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Abstract: The generalized double semion (GDS) model, introduced by Freedman and
Hastings, is a lattice system similar to the toric code, with a gapped Hamiltonian whose
definition depends on a triangulation of the ambient manifold M , but whose space of
ground states does not depend on the triangulation, but only on the underlying manifold.
In this paper, we use topological quantum field theory (TQFT) to investigate the low-
energy limit of the GDS model. We define and study a functorial TQFT ZGDS in every
dimension n such that for every closed (n − 1)-manifold M , ZGDS(M) is isomorphic
to the space of ground states of the GDS model on M ; the isomorphism can be chosen
to intertwine the actions of the mapping class group of M that arise on both sides.
Throughout this paper, we compare our constructions and results with their known
analogues for the toric code.

1. Introduction

The classification of topological phases ofmatter is an active area of research in the theory
of condensed-matter physics and in nearbymathematical fields. There aremany different
approaches to this classification problem (for an incomplete sample, see [12,38,41,49]),
but from amathematical point of view, a classification via low-energy limits is appealing:
based on physical insights, it is believed that the low-energy effective theory of a gapped
phase of matter is a topological quantum field theory (TQFT), possibly tensored with
an invertible theory, and that passage to the low-energy effective theory should send
physically distinct phases to distinct TQFTs [17,20,25,50]. As TQFTs have a purely
mathematical description due toAtiyah [2] andSegal [54], this reframes the classification
question within mathematics—though a systematic mathematical understanding of this
physical ansatz relating lattice systems to effective field theories remains out of reach.
Even at a physical level of rigor, it is not clear what the general definition of the low-
energy effective theory of a lattice model should be, and without this it is impossible
to rigorously verify the efficacy of the low-energy approach to classification in general.
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Nonetheless, there aremany examples of latticemodels in the physical andmathematical
literature, and it is instructive to study what can be said about their low-energy effective
theories in order to gain insight into the general picture. Some examples include [1,5,8,
11,13,36].

In this paper, we investigate the low-energy effective theory of the generalized double
semion (GDS) lattice model of Freedman–Hastings [22], which exists in every dimen-
sion. Freedman and Hastings define the GDS model and study its spaces of ground
states on different manifolds, showing that in even (spacetime) dimensions n they are
isomorphic to the state spaces of the Z/2-Dijkgraaf–Witten theory with Lagrangian
equal to 0, but that for odd n > 3, they are not isomorphic to the state spaces of any
Z/2-Dijkgraaf–Witten theory. For every dimension n, we define an n-dimensional TQFT
ZGDS : Bordn → VectC and show that for every closed (n − 1)-manifold M , the state
space ZGDS(M) is isomorphic to the space of ground states of the GDS model on M ,
and that this isomorphism is equivariant with respect to the actions of MCG(M) coming
from the GDS model and the TQFT. Along the way, we reformulate the GDS model
as a lattice gauge theory with gauge group Z/2: it is a theory formulated on manifolds
with a triangulation, which plays the role that a Riemannian metric does inWick-rotated
quantum field theory. We find that, as for the toric code lattice model, the low-energy
limit does not depend on the triangulation, and is described by the state spaces of a
TQFT. For both the toric code and GDS models, this TQFT is a Z/2-gauge theory, but
unlike for the toric code, theGDS theory involves gravity, in that Stiefel–Whitney classes
of the underlying manifold enter the effective action. This explains the above result of
Freedman–Hastings that this TQFT cannot be any Z/2-Dijkgraaf–Witten theory when
n is odd and greater than 3 [22, Theorem 8.1].

The GDS model is closely analogous to the toric code; thus, throughout this paper,
we will introduce ideas first for the toric code, which is simpler, and then turn to the
GDS model. In Sect. 2, we define the toric code (Sect. 2.1) and GDS models (Sect. 2.2)
in arbitrary dimension. These are both examples of lattice models, which are discretized
analogues of quantum field theories studied in condensed-matter physics: one puts a
combinatorial structure, such as a CW structure or a triangulation, on a manifold, and
formulates all data of the theory, including the fields and the Hamiltonian, in terms of
this combinatorial structure. The toric code and GDS models are typically written as
spin liquids, meaning the fields are functions from the edges of a lattice to {↑,↓}. We
reformulate them as lattice gauge theories, describing equivalent models whose fields
are discretizations of principal Z/2-bundles.

In Sect. 3, we construct a class of TQFTs called Z/2-gauge–gravity theories. They
generalizeDijkgraaf–Witten theorieswith gauge groupZ/2, but the Lagrangian includes
Stiefel–Whitney classes of the underlyingmanifold in addition to characteristic classes of
the principalZ/2-bundle. First, in Sect. 3.1, we define “classical gauge–gravity theories,”
invertible TQFTs of manifolds with a principal Z/2-bundle. Then, in Sect. 3.2, we
quantize these theories, summing over the groupoid of principalZ/2-bundles to produce
TQFTs Zβ : Bordn → VectC of unoriented manifolds given a cohomology class β ∈
Hn(BOn × BZ/2; Z/2).

In Sect. 4, we use these gauge–gravity TQFTs to study the low-energy behavior of
the GDS model. The Hamiltonian in the GDS model has spectrum contained within
Z≥0, and the space of ground states of the GDS model on an (n − 1)-manifold M is
defined to be the kernel of the Hamiltonian for M . In examples arising in physics from
topological phases of matter, the space of ground states often depends only on M , and
not on the triangulation. When this occurs, it is expected that this extends to a TQFT
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Z : Bordn → VectC, in that for any closed (n − 1)-manifold M , Z(M) is isomorphic
to the space of ground states on M . First, in Sect. 4.1, we discuss a way to strengthen
this: given a closed (n − 1)-manifold M , there is a natural action of Diff(M) of M on
Z(M). We provide a method for some lattice models of constructing a Diff(M)-action
on the space of ground states of M , and we will ask for the isomorphism of the space of
ground states on M with Z(M) to be Diff(M)-equivariant. In Sect. 4.2, we implement
this idea for the toric code, where we reprove the following known result.

Theorem 4.4. IfDW0 : Bordn → VectC denotes the Z/2-Dijkgraaf–Witten theory with
Lagrangian equal to 0, then for every closed (n − 1)-manifold M, the space of ground
states of the toric code on M is isomorphic to DW0(M) as Diff(M)-representations.

In Sect. 4.3, we turn to the GDS model, where we prove the main theorem. Let α ∈
H1(BZ/2; Z/2) denote the generator and w ∈ H∗(BOn; Z/2) denote the total Stiefel–
Whitney class. In the graded ring H∗(BOn × BZ/2; Z/2) ∼= H∗(BOn; Z/2) ⊗Z/2
H∗(BZ/2; Z/2),α is nilpotent, so 1+α is invertible. Thereforewe can formwα/(1+α) ∈
H∗(BOn × BZ/2; Z/2), which is a sum of homogeneous elements of different degrees.

Theorem 4.18. Let β ∈ Hn(BOn × BZ/2; Z/2) be the degree-n summand of wα/(1 +
α). Then, for every closed (n − 1)-manifold M, the space of ground states of the GDS
model on M is isomorphic to Zβ(M) as Diff(M)-representations.

Because of this, Zβ will also be denoted ZGDS.
In Sect. 5, we provide some calculations with this low-energy TQFT, allowing us to

prove a comparison theorem with Z/2-Dijkgraaf–Witten theories.

Theorem. (1) In dimension 3, there is an isomorphism between ZGDS and the
Z/2-Dijkgraaf–Witten theory with Lagrangian equal to the nonzero element of
H3(BZ/2; Z/2).

(2) In any even dimension, there is an isomorphism between ZGDS and DW0.
(3) For odd n ≥ 5, ZGDS is distinct from all Z/2-Dijkgraaf–Witten theories.

This theorem is a combination of Theorems 5.29, 5.31, and 5.32. Part (3) was first
proven by [22], as was (2) for state spaces.

2. The Toric Code and GDS Models

Definition 2.1. Let X be a topological space with a CW structure �. We let �k(X)

denote its set of k-cells and Xk denote its k-skeleton. When we need to make explicit
that these are with respect to�, we will write�k(X;�), resp. Xk

�. If� is a triangulation
of X , we will also write �k(X;�) and Xk

� for the k-simplices, resp. k-skeleton, of X
with respect to �.

When we need � to be explicit, we will write C�
k (X; A) (resp. Ck

�(X; A)) for the
group of cellular k-chains (resp. k-cochains) with coefficients in an abelian group A for
the CW structure �. We will employ analogous notation for cycles and cocycles, and
for simplicial (co)chains and (co)cycles with respect to a given triangulation �.

Definition 2.2. For a topological space X , let BunZ/2(X) denote the groupoid of princi-
pal Z/2-bundles on X , and if Y ⊂ X , let BunZ/2(X, Y ) denote the groupoid of principal
Z/2-bundles P → X equipped with a trivialization ξ over Y .

If X is a CW complex, then (P, ξ) ∈ BunZ/2(X1, X0) determines a function
spin(P,ξ) : �1(X) → Z/2: if e is a 1-cell of X , P|e descends to a principal bundle
P ′ → e/∂e, where we use the trivialization of P on ∂e to identify the fibers. Then
spin(P,ξ)(e) is 0 if P ′ is trivial, and 1 if it is nontrivial.
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In otherwords, if ∂e = {v,w},we can compare ξ(v) and ξ(w)byparallel-transporting
along e; then spin(P,ξ)(e) is their difference. The function spin(P,ξ) determines (P, ξ)

up to isomorphism.

2.1. The toric code. The toric code was originally studied by Kitaev [37]. He was
interested in its properties as a quantum error-correcting code when put on a torus, hence
the name “toric code;” a more descriptive name would be “lattice gauge theory for a
finite group G.” Subsequently, it has been generalized in many directions: defining it on
nonorientable surfaces [23]; generalizing it to manifolds of any dimension [24]; placing
the spins on k-cells, rather than edges [15]; considering a fermionic variant [28]; changing
whether it is even a gauge theory at all [9]; and adding global symmetries [6,30,43]. In
this paper, we will not consider most of these generalizations.

Fix a dimension n, which will always be the spacetime dimension; that is, lattice
models are on (n −1)-manifolds, and TQFTs are formulated with n-dimensional cobor-
disms between (n−1)-dimensional manifolds. The toric code assigns to a closed (n−1)-
manifold M together with a CW structure a finite-dimensional complex vector spaceH,
called the state space, and a self-adjoint operator H : H → H, called the Hamiltonian.
We proceed to define these.

The groupoid of fields for the toric code is BunZ/2(M1, M0), and the state space
assigned to M isH := C[BunZ/2(M1, M0)], the vector space of complex-valued func-
tions on the groupoid of fields.1 Given (P, ξ) ∈ π0 BunZ/2(M1, M0), let δ(P,ξ) ∈ H be
the function sending (P, ξ) �→ 1 and all nonisomorphic (P ′, ξ ′) to 0. The set

{δ(P,ξ) | (P, ξ) ∈ π0 BunZ/2(M1, M0)} (2.3)

is a basis forH; endow H with the inner product for which it is an orthonormal basis.
Given a 0-cell v of M , let Av : H → H denote the shift operator at v: if ψ ∈ H and

(P, ξ) ∈ BunZ/2(M1, M0), let ξ + δv denote the section of P on M0 which is identical
to ξ except on v, where its value is ξ(v) + 1. Then,

Av(ψ)(P, ξ) := ψ(P, ξ + δv). (2.4a)

Given a 2-cell f of M , let B f : H → H be multiplication by the holonomy around ∂ f :

B f (ψ)(P, ξ) := (−1)HolP ( f )ψ. (2.4b)

There are operators associated to each 2-cell f and each 0-cell v, called face operators,
resp. vertex operators:

H f := 1 − B f

2
(2.5a)

Hv := 1 − Av

2
, (2.5b)

and the Hamiltonian assigned to M is

HTC :=
∑

v∈�0(M)

Hv +
∑

f ∈�2(M)

H f . (2.6)

1 The space of functions on a groupoid G is defined to be the vector space of functions π0G → C.
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Remark 2.7. The original definition of the toric code looked different, replacing (P, ξ)

with the function spin(P,ξ) : �1(M) → Z/2 it defines. The state space is the free complex
vector space on the finite set of these functions. The analogues of Av and B f for v ∈
�0(M) and f ∈ �2(M) are

A′
v :=

∏

e:v∈∂e

σ x
e (2.8a)

B ′
f :=

∏

e∈∂ f

σ z
e . (2.8b)

Here, σ x and σ z are the Pauli operators

σ x =
(
0 1
1 0

)
, σ z =

(
1 0
0 −1

)
. (2.9)

The state space H can be identified with the tensor product of local state spaces He :=
C · {0, 1} over each 1-cell e, and the notation σ x

e and σ z
e means these operators act on

He by the matrices in (2.9), and by the identity on the remaining tensor factors.
We can identify A′

v with Av by observing that switching the trivialization for (P, ξ)

over v amounts to switching the value of spin(P,ξ) on any 1-cell e adjacent to v, which
is the action by σ x

e . To identify B f and B ′
f , observe that the holonomy of (P, ξ) around

∂ f is the product of the spins on the 1-cells in ∂ f .

Proposition 2.10 (Kitaev [37] and Freedman–Meyer–Luo [24]).

(1) The Hamiltonian HTC is self-adjoint.
(2) The H f and Hv operators are projectors, and pairwise commute.
(3) Spec(HTC) ⊂ Z≥0, and 0 is always an eigenvalue.

Proof sketch. Using the identifications of Av with A′
v and B f with B ′

f , Av and B f are
products of real symmetric matrices, hence are themselves real symmetric matrices;
therefore Hv and H f are too. Therefore H is a sum of real symmetric matrices, proving
part (1).

Part (2) is directly analogous to Kitaev’s original proof in dimension n − 1 = 2 [37];
see [24] for the generalization to higher dimensions.

Part (3) follows because the eigenvalues of A f and Bv are in {±1}, so the eigenvalues
of H f and Hv are in {0, 1}. The function dual to the trivial bundle with the identity
trivialization is an eigenvector for 0.

2.2. Generalized double semion model. Our main focus is the generalized double
semion (GDS) model.

The double semionmodel for n = 3was first studied by Freedman–Nayak–Shtengel–
Walker–Wang [21] and Levin–Wen [42, §VI.A], then generalized to all dimensions n
by Freedman and Hastings [22].2 The name comes from the description of this theory

2 There are a few other generalizations of the double semion model in low dimensions [14,43,48,60], but
we focus on Freedman–Hastings’ construction.
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Fig. 1. The 0-clopen star of a vertex in a simplicial structure on a surface

in the case n = 3 as the lattice model associated to the Drinfeld double of the semion
modular tensor category.3

Definition 2.11. Let M be a simplicial complex and c be a simplex of M .

• The open star of c, denoted St(c), is the subset of M consisting of all simplices
whose closures contain c.
• The closed star of c, denoted St(c), is the smallest subcomplex containing St(c).
• The link of c, denoted S(c), is St(c)\ St(c).
For the GDS model, we need a neighborhood of v in between the open and closed

stars of v.

Definition 2.12. Let M be a simplicial complex and e be a simplex of M . Define the
0-clopen star St(0)(e) to be St(e) ∪ St(e)0. That is, we include the 0-simplices of the
closed star of e as well as all cells in the open star.

As before, fix a dimension n; we proceed to define the state space and Hamiltonian
that the GDS model assigns. In order to avoid pathologies, one cannot define the GDS
model for an arbitrary CW structure.

Definition 2.13. A triangulation of a smooth manifold M is a simplicial complex K
togetherwith a homeomorphism f : |K | → M ; if for every simplex e of K , the restriction
of f to |e| is smooth, we say (K , f ) is a smooth triangulation.

When defining the GDS model, we choose a smooth triangulation � such that the
0-clopen star of every vertex is contractible.4 We discuss in Remark 2.34 why restricting
to such triangulations, rather than more general combinatorial structures such as CW
structures, is necessary.

The GDS model assigns to every closed (n − 1)-manifold M with such a trian-
gulation a state space and Hamiltonian, like the toric code does; the state space is
C[BunZ/2(M1, M0)] as for the toric code, and we proceed to define the Hamiltonian,
which is similar to that of the toric code, but with an extra sign.

Definition 2.14. Let M be a closed (n − 1)-manifold with a smooth triangulation
such that the 0-clopen star of every vertex is contractible. Then, given (P, ξ) ∈
BunZ/2(M1, M0) and a 0-simplex v, there is a unique maximal extension of ξ to a
subset of St(0)(v); we denote that subset Y ′

v(P, ξ).

3 The semion modular tensor category is named such because the excitations in its corresponding lattice
model are semions, anyonic quasiparticles with statistics intermediate between those of bosons and fermions.
For n > 3, however, the name “generalized double semions” is somewhat of a misnomer, however: anyons
cannot exist in dimension n > 3, because the braids that define their mutual statistics can be unlinked. See [50,
§2.1]. It is also not clear that the theory is the double of another [22, §1]. At least it is generalized.

4 The second constraint can always be satisfied after a refinement.
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v

Fig. 2. The triangulation �S(v) constructed in Definition 2.15. The black vertices and solid black edges are
the original simplices in �. The remaining edges are added in the barycentric subdivision �1 of �. The blue
(dashed) edges and the red and blue vertices are the link S(v) of v in �1. To define �S(v), we keep the red
vertices as 0-simplices, but for 1-simplices, the blue vertices are merged with their adjacent edges. Thus�S(v)
has three 0-simplices and three 1-simplices, and each k-simplex is the intersection of a (k + 1)-simplex of �

with S(v)

Definition 2.15. Let v ∈ �0(M;�) and S(v) denote the link of v in the barycentric
subdivision �1 of �. Though S(v) comes equipped with a triangulation �1|S(v), we
define a new triangulation �S(v) on S(v). For k ≥ 0, if e is a (k + 1)-simplex of � such
that v ∈ ∂e, let

C(e) := {c ∈ �∗(S(v),�1|S(v)) : |c| ⊂ |e|}. (2.16)

For each such e, we define a k-simplex of �S(v), denoted S(v) ∩ e, whose geometric
realization is

|S(v) ∩ e| :=
⋃

c∈C(e)

c. (2.17)

We say that S(v)∩ e′ is a face of S(v)∩ e if every c′ ∈ C(e′) is a face of some c ∈ C(e),
which may depend on c′. This data defines a triangulation on S(v) such that if e is a
simplex of � with v ∈ ∂e,

|S(v) ∩ e| = |S(v)| ∩ |e|. (2.18)

See Fig. 2 for a picture of this triangulation.
Fromnowon, the triangulationon S(v) is assumed to be�S(v) unless stated otherwise.

Definition 2.19. Let (P, ξ) ∈ BunZ/2(M1, M0). For any v ∈ �0(M), let

Yv(P, ξ) := {S(v) ∩ e | e ∈ Y ′
v(P, ξ)}, (2.20)

which is a subcomplex of S(v). The GDS sign [22, §4] is

σ(v, (P, ξ)) := (−1)1+χ(|Yv(P,ξ)|). (2.21)

Here χ denotes the Euler characteristic.
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Let Uv denote the operator on H defined by Uv(ψ)(P, ξ) := σ(v, (P, ξ))Av(ψ),
where Av is as in (2.4a). The Hamiltonian for the GDS model is

HGDS :=
∑

v∈�0(M)

H̃v +
∑

f ∈�2(M)

H f , (2.22)

where H f is as in (2.5a) and

H̃v = 1 − Uv

2
. (2.23)

As for the toric code, we call H̃v a vertex operator and H f a face operator.

Remark 2.24. In our analysis of the GDS model, we will need to make use of the dual
cell complex �∨ to the specified triangulation�, a CW complex on M with several nice
properties.

• �∨ comes with data of a bijection (·)∨ : �k(M,�) → �n−1−k(M,�∨), sending
a simplex to its dual cell, and such that if e ∈ ∂ f , then f ∨ ∈ ∂e∨, and conversely.
• The map (·)∨ induces a chain map on the cellular chain complexes of � and �∨
which induces Poincaré duality for the cohomology of M with Z/2 coefficients.
• Each cell in �∨ is a union of cells of the barycentric subdivision �1 of �. (One
might think of �1 as a refinement of�∨; though this is not strictly true, as �∨ might
not come from a triangulation, it is a useful piece of intuition.) In particular, �∨ is a
regular CW complex, meaning the closure of each cell is contractible.

This complex is unique up to equivalence of CW complexes. Proofs of these facts follow
from the results in [31, §1.6].

We will also denote ((·)∨)−1 by (·)∨, but since we do not confuse � and �∨, the
meaning will be clear from context. If S is a set of cells, we write S∨ := {e∨ | e ∈ S}.
Remark 2.25. Freedman–Hastings [22] study a dual version of the GDS model, in that
our model for M and � corresponds to their model for M and �∨. Here we compare
the two setups.

Let (P, ξ) ∈ BunZ/2(M1, M0), which defines a function spin(P,ξ) : �1(M,�) →
Z/2 as in Definition 2.2; we also let spin(P,ξ) denote the function�n−2(M,�∨) → Z/2
defined by precomposing with (·)∨.

For any v ∈ �0(M,�), let

T (v, (P, ξ)) := spin−1
(P,ξ)(0) ∩ ∂v∨, (2.26)

which is a closed union of cells of �∨.
The GDS sign as defined by Freedman–Hastings [22, §4] is

σ ′(v, (P, ξ)) := (−1)1+χ(T (v,(P,ξ)). (2.27)

Let e ∈ St(0)(v). Unwinding the definitions, e ∩ S(v) ∈ Yv(P, ξ) if and only if e∨ is a
cell of T (v, (P, ξ)), so the number of simplices in Yv(P, ξ) equals the number of cells
in T (v, (P, ξ)). Since both T (v, (P, ξ)) and Yv(P, ξ) are closed subsets of M that are
unions of cells, their Euler characteristics are equal, so σ = σ ′. This means there is an
isomorphism between the state spaces of the model we define above and the model as
defined by Freedman–Hastings, and this isomorphism intertwines their Hamiltonians,
so on any closed (n − 1)-manifold, the spaces of ground states of these two models are
isomorphic.
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Next, we prove analogues of Proposition 2.10 for the GDS model. In view
of Remark 2.25, these also follow from results of Freedman–Hastings [22, Lem-
mas 4.1, 4.2], but are proven in a different way.

Lemma 2.28. The Hamiltonian HGDS is self-adjoint, and Spec(HGDS) ⊂ Z≥0.

Proof. The first part is true because the Hamiltonian is a sum of real symmetric matrices
in a basis of δ-functions, just as in the proof of Proposition 2.10. For the second part, since
the eigenvalues of Av and B f lie in {±1} and σ is valued in {±1}, then the eigenvalues
of H f and H̃v lie in {0, 1}.

Unlike for the toric code, it is not true that 0 is always an eigenvalue. Theorem 4.18
and Corollary 5.6 together imply this happens for M = CP

2k .

Lemma 2.29. All face operators commute, and all face operators commute with all
vertex operators. After restricting to the intersection of the kernels of the face opera-
tors, [Uv1, Uv2 ] = 0 and hence all vertex operators commute when restricted to that
intersection.

Proof. The face operators are the same as in the toric code, hence commute by Proposi-
tion 2.10.Operators corresponding to simplices not in each others’ closed stars commute.
Therefore we have two things left to prove:

(1) Given a 2-simplex f and a 0-simplex v ∈ ∂ f , [H f , H̃v] = 0.
(2) Given a 1-simplex e and two0-simplicesv1, v2 ∈ ∂e, [Uv1, Uv2 ] = 0when restricted

to
⋂

f ∈�2(M) H f .

For part (1): since theGDS sign factors out of [B f , Uv], then [B f , Uv] = ±[B f , Av] = 0
by Proposition 2.10, and therefore [H f , H̃v] = 0.

For part (2), choose ψ ∈ H such that H f ψ = 0 for all 2-simplices f , and choose
(P, ξ) ∈ BunZ/2(M1, M0). Since B f acts by multiplication by the holonomy of P
around ∂ f , then ψ(P, ξ) = 0 unless HolP ( f ) = 0 for all f ; equivalently, P must
extend to all of M .5 (This extension is necessarily unique up to isomorphism.) If this is
the case,

[Uv1, Uv2 ]ψ(P, ξ) = σ(v2, (P, ξ + δv1))σ (v1, (P, ξ))ψ(P, ξ + δv1 + δv2)

− σ(v1, (P, ξ + δv2))σ (v2, (P, ξ))ψ(P, ξ + δv1 + δv2),
(2.30)

so it suffices to show that if (P, ξ) ∈ BunZ/2(M, M0),

σ(v2, (P, ξ + δv1))σ (v1, (P, ξ)) = σ(v1, (P, ξ + δv2))σ (v2, (P, ξ)). (2.31)

Tracing through the definition of the GDS sign, this is equivalent to

χ(|Yv2(P, ξ+δv1)|)+χ(|Yv1(P, ξ)|) ≡
mod 2

χ(|Yv1(P, ξ+δv2)|)+χ(|Yv2(P, ξ)|). (2.32)

Suppose spin(P,ξ)(e) = 0. For i = 1, 2, let A(vi ) denote the set of simplices in Yvi (P, ξ)

contained in the closure of a simplex in Yvi (P, ξ) whose closure also contains S(vi )∩ e.
Let B(vi ) := Yvi (P, ξ)\A(vi ). Then

χ(|Yv2(P, ξ + δv1)|) + χ(|Yv1(P, ξ)|) ≡
mod 2

#(A(v1) � B(v1) � B(v2)) (2.33a)

5 We will return to this point in Sect. 4.2.
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v1

v2

0 1

0 1

0 0

0

1

0

Fig. 3. Lemma 2.29 does not generalize from triangulations to CW structures. The straight lines in this figure
depict a neighborhood on a smooth surface � with a CW structure. Choose (P, ξ) ∈ BunZ/2(�

1, �0)
such that the number on each pictured 1-cell e is spin(P,ξ)(e). The circles around the 0-cells v1 and v2
represent two copies of each of the links S(v1) and S(v2). The red region (shaded portions of the outer
circles) is |Yv1 (P, ξ)| � |Yv2 (P, ξ + δv1 )|, and the blue region (shaded portions of the inner circles) is
|Yv2 (P, ξ)| � |Yv1 (P, ξ + δv2 )|. By inspection, the Euler characteristics of these two regions are not equal
mod 2, so (2.32) does not hold in this setting, and therefore Lemma 2.29 also does not apply to this CW
structure: H̃v1 and H̃v2 do not commute even when restricted to

⋂
f H f

χ(|Yv1(P, ξ + δv2)|) + χ(|Yv2(P, ξ)|) ≡
mod 2

#(A(v2) � B(v2) � B(v1)). (2.33b)

It therefore suffices to prove that #A(v1) = #A(v2). Let c1 be a 1-simplex in A(v1). Since
2-simplices are triangles, there exists a unique 1-simplex c2 whose closure contains v2
and such that there is a 2-simplex f with ∂ f = c1+c2+e. By assumption, spin(P,ξ)(e) =
spin(P,ξ)(c1) = 0, and since the holonomy of P around ∂ f vanishes, spin(P,ξ)(c2) = 0
too. Similarly, suppose c′

1 and c′
2 are 1-simplices such that v1 is a face of c′

1, v2 is a
face of c′

2, spin(P,ξ)(c
′
1) = 1, and there is a 2-simplex f ′ with ∂ f ′ = c′

1 + c′
2 + e; then

spin(P,ξ)(c
′
2) = 1 too. This argument is obviously symmetric in v1 and v2.

The case spin(P,ξ)(e) = 1 is analogous.

Remark 2.34. The ideas that go into the GDS model still make sense when one general-
izes to smooth manifolds with regular CW structures, rather than smooth triangulations,
but Lemma 2.29 does not generalize. See Fig. 3 for a counterexample.

If one lets n = 3 and passes to the dual CW structure as in Remark 2.24, this recovers
a fact known to condensed-matter theorists: the double semion model on a surface can
be formulated on a hexagonal lattice (or more generally a trivalent lattice), but has an
ambiguitywhen placed on a square lattice [22, §2]. This is because the dual CW structure
to a trivalent lattice has triangular 2-cells, but the dual of a tetravalent lattice does not.
For general n, this obstruction is encoded in the genericity assumption placed on the CW
structure in Freedman–Hastings’ construction [22, §4]; in our model this corresponds
to the restriction to smooth triangulations.

Lemma 2.35. The face operators are projectors. The operator Uv has order 2, and hence
H̃v is a projector.

Proof. The face operators are the same as in the toric code, hence are projectors byPropo-
sition 2.10. ForUv , choose a 0-simplex v,ψ ∈ H, and (P, ξ) ∈ BunZ/2(M1, M0); then,

U 2
v ψ(P, ξ) = σ(v, (P, ξ + δv)σ (v, (P, ξ))ψ(P, ξ)

= (−1)χ(|Yv(P,ξ+δv)|)+χ(|Yv(P,ξ)|)ψ(P, ξ). (2.36)
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Unwinding the definition of Yv , and using that χ(S(v)) ≡ 0 mod 2, χ(|Yv(P, ξ +δv)|)+
χ(|Yv(P, ξ)|) is equal mod 2 to the number of simplices e in S(v) such that e contains
a 0-simplex on which ξ extends and a 0-simplex on which ξ + δv extends (equivalently,
on which ξ does not extend). Let Q be the set of such e.

Endow S(v) with the Poincaré dual CW structure �∨
S(v) to the triangulation �S(v),

as in Remark 2.24. Let R ⊂ �S(v) be the set of 1-simplices on which ξ extends; then,
|R∨| is a topological submanifold (with boundary) of S(v), and ∂|R∨| = |Q∨|. Hence
χ(|Q∨|) ≡ 0 mod 2; since Q∨ is a subcomplex of �∨

S(v), this means Q∨ has an even
number of cells, so Q has an even number of simplices. Thus χ(|Yv(P, ξ + δv)|) +
χ(|Yv(P, ξ)|) ≡ 0 mod 2, and this suffices by (2.36).

There are a few other equivalent ways to define the GDS sign. We record one which
we will use later.

Proposition 2.37. Let (P, ξ) ∈ BunZ/2(M1, M0) and v ∈ �0(M), and let Nv be the
set of simplices c of M with v ∈ ∂c. If Zv(P, ξ) ⊂ Nv denotes the subset of simplices
c such that either (1) c is a 1-simplex and spin(P,ξ)(c) = 1, or (2) there is a 1-simplex

e ∈ ∂c with spin(P,ξ)(e) = 1, then (−1)1+#Zv(P,ξ) = σ(v, (P, ξ)).

Proof. It suffices to show #Zv(P, ξ) ≡ #Yv(P, ξ) mod 2. If Wv(P, ξ) denotes the
subset of Nv consisting of simplices c such that either (1) c is a 1-simplex and
spin(P,ξ)(c) = 0, or (2) spin(P,ξ)(e) = 0 for all e ∈ �1(∂c), then the map c �→ c ∩ S(v)

for c ∈ Nv restricts to a bijection from Wv(P, ξ) to Yv(P, ξ).
By definition, Zv(P, ξ) is the complement of Wv(P, ξ) inside Nv . Since N∨

v = ∂v∨
and χ(|∂v∨|) is even, then #Nv is even and

#Zv(P, ξ) + #Yv(P, ξ) = #Zv(P, ξ) + #Wv(P, ξ) = #Nv ≡ 0 mod 2. (2.38)

3. Gauge–Gravity TQFTs

As part of our goal of studying the low-energy behavior of theGDSmodel, wewould like
a description in terms of aTQFTwhose state spaceswe can compute relatively easily. The
answer comes to us as one of a class of TQFTs, calledZ/2-gauge–gravity theories; these
TQFTs are slight generalizations of Z/2-Dijkgraaf–Witten theories [16,19], in which
Stiefel–Whitney classes of the underlying manifold can enter the Lagrangian action.
Theories of this sort have also been considered by Kapustin [33,34], Wen [62,63], and
Lan–Kong–Wen [40], though not in this generality.

As in the construction of Dijkgraaf–Witten theories, we will construct the gauge–
gravity theories in two steps. First, we will construct invertible theories for unoriented
manifolds equipped with a principalZ/2-bundle; these are the classical theories, and are
examples of Turaev’s homotopy quantum field theories with target BZ/2 [59] (some-
times also called equivariant TQFTs [52]). Then, we will sum over principal Z/2-
bundles in a process called orbifoldization, producing what are called the quantum
theories [18,19] or the orbifold theories [52].

3.1. Construction of the classical Z/2-gauge–gravity theories. Let Bordn denote the
unoriented bordism category in dimension n, whose objects are closed (n−1)-manifolds
and whose morphisms are diffeomorphism classes of bordisms between them, and, for
a topological space X , let Bordn(X) denote the bordism category of manifolds together
with a map to X .
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Definition 3.1. A TQFT Z : Bordn(X) → VectC is invertible if it factors through the
subgroupoid LineC ↪→ VectC of complex lines and nonzero homomorphisms.

This means, for example, that all partition functions are nonzero and all state spaces
are one-dimensional.

Theorem 3.2. Let β ∈ Hn(BOn × BZ/2; Z/2). Then there is an invertible TQFT
Z cl

β : Bordn(BZ/2) → VectC of n-manifolds equipped with a principal Z/2-bundle,
unique up to isomorphism, such that for any closed n-manifold M and principal Z/2-
bundle P → M,

Z cl
β (M, P) = (−1)〈β(M,P),[M]〉, (3.3)

where β(M, P) denotes the pullback of β under a map M → BOn × BZ/2 classifying
T M and P.6

Proof. The assignment (3.3) is a {±1}-valued bordism invariant of manifolds equipped
with a principal Z/2-bundle. Composing with the unique nonzero map {±1} ↪→ U1, we
obtain (3.3) as a U1-valued bordism invariant. Assume for now that the bordism group
�n−1(BZ/2) of (n − 1)-dimensional manifolds with a principal Z/2-bundle is finitely
generated; using this assumption, Yonekura [64, Theorems 4.3 and 4.4] constructs an
invertible TQFT valued in LineC whose partition function recovers the bordism invari-
ant (3.3), and proves that it is unique up to isomorphism.

Now we show �n−1(BZ/2) is finite, hence finitely generated. Consider the E2-page
of the Atiyah-Hirzebruch spectral sequence for computing this bordism group, given by
E2

p,q = Hp(BZ/2;�q). The unoriented bordism group �q is a direct sum of finitely
many copies ofZ/2 [57], and hence Hp(BZ/2;�q) is also a direct sum of finitely many
copies of Z/2. In a spectral sequence, elements can be killed by differentials, but not
created, so |E∞

p,q | ≤ |E2
p,q |, and hence E∞

p,q is also a finite abelian group. There is a
filtration on �n−1(BZ/2) whose associated graded is

⊕

p,q∈Z
p+q=n−1

E∞
p,q; (3.4)

since this is a first-quadrant spectral sequence, all but finitely many of these groups are
zero. We saw that the rest are finite, so (3.4) is a finite abelian group, and therefore
�n−1(BZ/2) is too.

We call Z cl
β the classical Z/2-gauge–gravity theory for β, and call β the Lagrangian

for the theory.

Remark 3.5. The name “gauge–gravity” refers to the fact that the Lagrangian β can
have terms depending both on the principalZ/2-bundle (a gauge field) and characteristic
classes of the underlying manifold (which, due to the relationship between characteristic
classes and curvature, are sometimes called gravitational terms). This idea also appears
for the anomaly TQFTs in [27,55], which are similar to the classical gauge–gravity
theories considered in this paper.

Remark 3.6. It is also possible to describe Z cl
β homotopically, following the Freed-

Hopkins approach to invertible TQFTs [17]; we briefly sketch the construction. If a
homomorphism of commutative monoids A → B factors through the subgroup of units

6 The classifying map is unique up to homotopy, so β(M, P) does not depend on this choice.
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B× ↪→ B, then it also factors through the group completion A → K (A); in a similar
way, if a morphism of symmetric monoidal categoriesC → D factors through the Picard
groupoid of unitsD× ↪→ D, it also factors through the groupoid completion ofC, which
is also a Picard groupoid. The geometric realization of a Picard groupoid G is canoni-
cally an infinite loop space, and its associated spectrum, called the classifying spectrum
ofG and denoted |G|, is a stable 1-type, i.e. its only nonzero homotopy groups are π0|G|
and π1|G| [32]. The upshot is that an invertible TQFT Z cl : Bordn(BZ/2) → LineC
determines and is determined up to isomorphism by the homotopy class of the map

|Z cl| : |Bordn(BZ/2)| → |LineC| (3.7)

it induces on classifying spectra.
If E is a spectrum, let E〈m, n〉denote the truncation of E to a spectrumwith homotopy

groups only in degrees between m and n, inclusive. Then there are weak equivalences

• |Bordn(BZ/2)| � (�MTOn ∧ (BZ/2)+)〈0, 1〉 [26,47],7 and
• |LineC| � �HC

×.

Here MTOn is a Madsen-Tillmann spectrum: if Vn → BOn denotes the tautological
bundle, MTOn is the Thom spectrum of −Vn → BOn .

Therefore an isomorphism class of invertible n-dimensional TQFTs for manifolds
with a principal Z/2-bundle is determined by an element of

[(�MTOn ∧ (BZ/2)+)〈0, 1〉, �HC
×] ∼= H0(MTOn ∧ (BZ/2)+; C

×), (3.8)

and β ∈ Hn(BOn × BZ/2; Z/2) yields such an element through the mod 2 Thom
isomorphism followedby themap inducedon cohomologybyZ/2 ∼= {±1} ↪→ C

×. Thus
it defines an invertible TQFT (Z cl

β )′ up to isomorphism. Tracing through the Pontrjagin-
Thom construction, one can prove that its partition functions agree with those in (3.3),
and hence by Yonekura’s uniqueness result [64, Theorem 4.4], (Z cl

β )′ ∼= Z cl
β .

This approach readily generalizes to extended invertible TQFTs, as in [51], and the
classical gauge–gravity TQFTs can be realized as fully extended TQFTs valued in n-
algebras, as in [18, §8], or n-vector spaces, using the calculation of the classifying
spectrum of the n-category of n-vector spaces in [51, §7.4].

The partition functions of the classical gauge–gravity TQFT for β resemble those
of classical Dijkgraaf–Witten theory [16,19] for the gauge group Z/2, though the
Lagrangians of the former can also contain Stiefel–Whitney classes. If β factors through
the inclusion Hn(BZ/2; Z/2) ↪→ Hn(BOn × BZ/2; Z/2), then Z cl

β is isomorphic to a
classical Z/2-Dijkgraaf–Witten theory.

If γ ∈ Hn(BZ/2; R/Z), we let DWcl
γ denote classical Z/2-Dijkgraaf–Witten theory

with Lagrangian γ .

Proposition 3.9. Let f : Z/2 ↪→ R/Z denote the map sending 1 �→ 1/2, as well
as the map f : H∗(X; Z/2) → H∗(X; R/Z) it induces on cohomology. Suppose
β contains no Stiefel–Whitney terms, i.e. β factors through Hn(BZ/2; Z/2) ↪→
Hn(BOn × BZ/2; Z/2). Then, as TQFTs of oriented manifolds equipped with prin-
cipal Z/2-bundles, Z cl

β
∼= DWcl

f (β).

7 This fact has been proven or sketched in several additional ways: see also [3,4,10,44,51].
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Proof. Let M be a closed, oriented n-manifold, P → M be a principal Z/2-bundle,
and β be as in the proposition statement. Let φ : M → BZ/2 be a classifying map for
P . Let [M]Z, resp. [M]Z/2, denote the fundamental class of M in integral, resp. Z/2,
homology.

The partition function of classical Z/2-Dijkgraaf–Witten theory with Lagrangian
f (β) is DWcl

f (β)(M, P) = e2π i〈(φ∗( f (β)),[M]Z〉 [19, Theorem 1.7]. Naturality of the cap
product under change of coefficients implies f (〈x, [M]Z/2〉) = 〈 f (x), [M]Z〉 for any
x ∈ Hn(M; Z/2), and naturality of the change-of-coefficients map on cohomology
implies that φ∗( f (β)) = f (φ∗(β)), so f (〈φ∗β, [M]Z/2〉) = 〈φ∗( f (β)), [M]Z〉. If
a ∈ Z/2, (−1)a = e2π i f (a), so

Zβ(M, P) = (−1)〈φ∗β,[M]Z/2〉 = e2π i〈φ∗( f (β)),[M]Z〉 = DWcl
f (β)(M, P). (3.10)

Since the partition functions for these theories are identical, then by [64, Theorem 4.4],
Zβ

∼= DWcl
f (β).

Remark 3.11. One takeaway from Proposition 3.9 is that when β contains no Stiefel–
Whitney terms, Z cl

β is an extension of DWcl
f (β) to unoriented manifolds. Such extensions

are studied in detail by Young [66] in both the classical and quantum settings, and are
examples of Minkyu Kim’s generalized Dijkgraaf–Witten theories [35].

Remark 3.12. These classical gauge–gravity theories are examples of homotopy quan-
tum field theories (HQFTs) with target space BZ/2, and in this setting they resemble
primitive cohomological HQFTs [59, § I.2.1]; again the difference is whether the coho-
mology class can contain Stiefel–Whitney terms. The construction of primitive coho-
mological HQFTs is quite direct, and it seems likely that the classical gauge–gravity
theories can be constructed in a similar way.

Lemma 3.13. Let γ ∈ Hn(BOn × BZ/2; Z/2) be a cohomology class which vanishes
when pulled back to all closed n-manifolds via a classifying map for the tangent bundle
and any principal Z/2-bundle. Then, Z cl

β
∼= Z cl

β+γ .

Proof. By (3.3), Zβ(M) = Zβ+γ (M) for all closed n-manifolds M with a principal
Z/2-bundle. We have seen that invertible TQFTs of manifolds with a principal Z/2-
bundle are determined up to isomorphism by their partition functions, so Zβ

∼= Zβ+γ .

For example, in dimension 3, w2
1α = w2α on all 3-manifolds, so Z cl

w2
1α

∼= Z cl
w2α

.

Lemma 3.14. If n is odd, the map f : Hn(BZ/2; Z/2) → Hn(BZ/2; R/Z) is surjec-
tive.

Proof. Associated to the short exact sequence 0 → Z/2
f→ R/Z

2→ R/Z → 0, there
is a long exact sequence in cohomology:

Hn(BZ/2; Z/2)
f �� Hn(BZ/2; R/Z)

g �� Hn(BZ/2; R/Z)
h ��

Hn+1(BZ/2; Z/2) �� Hn+1(BZ/2; R/Z).

(3.15)
Since Hn+1(BZ/2; R/Z) = 0, h is surjective. Since n is odd, both Hn(BZ/2; R/Z)

and Hn+1(BZ/2; Z/2) are isomorphic to Z/2, so h is a surjective map Z/2 → Z/2,
hence an isomorphism. Thus g = 0, so f is surjective as desired.
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Corollary 3.16. If n is odd, every classical Z/2-Dijkgraaf–Witten theory is isomorphic
to Z cl

β for some β ∈ Hn(BZ/2; Z/2) ↪→ Hn(BOn × BZ/2; Z/2).

Proof. ByLemma3.14,whenn is odd, themap f : Hn(BZ/2; Z/2) → Hn(BZ/2; R/Z)

is surjective; then the result follows from Proposition 3.9.

3.2. Discussion of the quantum theories. We construct the quantum theory Zβ using
the finite path integral approach of [18, §3]; see also [45,58] for a more detailed account
and [52] for a related construction. This process is also known as orbifolding, and the
quantum theory Zβ is sometimes called the orbifold theory for Z cl

β .
Let Gpd denote the category of spans of essentially finite groupoids: the objects

of Gpd are essentially finite groupoids, and a morphism from X1 to X2 is data of a
essentially finite groupoid Y and functors p1 : Y → X1 and p2 : Y → X2, considered
up to equivalence of (Y, p1, p2). Let Gpd(VectC) denote the category whose objects
are pairs (X, V ), where X is an essentially finite groupoid and V → X is a complex
vector bundle,8 and whose morphisms are equivalence classes of spans

Y
p2

���
��

��
�

p1

����
��
��

X2X1

(3.17)

together with data of vector bundles Vi → Xi and W → Y and morphisms
φi : p∗

i Vi → W for i = 1, 2. For any y ∈ Y , this morphism determines a linear
map ϕ(y) : V1(p1(y)) → V2(p2(y)) by a push–pull construction. Disjoint union of
groupoids defines a symmetric monoidal structure on Gpd(VectC).

We next define the “quantization” functor � : Gpd(VectC) → VectC, which on to
an object assigns

� : (X, V ) �→ �(V ) := lim−→
x∈X

V (x), (3.18)

i.e. regard V as a VectC-valued diagram indexed by the category X , and take the colimit
of this diagram. Given a morphism (Y, W, φ1, φ2) as above, the maps ϕ(y) for y ∈ Y
pass to the colimit to define a map

ϕ̃ : π0Y → Hom(�(X1, V1), �(X2, V2)). (3.19)

Then, � assigns to this morphism the linear map

�(Y, W ) :=
∑

[y]∈π0Y

ϕ̃(y)

|Aut(y)| ∈ Hom(�(X1, V1), �(X2, V2)). (3.20)

This functor is symmetric monoidal [58, Theorem 5.1].
Given a TQFT Z cl : Bordn(BZ/2) → VectC, the functor FZcl : Bordn →

Gpd(VectC) sending

FZcl : M �→
(
BunZ/2(M), P �→ Z cl(M, P)

)
(3.21)

8 A (complex) vector bundle over a groupoid G, denoted V → G, is a functor V : G → VectC, and its
space of sections is lim−→ V . We will always assume these vector bundles are finite-dimensional, meaning they
factor through the full subcategory of finite-dimensional vector spaces.
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is also symmetric monoidal [53, Theorem 3.9], and therefore the composition

Z : Bordn
FZcl �� Gpd(VectC)

� �� VectC (3.22)

is symmetric monoidal, i.e. a (nonextended) TQFT of unoriented manifolds.

Definition 3.23. Given a TQFT Z cl : Bordn(BZ/2) → VectC, the TQFT Z in (3.22)
above is called thequantum theory associated to Z cl. In particular,we denote the quantum
theory associated to Z cl

β by Zβ , and call it the (quantum) gauge–gravity theory for β. In
this case we call β the Lagrangian of the theory.

Proposition 3.24 ([53, Corollary 4.4]).

(1) Let M be a closed n-manifold. Then, the partition function Zβ(M) is

Zβ(M) =
∑

[P]∈π0 BunZ/2(M)

(−1)〈β(P),[M]〉

|Aut(P)| . (3.25)

(2) Let N be a closed (n − 1)-manifold. Then, define a line bundle Lβ → BunZ/2(N )

which
• assigns C to every object, and
• assigns to an automorphism φ ∈ Aut(P) multiplication by Z cl

β (S1 × N , Pφ).
Then the state space of N is Zβ(N ) ∼= �(Lβ).

Here Pφ → S1 × N denotes the mapping torus of φ, i.e. the quotient of [0, 1] × P
by (0, x) ∼ (1, φ(x)). We sketch the proof; the details can be found in [53, §§3,4].

Proof. First, part (1). The partition function for M is Zβ(M : ∅ → ∅). To this bordism,
FZcl

β
assigns a span such that for any P ∈ BunZ/2(M), the induced map ϕ(P) : C → C

is multiplication by the classical partition function Z cl
β (M, P). Applying � sums this

over [P] ∈ π0 BunZ/2(M), weighted by automorphisms, giving (3.25).
Now part (2). FZcl

β
sends N to a line bundle L N → BunZ/2(N ), which to a

principal Z/2-bundle P → N assigns the complex line Z cl
β (N , P). Given a mor-

phism, let Cylφ(P) → [0, 1] × N denote the mapping cylinder of φ, i.e. the space
P × [0, 1] → N × [0, 1], interpreted as a bordism in which P is glued by the identity
at 0 and by φ at 1. Then,

L N (φ) = Z cl
β ([0, 1] × N ,Cylφ(P)) : Z cl

β (N , P) → Z cl
β (N , P) (3.26a)

= (multiplication by Z cl
β (S1 × N , Pφ)) : Z cl

β (N , P) → Z cl
β (N , P). (3.26b)

. Thus L N → BunZ/2(N ) is isomorphic to Lβ from the proposition statement, so
Zβ(N ) = �(Lβ).

The finite path integral approach to defining the quantum gauge–gravity theories
means a few of their basic properties are formal corollaries of their counterparts in the
classical case, because an isomorphism of classical theories determines an isomorphism
of quantum theories.

Corollary 3.27. Let γ ∈ Hn(BOn ×BZ/2; Z/2) be a cohomology class which vanishes
when pulled back to all closed n-manifolds via a classifying map for the tangent bundle
and any principal Z/2-bundle. Then, Zβ

∼= Zβ+γ .
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Corollary 3.28. Suppose β contains no Stiefel–Whitney terms (in the sense of Proposi-
tion 3.9). Then, Zβ

∼= DWβ , the quantum Z/2-Dijkgraaf–Witten theory with Lagrangian
β.

Corollary 3.29. If n is odd, every quantum Z/2-Dijkgraaf–Witten theory is isomorphic
to Zβ for some β ∈ Hn(BZ/2; Z/2) ↪→ Hn(BOn × BZ/2; Z/2).

There is a new phenomenon at this level, however: one can produce β and β ′ whose
quantum theories are isomorphic, but whose classical theories are not.

Definition 3.30. Let β ∈ Hn(BOn × BZ/2; Z/2), so that there are coefficients
γ1, . . . , γn ∈ H∗(BOn; Z/2) such that

β = γnαn + γn−1α
n−1 + · · · + γ1α + γ0, (3.31)

where α ∈ H1(BZ/2; Z/2) is the generator. If w1 ∈ H1(BOn; Z/2) denotes the first
Stiefel–Whitney class, we call

βw1 := γn(α+w1)
n +γn−1(α+w1)

n−1 + · · ·+γ1(α+w1)+γ0 ∈ Hn(BOn × BZ/2; Z/2)
(3.32)

the orientation-twisting of β.

Proposition 3.33. Let βw1 be the orientation-twisting of β. Then, Zβ
∼= Zβw1

.

The idea is that replacing β with βw1 corresponds to tensoring with the orientation
bundle, an involution on the space of fields. Since we are summing over the fields, this
does not change the path integral.

Definition 3.34. We define a tensor product of principal Z/2-bundles induced from the
tensor product of real line bundles. Given two principal Z/2-bundles P1, P2 → M ,
define a real line bundle L(Pi ) → M for i = 1, 2 by L(Pi ) := Pi ×Z/2 R, where Z/2
acts on R as {±1}. The Euclidean metric on R induces Euclidean metrics on L(P1) and
L(P2), hence also on L(P1)⊗L(P2); we define the tensor product of P1 and P2, denoted
P1 ⊗ P2 → M , to be the unit sphere bundle in L(P1) ⊗ L(P2), which is a principal
Z/2-bundle on M .

The characteristic class of P ⊗ Q is α(P ⊗ Q) = α(P) + α(Q).
On anymanifold M , there is a canonical principalZ/2-bundle oM , called the orienta-

tion bundle, whose fiber at x ∈ M is theZ/2-torsor of orientations at x . Its characteristic
class is α(oM ) = w1(M).

Proof of Proposition 3.33. Let PMn denote the subcategory of Gpd(VectC) whose
objects are vector bundles over groupoids of the form BunZ/2(N ) for some closed
(n − 1)-manifold N and whose morphisms are induced from the spans

BunZ/2(M)

���
��

��

����
��
�

BunZ/2(N2),BunZ/2(N1)

(3.35)

where M is a bordism between N1 and N2. For any β, FZcl
β
lands in PMn . To simplify

notation, we will let Fβ := FZcl
β
.

If M is a bordism between N1 and N2, (oM )|Ni = oNi . Thus the automorphism
− ⊗ oY : BunZ/2(Y ) → BunZ/2(Y ) induces an automorphism � : PMn → PMn as
follows.
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• An object of PMn is a functor F : BunZ/2(N ) → VectC for some (n −1)-manifold
N . Let �(F) be F ◦ (− ⊗ oN ) : BunZ/2(N ) → BunZ/2(N ) → VectC.

• Amorphism F1 → F2 of PMn is a push–pull map induced from a span as in (3.35).
Since (oM )|Ni = oNi , the arrows in (3.35) intertwine the actions of − ⊗ oM and
− ⊗ oNi , so this span induces a morphism �(F1) → �(F2) as desired.

Thus we may consider the diagram

Bordn
Fβ ��

Fβw1 ���
��

��
��

��
PMn

� ��

�

��

VectC

PMn,

�

�����������
(3.36)

where the composition along the top is Zβ and the composition along the bottom is
Zβw1

.
It suffices to prove this diagram commutes up to natural isomorphism, which means

checking its two triangles.

• The left triangle commutes (up to natural isomorphism) by design, since α(P ⊗
oM ) = α(P) + w1(M) and in βw1 , we have replaced α with α + w1.

• The right triangle commutes because � takes a diagram and evaluates its colimit,
and an automorphism of the indexing category does not change the value of the
colimit. Hence �(S) and (� ◦�)(S) are isomorphic for any object S, and since � is
compatible with morphisms in PMn , � and � ◦ � also agree on morphisms.

Example 3.37. The orientation twisting of α2 is α2 +w2
1. The classical theories Z cl

α2 and

Z cl
α2+w2

1
are nonisomorphic; for example, they disagree on RP

2 with the trivial principal

Z/2-bundle. But by Proposition 3.33, their quantum theories are isomorphic.

Remark 3.38. Lu–Vishwanath [43] observe a similar phenomenon in the physics of topo-
logical phases enriched by a global Z/2-symmetry, in which distinct phases become
equivalent after gauging the Z/2 symmetry.

4. Low-Energy Limits

In this section, we return to the lattice, and investigate the spaces of ground states of
the toric code and GDS models on closed (n − 1)-manifolds. In both cases, we find
a TQFT Z whose state space on M is isomorphic to the space of ground states of the
lattice model on M .

4.1. Generalities.

Definition 4.1. Consider a latticemodelwhich to all closed (n−1)-manifolds M together
with some kind of lattice� (e.g. a triangulation or a CW structure) associates a complex
Hilbert space HM,� and a self-adjoint operator HM,� : HM,� → HM,� (respectively
the state space and the Hamiltonian). In this setting, elements of ker(HM,�) are called
ground states. Assume that we can construct an action of Diff(M) on ker(HM,�) from
the data of the lattice model.

Let Z : Bordn → VectC be a TQFT. We say that Z captures the ground states of
the lattice model if for all closed (n − 1)-manifolds M with a lattice �, there is an
isomorphism Z(M) ∼= ker(HM,�) intertwining the Diff(M)-actions.
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In the rest of this subsection, we discuss these Diff(M)-actions. In Sect. 4.1.1, we
recall the definition of the Diff(M)-action on Z(M), and in Sect. 4.1.2, we address the
assumption of the Diff(M)-action on ker(HM,�), showing how to construct such an
action given certain data present in the toric code and GDS models.

Let Diff0(M) ⊂ Diff(M) denote the connected component of the identity. The
Diff(M)-action on Z(M) is trivial when restricted to Diff0(M), hence induces an action
of the mapping class group MCG(M) := Diff(M)/Diff0(M). Thus, if Z captures the
ground states of the lattice model, the Diff(M)-action on ker(HM,�) must also induce
a mapping class group action in the same way.

Remark 4.2. When Z captures the ground states of a lattice model, it is believed to cor-
respond to the physics notion of the low-energy effective theory of the model. The exis-
tence of such a low-energy TQFT for certain lattice models, called topological phases,
is predicted by physics,9 and the low-energy TQFT is expected to determine the lattice
model up to some physically meaningful notion of equivalence; this correspondence is
discussed in [17,20,25,50].

However, there is much left to understand, especially at a mathematical level of rigor.
We do not intend for Definition 4.1 to be a mathematical definition of the physical notion
of the low-energy effective theory of a lattice model. Providing such a mathematical
definition is a major open question; as is, Definition 4.1 fails to address uniqueness (as
shown in Remark 4.60) and existence (due to fracton phases; see, e.g., [7,29,65]).

4.1.1. The mapping class group action for TQFTs For any ϕ ∈ Diff(M), let Cϕ denote
the mapping cylinder of ϕ, i.e. the cobordism [0, 1] × M from M to itself, where M is
attached via the identity at 0 and via ϕ at 1.

If Z : Bordn → VectC is a TQFT, then the assignment ϕ �→ Z(Cϕ) : Z(M) →
Z(M) defines an action of Diff(M) on Z(M). If ϕ ∈ Diff0(M), then there is a smooth
isotopy ϕt : [0, 1] × M → M such that ϕt (0, x) = x and ϕt (1, x) = ϕ(x), and in
particular there is a diffeomorphism of cobordisms Cid ∼= Cϕ defined by the map

[0, 1] × M → [0, 1] × M

(t, x) �→ (t, ϕt (x)).
(4.3)

Therefore Z(Cϕ) = Z(Cid) = id, so this Diff(M)-action is trivial on Diff0(M), hence
defines an MCG(M)-action on Z(M).

4.1.2. The Diff(M)-action for a lattice model We will imitate the first half of the above
argument for a lattice model with some assumptions, constructing a Diff(M)-action on
the space of ground states of the model on M ; in Sects. 4.2.2 and 4.3.3, we will see
that for the toric code and GDS models, these are trivial when restricted to Diff0(M),
defining actions of the mapping class group on the spaces of ground states of the toric
code and GDS models.

We require the following of our lattice model.

(A1) The model is defined for closed (n − 1)-manifolds equipped with a lattice, which
here means a CW structure or a triangulation, or one of these structures subject to
some condition that can be satisfied on all closed (n − 1)-manifolds and for which
any two such structures on a manifold admit a common refinement.

9 One should allow TQFTs tensored with an invertible, non-topological theory, as in [17, §5.4]. The TQFTs
we find in this paper are topological, so this distinction will not matter here.
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(A2) Given a closed manifold M , a diffeomorphism f : M → M and a lattice � on
M , let f (�) denote the lattice obtained by postcomposing the attaching maps in �

with f . We ask for f to induce an isomorphism f∗ from the state space of the model
for � to the state space of the model for f (�), for f∗ to intertwine the Hamiltonians
of these models, and for this to be functorial under composition of diffeomorphisms.

(A3) Data of, for every refinement � → �′ of lattices, an isomorphism from the space
of low-energy states of the model on� to the space of low-energy states of the model
on�′, which is functorial under composition of refinements, andwhich is compatible
with the maps f∗ in (A2).

Examples of conditions satisfying the constraint in (A1) include regular CW complexes
and the class of smooth triangulations we considered when defining the GDS model.

With these assumptions in place, we define a category Lat(M) whose objects are the
lattices on a closed manifold M and whose morphisms are generated by refinements and
diffeomorphisms. Specifically, we add a morphism r�,�′ : � → �′ for each refinement
� → �′, and for each diffeomorphism f : M → M we add a morphism f∗ : � →
f (�). These morphisms are subject to the relations establishing functoriality under
composition of diffeomorphisms and under composition of refinements, and that f∗ ◦
r�,�′ = r f (�), f (�′) ◦ f∗.

Then (A2) and (A3) define a functor L : Lat(M) → VectC sending a lattice � to the
space of low-energy states of the model on �; let Z(M) := lim−→ L . Let f ∈ Diff(M). If
r�,�′ : � → �′ is a refinement, the fact that f∗ ◦ r�,�′ = r f (�), f (�′) ◦ f∗ means that
the action of f∗ passes to the colimit, defining a map f∗ : Z(M) → Z(M), and this is
functorial with respect to diffeomorphisms, defining a Diff(M)-action on Z(M).

4.2. Review for the toric code. As a warmup, before tackling the GDS model, we deter-
mine a TQFT which captures the ground states of the toric code. Neither the answer nor
this perspective on it are new.

Theorem 4.4. Let DW0 : Bordn → VectC denote the Z/2-Dijkgraaf–Witten theory
with Lagrangian equal to 0. Then DW0 captures the ground states of the toric code.

Remark 4.5. This is not a new result. Because researchers consider different formula-
tions of the toric code, there are some analogues of Theorem 4.4 in the literature for
different classes of toric code models, e.g. in [5,11,37]. Though these results do not
cover Theorem 4.4 in the case n > 3, it and its proof were certainly known before this
paper.

Our proof of Theorem 4.4 will be slightly more complicated than necessary. This is
so that it follows the same line of argument as the proof for the GDS model in Sect. 4.3.
We hope that presenting the simpler example first makes the GDS example easier to
understand.

Before we prove Theorem 4.4, we must define the Diff(M)-action on the space of
ground states of the toric code on M . First, though, in Sect. 4.2.1, we show the space
of ground states on M is isomorphic as vector spaces to DW0(M). Then, in Sect. 4.2.2,
we use the argument of Sect. 4.1.2 to produce a Diff(M)-action on the space of ground
states on M , compare it with the MCG(M)-action on DW0(M), and conclude.

4.2.1. Identifying the vector spaces for the toric code Our goal is to prove the following
proposition.
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Proposition 4.6. For a closed manifold M, the space of ground states of the toric code
on M is isomorphic as vector spaces to DW0(M).

Wecan use the fact that the vertex and face operators commute to simplify our analysis
of the Hamiltonian.

Lemma 4.7. Let V be a vector space over a field k, and let � = ∑m
i=1 φi be a finite

sum of commuting projections φi ∈ Endk(V ). Then, ker(�) = ⋂m
i=1 ker(φi ).

Proof. By induction, it suffices to consider m = 2, so � = φ1 + φ2. Clearly ker(φ1) ∩
ker(φ2) ⊂ ker(�), so assume �x = 0 for some x ∈ V . Thus φ1x = −φ2x , so
φ1x = φ2

1x = −φ1φ2x = −φ2(φ1x), so φ1x is an eigenvector for φ2 with eigenvalue
−1. This means φ2

2(φ1x) = (−1)2φ1x = φ1x , and since φ2 is a projection, φ2
2(φ1x) =

φ2φ1x = −φ1x , forcing φ1x = 0. Since φ2 = � − φ1, then φ2x = 0 as well.

Proof of Proposition 4.6. Let M be a closedmanifold with a CW structure�. As before,
we will write (P, ξ) for an object of BunZ/2(M1, M0), meaning that P → M1 is a
principal Z/2-bundle and ξ : M0 → P|M0 is a trivialization of P over M0.

By Lemma 4.7, the ground states of the toric code for M are those functions ψ on
BunZ/2(M1, M0) such that Hvψ = 0 for all 0-cells v and H f ψ = 0 for all 2-cells f .

Let f be a 2-cell. Then, H f ψ = 0 if and only if B f ψ = ψ , or for all (P, ξ) ∈
BunZ/2(M1, M0), (−1)HolP ( f )ψ(P, ξ) = ψ(P, ξ). That is, either ψ(P, ξ) = 0 or
HolP ( f ) = 0, so ψ must vanish on all principal Z/2-bundles with nontrivial holonomy
around ∂ f . Hence ifψ ∈ ker(H f ) for all 2-cells f , it can only be nonzero on the principal
Z/2-bundles with no holonomy around the boundary of any 2-cell, which are exactly the
principal Z/2-bundles which extend to M2, hence to all of M , and such an extension is
necessarily unique. That is,

⋂
f ker(H f ) is the space of functions on BunZ/2(M, M0).

Let A := C0
�(M; Z/2) denote the group of cellular 0-cochains. We will describe

the ground states of the toric code for M as invariant sections of an A-equivariant line
bundle on BunZ/2(M, M0), then take the quotient by A. For v ∈ �0(M), let δv ∈ A be
the function equal to 1 on v and 0 elsewhere. Then,A has a presentation by the following
generators and relations:

A ∼= 〈δv for all v ∈ �0(M) | δ2v, [δv, δw]〉, (4.8)

so an A-action is the same data as commuting involutions associated to each δv . For
example, A acts on the (discrete) groupoid BunZ/2(M, M0) through the commuting
involutions

δv : (P, ξ) �→ (P, (w �→ ξ(w) + δv(w))). (4.9)

Consider the trivial line bundleC → BunZ/2(M, M0) and give it the trivialA-action.We
can identify sections of C with functions on BunZ/2(M, M0), and theA-actions match;
in particular, if ψ ∈ �(C) and v is a 0-cell, then δv ·ψ = Avψ . Therefore ψ is invariant
under theA-action if and only if Avψ = ψ for all v, i.e. Hvψ = 0 for all v. That is, the
space of ground states is the space of A-invariant sections of C → BunZ/2(M, M0).

The A-equivariant line bundle C → BunZ/2(M, M0) descends to a nonequivariant
line bundle on the groupoid quotient BunZ/2(M, M0)/A; since we began with the trivial
A-action, this will also be a trivial line bundle. Therefore it suffices to identify the
quotient.
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Lemma 4.10. The map BunZ/2(M, M0)/A → BunZ/2(M) which forgets the trivializa-
tion is an equivalence of groupoids. Given (P, ξ) ∈ BunZ/2(M, M0) and φ ∈ Aut(P),
action by

tφ :=
∑

v∈�0(M)
φ|vnontrivial

δv ∈ A (4.11)

on (P, ξ) passes to φ in the quotient.

Proof. BunZ/2(M, M0) is a discrete groupoid, sowe just have to determine the stabilizer
subgroup for theA-action.Anautomorphismφ of P switches the trivializationswherever

φ is nontrivial, so defines an isomorphism (P, ξ)
∼=→ (P, tφ · ξ). To check these are the

only isomorphisms that occur, suppose (P, ξ) ∼= (P, t · ξ) for some t ∈ A. Since the
function spin(P,ξ) is an isomorphism invariant of (P, ξ) ∈ BunZ/2(M, M0), t must be
the sum of δv as v ranges over a set S of 0-cells such that every 1-cell of M bounds an
even number of 0-cells in S. Thus for any connected component M0 of M , S includes
either all 0-cells of M0 or none, so t is realized by some tφ .

Therefore the space of ground states on M is the space of sections of C →
BunZ/2(M), i.e. the space of functions on BunZ/2(M), which is what DW0 assigns
to M .

4.2.2. The MCG(M)-action for the toric code Recall the axioms (A1)–(A3) from
Sect. 4.1.2 that allow us to produce a Diff(M)-action on the space of ground states
on M . It is clear how to satisfy (A1) and (A2); turning to (A3), a refinement ϕ : � → �′
of CW structures on M induces a pullback map

ϕ∗ : BunZ/2(M1
�′, M0

�′) → BunZ/2(M1
�, M0

�). (4.12)

hence a pushforward map on state spaces: ϕ∗ : H(�) → H(�′).

Remark 4.13. The pushforward ϕ∗ does not restrict to an isomorphism on the spaces of
ground states. Consider the refinement � → �′ in Fig. 4 and (P, ξ) which induce the
indicated spins on the 1-cells of�′. If f is a ground state for�′, it must vanish on (P, ξ),
because (P, ξ) has nontrivial holonomy around the boundaries of the pictured 2-cells,
but pulled back to �, this is no longer the case. Therefore Im(ϕ∗) contains states which
do not vanish on (P, ξ), hence are not ground states.

The issue is that functions in the image ofϕ∗ maynot vanish onbundleswith nontrivial
holonomy around certain boundaries of 2-cells, so in order to satisfy (A3), we zero out
their values on any such bundle. Let P : H�′ → H�′ denote this projection: that is, if
f ∈ H�′ and (P, ξ) ∈ BunZ/2(M1

�′ , M0
�′), let

(P f )(P, ξ) :=
{

f (P, ξ), if HolP (e) = 0 for all e ∈ �2(M;�′),
0, otherwise.

(4.14)

Lemma 4.15. The map P ◦ ϕ∗ sends ground states to ground states, hence restricts to

an isomorphism L(�)
∼=→ L(�′) functorial in the sense of (A3), and this is compatible

with the maps in (A2).
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Ξ Ξ′

Fig. 4. Consider a refinement� → �′ of CW structures as above, together with (P, ξ) ∈ BunZ/2(M1
�′ , M0

�′ )
such that the labels on the 1-simplices represent spin(P,ξ), as in Remark 2.34. In Remark 4.13, we discuss
how (P, ξ) illustrates a subtlety in defining the map from the ground states of the toric code for � to those on
�′

Proof. Let f ∈ L(�). By construction P(ϕ∗( f )) vanishes on principal Z/2-bundles
with nontrivial holonomy, so it suffices to check that it does not depend on the trivial-
izations on the 0-cells. This is not changed by P , so we can just think about ϕ∗( f ). Let
v ∈ �0(M, �′) and suppose v is also a 0-cell of �. Then ϕ∗( f ) cannot depend on the
trivialization at v, because f does not depend on the trivialization at v. If instead v is
not a 0-cell of �, so is created by the refinement, then ϕ∗( f ) also does not depend on
the trivialization at v, because ϕ∗( f )(P, ξ) is computed by pulling back to �, where v

is not a cell.

Therefore the argument of Sect. 4.1.2 applies to define for any closed (n−1)-manifold
M an action of Diff(M) on the ground states of the toric code. Under the identification
of this space with C[BunZ/2(M)], this representation is the one induced from the usual
Diff(M)-action on π0 BunZ/2(M) ∼= H1(M; Z/2), which is trivial on the subgroup
Diff0(M) and therefore defines an action of the mapping class group.

Recall from Proposition 4.6 that for any closed (n − 1)-manifold M , the state space
of Z/2-Dijkgraaf–Witten theory with Lagrangian equal to 0 on M , denoted DW0(M), is
isomorphic to the space of ground states of the toric code on M . Explicitly, DW0(M) ∼=
C[BunZ/2(M)], and DW0 assigns to a cobordism a push–pull map, which implies that
the MCG(M)-action on DW0(M) is also the action induced from the standard action
on π0 BunZ/2(M). Therefore the identification of the space of ground states of the toric
code for M withDW0(M) in Proposition 4.6 is equivariant with respect to theMCG(M)-
actions on both sides, proving Theorem 4.4.

Remark 4.16. Themapping class group action determines the partition functions ofmap-
ping tori: if f ∈ MCG(M), then Z(M f ) is the trace of f acting on Z(M). Though we
can see these partition functions from the lattice, it is not clear in general how to extend
this to arbitrary closed n-manifolds.

4.3. Derivation of the generalized double semion Lagrangian. Wenow answer themain
question of this paper: identifying a TQFT whose state spaces are isomorphic to the
spaces of ground states of the GDS model.

Definition 4.17. Fix a dimension n. Let α ∈ H1(BZ/2; Z/2) denote the generator and
w ∈ H∗(BOn; Z/2) denote the total Stiefel–Whitney class. In H∗(BOn × BZ/2; Z/2),
α is nilpotent, so 1 + α is invertible, and we can consider wα/(1 + α) ∈ H∗(BOn ×
BZ/2; Z/2), which is a sum of homogeneous elements of different degrees. Let β

denote the degree-n summand of wα/(1 + α). We let ZGDS : Bordn → VectC denote
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the quantum gauge–gravity theory Zβ from Definition 3.23; the dimension n will be
clear from context when needed.

Our goal in this section is to prove the following.

Theorem 4.18. The TQFT ZGDS captures the ground states of the GDS model.

As with the toric code, we first establish an isomorphism of vector spaces in
Sects. 4.3.1 and 4.3.2. Then, in Sect. 4.3.3, we invoke the argument of Sect. 4.1.2 to
define the Diff(M)-action on the space of ground states of the GDS model on a closed
manifold M and compare it with the action on ZGDS, finishing the proof of Theorem4.18.

4.3.1. Defining LGDS → BunZ/2(M) Our first goal is to prove the following theorem.

Theorem 4.19. For a closed manifold M, the space of ground states of the GDS model
on M is isomorphic as vector spaces to ZGDS(M).

Let M be a closed (n − 1)-manifold with a smooth triangulation �; as in Sect. 2.2,
we assume the 0-clopen star of any vertex is contractible. We will prove Theorem 4.19
by identifying the ground states of the GDS model on M with the space of sections of a
line bundle LGDS → BunZ/2(M) defined below. Proposition 3.24 identifies ZGDS(M)

with the sections of another line bundle Lβ → BunZ/2(M), and we will show that
LGDS ∼= Lβ .

The commutativity relations for the operators in theGDSmodel aremore complicated
than those for the toric code, but we can still understand the spaces of ground states in
terms of the vertex and face operators.

Lemma 4.20. With V as in Lemma 4.7, let φi , ψ j ∈ Endk(V ) and suppose

H =
�∑

i=1

φi

︸ ︷︷ ︸
�

+
m∑

j=1

ψ j

︸ ︷︷ ︸
�

, (4.21)

such that for all i and j ,

(1) φi and ψ j are projections,
(2) [φi , φ j ] = 0,
(3) [φi , ψ j ] = 0,
(4) for any x ∈ ker(�), [ψi , ψ j ]x = 0.

Then,

ker(H) =
m⋂

j=1

ker(ψ j : ker(�) → ker(�)). (4.22)

Proof. Lemma 4.7 tells us ker(H) = ker(�)∩ker(�), so it suffices to restrict to ker(�).
Since φi and ψ j commute, then ψ j (ker�) ⊂ ker� for each j , so we may consider
ψ j as an operator on ker(�). Restricted to this subspace, [ψi , ψ j ] = 0, so we apply
Lemma 4.7 again to conclude.
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The upshot is that for a Hamiltonian whose smallest eigenvalue is 0 and which is a
sumof vertex and face operators satisfying the commutativity conditions in Lemma 4.20,
the space of ground states can be computed by finding the f ∈ H with φi f = 0 for all
i , then taking the subspace of those such that ψ j f = 0 for all j . By Lemmas 2.29 and
Lemma 2.35, the vertex and face operators for the GDS model satisfy the commutation
relations in Lemma 4.20, where the φi are the face operators and the ψ j are the vertex
operators, so we will use this method to find the space of ground states.

The first part of the derivation is to determine
⋂

f ker(H f ). The H f operators in the
GDS model are the same as in the toric code, so the derivation proceeds as for the toric
code (the first part of the proof of Theorem 4.4) to produce the space of functions on
BunZ/2(M, M0).

Next,wewill use the vertex operators to define LGDS → BunZ/2(M) and characterize
the ground states on M as its space of sections. Specifically, lettingA := C0

�(M; Z/2) as
in the previous section,wewill describe anA-equivariant line bundle onBunZ/2(M, M0)

whose invariant sections are the ground states, then let LGDS → BunZ/2(M) denote the
induced bundle on the quotient.

Definition 4.23. First,wedefine theA-equivariant line bundle L ′
GDS → BunZ/2(M, M0).

Begin with the trivial (nonequivariant) line bundle C → BunZ/2(M, M0), and give it
an A-action as follows: if (P, ξ) ∈ BunZ/2(M, M0) and z ∈ C, let

δv : ((P, ξ), z) �→ (δv · (P, ξ), σ (v, (P, ξ))z), (4.24)

where σ(v, (P, ξ)) is the GDS sign from (2.21). By Lemmas 2.29 and 2.35, the actions
of δv1 and δv2 onC commute for 0-cells v1 and v2, so (4.24) defines anA-action covering
the A-action on BunZ/2(M, M0).

Identifying functions on BunZ/2(M, M0) with sections of the trivial line bundle,
hence of L ′

GDS → BunZ/2(M, M0), a section ψ is invariant under the A-action if and
only if ψ ∈ ker(H̃v) for all v ∈ �0(M); hence, by Lemma 4.20, this identifies the
ground states of the GDSmodel for M with the space �(L ′

GDS)
A of invariant sections of

L ′
GDS. By Lemma 4.10, L ′

GDS → BunZ/2(M, M0) descends to a (nonequivariant) line
bundle LGDS → BunZ/2(M), and there is an isomorphism �(L ′

GDS)
A ∼= �(LGDS), so

the space of ground states of the GDS model is isomorphic to �(LGDS).

4.3.2. Computing the isomorphism type of LGDS Given aprincipalZ/2-bundle P → M ,
the action ofAut(P)on (LGDS)P is a character ofAut(P), and the data of these characters
for all P ∈ π0 BunZ/2(M) determines LGDS up to isomorphism. In this section, we
compute these characters, describing the answer in Corollary 4.57.

Let P → M be a principal Z/2-bundle and φ ∈ Aut(P). Let V denote the set of
vertices on which φ is nontrivial, and order this set as {v1, . . . , vm}. Fix a trivialization
ξ0 of P|M0 and let

ξi := δvi · (δvi−1 · (· · · · (δv1 · ξ0) · · · )). (4.25)

In Lemma 4.10, we identified the action of φ on LGDS with the action of tφ on L ′
GDS,

which is multiplication by

σV :=
m∏

i=1

σ(vi , (P, ξi )). (4.26)
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To compare LGDS and Lβ , we need to pass from this description of σV in terms of
simplices to a description only depending on M and P . The following theorem makes
this transition; afterwards we use characteristic classes to finish the calculation.

As in Proposition 3.24, let Pφ → S1 × M denote the mapping torus of φ.

Theorem 4.27. Let N ⊂ S1×M be an embedded submanifold representing the Poincaré
dual to α(Pφ) ∈ H1(S1 × M; Z/2). Then σV = (−1)χ(N ).

Our proof has two parts.

(1) First, the simplicial part: we construct an (n − 1)-cycle C on S1 × M , cellular
with respect to a certain CW structure, which represents the Poincaré dual of α(Pφ)

(Lemma 4.33) and such that if |C | denotes the geometric realization of C , then
σV = (−1)χ(|C|) (Proposition 4.36).

(2) Then, we show that replacing |C | with a smoothly embedded representative of
the homology class of C does not change the mod 2 Euler characteristic (Proposi-
tion 4.46).

The proof employs the dual CW structure �∨ to the given triangulation �; see
Remark 2.24 for more information. Let S1(m) denote the simplicial structure on S1

with m vertices, and choose an identification of the vertices with Z/m such that i and
i + 1 mod m share an edge for each i . Then let S1(m) × �∨ denote the product CW
structure.

For any i ∈ Z/m, the cellular 1-cochain spin(P,ξi )
: �1(M;�) → Z/2 is a cocycle

representative for α(P) ∈ H1(M; Z/2), and therefore

Yi := {e∨ | e ∈ �1(M;�) and spin(P,ξi )
(e) = 1} ⊂ �n−2(M;�∨) (4.28)

is a cellular (n−2)-cycle representative for the Poincaré dual of α(P) in Hn−2(M; Z/2).
From the definitions of Yi and of ξi (4.25) we see that

Yi = Yi−1 + ∂v∨
i , (4.29)

where i − 1 is interpreted in Z/m, and that

C :=
∑

i∈Z/m

(
(i, i + 1) × Yi + {i} × v∨

i

) ⊂ �n(S1 × M; S1(m) × �∨) (4.30)

is a cellular (n − 1)-cycle on S1 × M .

Definition 4.31. If P → M is a principal Z/2-bundle over a closed manifold M , there
is an isomorphism Aut(P) → H0(M; Z/2) sending φ ∈ Aut(P) to the function on
π0(M) which is 0 on a connected component if φ is trivial there and 1 if φ is nontrivial
there. The image of φ ∈ Aut(P) under this isomorphism is denoted [φ].

For example, if x ∈ H1(S1; Z/2) denotes the generator, then

α(Pφ) = α(P) + x[φ] ∈ H1(S1 × M; Z/2). (4.32)

Lemma 4.33. The homology class C represents is the Poincaré dual of α(Pφ) ∈
H1(S1 × M; Z/2).
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Proof. Recall that Y0 ⊂ �n−2(M;�∨) is a cellular (n − 2)-cycle representing the
Poincaré dual of α(P) ∈ H1(M; Z/2). The (n − 1)-cycle in S1 × M defined to be the
set of (n − 1)-cells of

(S1 × |Y0|) ∪
⋃

Mi ∈π0(M)
[φ](Mi )=1

{0} × Mi (4.34)

represents the Poincaré dual to α(P) + x[φ] = α(Pφ) (4.32), and is homologous to C

in Z S1(m)×�∨
n−1 (S1 × M; Z/2) by adding boundaries of the form ∂((0, i) × v∨

i ).

Lemma 4.35. For 1 ≤ i ≤ m, let Zvi (P, ξi ) be as in Proposition 2.37. Then #(Yi ∩
∂v∨

i ) = #(Zvi (P, ξi )) and therefore (−1)1+χ(|Yi |∩∂v∨
i ) = σ(vi , (P, ξi )).

Proof. This is a matter of unwinding the definitions: c ∈ Yi ∩ ∂v∨
i means that vi ∈ ∂c∨

and either

(1) c is an (n − 2)-cell and spin(P,ξi )
(c∨) = 1, or

(2) there is an (n − 2)-cell e ∈ Yi with c ∈ ∂e, i.e. spin(P,ξi )
(e∨) = 1 and e∨ ∈ ∂c∨.

These are exactly the conditions for c∨ to be in Zvi (P, ξi ), so #(Yi ∩ ∂vi ) =
#(Zvi (P, ξi )), and the rest of the conclusion then follows from Proposition 2.37.

Proposition 4.36. (−1)χ(|C|) = σV .

Proof. The projection map π : S1 × M � S1 is cellular with respect to S1(m) × �∨
and S1(m); if Di := |C | ∩ π−1([i, i + 1)), then each Di is a union of cells and

|C | =
∐

i∈Z/m

Di . (4.37)

Define Ai and Bi by π−1({i}) = {i} × Ai and π−1((i, i + 1)) = (i, i + 1) × Bi ; Ai and
Bi are also unions of cells. Then

Ai = |Yi | ∪ |Yi−1| ∪ |v∨
i | = |Yi | ∪ |v∨

i | (4.38a)

because Yi−1 = Yi + ∂v∨
i (4.29), and

Bi = |Yi |. (4.38b)

Therefore

#(cells of Di ) = #(cells of Ai ) + #(cells of Bi )

= χ(|Yi | ∪ |v∨
i |) + χ(|Yi |)

= χ(|Yi | ∪ int(|v∨
i |) ∪ |∂v∨

i |) + χ(|Yi |)
= 1 + χ(|Yi |) + χ(|∂v∨

i |) − χ(|Yi | ∩ |∂v∨
i |) + χ(|Yi |)

≡2 1 + χ(|Yi | ∩ |∂v∨
i |),

(4.39)

since ∂v∨
i

∼= Sn−1, which has even Euler characteristic. Looking at the definition of σV
from (4.26), it suffices to equate (−1)1+χ(|Yi |∩∂v∨

i ) with σ(vi , (P, ξi )), which is taken
care of by Lemma 4.35.

Now we show that we can replace |C | with a smooth representative of the homology
class of C .
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Definition 4.40. Let M be a smooth manifold and r ∈ Z≥0 ∪ {∞}. A Cr triangulation
of M is a triangulation (K , f : |K | → M) of M such that for every simplex e of K ,
f ||e| is a Cr map.

Theorem 4.41 (Munkres [46, Theorem 10.6]). Let W be a compact manifold and r ∈
Z>0 ∪ {∞}. Then every Cr triangulation of ∂W extends to a Cr triangulation of W .

Corollary 4.42. Let X be a closed smooth manifold and Y ⊂ X be a smooth
codimension-one submanifold. Then there is a triangulation of X such that Y is a union
of simplices.

Proof. Let ν → Y denote the normal bundle of Y ↪→ X , D(ν) → Y denote the unit
disc bundle of ν, and S(ν) → Y = ∂ D(ν) denote the unit sphere bundle of ν. Using the
tubular neighborhood theorem, we choose an embedding i : D(ν) ↪→ M such that the
original embedding of Y in X is the zero section of D(ν) → Y followed by i .

Let r ≥ 1. Given a Cr triangulation �(N ) of Y , we can triangulate D(ν): let �(I )
denote the triangulation of [−1, 1]which has vertices precisely at the integers, which is a
smooth triangulation. For any simplex e of�(Y ), D(ν)||e| is isomorphic to |e|×[−1, 1];
choose an isomorphismψe, and give D(ν)|e| the product triangulation |e|×�(I ). These
are compatible as e varies: if e′ is another cell and |e′| intersects |e|, (ψ−1

e′ ◦ ψe)||e|∩|e′|
is either the identity or multiplication by −1 on the fiber. Both of these send simplices
to simplices, so we can glue the triangulations on D(ν)||e| and D(ν)||e′|. Doing this for
all simplices of Y defines a Cr triangulation �(D(ν)) of D(ν) in which Y ⊂ D(ν) is a
union of simplices.

This induces a Cr triangulation of S(ν) = ∂(X\D(ν)), which by Theorem 4.41
extends to a triangulation of X\D(ν). We glue this triangulation to�(D(ν)), since both
triangulations agree on S(ν), to obtain a triangulation of X in which Y is a union of
simplices.

Lemma 4.43. Let � be a triangulation of an n-manifold X, C ∈ Z�
n−1(X; Z/2), and

f ∈ �n(X). Then
χ(|C |) ≡ χ(|C + ∂ f |) mod 2. (4.44)

Proof. The sets of simplices in |C | and |C + ∂ f | agree away from | f |, so if R0 :=
|C | ∩ |∂ f | and R1 := |C + ∂ f | ∩ |∂ f |, then it suffices to show χ(R0) ≡ χ(R1) mod 2.

Inclusion-exclusion implies

χ(R0) + χ(R1) ≡ χ(|∂ f |) + χ(R0 ∩ R1) mod 2. (4.45)

Since |∂ f | ∼= Sd−1, its Euler characteristic is even. Next we show R0 is a topological
manifold with boundary: if R0 is empty or all of |∂ f |, this is clear, and otherwise R0
is an iterated boundary connect sum of its (n − 1)-simplices. Since R0 ∩ R1 = ∂ R0,
R0 ∩ R1 is null-bordant as a topological manifold, so its Euler characteristic is even,
and (4.45) simplifies to χ(R0) = χ(R1) mod 2.

Proposition 4.46. With C as in (4.30), if N ↪→ S1×M is a smooth representative for the
homology class of C (namely, the Poincaré dual of α(Pφ)), then χ(|C |) ≡ χ(N ) mod 2.

Proof. Let �1 be the barycentric subdivision of �; as noted in Remark 2.24, this is
also a “refinement” of �∨, in that every cell of �∨ is a union of simplices of �1. By
Corollary 4.42, there is a triangulation �t of M such that N is a union of simplices; let
�′ be a common refinement of �1 and �t , and S1(m)×�′ be the product triangulation
of S1 × M .
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Let Ctop ∈ Z S1(m)×�′
n−1 (S1 × M; Z/2) denote the cycle whose simplices are those

contained in the cells of C ; then |Ctop| = |C |. If Csm ∈ Z S1(m)×�′
n−1 (S1 × M; Z/2)

denotes the (n − 1)-simplices in N , then N = |Csm| and Ctop and Csm are homologous,
so there are n-cells f1, . . . , f� such that

Csm = Ctop +
�∑

i=1

∂ fi . (4.47)

We apply Lemma 4.43 � times and conclude.

By combining this with Proposition 4.36, we have proven Theorem 4.27.
Next, we translate (−1)χ(N ) into an expression involving characteristic classes of M

and P .

Proposition 4.48. Let M be a closed manifold, P → M be a principal Z/2-bundle, and
N ⊂ M be a smoothly embedded, codimension-1 submanifold representing the Poincaré
dual to α(P). Then,

χ(N ) mod 2 =
〈
w(M)α(P)

1 + α(P)
, [M]

〉
. (4.49)

But before we prove this:

Lemma 4.50. Let L → X be a line bundle over a closed manifold X and Y ↪→ X be a
smoothly embedded closed submanifold representing the Poincaré dual to w1(L), with
normal bundle ν → Y . Then, as line bundles over Y , ν ∼= L|Y .

Proof. If i! : H∗(Y ; Z/2) ↪→ H∗+1(X; Z/2) denotes the Gysin map (which is Poincaré
dual to restriction H∗(X; Z/2) → H∗(Y ; Z/2)), then i!(1) is Poincaré dual to [Y ] ∈
Hd−1(X; Z/2) and i∗i!(1) = w1(ν). By construction, [Y ] is Poincaré dual to w1(L), so
i∗w1(L) = w1(L|Y ) = w1(ν). As line bundles are classified by their Stiefel–Whitney
classes, ν ∼= L|Y .
Proof of Proposition 4.48. Let j : N ↪→ M be inclusion. Since N represents the
Poincaré dual of α(P), then for any x ∈ Hn−1(M; Z/2),

〈 j∗x, [N ]〉 = 〈α(P)x, [M]〉. (4.51)

We will use this to carry the mod 2 Euler characteristic of N , which is equal to
〈w(N ), [N ]〉, to the cohomology of M ; in order to do so, wemust showw(N ) ∈ Im( j∗).

If ν → N denotes the normal bundle of N , there is a short exact sequence of vector
bundles on N

0 �� T N �� j∗T M �� ν �� 0, (4.52)

so w( j∗T M) = j∗w(M) = w(N )w(ν). Since ν is a line bundle,

w(ν) = 1 + w1(ν) = 1 + j∗α(P) = j∗(1 + α(P)) (4.53)

by Lemma 4.50. Hence
j∗w(M) = w(N ) j∗(1 + α(P)). (4.54)

Since α(P) ∈ H∗(X; Z/2) is nilpotent, j∗(1 + α(P)) is invertible, and therefore

w(N ) = j∗w(M)

j∗(1 + α(P))
= j∗

(
w(M)

1 + α(P)

)
. (4.55)
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Thus we can invoke Poincaré duality:

χ(N ) mod 2 = 〈w(N ), [N ]〉 =
〈
α(P) · w(M)

1 + α(P)
, [M]

〉
. (4.56)

Combining this with Theorem 4.27, we get:

Corollary 4.57. If P ∈ BunZ/2(M), the character of Aut(P) acting on (LGDS)P has φ

act by multiplication by

(−1)〈α(Pφ)w(S1×M)/(1+α(Pφ)),[S1×M]〉 ∈ {±1} ⊂ C
×. (4.58)

Next, we compare this with the character of Aut(P) acting on (Lβ)P and conclude.

Proof of Theorem 4.19. Proposition 3.24 tells us that in the character of Aut(P) acting
on (Lβ)P , φ acts by Z cl

β (S1 × M, Pφ); by Theorem 3.2, this is exactly (4.58). Hence
LGDS ∼= Lβ .

4.3.3. The MCG(M)-action for the GDS model Let Cell(M) denote the poset category
whose objects are smooth triangulations on M such that the 0-clopen star of every vertex
is contractible, andwhosemorphisms are generated by diffeomorphisms and refinements
similarly to the construction of Lat(M) in Sect. 4.1.2. Just as for the toric code, given
a diffeomorphism f : M → M and � ∈ Cell(M), we obtain a map f∗ from the state
space for � to the state space for f (�), and this assignment satisfies (A2).

Let ϕ : � → �′ be a refinement. Define ϕ∗ and P as in the previous section, and
let P ′ : H�′ → H�′ be the projection onto

⋂
v H̃v which is orthogonal with respect to

the inner product in which the δ-functions on elements of π0 BunZ/2(M1, M0) are an
orthonormal basis.

Lemma 4.59. The map P ◦P ′ ◦ϕ∗ sends ground states to ground states, hence restricts

to an isomorphism L(�)
∼=→ L(�′) functorial as in (A3), and this is compatible with

the maps in (A2).

Proof. Suppose ϕ adds no 0-simplices and 1-simplices to �, so H�′ ∼= H�′ and ϕ∗
is the identity. Then ϕ adds no cells at all, because it is not possible to add cells to
a manifold that is a simplicial complex without adding 0- or 1-simplices, so ϕ is the
identity refinement and the lemma follows because P and P ′ are projections.

If otherwise, we show that ϕ∗ of a nonzero ground state is not a ground state, so that
the orthogonal projection thereafter sends it to a nonzero ground state. If ϕ adds any
1-simplices to � that do not arise from splitting preexisting 1-simplices into smaller
ones, the construction in Remark 4.13 shows that ϕ∗ of a nonzero ground state is not a
ground state; if the only 1-simplices it adds are split from preexisting ones, then it must
add a 0-simplex. If ϕ adds any 0-simplices to �, it must add a 1-simplex that is not split
from a preexisting 1-simplex, because all 0-simplices must be trivalent.

Therefore the argument of Sect. 4.1.2 applies to define for any closed (n−1)-manifold
M an action of Diff(M) on the ground states of the GDSmodel. Under the identification
of the space of ground states with the space of functions on the set of P ∈ π0 BunZ/2(M)

such that 〈α(P)w(M)/(1+α(P)), [M]〉 = 0, this representation is the one induced from
the usualDiff(M)-action on this space,which is an invariant subspace ofC[BunZ/2(M)],
and once again this is trivial on Diff0(M), so it defines an MCG(M)-action.
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Recall from Theorem 4.19 that ZGDS(M) is isomorphic to the space of ground states
of the GDS model on M ; using the push–pull map ZGDS assigns to a cobordism, its
MCG(M)-action is the same, again induced from the standard action on π0 BunZ/2(M),
finishing the proof of Theorem 4.18.

Remark 4.60. Suppose n is even, and let Z2 : Bordn → VectC denote the quantum
gauge–gravity TQFT with Lagrangian β2 equal to the degree-n summand of wα/(1 +
α2) ∈ H∗(BOn × BZ/2). Then ZGDS(RP

n) = 1 and Z2(RP
n) = 0, so ZGDS �=

Z2. However, a characteristic-class computation shows that for any closed (n − 1)-
manifold M , there is an isomorphism ZGDS(M) ∼= Z2(M) equivariant with respect to
the MCG(M)-action on the state spaces. This means that in the sense of Definition 4.1,
both ZGDS and Z2 capture the ground states of the GDS model, and that it is not clear
how to distinguish them using data from the lattice. In physics, however, the low-energy
effective theory of a lattice model is expected to be unique.

Freed–Hopkins [17, §7.3], following Kong–Wen [39], suggest that the low-energy
effective theorymay only be defined onmanifolds which locally have a direction of time,
i.e. manifolds M together with a reduction of the structure group of T M from On to
On−1. That is, it should be possible to calculate the partition function on such manifolds
using locality of the lattice model, and it might not be possible to calculate further in
general. Alternatively, Shapourian–Shiozaki–Ryu [56] describe a method to compute
partition functions on RP

2 for 2D symmetry-protected topological phases defined by
a Hamiltonian, and it is possible their method would generalize, though we have not
pursued this.

5. Calculations

In this section, we perform some calculations with the GDS Lagrangian in order to
understand when ZGDS is isomorphic to a Z/2-Dijkgraaf–Witten theory. First, we fix
some notation.

• Recall that α denotes the generator of H1(BZ/2; Z/2) ∼= Z/2; in particular, it
defines a characteristic class for principal Z/2-bundles by pullback, and if P ∈
BunZ/2(X), this characteristic class evaluated on P is denoted α(P) ∈ H1(X; Z/2).

• DW0 : Bordn → VectC denotes Z/2-Dijkgraaf–Witten theory with the zero
Lagrangian and Zαn : Bordn → VectC denotes Z/2-Dijkgraaf–Witten theory with
Lagrangian αn ∈ Hn(BZ/2; Z/2).

• Recall from Definition 4.31 that if P → M is a principal Z/2-bundle, the image of
φ ∈ Aut(P) under the isomorphism Aut(P) → H0(M; Z/2) is denoted [φ]. Letting
x ∈ H1(S1; Z/2) denote the generator, α(Pφ) = α(P) + x[φ] in H∗(S1 × M; Z/2).

We begin with a few example calculations. We will call a principal Z/2-bundle
P → M permitted if the GDS action 〈w(M)α(Pφ)/(1 + α(Pφ)), [M]〉 vanishes for all
φ ∈ Aut(P); thus ZGDS(M) is the space of functions on the set of isomorphism classes
of permitted bundles.

Proposition 5.1. If M is a closed (n − 1)-manifold, then the trivial bundle Ptriv → M
is permitted if and only if χ(M) is even.

Proof. The action for Ptriv and φ ∈ Aut(Ptriv) is
〈
w(M)α((Ptriv)φ)

1 + α((Ptriv)φ)
, [S1 × M]

〉
=

〈
w(M)(x[φ] + α(Ptriv))

1 + (x[φ] + α(Ptriv))
, [S1 × M]

〉
(5.2)
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by (4.32). Since Ptriv is trivial, α(Ptriv) = 0, so

=
〈
w(M)x[φ]
1 + x[φ] , [S1 × M]

〉
. (5.3)

Since (x[φ])2 ∈ H2(S1; Z/2) = 0,

= 〈w(M)x[φ], [S1 × M]〉, (5.4)

which by a Fubini theorem is

= 〈x[φ], [S1]〉〈w(M), [M]〉. (5.5)

If φ is nontrivial, 〈x[φ], [S1]〉 = 1. Hence the action is zero for all φ if and only if
〈w(M), [M]〉, which is χ(M) mod 2, vanishes.

Corollary 5.6. Let M be simply connected. Then,

ZGDS(M) ∼=
{
0, χ(M)odd
C, χ(M)even.

(5.7)

Proof. All principal Z/2-bundles over such a manifold are trivial, so we just have to
check whether the trivial bundle is permitted.

It is worth comparing this to the αn Dijkgraaf–Witten theory.

Lemma 5.8. If n > 1 and M is a closed (n − 1)-manifold, Z cl
αn (S1 × M, (Ptriv)φ) = 0

for any automorphism φ. In particular, if M is simply connected, Zαn (M) ∼= C.

Proof. Let φ ∈ Aut(Ptriv), so

α((Ptriv)φ) = α(Ptriv) + x[φ] = x[φ]. (5.9)

The action is
〈α(Pφ)n, [S1 × M]〉 = 〈(x[φ])n, [S1 × M]〉 = 0. (5.10)

Proposition 5.11.

ZGDS(CP
n × RP

2) ∼=
{

C, n even
C
2, n odd.

(5.12)

Proof. Let X := CP
n × RP

2, and let z be the generator of H1(X; Z/2) ∼= Z/2. Since

χ(X) = χ(CP
n)χ(RP

2) =
{
0 mod 2, n odd
1 mod 2, n even,

(5.13)

then by Proposition 5.1, the trivial bundle is permitted if and only if n is odd.
The other isomorphism class of principal Z/2-bundles on X is the one whose total

space is the universal cover of X , which we denote P . Then α(P) = z, and for φ ∈
Aut(P), the Lagrangian for S1 × X and Pφ is

α(Pφ)w(S1 × X)

1 + α(Pφ)
= (z + x[φ])w(RP

2)w(CP
n)

1 + z + x[φ] . (5.14)
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Since z + x[φ] is nilpotent, 1 + z + x[φ] is invertible, so

= (z + x[φ])w(RP
2)w(CP

n)(1 + z + x[φ])
(1 + z + x[φ])2 . (5.15)

Since (x[φ])2 = 0,

= (1 + z)3(z + z2 + x[φ])w(CP
n)

1 + z2
(5.16)

= (1 + z)(z + z2 + x[φ])w(CP
n) (5.17)

= (z + x[φ] + zx[φ])w(CP
n). (5.18)

Wewant to pair thiswith [S1×X ], but (5.18) has no termsof degree dim(S1×X) = 2n+3.
Thus

〈(z + x[φ] + zx[φ])w(CP
n), [S1 × X ]〉 = 0, (5.19)

so this bundle is always permitted.

Proposition 5.20. For n ≥ 2,

ZGDS(RP
n) ∼=

{
C, n even
C
2, n odd.

(5.21)

Proof. Let z ∈ H1(RP
n; Z/2) denote the generator. By Proposition 5.1, the trivial

principalZ/2-bundle is permitted if and only if n is odd. The other isomorphism class of
principal Z/2-bundles is the universal cover Sn � RP

n , with α(Sn) = z, so it suffices
to prove this bundle is always permitted. Let φ be an automorphism of this principal
bundle. The action is

α(Sn
φ)w(RP

n)

1 + α(Sn
φ)

= (z + x[φ])(1 + z)n+1

1 + z + x[φ] . (5.22)

Again, z + x[φ] is nilpotent, so 1 + z + x[φ] is invertible, so

= (z + x[φ])(1 + z)n+1(1 + z + x[φ])
(1 + z + x[φ])2 (5.23)

= (1 + z)n+1(z + z2 + x[φ])
(1 + z)2

(5.24)

= (1 + z)n−1(z + z2 + x[φ]). (5.25)

But in (5.25), only the (1+z)n−1z2 term contributes anything of degree dim(S1×RP
n) =

n + 1, and this lives in Hn+1(RP
n; Z/2) ⊗ H0(S1; Z/2), hence must be 0. Thus (5.25)

has no terms of top degree, so

〈(1 + z)n+1(z + z2 + x[φ]), [S1 × RP
n]〉 = 0, (5.26)

and this bundle is always permitted.

We now compare ZGDS with Z/2-Dijkgraaf–Witten theories.
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Lemma 5.27. Let M be a closed (2k + 1)-manifold and y ∈ H1(M; Z/2). Then
w1(M)y2k = 0.

Proof. Let v1 denote the first Wu class. Then,

w1y2k = v1y2k = Sq1((yk)2) = 0. (5.28)

Theorem 5.29. In dimension 3, ZGDS is isomorphic to Zα3 .

Proof. This follows from Proposition 3.33 after observing

(α + w1)
3 = α3 + w1α

2 + w2
1α + w3

1. (5.30)

On any closed 3-manifold,w3
1 = 0 because all closed 3-manifolds bound, andw1α

2 = 0
by Lemma 5.27. Thus (5.30) agrees with the Lagrangian for ZGDS.

The relationship in dimension 3 between the double semion model and the Z/2-
Dijkgraaf–Witten theory with Lagrangian α3 is known to physicists (see, e.g., [61, §II]),
though not previously proven in this form.

Theorem 5.31. For even n, ZGDS is isomorphic to DW0.

Proof. By Corollary 3.27, it suffices to prove that w(M)α/(1 + α) = 0 for any
even-dimensional manifold M and α ∈ H1(M; Z/2). In Proposition 4.48, we saw
〈w(M)α/(1 + α), [M]〉 is the mod 2 Euler characteristic of a submanifold N represent-
ing the Poincaré dual of α. Since N is a closed, odd-dimensional manifold, its mod 2
Euler characteristic vanishes, so w(M)α/(1 + α) = 0.

[22, Thm. 5.3] proved this for state spaces, and the proof idea is the same.

Theorem 5.32. For odd n ≥ 4, ZGDS is not isomorphic to any Z/2-Dijkgraaf–Witten
theory.

Proof. By Corollary 3.29, it suffices to prove that ZGDS is not isomorphic to DW0 and
Zαn .

If n = 4k + 1 for some k ≥ 1, then ZGDS(CP
2k) = 0 by Corollary 5.6, but

DW0(CP
2k) ∼= C, and Zαn (CP

2k) ∼= C by Lemma 5.8.
If n = 4k +3 for some k ≥ 1, then ZGDS(CP

2k ×RP
2) ∼= C by Proposition 5.11 and

DW0(CP
2k × RP

2) ∼= C
2. For the theory with Lagrangian αn , Lemma 5.8 gives us one

copy of C from the trivial bundle. If P → CP
2k × RP

2 denotes the nontrivial bundle
and z ∈ H1(RP

2; Z/2) denotes the generator, then α(P) = z. For any φ ∈ Aut(P),

〈α(Pφ)n, [S1 × CP
2k × RP

2]〉 = 〈(z + x[φ])n, [S1 × CP
2k × RP

2]〉. (5.33)

Since (x[φ])2 = 0, this is

= 〈zn + nzn−1x[φ], [S1 × CP
2k × RP

2]〉, (5.34)

and since z3 = 0, this is 0. Thus the state space picks up another factor of C, and
Zαn (CP

2k × RP
2) ∼= C

2.

This was also proven in [22, Thm. 8.1], with the samemanifolds as counterexamples.
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