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Abstract
We give an overview of differential cohomology from the point of view of algebraic topology. This includes a survey of several
different definitions of differential cohomology groups, a discussion of differential characteristic classes, an introduction to differential
generalized cohomology theory, and some applications in physics.

Introduction

It is a truth universally acknowledged that a closed differential form, in possession of an interpretation as a gauge field in a
quantum field theory, must be in want of an integral refinement. This refinement manifests the quantum nature of the physical
theory: that quantities in the theory are ‘‘quantized,’’ meaning that in some system of units they are integers, not arbitrary real
numbers. The mathematical incarnation of this theory of closed forms with integrality data is called differential cohomology; the
objective of this article is to survey this theory, including several different approaches to the basic definitions, some useful
constructions in the theory, and some applications.

The basic data is as follows. For M a smooth manifold, there are differential cohomology groups Ȟ
kðM;ZÞ equipped with a

characteristic class map cc : Ȟ
kðM;ZÞ-HkðM;ZÞ and a curvature map curv : Ȟ

kðM;ZÞ-OkðMÞcℓ; there is a sense in which Ȟ
kðM;ZÞ

is the universal object classifying data of an integral cohomology class (its characteristic class), a closed differential form (its
curvature), and an identification of the two induced de Rham cohomology classes. The first construction of Ȟ

kðM;ZÞ was given by
Cheeger and Simons (1985), and since then many constructions, concrete and abstract, have appeared; we will survey several in
section “Definitions”.

It is a general rule of thumb that ordinary cohomology is to topological objects as differential cohomology is to geometric ones.
For example, H2ðM;ZÞ classifies complex line bundles L-M, and Ȟ

2ðM;ZÞ classifies complex line bundles with connection. The
characteristic class and curvature maps capture the first Chern class of the line bundle, resp. the curvature of the connection.

As differential cohomology feels like ordinary cohomology, but upgraded, one can ask which facts about ordinary cohomology
upgrade to differential cohomology. The answer is that quite a lot of them do, including integration along the fiber of a relatively
oriented bundle of smooth manifolds. In addition, large parts of the theory of characteristic classes lift to differential cohomology,
and even enhance: the differential cohomology refinement of the Chern-Weil map contains the information of Chern-Simons
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invariants, for example. In section “Differential Characteristic Classes” we discuss this and other aspects of characteristic classes in
differential cohomology. Another avenue for analogy with ordinary cohomology is the prospect of differential refinements of
generalized cohomology theories. These too exist, and we will discuss theory and examples in section “Differential Generalized
Cohomology”.

In section “Applications in Physics”, we discuss applications of differential cohomology in theoretical physics: quantization of
abelian gauge fields.

Finally, in section “Further Reading”, we give some suggestions for further reading.
Definitions

Before the main content of this section, where we survey several different models for differential cohomology, let us begin with
some basic key facts about these groups.

Differential cohomology is a theory assigning to each smooth manifold M a series of abelian Fréchet Lie groups Ȟ
kðM;ZÞ

which are not homotopy invariants of M

• Ȟ
1ðM;ZÞ is naturally isomorphic to the set of functions M-ℝ=Z.

• Ȟ
2ðM;ZÞ is naturally isomorphic to the isomorphism classes of complex line bundles on M with connection.

• Ȟ
�ðM;ZÞ comes with a cup product making it into a ring.

• There is a map cc : Ȟ
kðM;ZÞ-HkðM;ZÞ, called the characteristic class map. On Ȟ

2
, this sends a line bundle with connection to

its first Chern class.

• There is a map curv : Ȟ
kðM;ZÞ-OkðMÞcℓ (i.e. to closed k-forms), called the curvature map. On Ȟ

2
, this sends a line bundle with

connection to its curvature.
Cheeger-Simons’ Differential Characters

Differential characters are for the reader who sees de Rham cohomology’s philosophy of form over function and thinks, ‘‘why can’t
I have both?’’ They were the first definition of differential cohomology to appear, and have the feel of singular cohomology.

Definition 1.1 (Cheeger and Simons, 1985, section 1). Let M be a smooth manifold and write Csm
k ðMÞ, resp. Zsm

k ðMÞ, for the
abelian groups of smooth k-chains, resp. k-cycles on M. A differential character of degree n on M is a homomorphism χ :

Zsm
n�1ðMÞ-ℝ=Z such that there exists oAOnðMÞ such that for all CACsm

n�1ðMÞ,

χð∂cÞ ¼
Z
c
oðχÞ modZ ð1:2Þ

The degree-n differential cohomology of M, denoted Ȟ
nðM;ZÞ, is the group of degree-n differential characters.

There is a unique o satisfying this definition for a given χ, and o is always a closed form. The curvature map sends χ ↦o.
The characteristic class map has a slightly more elaborate definition. Since Zsm

n�1ðMÞ is a free abelian group and ℝ-ℝ=Z is an
epimorphism, χ : Zsm

n�1ðMÞ-ℝ=Z lifts to a homomorphism ~χ : Zsm
n�1ðMÞ-ℝ. Now define Ið~χÞ : Csm

n�1ðMÞ-Z by

C ↦2~χð∂CÞ þ
Z
c
curv ðχÞ ð1:3Þ

One can show this is indeed Z-valued, and since curvðχÞ is a closed form, this is a cocycle. The characteristic class morphism
sends χ ↦ ½Ið~χÞ�, which can be shown to not depend on the choice of lift ~χ

Remark 1.4 Our indexing convention differs from Cheeger-Simons’ original convention; we follow the standard convention in
the field of differential cohomology, so that the characteristic class and curvature morphisms preserve the degree
Deligne Cohomology

Deligne cohomology refers to a sheaf cohomology model for differential cohomology. Deligne first studied this model in an
algebro-geometric setting in Brylinski (1993) and Deligne (1971). was the first to consider this model on smooth manifolds.

Throughout this article, we make the category Man of manifolds and smooth functions into a site in which the coverings are
surjective submersions, and we define a few sheaves on this site.

• Given a Lie group A, we let A denote the sheaf of smooth A-valued functions;A without underline denotes the sheaf of locally
constant A-valued functions, i.e. smooth functions for the discrete Lie group structure on A.

• The sheaf of differential k-forms, denoted Ok, sends a manifoldM to the real vector space OkðMÞ of k-forms onM. Thus we have an
isomorphism u : ℝ-

D
O0.
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We will also take chain complexes of sheaves on Man. The categories of chain complexes of sheaves on Man and sheaves of
chain complexes on Man are isomorphic; given a sheaf of chain complexes F� on Man and a smooth manifold M, H�ðM;F�Þ
refers to the hypercohomology of M valued in C; that is, form the double complex CpðM;F qÞ and take the cohomology with respect
to the total differential.1

Definition 1.5 (Deligne, 1971, section 2.2). The Deligne complex ZðnÞ is the chain complex of sheaves

ZðnÞ :¼ ð0-Z-O0-…-On�1-0 ð1:6aÞ
Here the map Z-O0 is the inclusion of Z-valued functions into ℝ-valued functions combined with the isomorphism

u : ℝ-
D
O0.

Remark 1.6b Etymologically, the Deligne complex ZðnÞ is related to the ‘‘Tate twist’’ that is also often denoted ZðnÞ, but the two
are not equivalent. For this reason, some authors denote the Deligne complex something like ZðnÞD

One also sees the complexes

ℝðnÞ :¼ ð0-ℝ-
~u
O0-⋯-On�1-0Þ; ð1:6cÞ

where ~u is the inclusion of locally constant functions into all functions followed by u, and

TðnÞ :¼ ð0-T⟶
j

O1-…-On-0Þ ð1:6dÞ
where jð1=2piÞdlog and dlog : T-iO1 is the morphism sending a T-valued function f to the form ð1=f Þdf

Proposition 1.7 (Brylinski, 1993, Proposition 1.5.7). For any manifold M, there is a natural isomorphism HnðM;ZðnÞÞDȞ
nðMÞ.

Thus the ‘‘diagonally graded’’ Deligne cohomology groups are differential cohomology groups. The ‘‘off-diagonal’’ groups
HkðM;ZðnÞÞ for kan are isomorphic to singular cohomology valued in Z (if k4n) or ℝ=Z (if kon) (see Brylinski (1993, Theorem
1.5.3) and Hopkins and Singer (2005, section 3.2), so appear uninteresting at first glance, but they attain interesting values on
certain stacks; see section “Off-Diagonal Characteristic Classes”.

ℝðnÞ and TðnÞ are also familiar: ℝðnÞ is isomorphic to the sheaf of closed n-forms considered as a complex concentrated in
degree n, and TðnÞCZðnþ 1Þ½ � 1� (see Brylinski and McLaughlin (1994, Remark 3.6)); the proof of the latter essentially amounts
to the weak equivalence of the complexes 0-Z-ℝ-0 and 0-0-T-0.

In this model for differential cohomology, curv : HnðM;ZðnÞÞ-On
cℓðMÞ is the map ZðnÞ-ℝðnÞ induced by the inclusion Z↪ℝ,

together with the identification of ℝðnÞ-cohomology with closed n-forms. The characteristic class map is the effect on cohomology
of the truncation map t : ZðnÞ-Z defined by quotienting ZðnÞ by the subcomplex of sheaves in positive homological degrees.

Harvey-Lawson’s model for differential cohomology in terms of ‘‘sparks’’ (see Harvey and Lawson (2006)) has a similar feel to
Deligne cohomology, though with a cocycle model.
Hopkins-Singer’s Homotopy Pullback Model

Hopkins-Singer’s approach to differential cohomology (Hopkins and Singer, 2005, section 3) begins with the following observation.

Lemma 1.8 (Hopkins and Singer, 2005, section 3.2; Bunke et al., 2016, section 4.1). The truncation maps t : ZðnÞ-Z and ℝðnÞ-ℝ
participate in a homotopy pullback square

ð1:9Þ

where the vertical arrows are induced by the usual inclusion Z-ℝ.
This expresses the idea that differential cohomology is a homotopy pullback of closed differential forms and integral coho-

mology. Hopkins-Singer provide an explicit cocycle model for this homotopy pullback.

Definition 1.10 (Hopkins and Singer, 2005, section 3.2). Let ̌CðqÞ�ðMÞ be the cochain complex given by

ČðqÞnðMÞ :¼ CnðM;ZÞ � Cn�1ðM;ℝÞ � OnðMÞ; n≥q
CnðM;ZÞ � Cn�1ðM;ℝÞ; n≥q

(
ð1:11Þ
1For an abelian group A, H�ðM;AÞ is a priori ambiguous ‒ do we mean singular A-cohomology of M or the sheaf cohomology of M with respect to the sheaf
A? Fortunately, these two cohomology theories are naturally isomorphic.
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with differential given by, when n � q,

dðc; h;wÞ :¼ ðδc;w� c� δh; dw ð1:12aÞ
and when noq,

dðc; hÞ :¼
ðδc;−c−δh;0Þ; n ¼ q−1
ðδc;−c−δhÞ; noq−1

(
ð1:12bÞ

The degree-n differential cohomology of M is Ȟ
nðM;ZÞHnð ̌CðnÞ�ðMÞÞ.

If ðc; h;oÞ is an n-cocycle, then c and o are both closed; the characteristic class map sends ðc; h;oÞ to the class of c, and the
curvature map sends ðc; h;oÞ ↦o.
Simons-Sullivan’s Hexagon

Simons and Sullivan (2008) produced a property of differential cohomology that uniquely characterizes it, in terms of a hexagon-
shaped diagram.

Theorem 1.13 (Simons and Sullivan, 2008, Theorem 1.1). Let Ĥ
�
be a functor from manifolds to graded abelian groups, and suppose Ĥ

is equipped with natural transformations

(1) i1 : Hn�1ð��;ℝ=ZÞ-Ĥ
n
,

(2) i2 : On�1ð��Þ=ImðdÞ-Ĥ
k
,

(3) δ1 : Ĥ
n
-On

cℓ, and
(4) δ2 : Ĥ

n
-Hnð��;ZÞ

such that the following diagram commutes:

ð1:14Þ

where the topmost arrows are the Bockstein long exact sequence associated to 0-Z-ℝ-ℝ=Z-0, and the bottommost arrows come from
the de Rham theorem. Then Ĥ

�
DȞ

�
, δ1 and δ2 are respectively the curvature and characteristic class maps, and i1 and i2 are their kernels.

So this diagram, the differential cohomology hexagon, contains quite a bit of information: the topmost arrows are a long exact
sequence, the bottommost arrows are another long exact sequence, and the diagonals extend to a short exact sequence. Moreover,
both squares, when lifted to the level of sheaves of complexes on Man, are homotopy pullback squares.

See Stimpson (2011) for another axiomatic characterization of differential cohomology.
A Few Basic Properties of Differential Cohomology

We conclude this section with a few elementary properties of differential cohomology.

Higher gerbes with connection
Recall that Ȟ

1ðM;ZÞ is the group of functions M-ℝ=Z ‒ or equivalently, M-T, and that Ȟ
2ðM;ZÞ is the isomorphism classes of

complex line bundles with connection. These can be thought of as categorifications of T-valued functions, suggesting that higher
differential cohomology groups ought to represent categorifications of the notion of line bundle with connection. This is correct:
these higher-categorical objects are called gerbes with connection. See Brylinski (1993) and the references therein for more
information.

Cup product
The differential cohomology groups Ȟ

�ðM;ZÞ jointly carry a ring structure, which the characteristic class map sends to the
ordinary cup product and the curvature map sends to wedge product. There are various different ways to construct this cup product
dating back to Cheeger-Simons’ original construction (Cheeger and Simons, 1985) of differential cohomology.

Integration along the fiber
Suppose E-B is a submersion of smooth manifolds with fiber F and an oriented vertical tangent bundle ‒ i.e. exactly the
conditions needed to have integration along the fiber in ordinary cohomology. Then, there is also a differential-cohomology
integration along the fiber:
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Z
F
: HkðE;ZðnÞÞ-Hk�dimðFÞðB ; Zðn� dimðFÞÞÞ ð1:15Þ
See Hopkins and Singer (2005, section 2.4) for a construction of this map.

Cohomology operations
Grady and Sati (2018a,b) have lifted primary and secondary cohomology operations to differential cohomology.
Differential Characteristic Classes

Characteristic classes are a place where differential cohomology shines: the analogy with ordinary cohomology is close enough to
help both intuition and proofs, yet differential characteristic classes engender new phenomena, including geometric invariants
such as Chern-Simons invariants. Chern-Weil theory is the key to the story, so we begin with that, and then explain how it
manifests in differential cohomology.
Chern-Weil Theory

In this subsection only, we will let O�MðVÞ denote differential forms on the manifoldM valued in the vector space V , i.e., sections of
the bundle L�ðT�M#VÞ. For example, a connection Θ on a principal G-bundle P-M is a form in O1

PðgÞ, where g is the Lie
algebra of G, and the curvature of Θ is an element of O2

PðgÞ.
Consider the algebra Sym�ðg3ÞG, i.e. the G-invariants of the algebra of polynomial functions g-ℝ. Here the G-action is

induced from the adjoint action of G on g. Given fASymkðg3ÞG, so that f is a degree-k polynomial, together with a principal
G-bundle with connection, we will build a closed 2k-form whose de Rham class is a characteristic class for G-bundles.

Let p : P-M be a principal G-bundle with connection Θ and curvature OAO2
PðgÞ. Wedge together k copies of O to produce

O4kAO2k
P ðg#kÞ, then apply the polynomial f to obtain f ðO4kÞAO2k

P ðℝÞ. Because f is Ad-invariant, this form descends to a form
CWðP;Θ; f ÞAO2k

M ðℝÞ, called the Chern-Weil form of P, Θ, and f . The key properties of Chern-Weil forms are:

(1) CWðP;Θ; f Þ is a closed form,
(2) the de Rham class of CWðP;Θ; f Þ depends on P but not on the choice of Θ, and
(3) holding f fixed, CWðP;Θ; f Þ is natural in ðP;ΘÞ.

In fact, the Chern-Weil construction defines an isomorphism Sym�ðg3ÞG-H�ðBG;ℝÞ for any compact Lie group G.
Differential Cohomology Lifts of Chern-Weil Forms

Suppose that the de Rham class of a Chern-Weil form CWðP;Θ; f Þ is in the image of the map H�ð��;ZÞ-H�ð��;ℝÞ. Then we
have, at least at a heuristic level, the data of a differential cohomology class: a closed form and an integral cohomology class with
identified values in de Rham cohomology. Is there a lift to differential cohomology? Cheeger and Simons (1985) showed the
answer is yes, and Bunke et al. (2016) showed the naturality properties of these classes allow one to work universally with the
classifying stack BrG of principal G-bundles with connection.2

Theorem 2.1 (Cheeger and Simons, 1985, Theorem 2.2; Bunke et al., 2016, section 5.2). Let G be a compact Lie group and
cAH2kðBG;ZÞ. Let fASymkðg3ÞG be the polynomial uniquely characterized by asking for the de Rham class of CWðP;Θ; f Þ to equal cðPÞ in
H2kðBG;ℝÞ. Then, there is a unique class ̌cAȞ

2kðBrG;ZÞ whose characteristic class is c and whose curvature form is the Chern-Weil form.

That is, Chern-Weil theory produces characteristic classes in differential cohomology depending on a principal bundle and a
connection.

Example 2.2 For G¼On, SOn, or Un, we obtain characteristic classes of vector bundles with certain classes of connections.

(1) The Pontrjagin classes piAH4iðBOn;ZÞ of a real vector bundle lift to differential Pontrjagin classes ̌piAȞ
4iðBrOn;ZÞ of vector

bundles equipped with a metric and a compatible connection. See Brylinski and McLaughlin (1996) and Grady and Sati
(2021b, Proposition 3.6) for additional constructions of these classes.

(2) The Chern classes ciAH2iðBUn;ZÞ of a complex vector bundle lift to differential Chern classes ̌ciAȞ
2iðBrUn;ZÞ of complex

vector bundles equipped with a Hermitian metric and a compatible connection. See Several authors construct differential
Chern classes by other methods, including Brylinski and McLaughlin (1996), Berthomieu (2010), Bunke, (2010, 2013) and
Ho (2015) for additional constructions of these classes.
2By a stack we mean a simplicial sheaf on Man. See Freed and Hopkins (2013) for more information.



Differential Cohomology 237
(3) The Euler class eAH2kðBSO2k;ZÞ of an oriented real rank-2k vector bundle lifts to a differential Euler class ̌eAȞ
2kðBrSO2k;ZÞ

of such vector bundles equipped with a metric and a compatible connection. See Brylinski and McLaughlin (1996) and
Bunke (2013, Example 3.85) for additional constructions of ̌e.

For differential Pontrjagin and Chern classes but not the differential Euler class, one can relax the condition of compatibility
with the metric. See Amabel et al. (2021, Rmarkk 14.1.13). These classes also satisfy a Whitney sum formula, as described in
Amabel et al. (2021, section 14.2).

Fiorenza et al. (2012) generalize this story to higher groups.
Chern-Simons Invariants

Choose a class cAH2kðBG;ZÞ and let ̌cAȞ
2kðBrG;ZÞ be its differential refinement as guaranteed by Theorem 2.1 If M is a closed,

oriented 2k-manifold together with a principal G-bundle P-M with connection Θ, the data ðP;ΘÞ pull ̌c back to a class
̌cðP;ΘÞAȞ

2kðM;ZÞ. Since M is oriented, we can integrate:Z
Μ
čðP;ΘÞ AȞ

0ðpt;ZÞDZ ð2:3Þ

This integral is not so interesting: we just recover
R
McðPÞ, as if we had never entered the world of differential cohomology. But

there is something better we can do: since Ȟ
1ðpt;ZÞDℝ=Z, we can integrate on a ð2k� 1Þ-manifold N with principal G-bundle P

and connection Θ: Z
Ν
čðP;ΘÞAȞ

1ðpt;ZÞD ℝ=Z ð2:4Þ

This number turns out to be more interesting ‒ it recovers the Chern-Simons invariant.

Definition 2.5 (Chern and Simons, 1974). Choose fASymkðg3ÞG and let P-M be a principal G-bundle with two connections Θ0

and Θ1 on it. Since the space of connections is convex, we can let Θtð1� tÞΘ0 þ tΘ1 for tA½0;1�; these connections stitch together
to a connection Θ on ½0; 1� �M, with curvature O.

The Chern-Simons form of P, Θ1, and Θ2 is

CSf ðΘ1;Θ2Þ ¼
Z 1

0
f ðOÞAO2k�1ðMÞ ð2:6Þ

Given a bundle p : P-M with one connection Θ, the Chern-Simons form CSf ðΘÞ is defined by pulling ðP;ΘÞ back along
P-M, then computing CSf ðΘtriv; p�ΘÞ, where Θtriv is the connection coming from the tautological trivialization of p�P-P.

Proposition 2.7 With c and ̌c as above, let f be the invariant polynomial whose Chern-Weil form is curvð ̌cÞ, and let i2 :

O2k�1ðMÞ=ImðdÞ-Ȟ
2kðM;ZÞ be as in (1.14) (i.e. the kernel of the characteristic class map). Then, for any principal G-bundle p : P-M

with connection Θ

i2ðCSf ðΘÞÞ ¼ p�čðP;ΘÞAȞ
2kðP;ZÞ: ð2:8Þ

This was known to Chern and Simons (1974) albeit not stated explicitly there; see Amabel et al. (2021, Proposition 19.1.9) for
a proof.

To more explicitly relate Proposition 2.7 to the integration story we began with, fix 2k¼ 4 and G to be a simple, simply
connected Lie group, so that BG is 3-connected and any principal G-bundle P-N over a 3-manifold N admits a section. Choose a
section, and call it s : N-P. Then Z

N
s�CSf ðΘÞ ¼

Z
N
čðP;ΘÞ Aℝ=Z: ð2:9Þ

The left-hand side is a priori ℝ-valued, but depends on the section; the value in ℝ=Z is independent of the choice of s.

Remark 2.10 For ̌c1, exp 2pi
R
S1

̌c1ðP;ΘÞ� �
computes the holonomy of the connection Θ around S1.

Off-Diagonal Characteristic Classes

Let G be a Lie group and B�G be the classifying stack of principal G-bundles. Paralleling work of Beǐlinson (1984, section 1.7), Bloch
(1978), Soulé (1989), Brylinski (1999a, 1999b) and Dupont et al. (2000) in algebraic geometry, people have lifted characteristic
classes of principal G-bundles to the ‘‘off-diagonal’’ Deligne cohomology groups H2qðB�G;ZðqÞÞ, beginning with work of Bott (1973)
calculatingH�ðB�G;OqÞ and of Shulman (1972) and Bott and Shulman (1976) onH�ðB�G;O�qÞ; these calculations were interpreted
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in differential cohomology by Waldorf (2010) and Amabel et al. (2021, Chapter 15-17). One key result is a lift of the Chern-Weil
map.

Theorem 2.11 (Bott, 1973, Hopkins). Let G be a Lie group with p0ðGÞ finite, let i : K↪G be the inclusion of the maximal compact
subgroup of G, and let g and k be the Lie algebras of G and K, respectively. Then there is a commutative diagram

ð2:12Þ

where the left-hand square is a pullback square and CW is the usual Chern-Weil isomorphism.
Bott (1973) proved a related result; this reinterpretation is due to Hopkins, and a proof can be found in Amabel et al. (2021,

Corollaries 16.2.4, 16.2.5).
Hence if G is compact, the truncation map t : H2nðB�G;ZðnÞÞ-H2nðBG;ZÞ is an isomorphism. For noncompact G,Theorem

2.11 allows one to use information on Sym�ðg3ÞG to gain leverage on characteristic classes in H2nðB�G;ZðnÞÞ; see Amabel et al.
(2021, Chapter 17) and Debray et al. (2023, section 3) for examples of this technique.

If H is a Fréchet Lie group, there is a natural isomorphism from H3ðB�H;Zð1ÞÞ to the abelian group of Fréchet Lie group central
extensions of H by T (Amabel et al., 2021), Corollary 18.3.2]). Thus one can construct such extensions by using big_off_diago-
nal_thm to construct an off-diagonal characteristic class, then move it intoH3ð��;Zð1ÞÞ using some sort of transgression map. Work
of Brylinski and McLaughlin (1994, section 5)) shows how to use this to construct the Kac-Moody central extensions of loop groups
of compact simple Lie groups,3 and (Debray et al., 2023) use this approach to construct the Virasoro central extensions of DiffþðS1Þ.
Differential Generalized Cohomology

Generalized cohomology theories such as K-theory and cobordism have long been an important ingredient in the algebraic
topologist’s toolbox. In differential cohomology, analogous theories were motivated by ideas in string theory, before more recent
work studying all such ‘‘differential generalized cohomology theories’’4; from a homotopical point of view. In this section, we will
begin with the general theory in section “Differential Generalized Cohomology Theories and Sheaves On Manifolds”, then turn to
examples in section “Examples Of Differential Generalized Cohomology Theories”.

Differential generalized cohomology theories were first proposed by Freed (2000, section 1), who sketched a definition.
Hopkins and Singer (2005, section 4) provided the first comprehensive treatment of differential generalized cohomology. Bunke
et al. (2016) and Schreiber (2013) provide additional, more homotopical treatments; in this section, we will follow Bunke-
Nikolaus-Völkl’s account.
Differential Generalized Cohomology Theories and Sheaves on Manifolds

Let Sp denote the 1-category of spectra, and for any presentable 1-category C, such as Sp,let ShðManCÞ denote the 1-category of
C-valued sheaves on Man. These are the functors F : Manop-C whose restriction to each manifold is a sheaf in the usual sense.

Definition 3.1 (Bunke et al., 2016). A differential generalized cohomology theory is a cohomology theory on Man given by the sheaf
cohomology of some sheaf in ShðMan; SpÞ.

That is, generalized cohomology theories are to Sp as differential generalized cohomology theories are to ShðMan; SpÞ. Much of
the theory in this section works with target an arbitrary presentable 1-category C in place of Sp; see Amabel et al. (2021) and
Schreiber (2013) for more information.

Generalized differential cohomology theories are in general not homotopy-invariant. One easy example is HOk, given by
composing the sheaf of differential k-forms with the Eilenberg-Mac Lane functor. HOk-cohomology is nontrivial on ℝk.

Definition 3.2 A sheaf FAShðMan; SpÞ is homotopy invariant, or concordance-invariant, or ℝ-invariant, if for every map of manifolds
f : M-N that is a homotopy equivalence, Fðf Þ is an isomorphism. The full subcategory of homotopy invariant sheaves of spectra
is denoted ShℝðMan; SpÞ.

3Brylinski-McLaughlin did not have Theorem 2.11 available, so constructed their off-diagonal differential characteristic classes a different way, using objects
called multiplicative bundle gerbes. Theorem 2.11 gives an alternative to that part of their proof.
4One hears both ‘‘differential generalized cohomology theory and generalized differential cohomology theory.’’ In this article, we favor the former: the way
these theories have been studied in the literature generally treats them as differential analogs of generalized cohomology theories, rather than generalizations
of ordinary differential cohomology. For example, one does not often see Eilenberg-Steenrod-type axioms for differential generalized cohomology theories.
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Constant sheaves provide good examples of homotopy invariant sheaves.
The following lemma is essentially due to Dugger (2001) and Morel and Voevodsky (1999), though they considered space-

valued sheaves. See Bunk (2022) for a general, model-categorical version.

Lemma 3.3 The assignment F ↦FðptÞ defines an equivalence ShℝðMan; SpÞ-Sp.

The inclusion ιℝ : ShℝðMan; SpÞ-ShðMan; SpÞ admits both a left adjoint Lhi and a right adjoint Rhi. Rhi is the composition of
the global sections functor G� : ShðMan; SpÞ-Sp followed by the constant sheaf functor G� : Sp-ShðMan; SpÞ; for a formula for
Lhi, see Amabel et al. (2021, Chapter 5).

Definition 3.4 A sheaf FAShðMan; SpÞ is pure if G�ðFÞ ¼ 0. The full subcategory of pure sheaves of spectra is denoted
ShpuðMan; SpÞ.

For example, HOk is a pure sheaf. Pure sheaves tend to look like sheaves of differential forms, and contain the ‘‘infinitesimal’’
information in a differential generalized cohomology theory.

Definition 3.5 Let e : Rhi ) id be the counit of the adjunction ιℝBRhi. Define a functor Cyc : ShðMan; SpÞ-ShðMan; SpÞ and a
natural transformation curv : id ) Cyc by asking that curv : id ) Cyc is the cofiber of e. We call curv the curvature map and
CycðFÞ for a sheaf F the sheaf of differential cycles of F .

Cycfactors through ShpuðMan; SpÞ, and is in fact left adjoint to the inclusion ιpu : ShpuðMan; SpÞ↣ShðMan; SpÞ.

Definition 3.6 In a similar way, let Z : id ) Lhi be the unit of the adjunction LhiB ιℝ and let c : Def ) id be the fiber of Z. Given a
sheaf F , DefðFÞ is called the sheaf of differential deformations of F .

Def is left adjoint to Cyc.
The data of Def , Cyc, Lhi, and Rhi assemble to generalizations of (1.9) and (1.14).

Theorem 3.7 (Bunke et al., 2016, section 3). ShðMan; SpÞ is a recollement of its subcategories ShℝðMan; spÞ and ShpuðMan; SpÞ. That
is,

(1) both ιpu and ιℝ admit left adjoints, namely Cyc and Lhi;
(2) Cyc3ιℝC0; and
(3) a morphism of sheaves is an equivalence if and only if both Cyc and Lhi map it to an equivalence.

Corollary 3.8 (Fracture square, (Bunke et al., 2016,[Proposition 3.3)). There is a pullback square of natural transformations

ð3:9Þ

This is the analog of Lemma 1.8: it factors an arbitrary differential generalized cohomology theory as a pullback of something
like closed forms (the pure part, in the lower left corner) and a non-differential generalized cohomology theory (something
homotopy-invariant, in the upper right corner).

Corollary 3.10 (Differential cohomology hexagon, (Bunke et al., 2016, (9))). There is a commutative diagram of natural transfor-
mations

ð3:11Þ

with the following properties.



240 Differential Cohomology
(1) The diagonals ðe; curvÞ and ðc; ZÞ are cofiber sequences.
(2) The top and bottom rows are once-extended cofiber sequences.
(3) Both squares are pullback squares.

Plug in a sheaf F to obtain the differential cohomology hexagon for the differential generalized cohomology theory associated toF .

Remark 3.12 This flurry of adjoints suggests that it is the presence of so many adjoints that makes the whole theory of the
differential cohomology hexagon possible (Schreiber, 2013). takes this attitude, which he names cohesion, and uses it to study
differential cohomology in a very general setting.
Examples of Differential Generalized Cohomology Theories
Example 3.13 (Ordinary differential cohomology) For ordinary differential cohomology, apply the Eilenberg-Mac Lane functor H
to the Deligne complexes ZðnÞ. The resulting hexagon coincides with the differential cohomology hexagon from Theorem 1.13for
example, CycðHZðnÞÞCHℝðnÞ, recovering the sheaf of closed forms.
Example 3.14 (Differential K-theory) Differential K-theory was first studied by Freed and Hopkins (2000) and Freed (2000) for
applications in string theory, with related objects considered earlier by Gillet and Soulé (1990) and Lott (2000). Hopkins and Singer
(2005, section 4.4) gave the first comprehensive construction of differential K-theory, and additional constructions have been given by
Bunke and Schick (2009), Klonoff (2008, section 2), Bunke et al. (2016), Simons and Sullivan (2010, section 6), Schlegel (2013, section
4.2), Tradler et al. (2013), Tradler et al. (2016), Hekmati et al. (2015), Park (2017), Gorokhovsky and Lott (2018), Schlarmann (2019),
Cushman (2021), Park et al. (2022), Gomi and Yamashita (2023) and Lee and Park (2023). See Bunke and Schick (2012) for a survey.

The idea of differential K-theory is to use the Chern character as the source of differential form information refining a K-theory
class. Let A :¼ KU�ðptÞDZ½t; t�1�, with t ¼ 2. The Chern character is the map of spectra sending KU to its tensor product with ℝ:

ch : KU-KU4ΗℝC Hðℝ#AÞ ð3:15Þ
Fix nAZ, though only the value of nmod2 will matter in the end, due to Bott periodicity. Then define a K-theoretic analog of

the Deligne complex KUðnÞ as the homotopy pullback

ð3:16Þ

In the lower left corner, t�0 means taking the nonnegatively graded parts only (since A can contribute negative grading). This
sheaf consists of closed ℝ#A-valued forms whose degrees, possibly shifted by multiplication by a power of t, are nonnegative and
of the same parity as n. The reason for this complicated object is that the Chern character associated to a connection on a vector
bundle is a form of this type.

The differential K-theory groups ̌K
nðMÞ are the hypercohomology groups HnðM;KUðnÞÞ. They are 2-periodic, like for ordinary

K-theory. ̌K
0ðMÞ is naturally isomorphic to the group completion of the commutative monoid of vector bundles with connection onM.

We can then fill in the rest of the hexagon for differential K-theory. This diagram was first constructed by (Simons and Sullivan,
2010):

ð3:17Þ

The story is still roughly similar to the hexagon for ordinary differential cohomology, but there is some new notation.

• K�ð�;ℝ=ZÞ is K-theory with ℝ=Z coefficients, the generalized cohomology theory represented by the spectrum which is the
cofiber of ch : KU-KU4HℝCHðℝ#AÞ. This theory first appears in Atiyah et al. (1976, section 5), who attribute it to Segal.
The long exact sequence in cohomology induced by the cofiber sequence KU-KU4Hℝ-KUð��;ℝ=ZÞ, which is a K-the-
oretic analog of the Z-ℝ-ℝ=Z Bockstein long exact sequence, is the upper long exact sequence in (3.17).

• cc is the characteristic class map, which is the topmost map in (3.16).

• chr is the version of the Chern character which takes in a vector bundle with connection and produces a closed form. This is the
curvature map for differential K-theory.



Example 3.18 (Differential KO-theory). Like differential K-theory, differential KO-theory was first studied by Freed and Hopkins
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(2000) and Freed (2000); Grady and Sati (2019, 2021b) were the first to comprehensively study differential KO-theory, and
Cushman (2021) and Gomi and Yamashita (2023) provide additional constructions.

The real version of Example 3.14 is completely analogous. Instead of using the Chern character, one uses its real analog
(sometimes called the Pontrjagin character)
ph : KO-KO4ΗℝC Hðℝ#BÞ ð3:19Þ
where BDZ½t; t�1� with t ¼ 4.5 One succinct way to define both ph and its form-level version phr for a real vector bundle with
connection is: first complexify, then take the Chern character. The result a priori lands in ℝ#A-valued forms (resp. cohomology),
but in fact factors through ℝ#B-valued forms (resp. cohomology).

Thus we have Deligne-type complexes, now depending on nmod8:

ð3:20Þ

and the differential KO-cohomology hexagon:

ð3:21

where as usual ̌KOnðMÞ is the nth cohomology of M valued in KOðnÞ.

Remark 3.22 (Some more examples) Though differential K- and KO-theory are the most commonly studied differential gen-
eralized cohomology theories, several others appear in the literature.

(1) Supercohomology SH, defined by Freed (2008, section 1)) and Gu and Wen (2014) is the spectrum with p0ðSHÞDZ,
p2ðSHÞDZ=2, and the unique nontrivial Postnikov invariant connecting them.6 Freed and Neitzke (2022, 2023) introduce a
differential refinement of this theory for the purpose of studying classical spin Chern-Simons theory.

(2) Differential refinements of algebraic K-theory spectra appear in work of Bunke and Gepner (2021), Bunke and Tamme (2015,
2016), Bunke (2018a, 2018b), Park et al. (2022); and Schrade (2018) where among other things they are applied to construct
a topological version of Beilinson’s regulator homomorphisms.

(3) A complex-analytic differential refinement of MU, the spectrum representing complex cobordism, appears in work of Haus and
Quick (2023a, 2023b) and Hopkins and Quick (2015), Kaspersen and Quick (2023) and Quick (2016, 2019); another differential
cobordism theory appears in work of Bunke et al. (2009). See also Grady and Sati (2017) for a closely related construction.
Applications in Physics

Closed differential forms are commonplace in the classical theory of electromagnetism, encoding quantities such as the field
strength. Passing to the quantum theory amounts to choosing integrality data for the de Rham classes of these forms — in other
words, lifting them to differential cocycles. We will discuss this story in this section, where it also leads to the original motivation
for differential generalized cohomology theories (section “Quantizing in More General Cohomology Theories”).
Dirac Quantization in Electromagnetism

For the first part of this section, we follow Freed (2000); see Amabel et al. (2021, Chapter 21).
Let us go over the basic objects of nonrelativistic classical electromagnetic theory in three-dimensional space, which for us will

be an oriented Riemannian 3-manifold Y with empty boundary. Let Xℝ� Y , with the Lorentzian metric dt2 � g, where t is the
ℝ-coordinate.

One may be used to thinking of an electric field as a vector field, representing at each point the magnitude and direction of
force exerted on a unit test charge. We will use the metric to pass between TY and T�Y and describe the electric field as a 1-form
EAO1ðYÞ. For the magnetic field, it is helpful to instead pass through the Hodge star and obtain a 2-form BAO2ðYÞ. The charge
density rc is a compactly supported differential 3-form, and the (electric) current JE is a compactly supported 2-form.
5B is not isomorphic to KO�ðptÞ. When we tensor with ℝ, this discrepancy goes away.
6Sometimes SH is called restricted supercohomology to contrast with extended supercohomology, a different spectrum studied by Kapustin and Thorngren (2017)
and Qing-Rui Wang and Gu (2020). See Gaiotto and Johnson-Freyd (2019, sections 5.3, 5.4).
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The field strength is FB� dt4EAO2ðXÞ, and let jErE � dt4JEAO3
c ðXÞ. Maxwell’s equations can be concisely expressed in terms of

F and jE:

dF ¼ 0

d⋆F ¼ jE
ð4:1Þ

If there is a magnetic current jBAO3ðXÞ, we modify the first equation to dF ¼ jB.
One can then use these forms to write down a Lagrangian action, compute quantities such as the total charge, and so on. The

total charge Q is a cohomological object, in fact —it is the de Rham class of jE in H3
c ðY ;ℝÞ. There is an analogous total magnetic

charge.
Quantization tells us that the total charge ought to be discrete — for example, if Y ¼ℝ3, H3

c ðℝ3;ℝÞDℝ, and we assume the
total electric charge is some integer multiple of a unit charge qE. In general, we postulate that the charge must be in the image of the
map H3

c ðY; qEZÞ-H3
c ðY ;ℝÞ, and likewise for a unit magnetic charge qB.

So the electric charge is a closed form with what looks like data of a lift of its de Rham class to qEZ-cohomology. This suggests:
Ansatz 4.2 Objects represented by closed differential forms in a classical theory of physics should be represented by cocycles for

ordinary differential cohomology in the corresponding quantum theory.
We use cocycles, rather than cohomology classes, in order to obtain something which sheafifies, part of the principle of locality

of quantum field theory.
In general, differential forms represent plenty of objects in field theories. Notably, they are gauge fields for abelian gauge

groups, including for ‘‘higher gauge theory’’ where the gauge group is a categorification of the circle group and one uses (higher)
gerbes instead of principal bundles with connection.
Quantizing in More General Cohomology Theories

String theory teaches us a striking lesson: that for some differential forms, the natural home for the fields in the quantized theory is
a differential generalized cohomology theory. Typically this is differential K- or KO-theory, but choosing the correct theory is more
of an art than a science and there are different proposals using different differential generalized cohomology theories.

For example, consider type IIB string theory on a 10-manifold X. There is a 3-form field B, which as above should be upgraded
to a cocycle for B̌AȞ

3ðX;ZÞ. For now, assume this field is zero7; then there are several forms called Ramond-Ramond field strengths
GiAOiðXÞ, where i¼ 1;3;5;7; 9. These field strengths satisfy related integrality conditions implying that they are the Chern
character of a cocycle for ̌K

1ðXÞ, so we postulate that the Ramond-Ramond field is a cocycle for differential K-theory. See Freed
(2002, section 3) for further discussion. Other examples include ̌K

0
appearing in type IIA string theory, ̌KO� in type I string

theory, and the type II B-field lifting to a differential refinement of a Postnikov truncation of PicðKUÞ-cohomology, as described by
Distler et al. (2011a,b).

See also Belov and Moore (2006a,b), Diaconescu et al. (2007), Doran et al. (2014), Fiorenza et al. (2015), Freed et al. (2007a,b),
Freed (2008), Grady and Sati (2019), Kahle and Minasian (2013), Kahle and Valentino (2014), Ruffino and Barriga (2020), Ruffino
(2016); Sati and Schreiber (2023a,b), Sati et al. (2012); Sati (2010, 2011, 2019) and Szabo and Valentino (2010) for more examples
of quantization in differential generalized cohomology theories. Of particular note is ‘‘hypothesis H’’ of Fiorenza et al. (2020),
Fiorenza et al. (2021a), Sati (2018) proposing that the C-field in M-theory is quantized using twisted differential cohomotopy; work
of Burton et al. (2021), Fiorenza et al. (2020), Fiorenza et al. (2021a,b), Fiorenza et al. (2022),Grady and Sati (2021a), Roberts
(2020); Sati and Schreiber (2020, 2021, 2022, 2023b,c) and Sati (2020), explores this hypothesis and its consequences.
Further Reading

The book Amabel et al. (2021) is an introduction to differential cohomology with much the same attitude as the current article; we
also recommend the other book-length introductions (Bär and Becker, 2014; Bunke, 2013; Schreiber, 2013). Hopkins and Singer
(2005) is a research article that we also recommend as a book-length introduction.

One application of differential generalized cohomology in physics that we did not get into is the classification of reflection-
positive invertible field theories, conjectured by Freed and Hopkins (2021) and proven by Grady (2023). See Freed and Hopkins
(2021) and Freed (2019) for more on this conjecture, and Amabel et al. (2021, Chapter 220) for a review, and see Davighi et al.
(2020), Yamashita and Yonekura (2023) and Yamashita (2023a, 2023b) for some related work.
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