Since H2(BA4;Z/2) ∼= Z/2 ·u,
w2(Vλ) = u. �

One way to see that this representation is not spin is to look at the binary tetrahedral group 2T , defined
to be the preimage of A4 ⊂ SO3 under the double cover Spin3 � SO3. If Vλ were spin, 2T would be a split
extension of A4 by µ2, but it is not split.

5.1.1. Class D, spinless case. If A4 does not mix with the symmetry type, our ansatz reduces to that
of Freed-Hopkins, which reduces the computation of these A4-equivariant phase homology groups to the
computation of [MTSpin ∧ (BA4)3−Vλ ,Σ5IZ].

Theorem 5.4. The first few spin bordism groups of X := (BA4)3−Vλ are

Ω̃Spin
0 (X) ∼= Z

Ω̃Spin
1 (X) ∼= Z/3

Ω̃Spin
2 (X) ∼= 0

Ω̃Spin
3 (X) ∼= Z/6

Ω̃Spin
4 (X) ∼= Z

Ω̃Spin
5 (X) ∼= Z/18⊕ Z/2

Ω̃Spin
6 (X) ∼= Z/2

Ω̃Spin
7 (X) ∼= Z/9.

Thus if fD0 denotes the A4-equivariant local system of symmetry types for this case, PhA4
0 (R3, fD0 ) = 0.

Proof. At the prime 2, we use the Adams spectral sequence; if p is an odd prime, the map Ω̃Spin
∗ (X)→ Ω̃SO

∗ (X)
is an isomorphism on p-torsion, and we will determine the p-torsion part of Ω̃SO

∗ (X).
First, the 2-primary piece. Letting U denote the mod 2 Thom class as usual, Sq1(U) = 0 and Sq2(U) = Uu.

This and Proposition 5.1 allow us to determine the A(1)-module structure on H̃∗(X;Z/2) in low degrees, as
depicted in Figure 13, left.

Hence as A(1)-modules,

(5.5) H̃∗(X;Z/2) ∼= Q⊕ Σ3A(1)⊕ Σ5A(1)⊕ P,
where P is 8-connected. Because we only care about degrees 6 and below, P is irrelevant for us, and for the
remaining summands in (5.5), Exts,tA(1)(–,Z/2) has already been computed. For ΣkA(1), there’s a single Z/2
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Figure 13. Left: the A(1)-module structure on H̃∗((BA4)3−Vλ ;Z/2) in low degrees. This
submodule contains all elements of degree at most 8. Right: the E2-page of the Adams
spectral sequence calculating k̃o∗((BA4)3−Vλ), given by Exts,tA(1)(H̃∗((BA4)3−Vλ ;Z/2),Z/2).

with s = 0, t = k; for Q, see [BC18, Figure 29]. We put this together and display the E2-page for our spectral
sequence in Figure 13, right. A combination of h0-equivariance and Margolis’ theorem (Theorem 3.22) rules
out nontrivial differentials and hidden extensions. Therefore the 2-primary part of Ω̃Spin

k (X) has a single free
summand each in degrees 0 and 4, is 0 in degrees 1 and 2, is Z/2 in degrees 3 and 6, and is Z/2⊕ Z/2 in
degree 5.

For the odd-primary part, we use the fact that ΩSpin
∗ → ΩSO

∗ is an equivalence after inverting 2. Moreover,
because λ factors through SO3, Vλ → BA4 is orientable, so there is a Thom isomorphism Ω̃SO

∗ (X)
∼=→

ΩSO
∗ (BA4). Hence we just need the odd-primary part of ΩSO

∗ (BA4), which is isomorphic to the odd-primary
part of ΩSpin

∗ (BA4). In the degrees we care about, this is isomorphic to ko∗(BA4), and Bruner-Greenlees [BG10,
§7.7.E] show that the odd-primary torsion in ko∗(BA4) below degree 6 consists of Z/3 summands in degrees
1 and 3 and Z/9 summands in degrees 5 and 7. �

5.1.2. Class D, spin-1/2 case. In this case, the symmetries mix as specified by the group extension giving the
binary tetrahedral group.

Theorem 5.6. The A4-equivariant phase homology group for the class D, spin-1/2 symmetry type in 3d is
trivial.

Proof. Let fD1/2 denote the local system on R3 assigned to this symmetry type. Since Vλ is not pin− (if it were,
it would be pin− and orientable, hence spin), Theorem 2.11 says PhA4

0 (R3; fD1/2) ∼= [MTSpin ∧ (BA4)+,Σ5IZ].
Bruner-Greenlees [BG10, §7.7.E] show ko4(BA4) ∼= Z and ko5(BA4) is torsion, so this phase homology group
vanishes. �

5.1.3. Class A. Let fA0 and fA1/2 be the A4-equivariant local systems of symmetry types for spinless, resp.
spin-1/2 fermions in class A.

Lemma 5.7. Vλ → BA4 is not pinc.

Proof. If β : H2(–;Z/2) → H3(–;Z) denotes the integral Bockstein, we want to show βw2(Vλ) 6= 0. By
Lemma 3.28, it suffices to show Sq1(w2(Vλ)) 6= 0. Lemma 5.3 gives w2(Vλ) = b, and Sq1b = ab+ c. �

Therefore for spin-1/2 fermions, Theorem 2.24 computes PhA4
∗ (R3; fA1/2) in terms of the spinc bordism of

(BA4)Det(Vλ)−1. Since Vλ is orientable, this is isomorphic to the spinc bordism of BA4. For spinless fermions,
we use (BA4)3−Vλ , as usual.
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Theorem 5.8. The low-degree spinc bordism groups of X := (BA4)3−Vλ and BA4 are

Ω̃Spinc
0 (X) ∼= Z ΩSpinc

0 (BA4) ∼= Z

Ω̃Spinc
1 (X) ∼= Z/3 ΩSpinc

1 (BA4) ∼= Z/3

Ω̃Spinc
2 (X) ∼= Z ΩSpinc

2 (BA4) ∼= Z⊕ Z/2

Ω̃Spinc
3 (X) ∼= Z/6⊕ Z/3 ΩSpinc

3 (BA4) ∼= Z/6⊕ Z/3

Ω̃Spinc
4 (X) ∼= Z2 ΩSpinc

4 (BA4) ∼= Z2,

and in both cases, ΩSpinc
5 is torsion. Hence both PhA4

0 (R3; fA0 ) and PhA4
0 (R3; fA1/2) vanish.

Proof. We use the equivalence MTSpinc ' ku ∨ Σ4ku in degrees below 8, then the Adams spectral sequence
over E(1) to compute ku-homology at the prime 2.

For the case of spinless fermions, use the A(1)-module structure on H̃∗(X;Z/2) from (5.5) (drawn in
Figure 13, left) to compute that the E(1)-module structure is

(5.9) H̃∗(X;Z/2) ∼= Q⊕ Σ3E(1)⊕ Σ5E(1)⊕ Σ5E(1)⊕ P,
where P is 6-connected. We draw this in Figure 14, left. We computed Exts,tE(1)(

Q

,Z/2) in (4.55), and P is
too high-degree to be relevant to us, so the E2-page of the Adams spectral sequence for k̃u∗(X) is given in
Figure 14, right. Margolis’ theorem (Theorem 3.22) implies this spectral sequence collapses and there are no
extension problems, so we conclude.
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Figure 14. Left: the E(1)-module structure on H̃∗((BA4)3−Vλ ;Z/2) in low degrees. The pic-
ture includes all elements in degrees 6 and below. Right: Exts,tE(1)(H̃∗((BA4)3−Vλ ;Z/2),Z/2),
the E2-page of the Adams spectral sequence for k̃u∗((BA4)3−Vλ).

On to the spin-1/2 case. As before, ku∗(BA4) splits as ku∗(pt)⊕ k̃u∗(BA4), and we focus on the latter.
Bruner-Greenlees [BG03, §2.6] show that 2-locally, there is an equivalence

(5.10) ku ∧BA4 ' (ku ∧ Σ2BC2) ∨
∨
α

ΣnαHZ/2

for some collection of integers α; moreover, their calculation of ku∗(BA4) [BG03, Theorem 2.6.3] implies
the only nα < 8 (i.e. the ones relevant for us) are n1 = 2 and n2 = 6. This, together with Hashimoto’s
computation of k̃u∗(BZ/2) [Has83, Theorem 3.1], tells us ku∗(BA4)∧2 in the degrees we need.

We still need to determine the odd-primary torsion.

Lemma 5.11. Let p be an odd prime; then, the inclusion Z/3 ↪→ A4 sending a generator to (1 2 3) induces
a p-primary stable equivalence Σ∞(BZ/3)+ → Σ∞(BA4)+.
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Proof. Since |A4| = 22 · 3, for any p ≥ 5, the maps BA4 → pt and BZ/3→ pt are p-local stable equivalences,
so we only have to address p = 3. In this case, Lemma 3.27 implies the inclusion j : Z/3 ↪→ A4 as the
subgroup generated by (1 2 3) induces an isomorphism H∗(BA4;Z/3)→ H∗(BZ/3;Z/3), so we conclude by
the mod p Whitehead theorem [Ser53, Chapitre III, Théorème 3]. �

The Thom isomorphism theorem then implies H̃∗(X;Z[1/2])→ H̃∗((BZ/3)3−j∗Vλ ;Z[1/2]) is an isomor-
phism, so arguing in a similar way, there is a p-primary stable equivalence Xλ ' (BZ/3)3−Vλ . Thus, for the
purpose of computing the odd-torsion subgroups of ΩSpinc

∗ (BA4) and Ω̃Spinc
∗ (X), we can just work with Z/3.

As a Z/3-representation, j∗Vλ is isomorphic to the direct sum of a trivial representation and the real
2-dimensional representation given by rotation. Each of these is spinc, the latter because it is unitary, so
there is a Thom isomorphism MTSpinc ∧ (BZ/3)3−j∗Vλ ∼= MTSpinc ∧ (BZ/3)+, so in both the spinless and
spin-1/2 cases, we just need the 3-torsion in ΩSpinc

∗ (BZ/3), which we computed in Theorem 4.14. �

5.2. Pyritohedral symmetry. Pyritohedral symmetry is the action of G := A4 × Z/2 on R3 in which A4
acts as the orientation-preserving symmetries of a tetrahedron and Z/2 acts through inversion; let λ denote
this representation and Vλ → BG be the associated vector bundle. Because G splits as a direct product, it is
easier to analyze than full tetrahedral symmetry (i.e. chiral tetrahedral symmetry together with a reflection),
as we will see in this and the next section.

5.2.1. Spinless case. Let X := (BG)3−Vλ . By the twisted Künneth formula, H∗(X) is 2-torsion; therefore
Ω̃Spin
∗ (X) also lacks odd-primary torsion. so we just have to work with the Adams spectral sequence at p = 2.

In the rest of this section, all cohomology is with Z/2 coefficients unless otherwise stated.

Proposition 5.12. The first several spin bordism groups of (BG)3−Vλ are

Ω̃Spin
0 ((BG)3−Vλ) ∼= Z/2

Ω̃Spin
1 ((BG)3−Vλ) ∼= 0

Ω̃Spin
2 ((BG)3−Vλ) ∼= Z/2

Ω̃Spin
3 ((BG)3−Vλ) ∼= Z/2

Ω̃Spin
4 ((BG)3−Vλ) ∼= (Z/2)⊕3

Ω̃Spin
5 ((BG)3−Vλ) ∼= (Z/2)⊕3

Ω̃Spin
6 ((BG)3−Vλ) ∼= Z/16⊕ (Z/2)⊕2

Ω̃Spin
7 ((BG)3−Vλ) ∼= (Z/2)⊕2.

Proof. We employ a trick to reduce the amount of direct computations. We will replace (3 − Vλ) → BG
with a virtual vector bundle E → BG with the same first two Stiefel-Whitney classes, but which splits as an
exterior sum over BA4 and BZ/2. The Thom spectrum (BG)E has two nice properties: the Adams E2-page
for calculating k̃o∗((BG)E) is isomorphic to that of k̃o∗(X), but (BG)E also splits as a smash product of
Thom spectra over BA4 and BZ/2, simplifying the calculation of said E2-page. Because we do not construct
a map from k̃o∗((BG)E) to k̃o∗((BG)3−Vλ) or vice versa, this isomorphism does not allow us to deduce any
differentials, but we will see that all differentials in range vanish for formal reasons, so this is no problem.

The Künneth formula and Proposition 5.1 together imply

(5.13) H∗(BG) ∼= Z/2[x, u, v, w]/(u3 + v2 + w2 + vw),

where |x| = 1, |u| = 2, and |v| = |w| = 3, and that Sq(x) = x+ x2 and the Steenrod squares of u, v, and w
are as in Proposition 5.1.

Lemma 5.14. The first two Steifel-Whitney classes of V are w1(Vλ) = x and w2(Vλ) = u+ x2.

Proof. Since this representation contains orientation-reversing symmetries, w1(Vλ) must be nonzero, so is x.
For w2, we saw in Lemma 5.3 that when one restricts to A4 ⊂ A4 × Z/2, one has w2(Vλ|BA4) = u; when one
restricts to Z/2, this is 3 copies of the sign representation, hence has w2(Vλ|BZ/2) = x2. �
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Let E → BG be the virtual vector bundle

(5.15) E := 4− (Vλ|BA4 �−σ),

where σ → BZ/2 is the tautological line bundle. The Whitney sum formula implies for i = 1, 2, wi(E) =
wi(3− Vλ). Feeding this to the Thom isomorphism gives isomorphisms of A(1)-modules

(5.16) H̃∗((BG)3−Vλ) ∼= H̃∗((BG)E)

hence also isomorphisms of the E2-pages of the corresponding Adams spectral sequences. Because E → BG
is an external sum,

(5.17) (BG)E ' (BA4)3−Vλ ∧ (BZ/2)σ−1.

We know the A(1)-module structures on the low-degree cohomology of both summands, and the Künneth
formula tells us to tensor them together (over Z/2) to determine the A(1)-module structure on H̃∗((BG)E).

In (5.5), we computed the A(1)-module structure on H̃∗((BA4)3−Vλ) in low degrees, and split off two
ΣkA(1) summands. Margolis’ theorem (Theorem 3.22) promotes that to a splitting of spectra

(5.18) ko ∧ (BA4)3−Vλ ' Σ3HZ/2 ∨ Σ5HZ/2 ∨ Y ,
such that as an A-module,

(5.19) H̃∗(Y ) ∼= A⊗A(1) ( Q⊕ P ),

where P is 7-connected. When we smash (BZ/2)σ−1 back in, each ΣkHZ/2 ∧ (BZ/2)σ−1 contributes a
summand of H̃n−k((BZ/2)σ−1) to k̃on((BG)E), i.e. a Z/2-summand in each degree ` ≥ k. The upshot for
A(1)-modules is

(5.20) ΣkA(1)⊗Z/2 H̃
∗((BZ/2)σ−1) ∼=

⊕
`≥k

Σ`HZ/2.

By (5.16), these summands are also present in H̃∗((BG)3−Vλ), and Margolis’ theorem lifts this to split off
corresponding Σ`HZ/2 summands. Therefore there is a spectrum Y ′ such that

(5.21) k̃on((BG)E) ∼= πn(Y ′)⊕ H̃n−3((BZ/2)σ−1)⊕ H̃n−5((BZ/2)σ−1)

and as A-modules,

(5.22) H̃∗(Y ′) ∼= A⊗A(1) ( Q⊕ P )⊗Z/2 H̃
∗((BZ/2)σ−1).

The change-of-rings theorem (3.4) thus applies to the E2-page of the Adams spectral sequence calculating
π∗(Y ′), yielding

(5.23) Es,t2
∼= Exts,tA(1)((

Q⊕ P )⊗Z/2 H̃
∗((BZ/2)σ−1),Z/2).

We will work with this spectral sequence, adding in the summands corresponding to Σ3HZ/2 and Σ5HZ/2
afterwards.

Our first order of business is to compute the tensor product in (5.23). The A(1)-module structure on
H̃∗((BZ/2)σ−1) can be found in [BC18, Figure 4].

Lemma 5.24. There is an isomorphism of A(1)-modules Q⊗Z/2H̃
∗((BZ/2)σ−1) ∼= A(1)⊕Σ2R0⊕Σ4A(1)⊕P ,

where P is 7-connected.

Proof. Compute directly, by hand or by computer. �

By (5.21) and (5.22), we can work with (5.23), then add in the Z/2 summands coming from the ΣkHZ/2
summands at the end. Lemma 5.24 tells us the E2-page of (5.23) is

(5.25) Es,t2
∼= Ext(A(1)⊕ Σ2R0 ⊕ Σ4A(1)⊕ P ).

Since P is 7-connected, its Ext is concentrated in degrees irrelevant to us, and we ignore it. Ext(Σ2R0)
is computed in the degrees we need by Beaudry-Campbell [BC18, Figures 23, 24]; using this, the E2-page
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of (5.23) is

(5.26)
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Margolis’ theorem and h1-equivariance of differentials immediately imply there are no nontrivial differentials
or extension problems below degree 8, so we conclude. �

5.2.2. Class D, spin-1/2 case. Let fD1/2 denote the equivariant local system of symmetry types corresponding
to spin-1/2 fermions for a pyritohedral symmetry in class D. Theorem 2.11 computes the equivariant phase
homology associated to fD1/2 in terms of the spin bordism of X := (BA4 ×BZ/2)Det(Vλ)−1. The isomorphism
Det(Vλ) ∼= 0 � σ provides an isomorphism X ' (BA4)+ ∧ (BZ/2)σ−1, Lemma 3.30 thus implies the spin
bordism of this spectrum computes the pin− bordism of BA4, which could be independently interesting.

Theorem 5.27. The first few spin bordism groups of X are

Ω̃Spin
0 (X) ∼= Z/2

Ω̃Spin
1 (X) ∼= Z/2

Ω̃Spin
2 (X) ∼= Z/8⊕ Z/2

Ω̃Spin
3 (X) ∼= Z/2⊕ Z/2

Ω̃Spin
4 (X) ∼= Z/2.

Since Ω̃Spin
5 (X) is torsion by Lemma 3.24, PhA4×Z/2

0 (R3; fD1/2) ∼= Z/2.

Proof. By the twisted Künneth formula, H̃∗(X) has no odd-primary torsion, and therefore neither does
Ω̃Spin
∗ (X), so it suffices to work at the prime 2, which we do.
Use Lemma 3.30 to split X ' (BZ/2)σ−1 ∨M , where the map H̃∗(M ;Z/2) → H̃∗(X;Z/2) is injective

with image a complimentary subspace to Z/2 · {Uxk | k ≥ 0}.
As usual, w1(Det(Vλ)− 1) = w1(Vλ) = x and w2(Det(Vλ)− 1) = 0. We also need to know the A-action on

H∗(BG;Z/2); the Künneth formula determines this using as input the A-action on H∗(BA4;Z/2), which we
computed in Proposition 5.1, and the A-action on H∗(BZ/2;Z/2), which is standard. Using this, we can
determine the A(1)-module structure on H̃∗(M ;Z/2). We obtain an isomorphism of A(1)-modules

(5.28) H̃∗(M ;Z/2) ∼= Σ2R3 ⊕ Σ3A(1)⊕ Σ3A(1)⊕ Σ4A(1)⊕ P,

where P is 4-connected. We will see in Figure 15, right, that for t− s ≤ 4, Es,t2 is concentrated in Adams
filtration 0; this and the 4-connectedness of P imply its contribution to the E2-page cannot affect the spectral
sequence in degrees t− s ≤ 4, which is all we need. We draw these summands, except for P , in Figure 15,
left.

Freed-Hopkins [FH16a, Figure 5, case s = 3] and Beaudry-Campbell [BC18, Figures 32, 33] calculate
Ext(R3) in the range we need, and we can draw the E2-page of the Adams spectral sequence in Figure 15,
right. This collapses, so we add in the pin− bordism summands we need from [ABP69, KT90b] to obtain the
groups in the theorem. �

5.2.3. Class A, spinless case. Let fA0 denote the equivariant local system of symmetry types corresponding to
spinless fermions in class A and X := (BA4 ×BZ/2)3−Vλ ; then we saw that PhA4×Z/2

0 (R3; fA0 ) is determined
by Ω̃Spinc

∗ (X).

https://arxiv.org/pdf/1604.06527.pdf#page.97
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Figure 15. Left: the A(1)-module structure on H̃∗(M ;Z/2) in low degrees. This picture
includes all summands in degrees 4 and below. Here α := u2x2 +v2 +w2. Right: the E2-page
of the corresponding Adams spectral sequence.

Theorem 5.29. The first few spinc bordism groups of X are

Ω̃Spinc
0 (X) ∼= Z/2

Ω̃Spinc
1 (X) ∼= 0

Ω̃Spinc
2 (X) ∼= (Z/2)⊕2

Ω̃Spinc
3 (X) ∼= Z/2

Ω̃Spinc
4 (X) ∼= Z/4⊕ (Z/2)⊕3

Ω̃Spinc
5 (X) ∼= (Z/2)⊕3

Ω̃Spinc
6 (X) ∼= Z/8⊕ (Z/2)⊕6

Ω̃Spinc
7 (X) ∼= (Z/2)⊕5,

so PhA4×Z/2
0 (R3; fA0 ) ∼= Z/4⊕ (Z/2)⊕3.

Proof. The twisted Thom isomorphism and twisted Künneth formula imply H̃∗(X;Z) is 2-torsion. Therefore
for any odd prime p, the mod p Whitehead theorem [Ser53, Chapitre III, Théorème 3] implies Ω̃Spinc

∗ (X) also
has no p-torsion. This leaves only p = 2, for which we use the Adams spectral sequence over E(1).

We determined the A(1)-module structure on H̃∗((BG)3−Vλ) as given in (5.25), together with an Σ`A(1) for
` = 3, 4, and two Σ`A(1) summands for ` ≥ 5. This determines the E(1)-module structure: as E(1)-modules,
A(1) ∼= E(1)⊕ Σ2E(1), and R0 ∼= H, so

(5.30) H̃∗(X;Z/2) ∼= Σ2H ⊕ V ′ ⊗Z/2 E(1)⊕ P,
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where V ′ is a graded Z/2-vector space with a basis of homogeneous elements in degrees 0, 2, 3, 4, 4, 5, 5, 5,
6, 6, 6, 6, 7, 7, 7, and 7, and P is 7-connected. Therefore the E2-page is

(5.31)

s ↑
t− s→ 0 1 2 3 4 5 6 7

0

1

2

3

By Margolis’ theorem, there are no nontrivial differentials or extension problems in this range. �

5.2.4. Class A, spin-1/2 case. To compute the (A4 × Z/2)-equivariant phase homology groups for the local
system fA1/2 specified by the spin-1/2 extension in class A Theorem 2.24 asks us to investigate the spinc

bordism of X := (BA4 ×BZ/2)Det(Vλ)−1 ' (BA4 ×BZ/2)0�σ−1; we know Vλ is not pinc because we saw in
Lemma 5.7 that the pullback of Vλ along BA4 → BA4 ×BZ/2 is not pinc.

Theorem 5.32. The first few spinc bordism groups of X are

Ω̃Spinc
0 (X) ∼= Z/2

Ω̃Spinc
1 (X) ∼= 0

Ω̃Spinc
2 (X) ∼= Z/4⊕ Z/2

Ω̃Spinc
3 (X) ∼= (Z/2)⊕2

Ω̃Spinc
4 (X) ∼= Z/8⊕ (Z/2)⊕3

By Lemma 3.24, Ω̃Spinc
5 (X) is torsion, so PhA4×Z/2

0 (R3; fA1/2) ∼= Z/8⊕ (Z/2)⊕3.

Proof. We reuse our work from §5.2.2. We saw that X ' (BZ/2)σ−1 ∨M , and we gave the low-degree
cohomology of M as an A(1)-module in (5.28) (and drew it in Figure 15, left). This determines the E(1)-
module structure on it, so we can calculate spinc bordism of M using the Adams spectral sequence. For the
other summand, we have MTSpinc ∧ (BZ/2)σ−1 ' MTPinc, so we direct-sum in the pinc bordism groups
computed by Bahri-Gilkey [BG87a, BG87b].

There are isomorphisms of E(1)-modules A(1) ∼= E(1)⊕Σ2E(1) and R3 ∼= Σ2E(1)⊕Σ4R0. Therefore as an
E(1)-module,

(5.33) H̃∗(M ;Z/2) ∼= Σ2E(1)⊕ Σ3E(1)⊕ Σ3E(1)⊕ Σ4R0 ⊕ Σ4E(1)⊕ P,
where P is 4-connected. As usual for these cases, we will see that Ext(H̃∗(M ;Z/2),Z/2) has no nonzero
elements with t− s = 4 and s > 1, so P does not affect our calculations. See Figure 16, left, for a picture of
the E(1)-module structure on H̃∗(M ;Z/2). Look up Ext(Σ4R0) in Proposition 4.48 to obtain the E2-page of
the Adams spectral sequence as in Figure 16, right. This collapses, so we add in the pinc bordism summands
and conclude. �

I could get used to Adams spectral sequences like this one. But alas, they are not all this easy, as we will
see in the next section.

5.3. Full tetrahedral symmetry. The full group of symmetries of the tetrahedron, including reflections,
is the symmetric group S4, acting via the representation λ : S4 → O3, which is isomorphic to the quotient of
the four-dimensional real permutation representation by the fixed line R · (1, 1, 1, 1).

Proposition 5.34 ([Ngu09, §2.3]). H∗(BS4;Z/2) ∼= Z/2[a, b, c]/(ac), with |a| = 1, |b| = 2, and |c| = 3. The
Steenrod squares of the generators are Sq(a) = a+ a2, Sq(b) = b+ ab+ c+ b2, and Sq(c) = c+ bc+ c2.27

27The ring structure on H∗(BS4;Z/2) was known earlier, due to Cardenas [Car65]; see [AM04, Example VI.1.13].
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Figure 16. Left: the E(1)-module structure on H̃∗(M ;Z/2) in low degrees. This picture
includes all summands in degrees 4 and below. Here α := u2 + vx+ wx. Right: the E2-page
of the corresponding Adams spectral sequence.

Let Vλ → BS4 denote the associated vector bundle to λ.

Proposition 5.35. w1(Vλ) = a, w2(Vλ) = b, and w3(Vλ) = c.

Proof. Since λ does not factor through SO3 ⊂ O3, Vλ is unorientable. Thus w1(Vλ) 6= 0, and a is the only
nonzero element of H1(BS4;Z/2), so w1(Vλ) = a. For w2, we calculated in Lemma 5.3 that w2(Vλ|A4) 6= 0, so
w2 cannot vanish in BS4. Our options are a2, b, and a2+b. Let Z/2 ⊂ S4 be generated by a transposition; then
as a Z/2-representation λ ∼= R2 ⊕ σ, so w2(Vλ|Z/2) = 0. The map H∗(BS4;Z/2)→ H∗(BZ/2;Z/2) ∼= Z/2[x]
sends b, c 7→ 0 and a 7→ x, so the constraint w2(Vλ|Z/2) = 0 rules out w2(Vλ) = a2 and w2(Vλ) = a2 + b,
forcing us to conclude w2(Vλ) = b. Finally, w3(Vλ) = c follows from the Wu formula. �

We need the next calculation to determine the odd-primary torsion subgroups of the phase homology
groups that we calculate.

Lemma 5.36. Suppose V → BS4 is a rank-zero virtual vector bundle with w1(V ) = x. Then the inclusion
i : S3 ↪→ S4 defines an isomorphism

(5.37) H̃∗((BS3)i
∗V )⊗ Z[1/2]→ H̃∗((BS4)V )⊗ Z[1/2].

Proof. The commutative diagram of short exact sequences

(5.38)

1 // A3 //
� _

��

S3 //
� _

i

��

Z/2 // 1

1 // A4 // S4 // Z/2 // 1

induces a map between their Lyndon-Hochschild-Serre spectral sequences with signatures

(5.39) E2
p,q = Hp(BZ/2;Hq(BAk;Z[1/2])⊗ (Z[1/2])x) =⇒ Hp+q(BSk; (Z[1/2])w1(V )),

where Hq(BA4;Z[1/2]) means the local system on BZ/2 induced by the action of Z/2 on Ak as specified by
the extension 1→ Ak → Sk → Z/2→ 1, and x is the generator of H1(BZ/2;Z/2).

We claim the map on these spectral sequences is an isomorphism on E2-pages. By Lemma 5.11, the map
H∗(BA4;Z[1/2])→ H∗(BA3;Z[1/2]) is an isomorphism, and this isomorphism intertwines the Z/2-actions on
H∗(BAk;Z[1/2])⊗ (Z[1/2])x, because (5.38) commutes. Therefore it induces an isomorphism on all Er-pages,
hence also on what these spectral sequences converge to. �
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The top row in (5.38) can be identified with 1→ Z/3→ D6 → Z/2→ 1, so by the same lines of reasoning
as in Propositions 4.23 and 4.24 we deduce

Ω̃Spin
k ((BS4)V )⊗ Z[1/2] ∼=

{
Z/3, k = 1
0, k = 0, 2, 3, 4

(5.40a)

Ω̃Spinc
k ((BS4)V )⊗ Z[1/2] ∼=

{
Z/3, k = 1, 3
0, k = 0, 2, 4.

(5.40b)

5.3.1. Class D, spinless case. As usual in the spinless case for unorientable representations, the ansatz asks
us to let X := (BS4)3−Vλ and consider MTSpin ∧X.

Theorem 5.41. The first few spin bordism groups of X are
Ω̃Spin

0 (X) ∼= Z/2

Ω̃Spin
1 (X) ∼= Z/3

Ω̃Spin
2 (X) ∼= Z/2

Ω̃Spin
3 (X) ∼= Z/2

Ω̃Spin
4 (X) ∼= Z/4⊕ (Z/2)⊕2,

and Ω̃Spin
5 (X) is torsion,

Proof. For odd-primary information, see Equation (5.40a). For 2-primary information, we will again use
the Adams spectral sequence over A(1). Our first task is to write down H̃∗(X;Z/2) as an A(1)-module in
low degrees, using Proposition 5.35 to deduce w1(3 − Vλ) = a and w2(3 − Vλ) = a2 + b. We describe this
A(1)-module structure in low degrees in Figure 17, left.

0
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9
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U

Ub

Ua4 Ub2

Ubc

Ua2b2

s ↑
t− s→ 0 1 2 3 4 5 6 7

0
1
2
3

Figure 17. Left: the A(1)-module structure on H̃∗((BS4)3−Vλ ;Z/2) in low degrees. This
submodule contains all elements of degree at most 7. Right: the E2-page of the Adams
spectral sequence computing k̃o∗((BS4)3−Vλ).

Let Σ4N2 denote the submodule generated by Ub2 and Ubc, which is a nontrivial extension of J by ΣJ .28

Then there is an isomorphism
(5.42) H̃∗(X;Z/2) ∼= A(1)⊕ Σ2N1 ⊕ Σ4A(1)⊕ Σ4N2 ⊕ Σ6A(1)⊕ P,

28We propose calling N2 the butterfly; it also appears in [WWZ20, Figure 16].
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The indecomposable summand isomorphic to Σ2N1 is generated by Ub, and P has no elements in degrees below
8, and therefore is irrelevant for our low-degree computations. As before, we know what a ΣkA(1) summand
contributes to the E2-page. To compute Ext(N1), we use a well-known explicit (12-shifted) 4-periodic minimal
resolution29

(5.43)

N1 A(1)f0oo Σ2A(1)⊕ Σ3A(1)f1oo Σ4A(1)⊕ Σ5A(1)f2oo Σ7A(1)f3oo Σ12A(1)f4oo Σ14A(1)⊕ Σ15A(1)Σ12f1oo . . .
Σ12f2oo

The dimension of Exts,tA(1)(N1,Z/2) is the number of summands of ΣtA(1) in the sth module in the extension.30

This (shifted up by 2 for Σ2N1) gives the orange summands in Figure 17, right.
For Σ4N2, we use a convenient shortcut: the kernel of the map f2 in (5.43) is isomorphic to Σ4N2. Thus,

the sequence (5.43) except for the first two terms forms a minimal resolution for Σ4N2, so for every s, t ≥ 0,
there is an isomorphism
(5.45) Exts,tA(1)(N2,Z/2) ∼= Exts+2,t+4

A(1) (N1,Z/2)

equivariant for the H∗,∗(A(1))-actions on both sides. This gives us the blue summands in Figure 17, right.
Now we can draw the E2-page for the Adams spectral sequence for Ω̃Spin

∗ (X), and do so in Figure 17, right.
Margolis’ theorem and hi-equivariance of differentials imply there is a single differential in this range that

could be nonzero, namely the pictured d2 : E0,5
2 → E2,6

2 .

Proposition 5.46. d2 : E0,5
2 → E2,6

2 vanishes; equivalently, k̃o4(X) has more than eight elements.

We will prove this using the Atiyah-Hirzebruch spectral sequence in Theorem 5.56.
Assuming Proposition 5.46 for now, there are no further differentials in the range we care about, but we

must address four extension questions in degrees 4, 5, and 6:
0 // Z/2 // A // Z/2⊕ Z/2 // 0(5.47a)

0 // Z/2 // k̃o4(X) // A // 0(5.47b)

0 // Z/2 // k̃o5(X) // Z/2 // 0(5.47c)

0 // Z/2 // k̃o6(X) // Z/2⊕ Z/2 // 0.(5.47d)

(In fact, a priori, there are five extension problems, but Margolis’ theorem splits E0,6
∞ ∼= Z/2 off from the rest

of the t− s = 6 line.)
Both (5.47a) and (5.47c) split for the same reason. For k = 4, 5, assume the sequence does not split; then,

k̃ok(X) has an element x such that 2x 6= 0 and if y is the image of 2x in the E∞-page, then h1y 6= 0. This
fact lifts to a nonzero action by η ∈ ko1 carrying 2x to some element z ∈ k̃ok+1(X) such that z = 2ηx and
z 6= 0, but 2η = 0, causing a contradiction.

Because (5.47a) splits and (h0·) : E1,5
∞ → E2,6

∞ is an isomorphism, all possible extensions in (5.47b) give
k̃o4(X) ∼= Z/4⊕ (Z/2)⊕2.

Lastly, (5.47d). Action by h1 defines isomorphisms E0,5
∞ → E1,7

∞ and E2,7
∞ → E3,9

∞ , and this lifts to imply
(η·) : k̃o6(X)→ k̃o7(X) is injective, splitting (5.47d). �

We return to Proposition 5.46. Our proof strategy is to compute k̃o4(X) a different way. First, we pass
to τ0:4ko-cohomology, following a strategy of Campbell [Cam17, §7.4] and Freed-Hopkins [FH19a, §5.1], by

29After some practice with A(1)-modules, writing this minimal resolution down is straightforward, if a little tedious; we
found it a helpful exercise when learning this material and the interested reader might too. Though this minimal resolution is
certainly known, it is not explicitly written in many places; the resolution will not be televised.

30The H∗,∗(A(1))-action on Exts,tA(1)(N1,Z/2) is a little obscure from this perspective; one can show that all h0- and
h1-actions that could be nonzero for degree reasons are in fact nonzero, as stated in [BB96, §3] and [WWZ20, Figure 15]. One
way to see this would be to use the long exact sequences in Ext associated to the two short exact sequences

0 // ΣZ/2 // N1 // Z/2 // 0(5.44a)

0 // Σ2N1 // Q // Z/2 // 0,(5.44b)

together with the fact that the boundary maps in the long exact sequences commute with the H∗,∗(A(1))-action.
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way of Lemma 5.48. We then run the Atiyah-Hirzebruch spectral sequence computing the τ0:4ko-cohomology
of X. As input, we need H̃∗(X;Z), which we compute in Theorem 5.49 using a Lyndon-Hochschild-Serre
spectral sequence [Lyn48, Ser50, HS53].

Lemma 5.48 (Campbell [Cam17, (7.35), (7.36)]). There is a noncanonical equivalence IZ(τ0:4ko) ' Σ−4τ0:4ko.
Thus, if τ0:4k̃ok(Y ) is torsion, τ0:4k̃ok(Y ) ∼= τ0:4k̃ok−3(Y ).

This is a corollary of the shifted self-equivalence IZKO ' Σ4KO [And69, Theorem 4.16].31

By Lemma 3.24, k̃o4(X) ∼= τ0:4k̃o4(X)32 is torsion, so is isomorphic to τ0:4k̃o1(X). We study this group with
the Atiyah-Hirzebruch spectral sequence. As input, we compute H̃∗(X;Z(2)), which the Thom isomorphism
equates with H∗(BS4; (Z(2))w1(Vλ)).

Theorem 5.49.

H0(BS4; (Z(2))w1(Vλ)) ∼= 0
H1(BS4; (Z(2))w1(Vλ)) ∼= Z/2
H2(BS4; (Z(2))w1(Vλ)) ∼= 0
H3(BS4; (Z(2))w1(Vλ)) ∼= Z/2⊕ Z/2
H4(BS4; (Z(2))w1(Vλ)) ∼= Z/2
H5(BS4; (Z(2))w1(Vλ)) ∼= Z/2⊕ Z/2.

Proof. Let R := Z(2)[x]/(x2 − 1), which is a Z[C2]-module in which the nontrivial element of C2 sends
1 7→ 1 and x 7→ −x. As Z[C2]-modules, R ∼= Z(2) ⊕ (Z(2))σ, so we will recover H∗(BS4; (Z(2))w1(Vλ)) from
H∗(BS4;R). The Lyndon-Hochschild-Serre spectral sequence

(5.50) E∗,∗2 = H∗(BC2;H∗(BA4;R)) =⇒ H∗(BS4;R)

is multiplicative; here S4 acts on R through sign : S4 → C2 and A4 acts trivially. R is a Z/2-graded ring,
where x is in odd degree, and hence R-valued cohomology is Z× Z/2-graded. We use {+,−} to denote the
Z/2-grading.

Proposition 5.51 (Čadek [Čad99, Lemma 3.1]). There is an isomorphism of Z × Z/2-graded rings
H∗(BC2;R) ∼= Z(2)[y]/(2y) with |y| = (1,−).

Proposition 5.52 (Bruner-Greenlees [BG03, §2.6]). There is a presentation of H∗(BA4;Z(2)) whose only
generators and relations below degree 6 are generators α and β in degrees 3 and 4, respectively, and relations
2α = 2β = 0.

Corollary 5.53. As Z× Z/2-graded rings,

(5.54) H∗(BA4;R) ∼= Z(2)[α+, α−, β+, β−, . . . ]/(2α±, 2β±, . . . )

where the generators and relations not displayed are in Z-degrees ≥ 6, |α±| = (2,±), and |β±| = (3,±).

31Anderson gives this proof in unpublished lecture notes; see Yosimura [Yos75, Theorem 4] for Anderson’s proof. There are at
least four additional proofs that IZKO ' Σ4KO, due to Freed-Moore-Segal [FMS07, Proposition B.11], Heard-Stojanoska [HS14,
Theorem 8.1], Ricka [Ric16, Corollary 5.8], and Hebestreit-Land-Nikolaus [HLN20, Example 2.8], all by different methods.

32We abuse notation slightly to let τ0:4k̃o denote reduced τ0:4ko-cohomology, rather than τ̃0:4ko.
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We can now display the E2-page. Elements with + grading are colored red, and elements with − grading
are colored blue; differentials are even in this Z/2-grading.

(5.55)

0 1 2 3 4 5

0

1

2

3

4

5

α+,α− α+y,α−y α+y
2,α−y2 α+y

3,α−y3 α+y
4,α−y4 α+y

5,α−y5

β+,β− β+y,β−y β+y
2,β−y2 β+y

3,β−y3 β+y
4,β−y4 β+y

5,β−y5

1 y2 y4y y3 y5

The map S4 → C2 admits a section given by {1, (1 2)} ⊂ S4, so the q = 0 line supports no nonzero
differentials and does not participate in nontrivial extension problems. Looking just at elements graded −, we
are done if we can show that d2(β−) = α−y2 and d2(β+y) = 0. Fortunately, Thomas [Tho74] has computed
H∗(BS4;Z(2)): since H4(BS4;Z(2)) ∼= Z/4⊕ Z/2, d2(β+) = 0, so the Leibniz rule implies d2(β+y) = 0 too.
And since H5(BS4;Z(2)) ∼= Z/2, d2(β−y) 6= 0, so d2(β−) 6= 0, hence must be α−y2. �

Thus equipped, we tackle the Atiyah-Hirzebruch spectral sequence.

Theorem 5.56. |k̃o4(X)| ≥ 16 (thus implying Proposition 5.46).

Proof. After using Lemma 5.48, we want to compute τ0:4k̃o1(X), which we attack with the Atiyah-Hirzebruch
spectral sequence

(5.57) Ep,q2 = H̃p(X; (τ0:4ko)q) =⇒ τ0:4k̃op+q(X).
Using Proposition 5.34 and Theorem 5.49 as input, the E2-page is

(5.58)

0 1 2 3 4 5

−4

−3

−2

−1

0

Maunder [Mau63, Theorem 3.4] identifies the first nonzero differential in the cohomological Atiyah-Hirzebruch
spectral sequence with a k-invariant; this includes all differentials shown in (5.58). Let r : H∗(–;Z) →
H∗(–;Z/2) denote reduction mod 2 and β : H∗(–;Z/2) → H∗+1(–;Z) be the Bockstein. Then, Bruner-
Greenlees [BG10, Corollary A.5.2] determine the k-invariants we need for ko-cohomology:

(1) The green d2 : Ep,02 → Ep+2,−1
2 is Sq2 ◦ r : H̃p(X;Z)→ H̃p+2(X;Z/2).

(2) Each blue d2 : Ep,−1
2 → Ep+2,−1

2 is Sq2 : H̃p(X;Z/2)→ H̃p+2(X;Z/2).
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(3) Each purple d3 : Ep,−2
3 → Ep+3,−4

3 is β ◦ Sq2 : H̃p(X;Z/2)→ H̃p+3(X;Z).
We computed the A(1)-module structure on H̃∗(X;Z/2) in (5.42) (and drew it in Figure 17, left), and r and
β follow from this and a few facts we just calculated for H̃∗(X;Z). For k ≤ 5, we proved 2H̃k(X;Z) = 0, so
r is injective in these degrees. Moreover, combining this with Lemma 3.28, that r ◦ β = Sq1, we conclude for
k ≤ 2 and x ∈ H̃k(X;Z/2), βSq2(x) = 0 iff Sq1Sq2(x) = 0.

All together, these allow us to resolve almost all of the indicated differentials — a priori, we do not know
βSq2(x) when x ∈ E3,−2

2
∼= H̃3(X;Z/2), but for all x not in the image of d2 : E1,−1

2 → E3,−2
2 , Sq2(x) = 0, so

this is fine. We find the 1-line of the E4-page has five Z/2 summands, one in E2,−1
4 , two in E3,−2

4 , and two in
E5,−4

4 . There could be a nonzero d4 : E2,−1
4 → E6,−5

4 , but the remaining four summands are generated by
permanent cycles. �

5.3.2. Class D, spin-1/2 case. As Vλ is not pin−, Theorem 2.11 tells us to compute the spin bordism of
X := (BS4)Det(Vλ)−1.
Theorem 5.59. The first few spin bordism groups of X are

Ω̃Spin
0 (X) ∼= Z/2

Ω̃Spin
1 (X) ∼= Z/6

Ω̃Spin
2 (X) ∼= Z/8⊕ Z/2

Ω̃Spin
3 (X) ∼= Z/2

Ω̃Spin
4 (X) ∼= 0,

and Ω̃Spin
5 (X) is torsion.

Proof. Odd-primary information is computed in the range we need by (5.40a). For 2-primary information,
we use the Adams spectral sequence as usual. Recall the A(1)-module structure on H∗(BS4;Z/2) ∼=
Z/2[a, b, c]/(ac) from Propositions 5.34 and 5.35. Lemma 3.30 shows that inclusion of a transposition extends
to a splitting
(5.60) X

'−→ (BZ/2)σ−1 ∨M,

and the map H̃∗(M ;Z/2)→ H̃∗(X;Z/2) is injective, with image a complementary subspace to the span of
{Uan | n ≥ 0}. As usual, we write down H̃∗(M ;Z/2) as an A(1)-module in low degrees, using w1(Det(Vλ)−
1) = a and w2(Det(Vλ)− 1) = 0, and give the answer in Figure 18, left.

2

3

4

5

6

7

8

9

Ub

Uab

s ↑
t− s→ 0 1 2 3 4

0
1
2

Figure 18. Left: TheA(1)-module structure on H̃∗(M ;Z/2) in low degrees. This submodule
contains all elements of degree at most 4. Right: the Ext of this module, which is the
beginning of the Adams spectral sequence computing k̃o∗(M). More information in the proof
of Theorem 5.59.

Let Σ2N3 denote the A(1)-submodule generated by Ub; this module is studied by Baker [Bak18, §5], who
calls it the “whiskered Joker.” There is an isomorphism of A(1)-modules
(5.61) H̃∗(M ;Z/2) ∼= Σ2N3 ⊕ Σ3A(1)⊕ P,
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where P contains no elements of degree less than 4. Therefore if the 4-line of the E2-page is empty, P does
not enter into our calculations — and we will see momentarily that the 4-line is in fact empty. We know
what Σ3A(1) summand contributes to the E2-page of the Adams spectral sequence. For N3, we leverage
what we learned from N1 in §5.3.1. Specifically, the unique nonzero A(1)-module map A(1)→ N3 has kernel
isomorphic to Σ5N1, so a minimal resolution for Σ5N1 induces a minimal resolution for N3 which has an
additional copy of A(1) in topological degree 0 and filtration 0, and in which everything else is shifted up one
in filtration, giving the red summands in Figure 18, right.

Thus the E2-page for this Adams spectral sequence is as in Figure 18, right. In this range, the spectral
sequence collapses. Combine this with the pin− bordism summands from [ABP69, KT90b] as usual to obtain
the groups in the theorem statement, and Lemma 3.24 finishes us off by telling us Ω̃Spin

5 (X) is torsion. �

5.3.3. Class A, spinless case. Let fA0 denote the equivariant local system of symmetry types for class A with
spinless fermions. In this case, the ansatz asks us to consider the spinc bordism of X := (BS4)3−Vλ .

Theorem 5.62. The first few spinc bordism groups of X are

Ω̃Spinc
0 (X) = Z/2

Ω̃Spinc
1 (X) = Z/3

Ω̃Spinc
2 (X) = (Z/2)⊕2

Ω̃Spinc
3 (X) = Z/3

Ω̃Spinc
4 (X) = (Z/2)⊕4,

and Ω̃Spinc
5 (X) is torsion. Therefore PhS4

0 (R3, fA0 ) ∼= (Z/2)⊕4.

Proof. We will use the Adams spectral sequence over E(1) as usual to capture the 2-primary information; for
odd-primary information, see (5.40b).

We use the A(1)-module structure on H̃∗(X;Z/2) that we determined in (5.42) and drew in Figure 17 to
determine the E(1)-module structure: as E(1)-modules, A(1) ∼= E(1)⊕Σ2E(1), and N2 ∼= E(1)⊕ΣE(1)⊕Σ2N1,
so as E(1)-modules,

(5.63) H̃∗(X;Z/2) ∼= E(1)⊕ Σ2E(1)⊕ Σ2N1 ⊕ Σ4E(1)⊕ Σ4E(1)⊕ Σ5E(1)⊕ P,
where P is 5-connected. We draw this in Figure 19, left. Recalling ExtE(1)(N1) from (4.49), the E2-page of
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Figure 19. Left: the E(1)-module structure on H̃∗((BS4)3−Vλ ;Z/2) in low degrees. The
pictured submodule contains all elements of degree at most 5. Right: the Ext of this
module, which is the beginning of the E2-page of the Adams spectral sequence computing
k̃u∗((BS4)3−Vλ).

the Adams spectral sequence is in Figure 19, right. There can be no differentials in the range drawn for



64 ARUN DEBRAY

degree reasons, and Margolis’ theorem (Theorem 3.22) implies there are no nontrivial extensions, either, so
we are done. �

5.3.4. Class A, spin-1/2 case. Theorem 2.24 says that to compute the S4-equivariant phase homology groups
in class A with spin-1/2 fermions, given by the equivariant local system of symmetry types fA1/2, we should
investigate the spinc bordism of X := (BS4)DetVλ−1: we know Vλ is not pinc because its pullback along
BA4 → BS4 is not pinc, as we established in Lemma 5.7.

Theorem 5.64. The first few spinc bordism groups of X are

Ω̃Spinc
0 (X) ∼= Z/2

Ω̃Spinc
1 (X) ∼= Z/3

Ω̃Spinc
2 (X) ∼= Z/4⊕ Z/2

Ω̃Spinc
3 (X) ∼= Z/6

Ω̃Spinc
4 (X) ∼= Z/8⊕ (Z/2)⊕2.

By Lemma 3.24, Ω̃Spinc
5 (X) is torsion, so PhS4

0 (R3; fA1/2) ∼= Z/8⊕ (Z/2)⊕2.

Proof. See (5.40b) for the odd-primary torsion in Ω̃Spinc
∗ (X). For 2-torsion, we reuse our work from §5.3.2.

First, X ' (BZ/2)σ−1 ∨M , and we gave the low-degree cohomology of M as an A(1)-module in (5.61), and
drew it in Figure 18, left. This determines the E(1)-module structure on it, so we can calculate spinc bordism
of M using the Adams spectral sequence. For the other summand, we have MTSpinc∧ (BZ/2)σ−1 ' MTPinc,
so we direct-sum in the pinc bordism groups computed by Bahri-Gilkey [BG87a, BG87b].

There are isomorphisms of E(1)-modules A(1) ∼= E(1)⊕ Σ2E(1) and N3 ∼= E(1)⊕ Σ2N1. Therefore as an
E(1)-module,

(5.65) H̃∗(M ;Z/2) ∼= Σ2E(1)⊕ Σ3E(1)⊕ Σ4N1 ⊕ P,

where P is 4-connected. As usual for these cases, we will see that Ext(H̃∗(M ;Z/2),Z/2) has no nonzero
elements with t− s = 4 and s > 1, so P does not affect our calculations. See Figure 20, left, for a picture of
the E(1)-module structure on H̃∗(M ;Z/2). We calculated Ext(Σ4N1) in (4.49), so can draw the E2-page of
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Figure 20. Left: the E(1)-module structure on H̃∗(M ;Z/2) in low degrees; the pictured
summands include all elements in degrees 4 and below. Here α := a2b + b2. Right: the
Ext of this module, which is the beginning of the E2-page of the Adams spectral sequence
computing k̃u∗(M).

the Adams spectral sequence in Figure 20, right. This collapses, so we add in the pinc bordism summands
and conclude. �

5.4. Chiral octahedral symmetry. Let λ : S4 → O3 denote the representation as symmetries of an
octahedron and Vλ → BS4 denote the associated vector bundle. Recall from Proposition 5.34 the mod 2
cohomology of BS4.

Lemma 5.66. w1(Vλ) = 0 and w2(Vλ) = b.
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Proof. Since Im(λ) ⊂ SO3, w1(Vλ) = 0. We know w2(Vλ) restricts to u ∈ H2(BA4;Z/2) by considering
tetrahedral symmetry inside octahedral symmetry and using Lemma 5.3, so w2(Vλ) could be a2 + b or b. The
fact that λ splits as σ ⊕ R2 when restricted to a Z/2 subgroup given by a transposition tells us w2(Vλ) is b,
not a2 + b. �

By Lemma 5.7, the pullback of Vλ to BA4 is not pinc, so Vλ is not pinc, and hence Vλ is also not pin−.

Lemma 5.67.

(5.68) Ω̃SO
k (BS4)⊗ Z[1/2] ∼=

{
Z/3, k = 3
0, k = 0, 1, 2, 4, 5, 6.

Proof. Let ` be an odd prime and consider the Atiyah-Hirzebruch spectral sequence
(5.69) E2

p,q = Hp(BS4; (MTSO∧` )q) =⇒ (MTSO∧` )p+q(BS4) = ΩSO
p+q(BS4)∧` .

If ` 6= 3, then ` - |S4|, so the Z`-cohomology of BS4 vanishes in positive degrees and (5.69) is trivial,
contributing no `-torsion to Ω̃SO

∗ (BS4)⊗ Z[1/2]. For ` = 3, use Thomas’ calculation of H∗(BS4;Z) [Tho74]
and the universal coefficient theorem to show that H∗(BS4;Z3) consists of Z3 in degree 0, Z/3 in degree 2,
and nothing else nonzero in degrees 5 and below. Therefore (5.69) collapses, giving us the desired result. �

5.4.1. Class D, spinless case. Let fD0 denote the equivariant local system of symmetry types for the spinless
class D case. Theorem 2.11 identifies
(5.70) PhS4

k (R3; fD0 ) ∼= [MTSpin ∧ (BS4)3−Vλ ,Σk+4IZ],
so we study the spin bordism of X := (BS4)3−Vλ .

Theorem 5.71. There is an r ≥ 2 such that the first few spin bordism groups of X are

Ω̃Spin
0 (X) ∼= Z

Ω̃Spin
1 (X) ∼= Z/2

Ω̃Spin
2 (X) ∼= 0

Ω̃Spin
3 (X) ∼= Z/6⊕ Z/2k

Ω̃Spin
4 (X) ∼= Z,

and Ω̃Spin
5 (X) is torsion. Hence PhS4

0 (R3; fD0 ) = 0.

The Atiyah-Hirzebruch spectral sequence allows one to show k = 1, so Ω̃Spin
3 (X) ∼= Z/2⊕ Z/2. As usual,

we will not need this, so do not prove it.

Proof. For odd-primary torsion, use the fact that MTSpin → MTSO is an isomorphism, so it suffices to
understand Ω̃SO

∗ (X), and that Vλ → BS4 is orientable, so there is a Thom isomorphism ΩSO
k (BS4)→ Ω̃SO

k (X),
and we can read off the odd-primary torsion from Lemma 5.67.

On to the prime 2. From Propositions 5.34 and 5.35 we know the mod 2 cohomology of BS4 and the
action of the Steenrod algebra, and using Lemma 5.66 we can draw H̃∗(X;Z/2) as an A(1)-module in low
degrees, which we do in Figure 21, left.

Let N4 denote the A(1)-submodule of H̃∗(X;Z/2) generated by U and Ua. Then,

(5.72) H̃∗(X;Z/2) ∼= N4 ⊕ Σ3A(1)⊕ Σ4N4 ⊕ Σ5A(1)⊕ P,
where P is 6-connected. We have not seen N4 before, and need to calculate its Ext. Fortunately, there is a
short exact sequence of A(1)-modules

(5.73) 0 // ΣJ // N4 // Q // 0,
which induces a long exact sequence in Ext. In Figure 22, we display a picture both of this extension and of
the Adams chart for computing the boundary map in the long exact sequence.

We draw the E2-page in Figure 21, right. Because differentials must be h0-equivariant, they all vanish in
the range pictured except possibly for those from the 4-line to the 3-line, one of which is indicated in the
chart. By Lemma 3.24, k̃o4(X)⊗Q ∼= k̃o0(X)⊗Q, and from Figure 21, right, the latter group is isomorphic
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Figure 21. Left: the A(1)-module structure on H̃∗((BS4)3−Vλ ;Z/2) in low degrees. The
pictured submodule contains all elements of degrees 6 and below. Right: the E2-page of the
corresponding Adams spectral sequence computing k̃o∗((BS4)3−Vλ)∧2 . We will see there is a
differential from the 4-line to the 3-line; it is in fact the d2 depicted, though we do not prove
that.
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Figure 22. Left: the extension (5.73) of A(1)-modules. Right: the long exact sequence in
Ext induced from that extension.

to Q. Thus Ω̃Spin
4 (X) has exactly one free summand, so one of the two towers in the 4-line lives to the

E∞-page, and the other admits a nonzero dr differential to the tower in degree 3. Thus, on the 3-line of the
Er+1-page, there is a single green Z/2 summand in degree s = 0, together with a red tower with finitely
many Z/2 summands, giving Z/2⊕ Z/2k in degree 3 as promised.33 �

5.4.2. Class D, spin-1/2 case. Let fD1/2 be the S4-equivariant local system of symmetry types for the case of
spin-1/2 fermions in class D. Theorem 2.11 computes the equivariant phase homology of this local system in
terms of ΩSpin

∗ (BS4).

33We have not determined which elements of the 4-line the differential is nonzero on. One way to determine this is to use that
the generator of H3,7(A(1)) ∼= Z/2 carries the summands in the 0-line onto a subset of the red tower in the 4-line. Differentials
are equivariant for this action, and differentials emerging from the 0-line vanish, so all differentials must vanish on the red tower
too.
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Theorem 5.74. There is an r ≥ 2 such that the first several spin bordism groups of BS4 are

ΩSpin
0 (BS4) ∼= Z

ΩSpin
1 (BS4) ∼= (Z/2)⊕2

ΩSpin
2 (BS4) ∼= (Z/2)⊕3

ΩSpin
3 (BS4) ∼= Z/24⊕ Z/2r+1,

ΩSpin
4 (BS4) ∼= Z⊕ Z/2

ΩSpin
5 (BS4) ∼= 0

ΩSpin
6 (BS4) ∼= Z/2.

Therefore PhS4
0 (R3; fD1/2) ∼= Z/2.

One can use the Atiyah-Hirzebruch spectral sequence to show r = 2 in Theorem 5.74; we do not need this
so do not present the proof.

Proof. First, we use the Adams spectral sequence to determine the free and 2-primary parts. Since ko∗(BS4)
splits as ko∗(pt)⊕ k̃o∗(BS4), we focus on k̃o∗(BS4) and add the Bott-song summands in at the end. There is
a section s of the parity map S4 → Z/2, which stably splits BS4. That is, there is a spectrum M , a map
t : M → Σ∞BS4, and a weak equivalence

(5.75) (s, t) : Σ∞BZ/2 ∨M '−→ Σ∞BS4.

This also splits theA-module structure of H̃∗(BS4;Z/2) as H̃∗(M ;Z/2)⊕H̃∗(BZ/2;Z/2), where H̃∗(BZ/2;Z/2)
is embedded via the parity map. Therefore H̃∗(M ;Z/2) is isomorphic to a complimentary subspace of
Z/2 · {ak | k ≥ 0} ⊂ H̃∗(BS4;Z/2). As this isomorphism is realized by a map of spectra, it is an isomorphism
of A-modules, hence A(1)-modules. We will run the Adams spectral sequence for k̃o∗(M), and add the
k̃o∗(BZ/2) summands in at the end.

The mod 2 cohomology of BS4 is given in Proposition 5.34, and the action of the Steenrod squares in
Proposition 5.35. We can therefore draw H̃∗(M ;Z/2) as an A(1)-module in low degrees, which we do in
Figure 23, left. We have
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Figure 23. Left: the A(1)-module structure on H̃∗(M ;Z/2) in low degrees. The submodule
pictured here contains all elements of degree at most 6. Right: the corresponding Ext, which
is the E2-page for the Adams spectral sequence converging to the 2-primary part of k̃o∗(M).

(5.76) H̃∗(M ;Z/2) ∼= Σ2J ⊕ Σ3 Q⊕ Σ4A(1)⊕ Σ6A(1)⊕ P,
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where P is 6-connected. Names of A(1)-modules are as in previous sections; for all these modules except for
P , we have already seen Exts,tA(1)(–,Z/2), and P is irrelevant for degree reasons. We display the E2-page in
Figure 23, right.

In the range pictured, h0-equivariance of differentials implies the only possible nontrivial differentials are
from the infinite tower in degree 4 to the infinite tower in degree 3; a d2 is pictured as an example. In fact,
those towers must support a nonzero dr for some r; by h0-equivariance, dr is either zero for every element
of the tower in degree 4, or nonzero for every element. Hence, if all dr were zero for all r, then k̃o3(BS4)
would contain a free summand, contradicting Lemma 3.24. Therefore there is some r ≥ 2 for which all
dr differentials from the tower in degree 4 to the tower in degree 3 are nontrivial (not necessarily the d2s
pictured). On the E∞-page, the tower in degree 4 vanishes, and only r + 1 summands of the degree-3 tower
remain. Thus we have computed the 2-primary part of ko∗(BS4) in degrees 6 and lower:

• From ko∗(pt), we have a Z summand in degrees 0 and 4 and a Z/2 summand in degrees 1 and 2.
• From k̃o∗(BZ/2), we have Z/2 summands in degrees 1 and 2 and a Z/8 summand in degree 3 [MM76].
• From Figure 23, right, we have Z/2 in degree 2, Z/2r+1 in degree 3, and a Z/2 each in degrees 4 and

6.
To determine the odd-primary torsion, use first that the forgetful map ΩSpin

∗ (–)→ ΩSO
∗ (–) is an isomorphism

on odd-primary torsion, so we just have to determine the odd-primary torsion in ΩSO
k (BS4) for k ≤ 6, which

we did in Lemma 5.67. �

5.4.3. Class A. As in the case of chiral tetrahedral symmetry, Vλ does not admit a pinc structure, since we
saw in Lemma 5.7 that its pullback along BA4 → BS4 also does not admit a pinc structure. Let fA0 , resp.
fA1/2, denote the equivariant local systems of spectra associated to the class A spinless, resp. spin-1/2 cases.
Theorem 2.24 expresses PhS4

0 (R3; fA0 ) and PhS4
0 (R3; fA1/2) in terms of the spinc bordism of (BS4)3−Vλ for

spinless fermions and BS4 for spin-1/2 fermions.

Theorem 5.77. There are integers r, r′ ≥ 2 such that the low-degree spinc bordism groups of (BS4)3−Vλ and
BS4 are

Ω̃Spinc
0 ((BS4)3−Vλ) ∼= Z ΩSpinc

0 (BS4) ∼= Z

Ω̃Spinc
1 ((BS4)3−Vλ) ∼= Z/2 ΩSpinc

1 (BS4) ∼= Z/2

Ω̃Spinc
2 ((BS4)3−Vλ) ∼= Z ΩSpinc

2 (BS4) ∼= Z⊕ Z/2

Ω̃Spinc
3 ((BS4)3−Vλ) ∼= Z/6⊕ Z/2r ΩSpinc

3 (BS4) ∼= Z/12⊕ Z/2r
′

Ω̃Spinc
4 ((BS4)3−Vλ) ∼= Z2 ΩSpinc

4 (BS4) ∼= Z2 ⊕ Z/2

Ω̃Spinc
5 ((BS4)3−Vλ) ∼= Z/2r−1 ⊕ Z/6⊕ (Z/2)⊕3 ΩSpinc

5 (BS4) ∼= Z/2⊕ Z/24⊕ Z/2r
′+1

Ω̃Spinc
6 ((BS4)3−Vλ) ∼= Z2 ΩSpinc

6 (BS4) ∼= Z2 ⊕ (Z/2)⊕3.

One can use the Atiyah-Hirzebruch spectral sequence to show r = r′ = 2. We do not need this, so do not
go into the details.

Proof. As usual, the calculation separates into odd-primary and 2-primary parts.

Lemma 5.78. The only odd-primary torsion in the spinc bordism of (BS4)3−Vλ and BS4 in degrees 6 and
below consists of two Z/3 summands in degrees 3 and 5.

Proof. Since |S4| = 23 · 3, we only have to check 3-torsion: if ` ≥ 5 is prime, the maps BS4 → pt and
(BS4)3−V → pt are stable `-primary equivalences by the Whitehead theorem [Ser53, Chapitre III, Théorème
3]. The forgetful map MTSpinc → MSO ∧ (BU1)+ is an odd-primary equivalence, and since 3 − Vλ is
orientable, there is a Thom isomorphism

(5.79) MSO ∧ (BU1)+ ∧ (BS4)3−V '−→ MSO ∧ (BU1)+ ∧ (BS4)+,

so in both the spinless and spin-1/2 cases, we can glean the 3-torsion from ΩSpinc
∗ (BU1 × BS4). As the

homology of BU1 is torsion-free, the Künneth map H∗(BU1)⊗H∗(BS4)→ H∗(BU1×BS4) is an isomorphism
of graded abelian groups. Using this together with Thomas’ [Tho74] calculation of H∗(BS4), we conclude
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that the only odd-primary torsion in H∗(BU1 × BS4) in degrees below 7 is Z/3 ⊂ H3(BU1 × BS4) and
Z/3 ⊂ H5(BU1 ×BS4).

Now feed this to the Atiyah-Hirzebruch spectral sequence with signature
(5.80) E2

p,q = Hp(BU1 ×BS4,ΩSO
q (pt)) =⇒ ΩSO

p+q(BU1 ×BS4).

The coefficients are sums of Z and Z/2; since we only care about 3-torsion, we can ignore the Z/2 summands,
whose differentials cannot map nontrivially to or from any 3-torsion element. The only 3-torsion on the
E2-page in total degree less than 7 is a single Z/3 summand in each of E2

3,0 and E2
5,0, coming from our

calculation above of 3-torsion in homology. These 3-torsion summands cannot participate in any nonzero
differentials: they do not map to each other, and cannot receive any differentials from free summands, or from
the 7-line (which we have not calculated). Thus they persist to the E∞-page. It is a priori possible more
3-torsion is created from free summands on the E2-page, which could happen if a differential maps from a
free summand to another free summand. All free summands are in even total degree, though, so this does not
happen, and the only 3-torsion in ΩSO

k (BU1 ×BS4), for k < 7, is two Z/3 summands in degrees 3 and 5. �

Next, we compute the 2-torsion using the Adams spectral sequence over E(1).
For the spinless case, recall from (5.72) (drawn in Figure 21) the calculation of H̃∗((BS4)3−Vλ ;Z/2) as an

A(1)-module. There are isomorphisms of E(1)-modules N4 ∼=

Q⊕ΣE(1)⊕Σ3Z/2 and A(1) ∼= E(1)⊕Σ2E(1),
so as E(1)-modules,

(5.81) H̃∗((BS4)3−Vλ ;Z/2) ∼= Q⊕ ΣE(1)⊕ Σ3Z/2⊕ Σ3E(1)⊕ Σ4 Q⊕ Σ5E(1)⊕ Σ5E(1)⊕ Σ5E(1)⊕ P,
where P is 6-connected. We draw this in Figure 24, left.
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Figure 24. Left: the E(1)-module structure on H̃∗((BS4)3−Vλ ;Z/2) in low degrees. The
pictured submodule contains all elements of degrees at most 6. Here α := a5 +a3b. Right: the
corresponding Ext, which is the E2-page of the Adams spectral sequence for k̃u∗((BS4)3−V ).
Some nonzero v1-actions are hidden for clarity.

To draw the E2-page of the Adams spectral sequence, use the computations of Ext( Q) from (4.55) and
ExtE(1)(Z/2) from (3.7) to obtain Figure 24, right. For clarity, we do not draw most v1-actions. There may
be differentials in this range, though we do not determine whether they are the d2s pictured.

From Figure 24, right, k̃u0((BS4)3−Vλ) ∼= Z, so Lemma 3.24 implies there is a single free summand in each
even degree and the odd-degree ku-groups are torsion. Therefore, one of the towers on the 4-line must admit
a nontrivial dr differential to the tower on the 3-line, and in fact, v1-equivariance of the differentials implies
that tower on the 4-line must be the blue one coming from Σ4 Q. The remaining tower must survive, so on
the E∞-page, the 3-line has its Z/2 summand and a Z/2r summand coming from the red tower, and the
4-line has a single Z summand left. The results on k̃u5 and k̃u6 follow from v1- and h0-equivariance of dr.

On to the spin-1/2 case. We factor ku∗(BS4) ∼= ku∗(pt)⊕ k̃u∗(BS4). In the proof of Theorem 5.74, we
split Σ∞BS4 ' Σ∞BZ/2 ∨M and determined the A(1)-module structure on H̃∗(M ;Z/2). Combining this
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with Nguyen’s computation [Ngu09, Theorem 2.3.1] of the E(1)-module structure on H̃∗(BS4;Z/2), we have
that as E(1)-modules,

(5.82) H̃∗(M ;Z/2) ∼= Σ2E(1)⊕ Σ3 Q⊕ Σ4Z/2⊕ Σ4E(1)⊕ Σ6E(1)⊕ Σ6E(1)⊕ P,
where P is 6-connected. We draw this in Figure 25, left.
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Figure 25. Left: the E(1)-module structure on H̃∗(M ;Z/2) in low degrees. The pictured
submodule contains all elements of degrees at most 6. Right: the corresponding Ext, which
is the E2-page of the Adams spectral sequence computing k̃u∗(M). Some v1-actions are
hidden to declutter the diagram.

For each of these modules N (except P , which as usual is too high-degree to be relevant), we already
calculated Exts,tE(1)(N,Z/2): for Q, see (4.55), and for Z/2, see (3.7). Therefore the E2-page for the Adams
spectral sequence is as drawn in Figure 25, right. Most of the v1-actions are hidden to make the diagram
clearer. We indicate locations of some possible differentials, but they are not necessarily d2s.

Lemma 3.24 implies k̃u∗(BS4) is torsion, so all towers present on the E2-page must emit or receive
differentials. Thus there is some r′ ≥ 2 such that the green tower on the 3-line is killed by a dr′ emerging
from the orange tower on the 4-line; therefore on the E∞-page, the 4-line contains only the Z/2 summand in
E0,4
∞ , and the 3-line contains r′ Z/2 summands, the remains of the tower. For k̃u5 and k̃u6, v1-equivariance

of dr′ determines the E∞-page in the same way.
It remains to add in the summands corresponding to ku∗(pt) and k̃u∗(BZ/2); the former contributes a Z

summand in each even dimension, and the latter contributes Z/2 in degree 1, Z/4 in degree 3, and Z/8 in
degree 5, by work of Hashimoto [Has83, Theorem 3.1]. �

5.5. Full octahedral symmetry. The full group of symmetries of the octahedron, including orientation-
reversing ones, is isomorphic to G := A4 × Z/2. Let λ : G→ O3 denote the corresponding three-dimensional
real representation of G, and Vλ → BG denote the associated vector bundle. We saw in §5.4 the pullback of
Vλ along BS4 → BG is not pinc, so Vλ is also not pinc, and therefore is also not pin−.

The Künneth formula and Proposition 5.34 together imply

(5.83) H∗(BG;Z/2) ∼= Z/2[x, a, b, c]/(ac),

where |x| = |a| = 1, |b| = 2, and |c| = 3.

Lemma 5.84. w1(Vλ) = x and w2(Vλ) = b+ x2.

Proof. For w1, we know w1(Vλ) 6= 0 because Vλ is unorientable, but because Vλ|BS4 is orientable, w1(Vλ)
cannot be a or x+ a, leaving w1(Vλ) = x.

For w2, we know the pullback of Vλ to BS4 has w2(V |S4) = b. If i : BZ/2 → BG is induced by the
inclusion of a reflection in G, then i∗λ decomposes as a direct sum of three copies of the sign representation,
so i∗Vλ ∼= 3σ. Therefore i∗w2(Vλ) = x2, uniquely constraining w2(Vλ) = b+ x2. �
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5.5.1. Class D, spinless case. The FCEP says we should study the spin bordism of (BG)3−Vλ . We will argue
as we did in the case of pyritohedral symmetry in §5.2, replacing 3− Vλ with a virtual vector bundle whose
Adams E2-page is isomorphic to that of (BG)3−Vλ , but which is easier to calculate. This isomorphism did
not come from a map of spectra, so cannot tell us anything about differentials or hidden extensions, but
just as for pyritohedral symmetry, we will see that for entirely formal reasons, all differentials vanish and all
hidden extensions split in the range we need. Using the twisted Künneth formula, H̃∗((BG)3−Vλ) contains
no odd-primary torsion, so neither does Ω̃Spin

∗ ((BG)3−Vλ), so using the 2-primary Adams spectral sequence
suffices.

For the rest of this section, all homology and cohomology is understood to be with Z/2 coefficients.

Lemma 5.85. Let E → BG denote the virtual vector bundle induced from the virtual representation

(5.86) 2− (Vλ|S4 � (−σ)).

Then, there is an isomorphism of A(1)-modules H̃∗((BG)3−Vλ) ∼= H̃∗((BG)E), hence an isomorphism between
the E2-pages of the Adams spectral sequences for ko ∧ (BG)3−Vλ and ko ∧ (BG)E.

Proof. The E2-pages of these Adams spectral sequences are determined by the A(1)-module structures on
cohomology, which are in turn determined by w1 and w2 of the virtual bundles 3−Vλ and E. Since w1(E) = x
and w2(E) = u, then for i = 1, 2, wi(3− Vλ) = wi(E). �

Because E is induced from a representation which is an exterior sum, its Thom spectrum splits as

(5.87) (BG)E ' (BS4)3−Vλ|S4 ∧ (BZ/2)σ−1

The Künneth theorem then simplifies the E2-page:

(5.88) Es,t2 = Exts,tA(1)(H̃
∗((BS4)3−Vλ|S4 )⊗Z/2 H̃

∗((BZ/2)σ−1),Z/2).

Campbell [Cam17, Figure 6.1] computes the A(1)-module structure on H̃∗((BZ/2)σ−1), and we computed
H̃∗((BS4)3−Vλ) in (5.72) (drawn in Figure 21).

Proposition 5.89. There is an isomorphism of A(1)-modules

(5.90) H̃∗((BZ/2)σ−1)⊗Z/2 N4 ∼= ΣN5 ⊕ (V2 ⊗Z/2 A(1))⊕ P2,

where N5 is as in Figure 26, V2 is a graded vector space with a homogeneous basis in degrees {0, 2, 3, 4}, and
P2 is 4-connected.

Proof. Compute directly, by hand or by computer. �

Recall from (5.72) (drawn in Figure 21) the A(1)-module structure on (BS4)3−Vλ . Margolis’ theorem
(Theorem 3.22) splits off a ΣkHZ/2 summand from ko ∧ (BS4)3−Vλ for every direct summand of ΣkA(1) in
H̃∗((BS4)3−Vλ); below degree 8, this occurs for k = 3, 5. Therefore, by the same line of reasoning as in §5.2,
there is a spectrum Y ′ such that

(5.91) k̃on((BG)3−Vλ) ∼= πn(Y ′)⊕ H̃n−3((BZ/2)σ−1)⊕ H̃n−5((BZ/2)σ−1),

and as A-modules,

(5.92) H̃∗(Y ′) ∼= A⊗A(1) (N4 ⊕ Σ4N4 ⊕ P3)⊗Z/2 H̃
∗((BZ/2)σ−1),

where P3 is a 4-connected A(1)-module. Therefore the change-of-rings formula (3.4) applies to the E2-page
of the Adams spectral sequence for π∗(Y ′), showing

(5.93) Es,t2 (Y ′) ∼= Exts,tA(1)((N4 ⊕ Σ4N4 ⊕ P3)⊗Z/2 H̃
∗((BZ/2)σ−1),Z/2).

To calculate the spin bordism groups of (BG)3−Vλ , we will work with this spectral sequence, adding the
summands corresponding to Σ3HZ/2 and Σ5HZ/2 at the end.
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Theorem 5.94. The first few spin bordism groups of (BG)3−Vλ are

Ω̃Spin
0 ((BG)3−Vλ) ∼= Z/2

Ω̃Spin
1 ((BG)3−Vλ) ∼= Z/2

Ω̃Spin
2 ((BG)3−Vλ) ∼= (Z/2)⊕2

Ω̃Spin
3 ((BG)3−Vλ) ∼= (Z/2)⊕2

Ω̃Spin
4 ((BG)3−Vλ) ∼= (Z/2)⊕4,

and Ω̃Spin
5 ((BG)3−Vλ) is torsion, so the 0th (S4 × Z/2)-equivariant phase homology group for this case is

isomorphic to (Z/2)⊕4.

Proof. Proposition 5.89 and (5.93) together imply the E2-page for Y ′ is

(5.95) Es,t2 (Y ′) ∼= Exts,tA(1)(ΣN5 ⊕ V2 ⊗Z/2 A(1)⊕ Σ5N5 ⊕ Σ4V2 ⊗Z/2 A(1)⊕ P,Z/2),

where P is 4-connected. We will see that the E2-page in t − s ≤ 4 is empty for s ≥ 2, so there can be no
differentials involving Ext(P ) in the range we care about.

Our first order of business is therefore to determine Exts,tA(1)(N5,Z/2) for small s, t. There is an extension
of A(1)-modules

(5.96) 0 // R3 // N5 // ΣR0 // 0,

which we draw in Figure 26, left, fitting Exts,tA(1)(N5,Z/2) into a long exact sequence (Figure 26, right). The
A(1)-module R3 and its Ext are calculated in the range we need by Freed-Hopkins [FH16a, Figure 5, case
s = 3] and Beaudry-Campbell [BC18, Figures 32, 33]. In the range pictured, there are two boundary maps in
Figure 26, right, which could be nonzero; the existence of a nonzero map N5 → Σ4Z/2 forces the boundary
map δ : Ext0,4(R3)→ Ext1,4(ΣR0) to vanish. We do not need to know whether the other pictured boundary
map vanishes.

R3 N5 ΣR0

s ↑
t− s→ 0 1 2 3 4 5 6

0
1
2
3

Figure 26. Left: the A(1)-module N5 in the extension (5.96). Right: the corresponding
long exact sequence in Ext.

Hence the E2-page for computing π∗(Y ′) is

(5.97)

s ↑
t− s→ 0 1 2 3 4

0
1
2

https://arxiv.org/pdf/1604.06527.pdf#page.97
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The 4-line is concentrated in filtration 0 and 1, and so there can be neither nonzero differentials nor nontrivial
extension problems involving elements of degree 4 or less. This accounts for π∗(Y ′); for the each factor of
H̃∗−`((BZ/2)σ−1), add a single Z/2 summand in degrees ` and above. �

5.5.2. Class D, spin-1/2 case. Now we ask for the symmetries to mix. Let fD1/2 denote the local system of
symmetry types for this case. By Theorem 2.11, we consider the spin bordism of X := (BS4×BZ/2)Det(Vλ)−1,
because Vλ is not pin−. The isomorphism DetVλ ∼= 0�σ provides an isomorphism X ' (BS4)+ ∧ (BZ/2)σ−1,
so (2.10b) implies the spin bordism of this spectrum computes the pin− bordism of BS4, which could be
independently interesting.

Theorem 5.98. The first few spin bordism groups of X are

Ω̃Spin
0 (X) ∼= Z/2

Ω̃Spin
1 (X) ∼= (Z/2)⊕2

Ω̃Spin
2 (X) ∼= Z/8⊕ Z/4⊕ Z/2

Ω̃Spin
3 (X) ∼= (Z/2)⊕4

Ω̃Spin
4 (X) ∼= (Z/2)⊕2.

Since Ω̃Spin
5 (X) is torsion by Lemma 3.24, PhS4×Z/2

0 (R3; fD1/2) ∼= Z/2.

Proof. As usual, Lemma 3.30 spits X as a sum of (BZ/2)σ−1 and another spectrum M , where H̃∗(M ;Z/2)
is complementary in H̃∗(X;Z/2) to the space spanned by {Uw1(λ)k}. The (BZ/2)σ−1 summand gives us
pin− bordism, and we focus on M .

We have w1(Det(Vλ) − 1) = w1(Vλ) = x and w2(DetVλ − 1) = 0; this and the A-module structure on
BS4 ×BZ/2 calculated in (5.83) determine the A(1)-module structure on M . We obtain an isomorphism of
A(1)-modules

(5.99) H̃∗(M ;Z/2) ∼= ΣR5 ⊕ Σ2R3 ⊕ Σ3A(1)⊕ Σ3A(1)⊕ Σ3A(1)⊕ Σ3A(1)⊕ Σ4A(1)⊕ Σ4A(1)⊕ P,

where P is 4-connected. We will see momentarily that for t− s ≤ 4, Es,t2 is empty for s ≥ 2; this and the
4-connectedness of P imply its contribution to the E2-page cannot affect the spectral sequence in degrees
t− s ≤ 4, which is all we need. We draw these summands, except for P , in Figure 27.
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Figure 27. The A(1)-module structure on H̃∗(M ;Z/2) in low degrees. The pictured
summand contains all classes in degrees 4 and below. Here α := b2x2 + a2b2 + c2.
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Freed-Hopkins [FH16a, Figure 5, cases s = ±3] and Beaudry-Campbell [BC18, Figures 32, 33, 37] calculate
Ext(R5) and Ext(R3) in the degrees we need, and we can draw the E2-page of the Adams spectral sequence:

(5.100)

s ↑
t− s→ 0 1 2 3 4

0
1
2

This collapses, and it and the pin− bordism groups from the (BZ/2)σ−1 summand, which are computed
in [ABP69, KT90b], sum together to the groups in the theorem. �

5.5.3. Class A, spinless case. Let fA0 denote the local system of symmetry types for this case. We want
to calculate Ω̃Spinc

∗ ((BG)3−Vλ). Using the twisted Künneth formula, H̃∗((BG)3−Vλ);Z/2) is 2-torsion, and
therefore Ω̃Spinc

∗ ((BG)3−Vλ) is too, so it suffices to use the 2-primary Adams spectral sequence.

Theorem 5.101. The first few spinc bordism groups of (BG)3−Vλ are:

Ω̃Spinc
0 ((BG)3−Vλ) ∼= Z/2

Ω̃Spinc
1 ((BG)3−Vλ) ∼= Z/2

Ω̃Spinc
2 ((BG)3−Vλ) ∼= (Z/2)⊕3

Ω̃Spinc
3 ((BG)3−Vλ) ∼= (Z/2)⊕3

Ω̃Spinc
4 ((BG)3−Vλ) ∼= Z/4⊕ (Z/2)⊕4,

and Ω̃Spinc
5 ((BG)3−Vλ) is torsion. Hence PhS4×Z/2

0 (R3; fA0 ) ∼= Z/4⊕ (Z/2)⊕4.

Proof. There is an isomorphism of E(1)-modules

(5.102) N5 ∼= E(1)⊕ ΣR0 ⊕ Σ2R0,

hence another isomorphism of E(1)-modules

(5.103) H̃∗((BG)3−Vλ) ∼= (Vc ⊗Z/2 A(1))⊕ Σ2R0 ⊕ Σ3R0 ⊕ Pc,

where Pc is 4-connected and Vc is a graded vector space with a homogeneous basis of elements in degrees
{0, 1, 2, 2, 3, 3, 4, 4, 4, 4}. Therefore the E2-page of the Adams spectral sequence is

(5.104)

s ↑
t− s→ 0 1 2 3 4

0

1

2

Below degree 5, there are no nonzero differentials, because there is nothing in Adams filtration 2 or higher.
And degree considerations rule out hidden extensions, so we are done. �

5.5.4. Class A, spin-1/2 case. Because Vλ is not pinc, Theorem 2.24 tells us to compute the spinc bordism
groups of X := (BS4 ×BZ/2)Det(Vλ)−1.

https://arxiv.org/pdf/1604.06527.pdf#page.97
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Theorem 5.105. The first few spinc bordism groups of X are

Ω̃Spinc
0 (X) ∼= Z/2

Ω̃Spinc
1 (X) ∼= Z/2

Ω̃Spinc
2 (X) ∼= Z/4⊕ (Z/2)⊕2

Ω̃Spinc
3 (X) ∼= (Z/2)⊕4

Ω̃Spinc
4 (X) ∼= Z/8⊕ Z/4⊕ (Z/2)⊕4.

As Ω̃Spinc
5 (X) is torsion, the 0th (S4 × Z/2)-equivariant phase homology group for this case is isomorphic to

Z/8⊕ Z/4⊕ (Z/2)⊕4.

Proof. By Lemma 3.30, X splits as (BZ/2)σ−1 ∨M , where H̃∗(M ;Z/2) is isomorphic to a complementary
subspace to the subspace Z/2 · {Uxk} inside H̃∗(X;Z/2). As usual, the (BZ/2)σ−1 summand contributes
pinc bordism groups to the final answer, so we focus on M . The A(1)-module structure we computed in (5.99)
and drew in Figure 27 tells us the E(1)-structure; here, we use that R5 ∼= E(1)⊕ ΣR0 and R3 ∼= E(1)⊕ Σ2R0
as E(1)-modules. Therefore, there is an E(1)-module isomorphism

(5.106) H̃∗(M ;Z/2) ∼= ΣE(1)⊕Σ2R0⊕Σ2E(1)⊕Σ3E(1)⊕Σ3E(1)⊕Σ3E(1)⊕Σ4R0⊕Σ4E(1)⊕Σ4E(1)⊕P,

where P is 4-connected. Therefore to infer anything about Ω̃Spinc
4 (M) from this spectral sequence, we must

argue that P does not affect it; this will follow when we see the t− s = 4 line of the E2-page is empty in
Adams filtration 2 and above, so there can be no nonzero differentials from the 5-line to the 4-line. We
draw (5.106) in Figure 28.
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Figure 28. The E(1)-module structure on H̃∗(M ;Z/2) in low degrees. Here α := abx +
b2 + cx. This submodule contains all elements in degrees 4 and below.

Recalling Ext(R0) from Proposition 4.48, the E2-page of the Adams spectral sequence for k̃u∗(M) is

(5.107)

s ↑
t− s→ 0 1 2 3 4

0
1
2

In this range, the spectral sequence collapses, so we read off Ω̃Spinc
∗ (M) and combine it with pinc bordism as

computed in [BG87a, BG87b] to conclude. �
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5.6. Chiral icosahedral symmetry. Let λ : A5 → SO3 denote the representation given by chiral icosahedral
symmetry, and as usual let Vλ → BA5 denote the associated vector bundle.

Remark 5.108. Unlike the previous symmetry groups we studied, icosahedral symmetry is incompatible with
translations, and there are no space groups whose underlying point group is either the chiral icosahedral
group or the full icosahedral group. This means one should not expect to realize any phases equivariant for
these symmetry groups as a lattice Hamiltonian system on a periodic lattice on R3. This does not rule out the
possibility of interesting phases with an icosahedral symmetry: there are examples of phases studied via lattice
Hamiltonian realizations on lattices in great generality, such as the toric code model in [Fre19, §2.3], the GDS
model in [FH16b, Deb20, FHHT20], and the phases on aperiodic lattices studied by Huang-Wu-Liu [HWL20].
In a similar vein, it may be possible for a Hamiltonian on an aperiodic lattice with icosahedral symmetry to
model a nontrivial crystalline SPT. See [VLP+19] for an example of how such an implementation might look.

For icosahedral symmetry, the hard work is behind us. Let λ : A5 → O3 denote the representation as the
orientation-preserving symmetries of the icosahedron. The restriction to A4 ⊂ A5 corresponds to symmetries
that preserve a concentric tetrahedron. Let Vλ → BA5 be the associated bundle to λ.

Lemma 5.109. The inclusion ϕ : A4 ↪→ A5 induces an equivalence on mod 2 cohomology. Hence ϕ induces
2-primary equivalences Σ∞(BA4)+ → Σ∞(BA5)+ and (BA4)3−ϕ∗(Vλ) → (BA5)3−Vλ .

Proof. The first part is Lemma 3.27: here [A5 : A4] = 5, P = Z/2 × Z/2, and for both A4 and A5,
N(P )/P ∼= Z/3.

For the second part, the Thom isomorphism theorem tells us ϕ′ : (BA4)3−ϕ∗(Vλ) → (BA5)3−Vλ induces
an isomorphism on mod 2 cohomology. The desired 2-primary equivalences then follow from the mod 2
Whitehead theorem [Ser53, Chapitre III, Théorème 3]. �

We can therefore reuse the calculations we made at the prime 2 in §5.1 to obtain the 2-primary parts of
Ω̃Spin
k ((BA5)3−Vλ) and ΩSpin

k (BA5); the odd-primary pieces are different, but not hard.

Proposition 5.110. The only odd-primary torsion in Hk(BA5) for k < 7 is contained in H3(BA5) ∼= Z/30.

Proof sketch. One can compute this using Gap; we also indicate how to do it by hand. Since |A5| = 60 = 22·3·5,
there is no p-primary torsion for p > 5, so it suffices to determine Hk(BA5;Z/3) and Hk(BA5;Z/5) in low
degrees. This can be done using the theorem of Adem-Milgram [AM04, Theorem II.6.8] mentioned above,
since the Sylow 3- and 5-subgroups of A5 are abelian. �

Corollary 5.111. In Ω̃Spin
k ((BA5)3−Vλ) and ΩSpin

k (BA5), the only odd-primary torsion for k < 7 is a Z/15
in degree 3.

Proof. As usual, we use the fact that ΩSpin
∗ → ΩSO

∗ is an isomorphism on odd-primary torsion, together with
the Thom isomorphism Ω̃SO

∗ ((BA5)3−Vλ) ∼= ΩSO
∗ (BA5), to reduce to showing the claim for ΩSO

k (BA5). For
this, use the Atiyah-Hirzebruch spectral sequence

(5.112) E2
p,q = Hp(BA5; ΩSO

q (pt)) =⇒ ΩSO
p+q(BA5).

On the E2-page, the only odd-primary torsion in total degree below 7 is Z/15 ⊂ E2
3,0 = H3(BA5). In all

differentials involving Er3,0, the other group is zero, so this odd-primary torsion lives to the E∞-page.
We also must check that the free summands in total degree below 7 do not receive differentials that produce

more odd-primary torsion. There are only two such free summands, in E2
0,0 and E2

0,4, and they can only
receive differentials from 2-torsion abelian groups, so that does not happen. �

Now we need to combine this with the 2-primary summands. For (BA5)3−Vλ , we need ΩSpin
∗ ((BA4)3−ϕ∗Vλ),

which we computed in Theorem 5.4. For BA5, we need ΩSpin
∗ (BA4); in the degrees we need, this is isomorphic

to ko∗(BA4), which Bruner-Greenlees compute in [BG10, §7.7.E].
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Theorem 5.113. The low-degree spin bordism groups of (BA5)3−V and BA5 are

Ω̃Spin
0 ((BA5)3−Vλ) ∼= Z ΩSpin

0 (BA5) ∼= Z

Ω̃Spin
1 ((BA5)3−Vλ) ∼= 0 ΩSpin

1 (BA5) ∼= Z/2

Ω̃Spin
2 ((BA5)3−Vλ) ∼= 0 ΩSpin

2 (BA5) ∼= Z/2⊕ Z/2

Ω̃Spin
3 ((BA5)3−Vλ) ∼= Z/30 ΩSpin

3 (BA5) ∼= Z/60

Ω̃Spin
4 ((BA5)3−Vλ) ∼= Z ΩSpin

4 (BA5) ∼= Z

Ω̃Spin
5 ((BA5)3−Vλ) ∼= Z/2⊕ Z/2 ΩSpin

5 (BA5) ∼= 0

Ω̃Spin
6 ((BA5)3−Vλ) ∼= Z/2 ΩSpin

6 (BA5) ∼= Z/2.

Hence the 0th A5-equivariant phase homology groups vanish for both spinless and spin-1/2 fermions.

Finally, class A. Since Vλ is not pinc, because its restriction to A4 is not (Lemma 5.7), we care about
(BA5)Det(Vλ)−1 ∼= (BA5)+ in the spin-1/2 case, because Vλ is orientable. Let fA0 , resp. fA1/2, denote the
equivariant local systems of symmetry types for the class A spinless, resp. spin-1/2 cases.

Theorem 5.114. The low-degree spinc bordism groups of (BA5)3−Vλ and BA5 are

Ω̃Spinc
0 ((BA5)3−Vλ) ∼= Z ΩSpinc

0 (BA5) ∼= Z

Ω̃Spinc
1 ((BA5)3−Vλ) ∼= 0 ΩSpinc

1 (BA5) ∼= 0

Ω̃Spinc
2 ((BA5)3−Vλ) ∼= Z ΩSpinc

2 (BA5) ∼= Z⊕ Z/2

Ω̃Spinc
3 ((BA5)3−Vλ) ∼= Z/30 ΩSpinc

3 (BA5) ∼= Z/30

Ω̃Spinc
4 ((BA5)3−Vλ) ∼= Z2 ΩSpinc

4 (BA5) ∼= Z2,

and in both cases, ΩSpinc
5 is torsion. Hence both PhA5

0 (R3; fA0 ) and PhA5
0 (R3; fA1/2) vanish.

Proof. The calculation separates into 2-primary and odd-primary computations; by Lemma 5.109, the
2-primary pieces are exactly as in Theorem 5.8.

The calculation of the odd-primary parts follows the same line of reasoning as the proof of Lemma 5.78:
as usual, use the odd-primary equivalence MTSpinc → MTSO ∧ (BU1)+. We know from Proposition 5.110
that the only odd-primary torsion in Hk(BA5) for k ≤ 6 is Z/15 ⊂ H3; feeding that to the Künneth
formula, the only odd-primary torsion in Hk(BU1 ×BA5) is two Z/15 summands in H3 and H5. Then the
Atiyah-Hirzebruch argument is identical to the argument in Lemma 5.78. �

5.7. Full icosahedral symmetry. If one includes orientation-reversing symmetries of the icosahedron, the
symmetry group enlarges to A5 × Z/2, with the Z/2 generated by an inversion. This symmetry group is also
incompatible with translations, so Remark 5.108 applies. This calculation also quickly reduces to something
we already know: restricting the representation to A4 × Z/2 yields the pyritohedral symmetry representation
we studied in §5.2.

Theorem 5.115. Let ρ be a virtual A5 × Z/2-representation with rank zero, and let Vρ → BG denote the
associated virtual vector bundle. Suppose that w1(Vρ) = x, where x denotes the generator of H1(BZ/2;Z/2) ⊂
H1(B(A5 × Z/2);Z/2). Then inclusion of the pyritohedral symmetry subgroup ϕ : A4 × Z/2 ↪→ A5 × Z/2
induces a homotopy equivalence B(A4 × Z/2)Vρ '→ B(A5 × Z/2)Vρ .

Proof. By the Whitehead theorem, it suffices to establish that ϕ induces an isomorphism H̃∗(B(A5 ×
Z/2)Vρ ; k)→ H̃∗(B(A4 × Z/2)Vρ ; k) for k = Q and k = Z/p for all primes p.

Lemma 5.109 and the Künneth theorem imply that ϕ∗ : H∗(B(A5 × Z/2);Z/2)→ H∗(B(A4 × Z/2);Z/2)
is an isomorphism. Together with the Thom isomorphism theorem, this takes care of the case k = Z/2.

Let G be either of A4 × Z/2 or A5 × Z/2; the map Bϕ : B(A4 × Z/2)→ B(A5 × Z/2) allows us to think
of Vρ as over BG for either G, and make sense of the statement w1(Vρ) = x. The Thom isomorphism implies
H̃∗((BG)Vρ ;Z) ∼= H∗(BG;Zx), and since Zx arises as a pullback local system along BG→ BZ/2, the twisted
Künneth formula proves H̃∗(BG;Z) is 2-torsion. The universal coefficient theorem then implies that when
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we take coefficients in k = Q or k = Z/p for p odd, H̃∗(B(A4 × Z/2)Vρ ; k) and H∗(B(A5 × Z/2)Vρ ; k) vanish,
so the map between them is vacuously an isomorphism. �

Let λ : A5 × Z/2 → O3 denote the representation as the group of symmetries of an icosahedron and
Vλ → B(A5 × Z/2) denote the associated vector bundle. Then w1(Vλ) = x. Let fD0 and fD1/2 denote the
spinless, resp. spin-1/2 class D equivariant local systems of symmetry types, and fA0 and fA1/2 denote their
analogues in class A.

Corollary 5.116. ϕ induces homotopy equivalences

B(A4 × Z/2))3−Vλ ∼=−→ (B(A5 × Z/2))3−Vλ(5.117a)

(B(A4 × Z/2))Det(Vλ)−1 ∼=−→ (B(A5 × Z/2))Det(Vλ)−1.(5.117b)

Therefore
(1) Proposition 5.12 implies that PhA5×Z/2

0 (R3; fD0 ) ∼= (Z/2)⊕3;
(2) Theorem 5.27 implies that PhA5×Z/2

0 (R3; fD1/2) ∼= Z/2;
(3) Theorem 5.29 implies that PhA5×Z/2

0 (R3; fA0 ) ∼= Z/4⊕ (Z/2)⊕3; and
(4) Theorem 5.32 implies that PhA5×Z/2

0 (R3; fA1/2) ∼= Z/8⊕ (Z/2)⊕3.

6. Glide symmetry protected phases

Though we have focused on point group symmetries thus far, Freed-Hopkins’ ansatz [FH19a] also ap-
plies to crystallographic groups. In this section, we apply their ansatz to the group of glide symme-
tries; invertible phases equivariant for this symmetry have been studied by Lu-Shi-Lu [LSL17] and Xiong-
Alexandradinata [XA18], and our results agree with theirs. In particular, Lu-Si-Lu make a conjecture
classifying certain glide-symmetric phases in all symmetry types, and we prove that their conjecture follows
from Freed-Hopkins’ ansatz.

The group of glide symmetries acting on Rd, d ≥ 2, is the free group on the single generator

(6.1) (x1, x2, . . . , xd) 7−→ (x1 + 1,−x2, x3, . . . , xd).

In previous sections, when the symmetry type is H = Spin, Spinc, Pin±, etc., the symmetry type can mix
with the group action on spacetime, corresponding physically to spinless or spin-1/2 fermions. Here, this
cannot happen: if µ2 denotes the kernel of the map Spinn → SOn or Pin±n → On, all extensions

(6.2) 0 // µ2 // G̃ // Z // 0

split, so given one of these symmetry types, there is a unique equivariant symmetry type for this Z-action
with respect to mixing with fermion parity, corresponding to the trivial local system E → Rd with value
E := Map(MTH ,Σ2IZ).

Definition 6.3. Recall from Remark 1.28 that we defined a “forgetful map” ϕ : PhZ
∗(Rd;E)→ Ph∗(Rd;E).

The intrinsically Z-equivariant phase homology, denoted P̂hZ
∗(Rd;E), is the kernel of this map.

This corresponds under Freed-Hopkins’ ansatz to what Lu-Shi-Lu call a glide SPT : an invertible phase
equivariant for a Z glide symmetry which is trivializable when one forgets the symmetry.

Let TPd(H) denote the abelian group of SPT phases in (spatial) dimension d; Freed-Hopkins’ ansatz [FH16a]
classifying these phases in terms of invertible field theories predicts TPd(H) ∼= E−d.

Lu-Shi-Lu [LSL17] studied groups of glide SPTs and conjectured a formula classifying them in terms of
the classification of ordinary SPTs. We prove the corresponding statement on phase homology groups.

Theorem 6.4. For a given symmetry type ρn : Hn → On, there is a natural isomorphism P̂hZ
0(Rd;E) ∼=

E−(d−1) ⊗ Z/2.

Passing this through the ansatz, this predicts that the group of glide SPTs is naturally isomorphic to
TPd−1(H)⊗Z/2, which is Lu-Shi-Lu’s original conjecture [LSL17, Conjecture 1]. Xiong-Alexandradinata [XA18]
also obtain this result using physics-based arguments.
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Proof of Theorem 6.4. We calculate the 0th Z-equivariant Borel-Moore E-homology of Rd. As the Z-action is
free, this is the 0th (nonequivariant) Borel-Moore E-homology of the fundamental domain X := Rd/Z. Since
the one-point compactification X of X is a finite CW complex, this Borel-Moore homology is isomorphic to
Ẽ0(X).

If σ → S1 denotes the Möbius bundle, then X is diffeomorphic to the total space of σ ⊕Rd−2 → S1, so X
is the Thom space (S1)σ+d−2. The identification (S1)σ ∼= RP2 induces X ∼= Σd−2RP2, and therefore

(6.5) PhZ
∗(Rd;E) ∼= Ẽ0(Σd−2RP2) ∼= Ẽ2−d(RP2).

Lemma 6.6. Let p : S2 → RP2 be the double cover map and s : Ẽk(S1) → Ẽk+1(S2) be the suspension
isomorphism. The composition p∗ ◦ δ ◦ s : Ẽ−1(S2)→ Ẽ−1(S2) is multiplication by 2.

Proof. This follows because the suspension is the cofiber of the cofiber; then one explicitly checks what
happens on mapping cylinders. �

Lemma 6.7. Under these isomorphisms, the forgetful map PhZ
0 (Rd;E)→ Ph0(Rd;E) is identified with δ.

Proof. Because Z acts freely on Rd, EZ
0,BM(Rd) is identified with Ẽ0 of the one-point compactification of

Rd/Z, which we saw above is homeomorphic to Σd−2RP2. The codomain of the forgetful map is E0,BM(Rd) ∼=
Ẽ0(Σd−2S2), so we have identified δ with a map Ẽ0(Σd−2RP2) → Ẽ0(Σd−2S2). But tracing through the
construction in Remark 1.28, this map comes from applying Ẽ0 to an actual map Σd−2RP2 → Σd−2S2.

Next, precompose with Σd+2p : Σd−2S2 → Σd−2RP2 and check that this map has degree 2, agreeing with
Lemma 6.6. This suffices to identify the maps because p∗ : [RP2, S2]→ [S2, S2] is injective. �

RP2 is homeomorphic to the cofiber of a degree-2 map S1 → S1. Hence there is a long exact sequence in
reduced E-homology

(6.8) · · · // Ẽ2−d(S1) m // Ẽ2−d(S1) r // Ẽ2−d(RP2) δ // Ẽ1−d(S1) // · · ·

where m is multiplication by 2. Exactness implies ker(δ) = Im(r) = coker(m). Using the suspension
isomorphism, Ẽk(S1) ∼= Ẽk−1, and therefore coker(m) ∼= E−(d−1)⊗Z/2, and 6.7 identifies δ with the forgetful
map from equivariant to nonequivariant phase homology for Rd. In particular, P̂hZ

0 (Rd;E) ∼= ker(δ), which
we have naturally identified with E−(d−1) ⊗ Z/2. �

Remark 6.9. Using the long exact sequence (6.8), we observe that PhZ
0 (Rd;E) has exponent 4. This is because

for any long exact sequence of abelian groups

(6.10) · · · // A
·2 // A

f // B
g // C

·2 // C // . . .

in which A and C are finitely generated, Im(f) ∼= A/2, hence has exponent 2, and ker(g) is isomorphic to the
subgroup of order-2 elements of C, which also has exponent 2. Since B is an extension of ker(g) by Im(f), B
has exponent 4.

Passing this observation through Freed-Hopkins’ ansatz, this recovers an observation of Xiong-Alexandradinata [XA18]:
that any phase equivariant with respect to glide symmetry, whether a glide SPT or not, has order dividing 4.

Example 6.11. In Altland-Zirnbauer class AII, corresponding to the symmetry type pinc̃+, the ansatz
predicts a unique nontrivial glide SPT in dimension 2 + 1, coming from the classification

(6.12) [MTPinc̃+,Σ4IZ]⊗ Z/2 ∼= Z/2

(the calculation of [MTPinc̃+,Σ4IZ] is due to Freed-Hopkins [FH16a, §9.3]). Physicists are particularly
interested in this nontrivial glide SPT phase, which is predicted to have unusual surface states called
“hourglass fermions” [WACB16], and which has been studied experimentally [MYL+17].

7. Conclusion and outlook

We conclude by indicating a few directions of potential further research.
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7.1. From free fermions to interacting phases. Free fermion phases are a rich source of examples of
invertible phases in the physics literature, at least for symmetry types spin, pin±, spinc, etc. The classification
of free fermion systems uses K-theory: see Kitaev [Kit09] for the original proposal and Freed-Moore [FM13]
for a comprehensive classification. However, for a given dimension and symmetry type, the map from
free fermion systems to invertible phases of matter can in general have both kernel (as first observed by
Fidkowski-Kitaev [FK10, FK11] and Turner-Pollmann-Berg [TPB11]) and cokernel (as first observed by
Wang-Potter-Senthil [WPS14] and Wang-Senthil [WS14]). Researchers are also interested in the free-to-
interacting map for phases with spatial symmetries, and this map has been studied from a physics point of
view for crystalline phases in several works, including [YR13, IF15, MFM15, LTH16, SS17, RL18, Zou18,
LVK19, RS20, ZYQG20, ACR+21].

Freed-Hopkins [FH16a, §9.2, §9.3] mathematically model the map from free to interacting systems using
the Atiyah-Bott-Shapiro map MTSpin → KO [ABS64], but they do not consider spatial symmetries. In view
of the large bodies of research on free fermions with spatial symmetries and invertible phases with spatial
symmetries, it would be nice to understand the map between them in the presence of spatial symmetry from the
low-energy field theory perspective, and to make contact with the work of Adem, Antolín Camarena, Semenoff,
and Sheinbaum [AACSS16], Sheinbaum and Antolín Camarena [SC20], and Cornfeld-Carmeli [CC21] studying
free fermion phases with spatial symmetries using methods from homotopy theory. This is something we
hope to tackle in future work.

7.2. Other symmetry types. We investigated two of the ten Altland-Zirnbauer classes, and it would be
interesting to know whether a version of the FCEP holds for other classes. One starting point could be class
C, corresponding to a spinh structure [FH16a, (9.25)];34 the calculations in §2.8 could be applied to Spinhn to
obtain a fermionic crystalline equivalence principle for class C and hopefully phase homology calculations
predicting the existence of additional crystalline SPT phases.

Several teams of researchers have studied or classified interacting fermionic crystalline SPTs for other
Altland-Zirnbauer types, including [YR13, YX14, CHMR15, LTH16, WF17, CW18, RL18, SXG18, MSH19,
ZXXS20, ZYQG20]. It would be good to compare their computations with the predictions made by an FCEP
in other symmetry types.

Another interesting potential connection with preexisting work is the case of class A phases with a spatial
reflection interacting with the internal U1 symmetry. Depending on how the symmetries mix, Shiozaki-
Shapourian-Gomi-Ryu [SSGR18, §V.C, §V.E] and Thorngren-Else [TE18, §VII.B] obtain classifications in
terms of pinc̃± bordism, and we would be interested in knowing whether that can also be obtained from our
ansatz. Similarly, can one begin with class C phases and a reflection acting on the internal SU2 symmetry
and obtain a classification in terms of pinh± bordism?

7.3. Crystallographic groups. Though we discussed glide symmetries in §6, we have barely touched upon
the rich world of crystallographic groups. Free-fermion phases equivariant for these groups have been studied,
e.g. in [SMJZ13, KdBvW+17, SSG18, OSS19], but much less is known about the interacting case, even
though the our ansatz applies to it. There are some classifications by other methods for various classes of
crystallographic groups; for example, Ouyang-Wang-Gu-Qi [OWGQ20] study wallpaper group symmetries,
and Sheinbaum-Antolín Camarena [SC20] provide a general framework and a few examples. There is also
work by Wang-Alexandradinata-Cava-Bernevig [WACB16] and Guo-Ohmori-Putrov-Wan-Wang [GOP+20]
studying interacting phases for specific crystallographic groups that are not point groups.

7.4. Lattice realizations. Modeling topological phases as lattice Hamiltonian systems can make any
crystallographic symmetries acting on space very explicit, using a lattice and Hamiltonian invariant under
the symmetry of interest. Our predictions of point group SPTs should correspond to actual lattice models of
phases. We listed several specific predicted phases of interest in §3.1, and these would make for good starting
points for lattice realizations.

34Spinh is the symmetry type Spin×µ2 SU2 → O. Freed-Hopkins [FH16a, Proposition 9.16] call this symmetry type G0; it
is sometimes also called spin-SU2, e.g. in [WWW19]. Likewise, the symmetry types pinh± we refer to later in this section are
defined to be Pin± ×µ2 SU2, and are called G± by Freed-Hopkins [FH16a, Proposition 9.16].

https://arxiv.org/pdf/1604.06527.pdf#page.76
https://arxiv.org/pdf/1604.06527.pdf#page.88
https://arxiv.org/pdf/1604.06527.pdf#page.77
https://arxiv.org/pdf/1604.06527.pdf#page.75
https://arxiv.org/pdf/1604.06527.pdf#page.75
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