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1 Introduction

Over the past twenty years or so, there has been a revolution in the way we understand
symmetries and anomalies of many-body quantum systems, both in the continuum and on
the lattice, spurred by the discovery of topological insulators and other condensed matter
systems exhibiting bulk-boundary correspondence, or anomaly in-flow. In this paper, we
study phenomena associated with symmetry breaking at the surface of such phases, and
in particular the gapless modes localized at domain walls, vortices, hedgehogs, and other
defects in the order parameter, of a broad class that we define in this work. In particular,
we provide a complete solution of the anomaly matching problem for such surface defects,
relating their classification to that of the bulk phase.

For example, the surface of a 3d topological insulator famously supports a single Dirac
cone, protected by charge conservation U(1) and time reversal symmetry. When brought into
contact with a superconductor (thought of as a U(1) symmetry breaking state), even if the
superconductor is a normal s-wave state, an exotic sort of superconductivity occurs at the
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interface by proximity effect [2, 3], characterized by Majorana zero modes at vortices. Other
famous examples of localized gapless modes include chiral modes along domain walls [4]
and axion strings [5, 6].

It turns out that in many cases, the existence of localized gapless modes at such defects is
guaranteed by anomaly matching, and holds even at strong coupling. An anomaly matching
formula of this type was first provided in [7], although it was noticed that 1. not all anomalies
are consistent with local defects in a symmetry breaking phase and 2. even when it exists,
the anomaly of the defect is not determined by the anomaly matching formula. Determining
the constraints under which defect anomaly matching can be applied and its ambiguities
were left as open problems.

In this work, we devise a general theory of defect anomaly matching, in terms of a
mathematical object known as a long exact sequence, which captures both the obstruction to
the existence of a symmetry breaking phase with a local defect and the classification of such
phases. The results are summarized in figure 1, with details to be explained later.

The physical input relies on the recent concept of higher Berry phase and its associated
bulk-boundary correspondence [8–11] which we also further develop. In particular, we
formulate an interacting version of the Callias index theorem [12, 13] which we believe will
have further applications.

As a computational tool, our long exact sequence turns out to be remarkably convenient.
Different symmetry breaking patterns can be combined to calculate the classification of
anomalies for a given symmetry group and dimension, often avoiding difficult spectral sequence
calculations. Other papers using this or closely related techniques to do computations
include [14–18].

The outline of the paper is as follows:
In section 2 we review the description and classification of ’t Hooft anomalies in terms of

invertible field theories, including some more recent perspectives and family anomalies.
section 3 contains the description of the symmetry breaking long exact sequence (SBLES)

and our physical results. The SBLES consists of three anomaly-matching formulas/maps:
(section 3.1) the residual family anomaly which persists after explicitly breaking the global
symmetry and which provides the obstruction to a local defect in the order parameter;
(section 3.2) the defect anomaly map which reconstructs the bulk anomaly from the anomaly
of the local defect, when it exists; and (section 3.3) the index map which describes the
anomaly of a defect in an invertible family and which determines the ambiguity of the defect
anomaly in terms of the classification of topologically distinct symmetry breaking patterns of
one lower dimension, thus coming in full circle. We discuss each of these in turn with several
examples, before putting them all together in a long exact sequence in section 3.4.

We discuss extended examples in section 4 and provide the analogous long exact sequence
in group cohomology in section 5.
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(a) (b)

(c)

equivariant family Resρ(ω)
obtained by breaking G

parameter space Vρ

of bulk D + 1 spacetime dimensional system

G SPT ω
parameter locus
with edge modes

real space RD with boundary

anomalous boundary of G SPT Defρ(α)
with symmetry breaking ρ-defect

localized modes
with anomaly α

localized modes
with anomaly Indρ(ζ)

real space RD−1

anomaly-free G breaking pattern ζ
in presence of ρ-defect

Figure 1. The three anomaly-matching maps: (a) (section 3.1) applying a symmetry breaking field
transforming in the representation ρ to the G SPT ω produces a G-equivariant invertible family Resρ(ω)
on the unit sphere S(ρ). When this anomaly-free G breaking pattern is topologically nontrivial, there
is a parameter locus where the boundary gap closes (a diabolical locus in the sense of [8]). This locus
begins at the origin, where we have G symmetry and protected SPT edge modes, but even though G

is broken it extends to infinity. This is the obstruction to a local ρ-defect on the boundary, and we call
it the residual family anomaly. (b) (section 3.2) When an SPT satisfies Resρ(ω) = 0, there is a local
ρ-defect on the boundary, a class of defect including domain walls, vortices, hedgehogs, etc, which
may host localized modes with anomaly α. The defect anomaly map (aka the Smith homomorphism
of [7]) reconstructs from α the bulk SPT as ω = Defρ(α). (c) (section 3.3) The defect anomaly map
can reconstruct the boundary anomaly but it cannot generally be inverted to give the anomaly of the
defect. Indeed, even in an anomaly-free G equivariant invertible family ζ, we can have a ρ-defect with
localized anomalous modes. The index map computes their anomaly as α = Indρ(ζ). This gives the
ambiguity in the boundary ρ-defect in item (b) and a generalization of the Callias index theorem to
interacting systems. In turn, families of the form Resρ(ω) (as in (a)) are precisely those with trivial
index maps, completing the circle (section 3.4).
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2 Anomalies and invertible field theories

2.1 G-anomalies

An ’t Hooft anomaly for a global symmetry G (or just G-anomaly) can be roughly defined
as an obstruction to gauging G. This typically appears in some gauge non-invariance when
we couple our theory to a background gauge field A. Let us write the partition function
on a spacetime XD with this background as Z(XD, A). Under a gauge transformation
A 7→ Ag, we may have

Z(XD, Ag) = eiα(X,A,g)Z(XD, A), (2.1)

where eiα(XD,A,g) is some phase factor which signals that Z(XD, A) is not gauge invariant
and there may be an anomaly. More precisely, since Z(XD, A) is only defined up to local
counter-terms, α(XD, A, g) is only defined up to variations of local counterterms, and if α
cannot be cancelled this way, there is a G-anomaly.

Under mild assumptions about α(XD, A, g) (see section 5 of [19]), and in all known
cases, there is a local counterterm eiω(Y D+1,A) defined in one greater dimension so that if
∂Y D+1 = XD, then

eiω(Y D+1,Ag)−iω(Y D+1,A) = eiα(XD,A,g). (2.2)

This is called anomaly in-flow, since for continuous G it can be interpreted as missing
boundary charge flowing into the bulk, and allows us to relate G-anomalies in D-dimensions
to local counterterms eiω(Y D+1,A) in D + 1 dimensions. The phase factor eiω(Y D+1,A) itself
is the (phase of the) partition function of a particularly simple type of D + 1-dimensional
theory known as a G-symmetric invertible field theory. These theories are so named because
if we take stacks of such theories (which multiplies their partition functions), each theory
has an inverse with which it stacks to the trivial theory.

A famous example is the chiral anomaly in 1+1d. We have a theory of a free Dirac fermion
with independently conserved left-movers and right-movers, corresponding to a symmetry
group G = U(1)L × U(1)R with generators L and R. If we turn on background gauge fields
AL and AR each with 2π magnetic flux through spacetime X, then there will be fermion zero
modes which must be subtracted from the path integral measure, leading to an imbalance of
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“axial” L−R charge and a nontrivial gauge variation of ZDirac(X,AL, AR). This variation is
equivalent to the boundary variation of the 2+1d Chern-Simons term [20, 21]

ω(Y 3, A) = 1
4π

∫
Y 3
ALdAL −ARdAR. (2.3)

We can think of the Dirac fermion as living at the boundary of a theory with this partition
function. If we make symmetric deformations of the Dirac fermion, such as adding Luttinger
interactions, the bulk cannot be affected even at strong coupling, and hence the anomaly does
not change, since it is determined by the bulk. This property, known as anomaly matching,
makes anomalies very useful for studying phase diagrams of theories and renormalization
group flows.

Because of this bulk-boundary correspondence, we can study anomalies by studying
the invertible field theory in the bulk. Invertible field theories are rather simple as physical
theories, having just a single state in their Hilbert space associated to each closed manifold.
However, as mathematical objects they are quite rich, and are expected to form an object
called a loop spectrum. This roughly means that a family of invertible field theories in D

dimensions parametrized by S1 (i.e. S1-family) is equivalent to an invertible field theory in
D − 1 dimensions. The equivalence is via a “Thouless pump”, where the D − 1-dimensional
invertible field theory gets “pumped” to the boundary when we go adiabatically around the
S1-family in D dimensions [22–24]. The main technical result of our work, the symmetry
breaking long exact sequence (see section 3), can be derived from the loop spectrum property.
However, for concreteness and ease of calculation, we will demonstrate our physics results
using a stronger conjectural description of these theories via cobordism theory, which we
presently describe.

The SPT-cobordism conjecture [25–27] is that the loop spectrum associated to invertible
field theory is the so-called Anderson dual of the Thom spectrum, which is related to the
cobordism theory of manifolds. We will describe here the basic physics content of this
conjecture. First we must define a cobordism. A cobordism between two manifolds M1
and M2 is a third manifold N with ∂N = M1 ∪M2. Note we can define cobordisms for
manifolds M1,M2 with structures like G gauge fields by asking that the structure extends
to the cobordism N . A cobordism invariant is something which is additive under disjoint
union, and equal for all manifolds related by cobordism. The second condition can be stated
that if M = ∂N , all cobordism invariants must be trivial for M , since N gives a cobordism
between M and the empty manifold.

The SPT-cobordism conjecture roughly means that eiω(Y D+1,A) behaves like the holonomy
of a D + 1-form connection integrated over Y D+1 [28–30]. In particular, there are “Chern
numbers” associated with this connection, which are integer-valued cobordism invariants of
closed D + 2 manifolds (equipped with a G gauge field and any other relevant structure).
We can think of this integer as the winding number of eiω(Y D+1,A) evaluated along slices of
the D + 2 manifold (compare [8]). Deformation equivalence classes (meaning continuous
deformation within the space of invertible field theories, i.e. π0 of this space) of invertible
field theories are believed to be classified by these invariants.

In practice, this means eiω(Y D+1,A) can be written as a product of two terms: (1) a Chern-
Simons invariant evaluated on Y D+1, which is itself associated with an integer cobordism
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invariant in D + 2 dimensions (now two more than the anomalous theory!), e.g.

1
8π2

∫
W 4

dALdAL − dARdAR (2.4)

is associated with (2.3); and (2) a U(1)-valued cobordism invariant in D + 1-dimensions
evaluated on Y , which typically consists of torsion pieces (valued in a finite subgroup of U(1))
and theta angles (which are not fixed under deformations). Note that we also equip Y with a
metric, so that (1) can also include gravitational Chern-Simons terms.

2.2 Family anomalies

Besides G-anomalies, we are also interested in family anomalies, a relatively new concept
which has appeared in the study of theories with a parameter space [8–11, 31–33]. Suppose we
have a theory depending on a parameter space M . We can couple the theory to a background
field ϕ(x) ∈M for these parameters and consider Z(XD, ϕ). It may be that Z(XD, ϕ) cannot
be consistently defined over the space of background fields, and instead behaves like a section
of a line bundle. This is analogous to how a quantum mechanical system with a nontrivial
Berry number cannot have a globally defined ground state.

In practical terms, the family anomaly for a collection of local operators O1, . . . ,On is
an obstruction to choosing a local Hamiltonian H0 such that1

H(c1, . . . , cn) = H0 +
∑

j

cj

∫
ddxOj(x) (2.5)

has a gapped, nondegenerate ground state for all ∑
j |cj |2 > C, for some C. This makes

family anomalies especially useful for studying phase diagrams.
Family anomalies in D dimensions are associated with boundaries of theories in D + 1-

dimensions with a higher Berry number [8]. We may consider these higher dimensional
theories to be invertible field theories for spacetimes equipped with the parameter field ϕ.
The boundary partition function Z(XD, ϕ) is then considered a vector in the (1d) state space
of this theory (à la relative QFT [34]). Considered this way, family anomalies are actually a
generalization of G-anomalies, since we may take M = BG.

It is interesting to combine family anomalies and G-anomalies, especially when there is
explicit symmetry breaking. In the simple case with no explicit symmetry breaking, meaning
for every value of the parameters M we have G-symmetry, we call this a G-symmetric family.
More interesting is the case of a G-equivariant family, where G acts nontrivially on M , such
that if m ∈M is fixed by some subgroup Gm < G, the theory at that parameter value has
Gm symmetry. Other elements g ∈ G map states and observables at m to those at g ·m.

When we have a G-equivariant family and we turn on a background gauge field A, the
parameter field ϕ can no longer be a globally defined map to M . Instead, we can think of it as
having boundary conditions set by the transition functions of the G gauge bundle P → X [31].
More precisely, we can define the associated M -bundle P ×G M := P ×M/Gdiagonal → X

by the action of G on M , and define ϕ to be a section of this bundle. If it is possible to
1Note that, just as G-anomalies are only a property of the G action on the microscopic degrees of freedom,

not of the dynamics, so too does the family anomaly only depend on the operators we couple to.
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couple to such a background, we call the family anomaly-free. Note that not all G-equivariant
families of invertible field theories are anomaly-free, but the ones characterizing family
anomalies always are.

G-equivariant family anomalies in D dimensions are thus classified by invertible field
theories in D+ 1 dimensions for spacetimes equipped with a G-gauge field A and a parameter
field ϕ, which is a section of the associated M -bundle [8]. These are described in cobordism
theory as above, where we ask that ϕ also extends to the cobordism.

We give an example of an equivariant family anomaly occurring at the 0+1d boundary of
a 1+1d system. The 1+1d system is constructed beginning with the free Dirac fermion ψ we
considered above. We will have a parameter space M = S1 with a 2π-periodic coordinate θ,
which parametrizes the mass deformation cos θψ̄ψ+i sin θψ̄γcψ, where γc = γ0γ1. This breaks
G = U(1)L × U(1)R to the diagonal “vector” subgroup U(1)V with generator V = L + R.
The “axial” subgroup with generator A = L−R is broken down to Z/2, and acts on M as
a rotation θ 7→ θ + 2α, where α is the angle of the axial rotation. Thus the family is not
G-symmetric, but it is G-equivariant since an axial rotation just acts on the parameter θ.

Let us promote the parameter to a background field θ = ϕ(x, t). If we compute the
vector current in this model, as a result of the chiral anomaly, we will find a contribution
proportional to ∂tϕ, which results in a “Thouless pump”: adiabatically taking the parameter
around a 2π cycle causes a single U(1)V charge to be transported across the system [35].
This results in a family anomaly at the boundary, since we cannot define the U(1)V charge
there, consistently over the parameter space. As a result of this anomaly, given any U(1)V -
symmetric boundary condition, there will be some value of θ where the boundary gap closes,
with two states of different U(1)V charge crossing in energy [8]. This generalizes the famous
Jackiw-Rebbi domain wall zero mode [4].

We can derive the bulk topological term associated with this family anomaly

1
2π

∫
Y 2
ϕdAV . (2.6)

Indeed, by varying AV , we find the contribution to the vector current ∂tϕ which characterizes
the Thouless pump. It also defines the (1 + 1)-dimensional invertible field theory which
characterizes the boundary family anomaly. Broadly speaking, the boundary family anomaly
in explicit symmetry breaking situations like this one can be derived directly from the bulk
anomaly. We will spend much of the paper explaining how this works in general, and also
return to this and related examples of massive free fermions.

2.3 Twisted tangent structures

We will also need certain tangent structures on our spacetime manifolds, which are required
to consistently define the microscopic degrees of freedom of the theory. For example, we
may need a metric and an orientation to define basic kinetic terms, and in this paper we
will always ask for these structures. In fermionic theories, we will further ask for a Spin
structure, which is needed in the UV to define consistent boundary conditions for fermions.
The anomaly typically depends on these choices, and we will need the invertible field theory
in one more dimension to be equipped with these data as well.
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The presence of the background G gauge field can “twist” these structures. For example,
if G = U(1) and we have a spin-charge relation, with all (fermionic) bosonic operators having
(half) integer charge, respectively, then fermions can be defined using a Spinc structure [3].
This is slightly weaker than a Spin structure, but requires some compatibility between the
background gauge field A and the tangent bundle of spacetime. In particular, we have∮

Σ

1
2πdA+ 1

2w2(TX) ∈ Z (2.7)

for all closed surfaces Σ, where w2(TX) is the 2nd Stiefel-Whitney class of the tangent bundle
TX, i.e. the obstruction to choosing a Spin structure on TX. We can think of the spin-charge
relation in general as defining a central extension of G by fermion parity Z/2F

Z/2F → GF → G, (2.8)

where GF has linear (as opposed to projective) representations on fermionic operators. We
can classify such central extensions by a class in H2(G,Z/2).

The other sort of twist which is important occurs with spacetime-orientation-reversing
symmetries. For example, suppose G = Z/2 acts as a time reversal symmetry. If γ ⊂ X is a
closed loop in spacetime around which the background gauge field A has nontrivial holonomy∫

γ
A = 1 mod 2, (2.9)

then it will be impossible to choose a consistent orientation of X around this loop, since
we reverse the direction of time as we go around it2 [25]. Thus we are forced to consider
non-orientable spacetimes. Likewise, to define our theory on such manifolds, we must have
nontrivial holonomy for A along orientation reversing loops such as γ. We can phrase this
compatibility condition between A and the tangent bundle as follows:∫

γ
A =

∫
γ
w1(TX) mod 2, (2.10)

for all closed loops γ, where w1(TX) is the 1st Stiefel-Whitney class of TX. We can
classify the spacetime-orientation-reversing elements of G as a homomorphism G → Z/2,
or equivalently a class in H1(G,Z/2).

A convenient way to encode both these data is to say that we have an orientation,
Spin structure, etc. not on the tangent bundle TX of spacetime, but on the direct sum
TX ⊕A∗η, where A∗η is a vector bundle associated to the G gauge bundle by some R-linear
G representation η. The 1st and 2nd Stiefel-Whitney classes of η, considered as a vector
bundle over the classifying space BG, define the twist classes w1(η) ∈ H1(G,Z/2) and
w2(η) ∈ H2(G,Z/2) we considered above. Physically, we can think of η as the representation
of fermion bilinears in the theory [26], although our classification will only depend on the
classes w1(η) and w2(η).

For example, suppose we study G = Z/2 global symmetry. Z/2 has a single nontrivial
irrep, the sign representation σ. Let us take η = nσ, meaning a sum of n copies of the sign
representation. We find a four-fold periodic structure

2We are working in a Euclidean picture, so there is no special time coordinate.
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• n = 0 mod 4: ordinary Z/2 symmetry U with U2 = 1, corresponding to a separate
Spin structure on TX and a Z/2 gauge field.

• n = 1 mod 4: spacetime-orientation-reversing Z/2 symmetry T with T 2 = 1, corre-
sponding to a Pin− structure on TX (see [36] for an introduction to these structures).

• n = 2 mod 4: ordinary Z/2 symmetry U with U2 = (−1)F , corresponding to a Spinc

structure on TX where the structure group of the determinant line is reduced from
U(1) to Z/2.

• n = 3 mod 4: spacetime-orientation-reversing Z/2 symmetry T with T 2 = (−1)F ,
corresponding to a Pin+ structure on TX

This periodic structure is reflected in the repeated reduction of symmetry to the Z/2 domain
wall [7].

2.4 The group of invertible field theories

With all the data in hand, we are finally ready to define our object of interest:

Definition 1. Let G be a group acting on a space M (the parameter space), s a tangent
structure (usually an orientation aka SO structure in the case of bosonic theories or a Spin
structure in the case of fermionic theories), η a representation of G. We define Ωn

G,s,η(M) to be
the abelian group of deformation classes of invertible field theories defined for n-dimensional
spacetimes X equipped with a G-gauge field A, an s-structure on TX ⊕A∗η, a section ϕ of
the M -bundle over X associated with the gauge bundle of A, and a metric.

Note that the group structure on invertible field theories corresponds to “stacking” of
physical systems. That is, if we have two D-dimensional systems each with G symmetry and
parameter space M depending on the same sort of tangent structure, then we can combine the
two systems, initially decoupled, which will have G×G symmetry, a parameter space M ×M ,
and two tangent structures of the same kind. We want to preserve the diagonal G < G×G,
tune the parameters in tandem over the diagonal parameter space M ↪→M ×M , and couple
to the same tangent structure in each “layer”. Then we will have produced a third system in
the same symmetry/parameter space/tangent structure class. We can do the same for the
invertible field theories which determines the anomalies of each theory, and by definition the
anomaly of the third system will be the sum of those two in the group structure thereof.

One quirk which is not obvious from the definition is that depending on the data,
Ωn

G,s,η(M) may be nonzero for n = 0 and even n = −1, but is zero for n < −1. To
demonstrate the n = −1 case, consider that there is a unique connected zero manifold, the
point, and so a 0-dimensional invertible TQFT is the data of the partition function of this
point, which is a complex phase. If the point is oriented, then cobordism invariance does
not constrain this complex phase, so there is a U(1) space of 0d oriented TQFTs. The group
Ω−1

SO = Z reflects π1U(1) = Z. Thus, for example there is an integer invariant for 0+1d
invertible families of oriented TQFTs over S2, since

Ω1
SO(S2) = Ω−1

SO = Z (2.11)
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which is precisely the Chern number of the Berry connection. In further negative degrees, we
do not get any non-trivial classes because higher homotopy groups of U(1) (or its subgroups)
vanish. This also reflects the fact that the group Ωn

G,s,η(M) is the Anderson dual of the
associated bordism group of these manifolds, and Anderson duality shifts the degrees of
integer classes down by 1 [27].

3 The symmetry breaking long exact sequence

In this section, we will outline our main result, summarized in figure 1, which is that three
important maps (two of them new) in the theory of anomaly matching fit together into a
“long exact sequence.” For us, a symmetry breaking pattern is described by a group G and a
real (orthogonal) representation ρ of G under which symmetry-breaking operators transform,
for example in adding explicit symmetry-breaking terms to a Hamiltonian. Associated to
this data, the symmetry breaking long exact sequence (SBLES) is

· · · → ΩD
G,s,η(S(ρ)) ΩD+1−k

G,s,η+ρ ΩD+1
G,s,η ΩD+1

G,s,η(S(ρ)) → · · ·Indρ Defρ Resρ

By anomaly in-flow, we can look at this long exact sequence either from the D+1-dimensional
point of view of the invertible field theories, or from the D-dimensional point of view of the
anomalous theories. From the latter point of view, the players are

• ΩD+1
G,s,η: anomalies of G-symmetric theories in D spacetime dimensions, of type s (bosonic

or fermionic), and twist η.

• ΩD+1
G,s,η(S(ρ)): anomalies of G-equivariant families of theories, parametrized by the unit

sphere S(ρ) ∼= Sk−1 in the representation ρ (which has dimension k), and twist η.

See section 2 for a review of these groups. Meanwhile, the maps are

• Resρ: measures the residual family anomaly of the D-dimensional theory after breaking
the symmetry by an operator transforming in the representation ρ. (section 3.1)

• Defρ: describes the reconstruction of the bulk anomaly from the anomaly on a certain
defect associated with this symmetry breaking, such as a domain wall. (section 3.2)

• Indρ: encodes a generalized index theorem which associates an anomalous defect to a
certain winding configuration in the space of symmetry-broken states. (section 3.3)

Each map has the property that its image is the kernel of the map following it. This is what
makes it a “long exact sequence.” For example, those anomalies which have no residual family
anomaly, and so live in the kernel of Resρ, are precisely those which can be associated with
a special defect, whose anomaly recovers the original anomaly by the map Defρ. We show
some long subsequences of the whole structure in section 3.4.

In this section, we will give physical definitions of each of these maps, arguments for
the exactness of the sequence, and many examples of dynamical consequences of these maps.
In later sections, we will give longer examples. We offer mathematically precise definitions
in our companion paper [1].
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3.1 Residual family anomalies

If we have a theory with a G-symmetry and an (’t Hooft) anomaly, there is no G-symmetric
deformation of the theory to a nondegenerate, gapped phase. However, in the absence of
gravitational anomalies, we can always nondegenerately gap the theory by breaking the
symmetry, so long as we reduce to an anomaly-free subgroup H < G (possibly trivial).

A more refined question is, if we have a family of symmetry breaking parameters
transforming in a representation ρ of G, when can we nondegenerately gap the theory for
all large-enough values of the symmetry breaking parameters?

Definition 2. A theory is ρ-(nondegenerately)-gappable if there exists an operator trans-
forming in the representation ρ, such that for all large enough perturbations by this operator
(referred to as the symmetry breaking field), the theory has a (nondegenerate) gapped ground
state. Equivalently, the ground state for all large enough symmetry breaking fields is uniformly
(nondegenerately) gapped, meaning there is a uniform lower bound on the energy gap about
the ground states (and further the ground state is unique). For this paper, “nondegenerately”
will always be implied. This condition is equivalent to the existence of a local “ρ-defect”,
defined in section 3.2 below.

It turns out that depending on the G anomaly and ρ, a theory may not be ρ-gappable.
The simplest such obstruction occurs when some unbroken symmetry H is still anomalous,
but we will derive the general obstruction. We find there are more subtle obstructions, which
can exist even when all unbroken symmetries are anomaly free, and which are related to
parameter space anomalies and higher Berry phases [8–11, 33].

The general obstruction can be derived by anomaly in-flow, as follows. We can start by
thinking of our anomalous system as living at the boundary of a D + 1-dimensional G-SPT,
i.e. a G-symmetric invertible theory, (the equivalence class of) which we may use to label
the ’t Hooft anomaly. Let Vρ be the real vector space associated to ρ. For each value of the
symmetry breaking field v ∈ Vρ, we can extend the symmetry breaking into the SPT bulk.

This defines a G-equivariant family of D + 1-dimensional invertible theories over S(ρ), a
k − 1-sphere of large radius S(ρ) ⊂ Vρ, with our original anomalous theory with symmetry
breaking field defining a G-equivariant family of boundary conditions. The deformation
class of the bulk defines a (linear) map

Resρ : ΩD+1
G,s,η −→ ΩD+1

G,s,η(S(ρ)). (3.1)

We call this map the residual family anomaly, since it turns out to be the obstruction to
ρ-gappability. Indeed, if our D-dimensional theory is ρ-gappable and has anomaly ω ∈ ΩD+1

G,s,η,
then we must have Resρ(ω) = 0, since this would give us a uniformly gapped, G-equivariant
family of boundary conditions for the D + 1-dimensional invertible family with invariant
Resρ(ω), which is not possible if Resρ(ω) ̸= 0, by the bulk-boundary correspondence for
families [8]. Conversely, Resρ(ω) is very likely the only obstruction to ρ-gappability, as
we will argue below.

Recall that using the SPT-cobordism conjecture of section 2, we can describe the anomaly
ω ∈ ΩD+1

G,s,η as a function ω(X,A) ∈ U(1) on pairs of a spacetime D + 1-manifold X and a
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background gauge field A. Meanwhile Resρ(ω) ∈ ΩD+1
G,s,η(S(ρ)) can be described as a function

(Resρ(ω))(X,A, ϕ) on triples (X,A, ϕ) further consisting of a section ϕ as above. We can
define this function by evaluating ω on just (X,A), simply discarding ϕ, giving

(Resρ(ω))(X,A, ϕ) := ω(X,A) (3.2)

This residual family anomaly generalizes the anomaly of the unbroken symmetry. Indeed,
consider the theory at some fixed v ∈ S(ρ). This theory may have a residual anomaly for
the unbroken subgroup Gv < G, which prevents us from gapping it without breaking Gv.
The residual anomaly is thus also an obstruction to ρ-gappability. In fact, for each v, there
is a map (pullback along the inclusion of v in S(ρ))

v∗ : ΩD+1
G,s,η(S(ρ)) → ΩD+1

Gv ,s,η

(v∗ω)(X,Av) := ω(X,Av, ϕ = v),
(3.3)

such that the image of the G anomaly under v∗ ◦ Resρ is the residual Gv anomaly. So the
residual family anomaly cannot vanish unless the residual anomaly also vanishes for each
v ∈ S(ρ). However, the examples below in sections 3.1.1 and 3.1.2 demonstrate that even
if all residual anomalies vanish, the residual family anomaly might still not. In fact, this
is the case even if the symmetry is completely broken. This is because we have broken the
symmetry in a particular way, and we will be able to use how the symmetry relates theories
at different parameter values to observe the residual family anomaly.

One situation where the residual Gv anomaly determines the residual family anomaly is
when G acts transitively on S(ρ), meaning for each v, v′ there is a g ∈ G such that g · v = v′.
Indeed, if the residual Gv anomaly at some v vanishes, then there exists a Gv-symmetric
nondegenerate gapping of the theory at v. We can then apply G to that trivially gapped
theory to get a uniformly gapped G-equivariant family on S(ρ). In this case one can show
v∗ above is an isomorphism.

In particular, if G acts freely and transitively on the S(ρ), then we have an equivalence:

ΩD+1
G,s,η(S(ρ)) ∼= ΩD+1

s , (3.4)

where the right hand side classifies the pure gravitational anomalies in D dimensions with
statistic s. There are three examples where this occurs:

1. G = Z/2 and ρ = σ is the 1-dimensional sign representation.

2. G = U(1) and ρ is the (real) 2-dimensional charge 1 representation.

3. G = SU(2) and ρ is the (real) 4-dimensional fundamental representation.

In each cases, the family anomaly reduces to pure gravitational anomaly. We will repeatedly
use this in section 4.

We note that in spontaneous symmetry breaking, the ground states are naturally labelled
by elements of a single G orbit, since degeneracy between distinct G orbits may be lifted by
G-symmetric perturbations. In this case, as above, the residual family anomaly is always
determined by the anomaly of the unbroken symmetry group.
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(a) (b)
m > 0

m < 0

Pump p + ip

Pump p − ip

Figure 2. (a) The phase diagram of a single 2+1D Majorana with redundant mass term. Time
reversal acts on this phase diagram by a π rotation. The solid black line is where the Majorana is
massless, and the dotted circle represents S(ρ). (b) A representation of the 3+1D invertible family,
where upon crossing either the green or blue dot, a p+ ip or p− ip superconductor is pumped to the
boundary. Observe that there is no total pump in going around the entire circle. However, with time
reversal, this family is non-trivial, as can be measured by going half-way around the circle and then
applying time reversal to return to the starting point. The number of p+ ip’s pumped mod 2 this
way is an invariant of the equivariant family.

3.1.1 2 + 1D Majoranas

Let us give a simple example of a theory with a residual family anomaly, which is nontrivial
even though the symmetry is completely broken. We take a single Majorana fermion (2
component real) ψ in 2+1D transforming under time reversal with T 2 = (−1)F . This is
known to be anomalous, and is associated with the generator of a Z/16 group of 3+1D
SPTs Ω4

Pin+ = Z/16 [37]. This and related symmetry breaking patterns are discussed later
in section 4.3.

The mass term mψ̄ψ is T -odd and completely gaps the theory, so for σ the sign repre-
sentation of Z/2, the theory is σ-gappable. However, if we take ρ = σ ⊕ σ, or equivalently
the π rotation representation of Z/2, this theory turns out not to be ρ-gappable. This
means that for any pair of T -odd operators O1, O2, and for any r, there exists a θ such
that with the symmetry breaking field

r cos θO1 + r sin θO2, (3.5)

the theory is not nondegenerately gapped.
As a somewhat trivial example, if we take O1 and O2 to both be the (same) T -odd mass

term, then we can always balance the coefficients so they cancel and we have the massless
Majorana. This gives a phase diagram as in figure 2.

Although this phase diagram is pretty trivial, it allows us to compute the residual family
anomaly. Indeed, we can observe that going around the circle by an angle of π is equivalent
to changing the sign of the mass. Majoranas with opposite mass differ by an invertible phase
known as a p + ip superconductor, whose action is a level 1 gravitational Chern-Simons
term [38–40]. We can say that the invertible family pumps a p+ ip superconductor or its
inverse, a p− ip superconductor (with a level −1 gravitational Chern-Simons term), to the
boundary as it crosses the m = 0 values of the angle; see figure 2. Observe that nothing is
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pumped going around the entire circle,3 since the p+ ip and p− ip are inverse phases and
cancel. However, this family is still nontrivial, which can be seen as follows.

First, one can try to modify the S1 = S(ρ) family along a short arc by pumping a p+ ip

and then a p− ip at the beginning and end of said arc. However, such arcs must occur in
time reversal symmetric pairs, and by inspection one can show that the number of p+ ip’s
pumped while going around half the circle is an invariant mod 2.

More precisely, in such a family we can go adiabatically half way around the circle,
and then return to where we started by applying time reversal, which acts as a π rotation.
The invertible phase pumped to the boundary over such a cycle is a sort of equivariant
generalization of the Thouless charge pump.

The fact that this family is nontrivial implies that the Majorana is not ρ-gappable for
any pair of T -odd operators, not just the redundant mass terms. For example we may take
O1 to be the mass term and O2 to be any other T -odd operator, such as (ψ̄ψ)3.

3.1.2 Adjoint QCD

Let us give a slightly more nontrivial example of a theory with a residual family anomaly, which
has some interesting dynamical consequences. We consider SU(2) Yang-Mills theory in 3+1D
with Dirac fermions transforming in the complexified adjoint representation (equivalently
we have two Majorana fermions transforming in the real adjoint). A recent discussion of
this model can be found in [41].

There is an ABJ anomaly between the U(1)a axial symmetry and the SU(2) gauge
symmetry, which we can represent by the 6D integer cobordism invariant associated with
(see section 2)

8ca
1c

SU(2)
2 ∈ H6(BU(1)a ×BSU(2),Z). (3.6)

This means that the classical U(1)a is broken down to Z/8a by SU(2) instantons carrying
8 units of axial charge. Note that for fundamental Diracs the anomaly is 2ca

1c
SU(2)
2 in this

normalization. The relative factor of 4 can be seen by restricting to the maximal torus
U(1) < SU(2) for which our complex adjoint Dirac becomes a charge 2, a charge 0, and a
charge −2 Dirac, and 22 + 02 + (−2)2 = 8, while for a fundamental we have 12 + (−1)2 = 2.

This theory has a 1-form Z/2 center symmetry, since the matter fields transform in the
adjoint representation. If we gauge this center symmetry, it is equivalent to changing the
global structure of the gauge group from SU(2) to SO(3). This allows for 1

4 instantons that
further break Z/8a to the Z/2F fermion parity subgroup (this is the same factor of 4 as
above). This means there is an ’t Hooft anomaly we can represent via

ω = 1
4AΠ(B) ∈ H5(BZ/8a ×B2Z/2,U(1)), (3.7)

where A is the Z/8a gauge field, B is the BZ/2 gauge field, and Π(B) ∈ H4(B2Z/2,Z/4) is
the Pontrjagin square. We will see this anomaly has a residual family anomaly for Z/8a.

3We will see this is a general feature of families occurring in the image of the gapping obstruction in
section 3.4.
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(a) (b)

???

Pump 1
4Π(B)

Figure 3. (a) The phase diagram of 3+1D SU(2) QCD with one adjoint Dirac fermion, deformed
by the two mass terms. The Z/8a chiral symmetry acts as a π/2 rotation on this phase diagram.
Along the four spokes, we have oblique confinement with a 2-fold degenerate ground state. At the
origin, where the fermion is massless, these spokes must merge into a nontrivial point or phase. One
consistent proposal is that at the origin we have SU(2) chiral symmetry breaking. The deformation
of this state by small masses is analyzed in section 3.4 of [41]. (b) The associated 4+1D invertible
family over S(ρ) ∼= S1, where upon crossing one of the angles corresponding to oblique confinement,
the 3+1D 1-form SPT 1

4 Π(B) is pumped to the boundary. Note as in figure 2 there is no total pump
around the family, but if we go around by an angle π/2 and then apply the axial symmetry to return
to where we started, we get a well-defined pump invariant.

We can consider Z/8a chiral symmetry breaking in this theory. A natural order parameter
is the charge 2 doublet consisting of the real and chiral mass terms Ψ̄Ψ and iΨ̄γ5Ψ, respectively

— these form a basis of Vρ. Let ϕ be the phase of this order parameter, which parametrizes a
Z/8a-equivariant family on S1 with Z/8a acting as a π/2 rotation (so the Z/2F subgroup
acts trivially).

This family is not uniformly gapped over this S1. We can parametrize it by θ/4, where θ
is the 2π-periodic QCD vacuum angle (the factor of 4 is once again the same one). However,
for θ = π, which corresponds to four different points on this S1, it is expected that the theory
has two degenerate ground states [42, 43]. See figure 3.

Indeed, we can pass to the class describing the Z/8a-equivariant S1-family by replacing A
with A−4dϕ/2π, where ϕ is 2π periodic and parametrizes the S1, since a gauge transformation
by 1 shifts A by 1 and dϕ by π/2:

Resρ(ω) =
(1

4A− dϕ

2π

)
Π(B) ∈ H5

Z/8a
(S1 ×B2Z/2,U(1)). (3.8)

Since Z/8a acts freely on S1 through its Z/4 quotient, we can replace S1 by its quotient,
parametrized by the vacuum angle θ = 4ϕ, and find

Resρ(ω) = 1
4
dθ

2πΠ(B) ∈ H5(S1 ×BZ/2F ×B2Z/2,U(1)). (3.9)

This is a non-trivial order 2 class, and was identified in [9] as the family anomaly of pure
QCD. See also [32, 42].

3.2 The defect anomaly matching condition

Let us assume now there is no residual family anomaly, i.e. Resρ(α) = 0 in (3.1), and our
system is nondegenerately gapped for all values of the symmetry breaking parameter v ∈ S(ρ).
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In this case, we can construct a localized ρ-defect as follows. In coordinates, we take the
symmetry breaking parameter v = ϕ(x) to vary in space, with the form

ϕ ∼ (v1x1 + · · · + vkxk)/
√
x2

1 + · · · + x2
k

(3.10)

for large x2
1 + · · · + x2

k, where v1, . . . , vk is an orthonormal basis of Vρ, so that ϕ winds
once around S(ρ) far away from a defect along x1 = · · · = xk = 0, where it must vanish.
It is crucial that the system is uniformly gapped on S(ρ) for this defect to define a local
D − k-dimensional theory.

Note that in spontaneous symmetry breaking, the topologically protected defects of
codimension n are classified by πn−1(G/H) [44], where H is the unbroken symmetry group.
This coincides with the ρ-defect (with k = n) precisely in the case where G acts transitively
on the sphere S(ρ), in which case S(ρ) ∼= G/H and the ρ defect is a G-symmetric generator of
πk−1(S(ρ)) = Z. In cases where S(ρ) consists of many G orbits, the ρ-defect is not among these
topologically protected defects, but is still of interest for anomaly-matching, as we will see.

Following [7], it is possible to reconstruct the ’t Hooft anomaly α by studying the theory
on the ρ-defect. Although the symmetry is broken, by combining the G action with Lorentz
symmetries (and CPT), we can invent a new symmetry Gρ (isomorphic to G) which acts on
this effective D − k-dimensional theory. If the original symmetry was anomalous, there will
be localized modes on the ρ-defect which transform nontrivially under Gρ, and in particular
they will have a nontrivial anomaly. We know this is the case because we can actually use
this anomaly to reconstruct the bulk anomaly, as follows.

Again we use anomaly in-flow. The key is to realize that the ρ-defect in the anomalous
D-dimensional theory can be extended to a ρ-defect in the D+ 1-dimensional G-SPT, so that
the core of the ρ-defect in D + 1-dimensions carries a Gρ-SPT which controls the anomaly of
the ρ-defect in D dimensions. Thus we only need to understand how the D + 1-dimensional
SPT reduces to the ρ-defect.

To this end, suppose we want to compute the partition function of the G-SPT associated
with the bulk anomaly on some D + 1-spacetime X. In the presence of a symmetry breaking
field ϕ on X, the G-SPT can be trivialized away from the Y ⊂ X where ϕ = 0. For generic
smooth ϕ, in the normal bundle of Y we see that this zero set is precisely the bulk ρ-defect.
Since the theory is trivialized away from Y , the partition function on X is simply equal to
the partition function of the defect anomaly theory on Y .

The map from spacetimes X to zero sets Y can be formalized, once we keep track of all
the relevant structures, to define a linear map we call the defect anomaly map4

Defρ : ΩD+1−k
G,s,η+ρ −→ ΩD+1

G,s,η, (3.11)

defined by

Defρ(α)(X,A) = α(Y,A), (3.12)

where Y is a zero set as above. Cobordism invariance implies that this map does not depend
on the choice of ϕ or Y . This map encodes the defect anomaly matching, such that if

α ∈ ΩD+1−k
G,s,η+ρ (3.13)

4This was called the Smith map in [7], but we prefer this more descriptive name in this section.
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describes the G anomaly of the ρ-defect, and ω our original anomaly, then we have

Defρ(α) = ω. (3.14)

Note that the defect anomaly α determines the bulk anomaly ω by this equation, but not
vice versa, and in particular even anomaly-free symmetries can have anomalous ρ-defects,
a phenomenon we will explore in section 3.3.

The defect anomaly map Defρ and the residual family anomaly Resρ defined in section 3.1
fit together in a special way. The kernel of Resρ is the image of Defρ. This means those
anomalies which do not have a residual family anomaly are precisely those which can be
reconstructed from the ρ-defect. This gives strong evidence that Resρ is the only obstruction
to ρ-gappability, since we used this to define the ρ-defect. It also generalizes Theorem 4.2
in [7] from finite cyclic groups to arbitrary groups and arbitrary representations, answering
the question of the cokernel of Defρ (i.e. the Smith map) which was posed there.

3.2.1 3+1D Dirac fermion

Consider a 3+1D Dirac fermion ψ (with four complex components). This has an anomalous
chiral symmetry U(1)L which gives charge 1 to the two left-handed components of ψ and
charge 0 to the two right handed ones. There are two Dirac masses ψ̄ψ and iψ̄γ5ψ, which
transform together under U(1)L as a charge 1 doublet ρ. Any combination of the two mass
terms completely gaps the fermion, so in this case there is no residual family anomaly and
there is a local ρ-defect.

We can construct the ρ-defect in this theory by choosing a spatially-varying mass profile
of the form

x1ψ̄ψ + x2iψ̄γ
5ψ. (3.15)

One can solve the Dirac equation for localized modes with this mass profile and find a
massless 1+1D Weyl fermion (with one complex component) propagating in the remaining
coordinates [5]. We will evaluate Defρ for 1+1D theories with this symmetry and show by
anomaly-matching that this fermion must have charge 1 under the residual U(1)ρ symmetry
(which could also be concluded by a careful analysis of the localized solutions).

The residual symmetry U(1)ρ acting on the 1+1D ρ-defect acts as a combination of a
U(1)L rotation and a compensating Spin(2) rotation, where Spin(2) is the rotation in the
x1, x2 plane, such that the mass profile is invariant under their combination. In particular,
a 2π U(1)ρ rotation is equal to a 2π rotation of this plane, which equals the fermion parity
(−1)F . This means we are interested in 1+1D systems with Spinc = (Spin × U(1)ρ)/Z/2
structure. A general anomaly for such a theory is given by a Chern-Simons form associated
with a 4D integer cobordism invariant (see section 2)

α = k1

(1
8(cρ

1)2 − 1
24p1(TY )

)
+ k2(cρ

1)2, (3.16)

where k1, k2 ∈ Z.
We can compute Defρ(α) in terms of these 4D cobordism invariants. That is, suppose

X is a closed 6D Spin manifold with a principal U(1)L bundle P and a section ϕ of the C
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bundle Eρ := P ×U(1)L
Vρ associated to the charge 1 representation Vρ. We take Y to be the

analog of the ρ-defect, i.e. it is the zero set of ϕ (we can always perturb ϕ so its zero set is
a 4-manifold). A useful fact is that the homology class [Y ] ∈ H4(X,Z) is Poincaré dual to
the first Chern class cL

1 ∈ H2(X,Z). This means that for any β ∈ H4(X,Z),∫
X
cL

1 β =
∫

Y
β. (3.17)

To compute Defρ(α), we want to choose β such that β|Y = α, then by definition we will
have Defρ(α) = cL

1 β.
To get the (cρ

1)2 terms, we use the fact that the U(1)ρ bundle over Y is defined by
restriction of the U(1)L bundle, so in particular cL

1 |Y = cρ
1. In terms of the defect anomaly

map, this means to get (cρ
1)2 we should take β = (cL

1 )2, so

Defρ((cρ
1)2) = (cL

1 )3. (3.18)

The “gravitational” term (involving p1(TY )) is more interesting. If we study the tangent
bundle of X restricted to Y we find

TX|Y = TY ⊕NY = TY ⊕ Eρ|Y , (3.19)

where we have identified the normal bundle NY with the restriction of the associated bundle
Eρ, since Y is the zero set of the section ϕ. Using the Whitney sum formula we obtain

p1(TX)|Y = p1(TY ) + p1(Eρ)|Y
= p1(TY ) + (cL

1 )2|Y
= p1(TY ) + (cρ

1)2.

(3.20)

So to get

α = 1
8(cρ

1)2 − 1
24p1(TY ) (3.21)

we should take

β = 1
6(cL

1 )2 − 1
24p1(TX), (3.22)

hence

Defρ

(1
8(cρ

1)2 − 1
24p1(TY )

)
= 1

6(cL
1 )3 − 1

24c
L
1 p1(TX). (3.23)

This turns out to precisely coincide with the U(1)L anomaly of the 3+1D Dirac fermion.
Thus defect anomaly matching requires k1 = 1, k2 = 0 in (3.16). This is consistent with
a 1+1D Weyl fermion with U(1)ρ charge 1.

The above calculation seems to rely on a choice of β. Actually, it does not, since if
β′|Y = α, (β − β′)|Y = 0, and so, using Poincaré duality, cL

1 β − cL
1 β

′ = cL
1 (β − β′) = 0. On

the other hand, the existence of such a β is guaranteed by the vanishing of the residual family
anomaly, since this guarantees that

∫
X ω =

∫
Y β for some β.
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3.2.2 3+1D Weyl fermion

To see the importance of the representation in the above computation, let us consider a
closely related example, this time beginning with a left-handed Weyl fermion in 3 + 1D.
This has a U(1)L symmetry with the same anomaly as the Dirac in section 3.2.1 (since the
right-handed Weyl does not contribute anything):

ω = 1
6(cL

1 )3 − 1
24c

L
1 p1(TX). (3.24)

Above we studied the Dirac mass, which couples the two Weyl components. However,
a single Weyl on its own has a Majorana mass that is charge 2 under U(1)L. Solving the
equations of motion for the associated ρ-defect we find a left-handed Majorana-Weyl fermion
in 1+1D. This has one real component, so U(1)ρ must act trivially on it.

Let us compute the defect anomaly map in this case and verify that this matches. Note
that a 2π rotation in U(1)ρ is a 4π rotation in Vρ, which is 1 on the fermion, so there is no
Spinc business here. Anomalies of 1+1D fermions with Spin × U(1)ρ symmetry split between
a pure gravity and a pure symmetry part, and take the form

α = k1
48p1(TY ) + k2(cρ

1)2. (3.25)

The calculation proceeds as above, although now [Y ] ∈ H4(X,Z) is Poincaré dual to 2cL
1 ∈

H2(X,Z), since ρ is a charge 2 representation. Once we compute β such that β|Y = α,
we will have Defρ(α) = 2cL

1 β.
Using cL

1 |Y = cρ
1, we find

Defρ((cρ
1)2) = 2(cL

1 )3. (3.26)

We also have

p1(TX)|Y = p1(TY ) + p1(Eρ)|Y
= p1(TY ) + 4(cL

1 )2|Y
= p1(TY ) + 4(cρ

1)2.

(3.27)

Thus we find

Defρ

( 1
48p1(TY )

)
= 1

6(cL
1 )3 − 1

24c
L
1 p1(TX), (3.28)

so the defect anomaly matches correctly with k1 = 1, k2 = 0.

3.3 The index map and higher Berry phase

Above we described an anomaly matching condition in terms of a map Defρ for which the
image of the defect anomaly α is the bulk anomaly ω:

Defρ(α) = ω. (3.29)

We see the defect anomaly determines the bulk anomaly, but when Defρ is not injective, there
can be several solutions for α given ω. Thus there is an ambiguity in the defect anomaly.
There can even be anomalous defects (α ̸= 0) in anomaly-free bulk theories (ω = 0)!
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Bk

Sk−1

ρ-defectIndρ theory

Figure 4. Calculating the index map: the index map Indρ describes the anomaly of a ρ-defect inside
an invertible phase via a certain sphere compactification of that phase described in the text. The
proof-by-picture of why this works is given here. The ρ-defect is defined on Bk × RD−k, where Bk is
a k-dimensional ball, depicted here as a Bk bundle over RD−k (blue). Meanwhile we consider the
invertible phase defined on Sk−1 ×HD−k+1, where HD−k+1 is a D − k + 1-dimensional half-space,
shown as an Sk−1 bundle over HD−k+1 (gray). These have the same boundary (orange), and can be
glued together to define a boundary condition of the compactified invertible theory, so long as the
order parameter winds around this Sk−1. This defines Indρ and thus measures the anomaly of the
ρ-defect by anomaly in-flow.

Recall that as long as there is no residual family anomaly, we can perturb things so that
for each large enough value of the symmetry-breaking field, we obtain a trivially gapped
ground state. This defines a G-equivariant family of invertible field theories over the sphere
S(ρ). This family is not typically free of G-anomalies, but it is when ω = 0. In this case, we
can couple it to a G gauge field, and classify its topological response by an element

ζ ∈ ΩD
G,s,η(S(ρ)) (3.30)

(cf. section 2). Given such a family, we can construct the ρ-defect as before, and we want
to describe the anomaly.

We can actually construct the anomaly theory of the ρ-defect directly from ζ by com-
pactifying on S(ρ) ∼= Sk−1. The idea is shown in figure 4. The compactification defines an
element of ΩD+1−k

G,s,η+ρ, and moreover we get the index map

Indρ : ΩD
G,s,η(S(ρ)) → ΩD−k+1

G,s,η+ρ. (3.31)

In terms of partition functions, this map is defined as follows. Suppose we have a (D− k+ 1)-
dimensional spacetime Y , equipped with a G-connection A and (η + ρ)-twisted s-structure ξ.
We can define the D-dimensional spacetime W given as the total space of the S(ρ)-bundle
over W associated to the G gauge bundle.

W gets a G connection π∗A by pullback from the projection map π : W → Y . Its tangent
bundle can be identified with π∗TY ⊕ π∗A∗Vρ = π∗(TY ⊕ A∗Vρ), so it gets an η-twisted
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s-structure π∗ξ from the η + ρ-twisted s-structure on Y . Finally, if we study the S(ρ)-bundle
on W associated to π∗A, we can write the total space of this bundle as

πW : (S(ρ) × S(ρ)) ×G PA →W = S(ρ) ×G PA, (3.32)

where PA is the gauge bundle of A. The map πW is given by projecting to the first S(ρ)
factor, and we get a section ϕW by the diagonal map S(ρ) → S(ρ) × S(ρ). Thus, given
an element ζ ∈ ΩD

G,s,η(S(ρ)), we can define

Indρ(ζ)(Y,A, ξ) = ζ(W,π∗A, π∗ξ, ϕW ). (3.33)

We can also consider elements of ΩD
G,s,η(S(ρ)) as D-dimensional counterterms which

can appear relating different symmetry-breaking patterns of a given theory with the same
representation ρ. In particular, we can compare two different G-equivariant S(ρ)-families
of invertible field theories by stacking one with the orientation reversal of the other. The
result is free of G-anomalies and defines an element of ΩD

G,s,η(S(ρ)). Thus, the image of Indρ

above describes both the ambiguity in the defect anomaly and the kernel of Defρ (answering
the question of the kernel of the Smith homomorphism in [7]).

The index map can be thought of as a generalization of the Callias index theorem [12, 13]
which computes the fermion zero modes at the core of a mass defect. Our map gives the
G-anomaly of those zero modes (and thus accounts for interactions).

If we define B(ρ) as the ball in Vρ with boundary S(ρ), the index map is the obstruction to
extending the S(ρ) family to a G-equivariant family on B(ρ). In particular, the point 0 ∈ B(ρ)
is a G-symmetric invertible field theory, and therefore the kernel of Indρ is the image of Resρ!
In terms of bulk-boundary correspondence, the index map is the obstruction to a G-equivariant
family admitting a G-symmetry boundary condition which is independent of the parameters.

3.3.1 Thouless pump and vortices

We will consider the relationship between the index map and the Thouless pump. We
begin with a 1+1D Dirac fermion (with two complex components) with its anomaly-free
U(1) symmetry

ψ 7→ eiθ/2ψ. (3.34)

Suppose we add a U(1)-symmetric mass term

i((cosϕ)ψ̄ψ + i(sinϕ)ψ̄γcψ), (3.35)

where γc is the chirality operator iγ0γ1. This defines a U(1)-symmetric S1-family of invertible
field theories parametrized by ϕ. This family is nontrivial, and can be described by

ζ(W,A, ϕ) = 1
2π

∫
W
dϕA, (3.36)

where W is the 1+1D spacetime, A is a Spinc structure, and ϕ : W → S1. As described in
section 2, the physics of this term is we get an A current when adiabatically varying the S1

parameter, leading to a quantized charge pump (the classic Thouless pump [35]).
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We expect the ρ-defect, which is the operator which creates a vortex in ϕ, to carry
a unit A charge which matches the Thouless pump. This will be the result of the index
map, which in this case takes

Indρ : Z ∼= Ω2
Spinc(S1) → Ω1

Spinc ∼= Z, (3.37)

where the latter group can be thought of as the group of A charges. Note that since the
image of Indρ is the kernel of Defρ, and ρ here is trivial (we have a symmetric family) so
Defρ = 0, we already know on abstract grounds that this map is surjective, and hence an
isomorphism. Let us compute it to check.

To compute the map, we use (3.33). That is, we will associate to ζ in (3.36) a partition
function of 0+1D spacetimes Y (which are merely collections of oriented circles) equipped
with a Spinc connection A. We start by forming the associated S(ρ) bundle over Y . Since ρ is
trivial, this bundle is simply a product W = S1 × Y . The canonical section ϕ : W →W × S1

is the product of diagonal map S1 → S1 × S1 and the identity map Y → Y . In particular,
dϕ/2π is the volume form on the S1 factor. It follows

Indρ(ζ)(Y,A, ϕ) = ζ(W,π∗A, ϕ)

= 1
2π

∫
W
dϕπ∗A

=
∫

S1

dϕ

2π

∫
Y
A =

∫
Y
A,

(3.38)

which is the generator of Ω1
Spinc , as expected.

3.3.2 Berry phase and projective representations

We study the relationship between projective symmetry and Berry phase via the index map.
Let us take G = SO(3) acting on a Hilbert space carrying spin s/2, initially with H = 0.

We can think of this as a D = 1 system with anomaly

ω = 1
2sw2 ∈ H2(BSO(3),U(1)) ∼= Z/2, (3.39)

where w2 is the generator of H2(BSO(3),U(1)).
We then apply a “magnetic field”

H(B) = −B⃗ · S⃗ (3.40)

to this spin. The parameter B⃗ ∈ R3 transforms in the adjoint representation ρ of SO(3),
and so for any nonzero value, SO(3) is broken down to the SO(2) subgroup of rotations
around the B⃗ axis. Furthermore, for any nonzero value, H(B) has a unique ground state.
This means that the residual anomaly

Resρ(ω) = 0, (3.41)

and thus we expect ω to be in the image of the defect anomaly map.
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The defect anomaly lives in5

Ω−1
SO(3),SO = H0(BSO(3),Z) = Z, (3.42)

and so evidently

Defρ : Z → Z/2 (3.43)

is reduction mod 2. However, the interpretation of the defect anomaly is not obvious, since it
seems to encode an anomaly of a −2-spacetime-dimensional system. The correct interpretation
of this Z (which follows from the definition of Defρ) is the Chern number of the Berry bundle
over S(ρ) ∼= S2 family, which is known to equal the spin s, consistent with the anomaly above.

The index map is

Indρ : Ω2
SO(3),SO(S(ρ)) ∼= Z → Z, (3.44)

which by exactness must be multiplication by 2, since its image is the kernel of the quotient
Defρ : Z → Z/2. We can interpret this map as follows. Suppose the spin s/2 is an integer,
so we are in the kernel of Defρ, meaning there is no anomaly and the Hilbert space carries
an honest representation of SO(3).

We can generalize the magnetic field Hamiltonian above, which projects onto a highest
weight vector, to one which projects onto a vector of weight l (the magnetic quantum number).
For each l ∈ {−s/2,−s/2 + 1, . . . , s/2}, this Hamiltonian transforms in the adjoint of SO(3).
We find l is encoded in the SO(3)-equivariant S2 family as the charge of the unbroken SO(2)
at any fixed value. This family thus represents l ∈ Ω2

SO(3),SO = Z via the isomorphism

Ω2
SO(3),SO = H2

SO(3)(S2,Z) = H2(BSO(2),Z), (3.45)

where the latter represents the charge of the unbroken SO(2) at a fixed value (see the discussion
in section 3.1 about transitive group actions). Indeed, it is known in this case that the Chern
number of the resulting Berry connection is 2l, which agrees with the index map above.

We note that for representations ρ of dimension greater than 3, since Ω2−k
G,s,η = 0 for

all k > 3 and all G, s, η, if there is a projective representation, there is no Berry phase
that can match this anomaly by Defρ. Since the image of Defρ = 0 is the kernel of Resρ,
the residual family anomaly map is therefore injective. In particular, the family is not
uniformly gapped over S(ρ).

For example, suppose we take G = PSU(n), with our Hilbert space corresponding to the
SU(n) vector representation. This is a projective PSU(n) representation and has anomaly
generating the group

ω = 1
n
u2 ∈ H2(BPSU(n),U(1)) ∼= Z/n. (3.46)

The spin-1/2 case above corresponds to n = 2, via PSU(2) = SO(3). The analog of the
magnetic field Hamiltonian above is

H(B) = −
∑

i

BiSi (3.47)

5Recall the cobordism group may be nonzero in degree −1, see section 2.4.
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where Si ∈ su(n) ranges over a basis of the traceless Hermitian n× n matrices. As before, B⃗
transforms in the adjoint representation ρ of PSU(n), which has dimension n2 − 1.

When n > 2, the Hamiltonian H(B) does not have a unique gapped ground state for all
B ̸= 0. The issue is that the lowest two (or more, up to n− 1) eigenvalues of H(B) may be
degenerate, while the other eigenvalues can balance them so Tr H(B) = 0, without making
H(B) identically zero. We anticipated this based on the long exact sequence, and indeed
there is a residual family anomaly, which generates the group

Resρ(ω) ∈ H2
PSU(n)(S(ρ),U(1)) ∼= Z/n. (3.48)

To see this, we observe that if we take B to be one of the points in S(ρ) with two degenerate
lowest energy states, there is an unbroken PSU(2) with Z/n anomaly 1

nu2, which must be
given by B∗Resρ(ω) (cf. eq. (3.3) and eq. (3.3)).

3.3.3 Time reversal domain wall for 2+1D Majorana fermions

Let us analyze an example from [7] of a situation with ambiguous defect anomaly. We study
Nf 2+1D Majorana fermions ψj with time reversal

Tψj = γ0ψj , (3.49)

which satisfies T 2 = (−1)F . This has an anomaly ω = Nfω4 ∈ Ω4
Spin(BZ/2, 3σ) = Ω4

Pin+
∼=

Z/16, where ω4 is the generator corresponding to Nf = 1 (it can be expressed as an eta
invariant of the Dirac operator [45]). This example is also a member of the 4-periodic family
discussed later in section 4.5.

Let us consider Nf = 2. Time reversal can be broken by mass terms such as

ψ̄1ψ1 ± ψ̄2ψ2. (3.50)

(Each T -odd mass term transforms in the sign representation, which is ρ here.) On the time
reversal domain wall there is a unitary Z/2 symmetry U , whose anomaly group is classified
by Ω3

Spin,Z/2
∼= Z⊕ Z/8, the first part α3 being purely gravitational and the second part αZ/2

3
involving the internal symmetry U . It turns out that depending on the relative sign, the
domain wall has different anomalous modes. If the sign is the same, on the wall we have
two 1+1d Majorana modes of the same chirality. However, if we take opposing signs, we get
two Majoranas with opposite chirality. These clearly have distinct gravitational anomalies,
and it turns out they have distinct U anomalies as well, with U acting trivially in the first
case and chirally in the second case.

Although they have different anomalies, both must satisfy the defect anomaly matching
condition. Since Defρ is linear, we can use the two data points above to compute it, and
find, in terms of generators k1 ∈ Z, k2 ∈ Z/8,

Defρ(k1α3 + k2α
Z/2
3 ) = (k1 − 2k2)ω4, (3.51)

where (k1, k2) is (2, 0) or (0, 1) in the two domain walls above, and both match the anomaly
2ω4 as expected.
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We see that the kernel of Defρ is generated by (2, 1), which was noted in [7]. We can
see ambiguity arising from Indρ as follows. We need to start by considering 2+1D Z/2T -
equivariant families of invertible field theories over S(ρ). In this case, S(ρ) = S0 is just
two points which get exchanged by T . The generator ζ ∈ Ω3

Z/2,Spin,3σ(S(ρ)) = Z is defined
by taking the generator α3 ∈ Ω3

Spin = Z over one of the two points, and its time-reversed
partner −α3 over the other point.

To calculate Indρ, we study the interface between these two invertible theories. The
result is two fermions of equal chirality (gravitational anomaly 2α3), which are swapped by
the induced Z/2 symmetry U . This swap has eigenvalues ±1 and we find its anomaly is
α
Z/2
3 . So if ζ is the class of the family above,

Indρ(ζ) = 2α3 + α
Z/2
3 , (3.52)

the image of which is indeed the kernel of Defρ we computed above.
This has a physical interpretation in terms of the two mass terms above. If we change

the sign of just the ψ̄2ψ2 mass term, we can think of this as stacking with either α3 or
−α3, depending whether the sign change is from minus to plus or from plus to minus. This
gives the invertible family ζ above.

3.3.4 Vortices in p + ip superfluid

Now we will discuss the famous Majorana zero modes bound to the vortices of a p + ip

superfluid [38], which turn out to have an interesting description in terms of the index map.
We study a single Dirac fermion in 2+1D, carrying charge 1 under G = U(1) symmetry,

and undergoing symmetry breaking via a charge 2 complex order parameter coupling to the
two Majorana masses. Such a spontaneous symmetry breaking scenario is typically referred
to as a p + ip superfluid.6 The resulting S(ρ) ∼= S1 family has a unique gapped ground
state for all nonzero values of the order parameter, and the U(1) symmetry is anomaly-free,
and it represents a generator of

Ω3
Spin,U(1),ρ(S(ρ)) ∼= Z. (3.53)

We want to compute the index map

IndU(1)
ρ : Ω3

Spin,U(1),ρ(S(ρ)) → Ω2
Spin,U(1)

∼= Z/2. (3.54)

It is interesting to consider the map

f : Ω3
Spin,U(1),ρ(S(ρ)) → Ω3

Spin(S1) ∼= Z⊕ Z/2 (3.55)

which forgets the U(1) action, since the index map of the latter, namely

Indρ : Ω3
Spin(S1) → Ω2

Spin (3.56)

6Note that there is a mixed U(1) and time reversal anomaly, and a choice of U(1) symmetric fermion
regulator will break time reversal and select either a p + ip or p − ip superfluid.
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can be more easily understood. The generators of Ω3
Spin(S1) correspond to the generator of

Ω3
Spin

∼= Z, with trivial parameter dependence, and Ω2
Spin = Z/2, via a family which pumps

this phase to the boundary as we go around S1. The index map clearly sends the Z generator
to zero and the Z/2 generator to the generator of Ω2

Spin = Z/2.
Because the SBLES is functorial in G, we have a commutative square

Z ∼= Ω3
Spin,U(1),ρ(S(ρ)) Ω2

Spin,U(1)
∼= Z/2

Z⊕ Z/2 ∼= Ω3
Spin(S1) Ω2

Spin
∼= Z/2.

IndU(1)
ρ

f ∼
Indρ

Combined with the information above, we learn IndU(1)
ρ must be reduction mod 2. This is

reasonable from the physical point of view, since it is known that a vortex in the p + ip

superfluid binds an odd number of Majorana zero modes, which carry the gravitational
anomaly associated with the generator of Ω2

Spin. We also learn that the map f above sends
the generator to the sum of the generators (1, 1) ∈ Z⊕ Z/2, which is a bit more surprising!
We will verify both these facts directly from the definition of these maps.

First we study f . In terms of spacetime manifolds, we want to take a 3-manifold X with
spin structure ξ and a map ϕ : X → S1, and construct a Spinc structure A on X under which
ϕ has charge 2, so that A gets Higgs’d to a spin structure. In terms of equations we want

2A = dϕ

dA = πw2(TX) = πdξ,
(3.57)

which can be solved by

A = πξ + 1
2dϕ.

(3.58)

The two terms here is the essential reason why we get the sum of generators when we compute
f . It means when ϕ has an odd winding number around a 1-cycle of X, we twist the spin
structure ξ along that cycle, turning it from periodic to antiperiodic or vice versa.

We do the same thing when we compute IndU(1)
ρ according to the recipe given at the

beginning of this subsection. There, from a spin surface Y we form the manifold X = Y × S1

with ϕ winding once around the S1 factor. The spin structure along this S1 factor becomes
twisted. When we evaluate the Z generator of Ω3

Spin on this spin 3-manifold, we get the Arf
invariant of Y and its spin structure, which is the nontrivial element of Ω2

Spin.

3.4 Completing the circle

By now we have defined our three maps: the residual family anomaly Resρ, the defect anomaly
Defρ, and the index map Indρ. We have seen how they fit together into an exact sequence:
the kernel of Resρ is the image of Defρ and the kernel of Defρ is the image of Indρ. In this
section we will complete the circle and argue they form a long exact sequence, in particular,
the kernel of Indρ is the image of Resρ, so that this piece is exact:

ΩD
G,s,η

Resρ−−−→ ΩD
G,s,η(S(ρ)) Indρ−−−→ ΩD−k+1

G,s,η+ρ. (3.59)
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D ΩD
Spin ΩD

U(1),Spin ΩD
U(1),Spin,ρ = ΩD

Spinc

−1 Z Z Z

0 0 0 0

1 Z/2 Z/2 ⊕ Z Z

2 Z/2 Z/2 0

3 Z Z2 Z2

4 0 0 0

5 0 Z2 Z2

6 0 0 0

Table 1. Classification of D-spacetime-dimensional fermionic invertible field theories with Z/2F ,
U(1) × Z/2F , and U(1)F symmetry, respectively.

To see this, suppose we start with a class ω ∈ ΩD
G,s,η which we think of as a G-symmetric

invertible theory. When we break the G symmetry we get an equivariant invertible family
over the ball B(ρ) inside Vρ. Restricting this family to S(ρ) gives Resρω. Suppose we then
compactify this family to form the invertible phase IndρResρω and study it on a manifold Y

with boundary. If we place the family instead on the associated B(ρ) bundle over ∂Y , then
we get a trivial boundary condition of this invertible phase by gluing the two boundaries,
which are both the associated S(ρ) bundle over ∂Y . Compare figure 4. Alternatively, the
ρ-defect in the invertible phase ω is trivial, so it has trivial anomaly IndρResρω = 0. The
converse follows from the Thom isomorphism.

4 Examples

In this section we collect a couple longer segments of the SBLES, containing some of the
examples of individual maps we have already seen. Many more such examples can be found
in [1, section 7, also see section 8.3].

4.1 U(1) symmetry breaking for fermions

Let us consider the symmetry breaking long exact sequence for a U(1) symmetry in a fermionic
theory and an order parameter transforming in the charge 1 representation ρ. There are
two cases to consider, depending on whether we have a spin-charge relation, meaning that
fermionic operators have half-integer U(1) charge, or not. In either case the relevant groups
of invertible field theories we will need are shown in table 1. To calculate these groups, one
applies the universal property of Anderson duality, which is explained in [1] to the spin
bordism groups, the Spin × U(1) bordism groups, and the Spinc bordism groups, which are
known: for spin bordism, see Milnor [46], for ΩSpin

∗ (BU(1)), see Wan-Wang [47, section 3.1.5],
and for spinc bordism, see Bahri-Gilkey [48].
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First we study the case with spin-charge relation, where fermions carry half-charge under
U(1) and bosons carry integer charge. We consider symmetry breaking by a charge 1 order
parameter (charge 2e from the point of view of the fermions). We studied such an example
in section 3.3.4, the p + ip superfluid.

We organize the SBLES into rows associated with this symmetry breaking in each
dimension D. The map from the first column to the second is the defect anomaly map
Defρ, from the second to the third is the residual family anomaly Resρ, and the index
maps Indρ go from the third column of one row to the first column of the next. We omit
arrows for maps that are zero, but the whole long exact sequence is connected. We use
the isomorphism ΩD

U(1),Spin,ρ(S(ρ)) = ΩD
Spin (see (3.4)) to substitute the latter group for the

third map in the SBLES.

D ΩD−2
U(1),Spin ΩD

Spinc ΩD
Spin

−1 0 Z Z

0 0 0 0
1 Z Z Z/2

2 0 0 Z/2

3 Z/2 ⊕ Z Z2 Z

4 Z/2 0 0

5 Z2 Z2 0

Defρ Resρ

The long subsequence beginning in D = 2 is

Ω2
Spin

∼= Z/2 Ω1
U(1),Spin

∼= Z/2 ⊕ Z Ω3
Spinc

∼= Z2

Ω3
Spin

∼= Z Ω2
Spin

∼= Z/2

( 1
0 ) ( 0 0

0 1 )

( 2 0 )
1

We have discussed the last map in section 3.3.4: it corresponds to the Majorana zero mode
bound to the vortex of the p+ ip superfluid. Let us briefly discuss the computation of the
other maps, although they are determined by the exact sequence.

The preceding map Ω3
Spinc → Ω3

Spin measures the residual gravitational anomaly upon
breaking the U(1) symmetry. The group Ω3

Spinc represents Chern-Simons terms associated
with the four-dimensional invariants

k1

(1
8c

2
1 −

1
24p1

)
+ k2c

2
1, (4.1)

see (3.16). Meanwhile the generator of Ω3
Spin is represented by − 1

48p1, so we see the map
sends (k1, k2) to 2k1.

The defect anomaly map Ω1
U(1),Spin → Ω3

Spinc tells us the fermion parity as well as the
U(1)ρ charge of the ρ-defect, i.e. the vortex of the order parameter. A physical model with
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anomaly k1 = 0 and k2 = 1 is the 1+1D compact boson with U(1) acting only on the left
movers. The vortex clearly is parity-even since there are no fermions in the model. However,
it carries unit U(1)ρ charge, as is well-known from the chiral anomaly.

Finally, the index map Ω2
Spin → Ω1

U(1),Spin can be understood in terms of the “topological
superfluid” in 1+1D. This can be thought of as a U(1)-charged Dirac fermion with the U(1)
symmetry broken by the two Majorana masses, which form a doublet. This is in the same
phase as the Kitaev chain. A vortex operator in this phase, which changes the winding
number of the order parameter, also changes the boundary conditions for the fermions, and
therefore toggles the fermion parity of the ground state. This is captured by the nonzero index
map, landing on the generator of Ω1

Spin
∼= Z/2 inside Ω1

U(1),Spin, which gives the “anomaly” of
the vortex operator, namely its fermion parity (compare section 3.3.1).

Next we collect the SBLES for charge 1 breaking of a U(1) symmetry without spin-charge
relation:

D ΩD−2
Spinc ΩD

U(1),Spin ΩD
Spin

−1 0 Z Z

0 0 0 0
1 Z Z⊕ Z/2 Z/2

2 0 Z/2 Z/2

3 Z Z2 Z
4 0 0 0

5 Z2 Z2 0

Defρ Resρ

We have studied the map in D = 5 in section 3.2.1 when we considered breaking of chiral
symmetry of a 4+1D Dirac fermion by its Dirac mass terms.

One general observation is that the index map always vanishes. The reason is that in the
definition of the index map from section 3.3, we produce an S1 bundle W with spin structure
which extends to the disc bundle, since this S1 always carries anti-periodic spin structure.
Moreover, Defρ is an isomorphism from ΩD−2

U(1),Spin,ρ to the “reduced” part of ΩD
U(1),Spin, namely

those U(1) symmetric invertible phases with no pure gravitational response, in other words
which become trivial upon breaking the U(1) symmetry. This the “Smith isomorphism”
in [36] (which can be proven following the methods of [7], which considers the Z/2 case).

4.2 Z/2 symmetry breaking for bosons

Now let us discuss perhaps the simplest example of the SBLES, which describes the breaking
of a unitary Z/2 symmetry of a bosonic system by a single real order parameter transforming
in the sign representation σ. On the domain wall, this unitary symmetry is transmuted
to an anti-unitary symmetry. For reference, the relevant classification groups are shown
in table 2, with ΩD

SO denoting D-spacetime-dimensional bosonic invertible field theories,
ΩD
Z/2,SO denoting those with a unitary Z/2 symmetry, and ΩD

Z/2,SO,σ denoting those with an
anti-unitary Z/2 symmetry. As usual, these groups were obtained by applying Anderson
duality to oriented bordism, unoriented bordism, and the oriented bordism of BZ/2. See
Thom [49, Théorèmes IV.9, IV.13] for oriented and unoriented bordism groups in low degrees.
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D ΩD
SO ΩD

Z/2,SO,σ = ΩD
O ΩD

Z/2,SO

−1 Z 0 Z
0 0 Z/2 0
1 0 0 Z/2
2 0 Z/2 0
3 Z 0 Z⊕ Z/2
4 0 (Z/2)2 0
5 Z/2 Z/2 (Z/2)3

6 0 (Z/2)3 Z/2
7 0 Z/2 (Z/2)3

Table 2. Classification of D-spacetime-dimensional bosonic invertible field theories with no symmetry,
time reversal symmetry, and Z/2 symmetry respectively.

We do not know of an explicit reference for ΩSO
∗ (BZ/2), but it can be calculated using a

result of Wall [50] that implies that the Atiyah-Hirzebruch spectral sequence for oriented
bordism collapses for any space whose mod p cohomology vanishes for all odd p.

We collect the SBLES as follows. By (3.4) that the third group in the SBLES simplifies:
ΩD

Z/2,SO(S(σ)) = ΩD
SO.

ΩD−1
O ΩD

Z/2,SO ΩD
SO

−1 0 Z Z

0 0 0 0
1 Z/2 Z/2 0

2 0 0 0
3 Z/2 Z/2 ⊕ Z Z

4 0 0 0

5 (Z/2)2 (Z/2)3 Z/2

6 Z/2 Z/2 0

7 (Z/2)3 (Z/2)3 0

Defσ Resσ

This has a similar structure to the U(1) × Z/2F → Z/2F breaking we studied above
in section 4.1, splitting into isomorphisms given by Defσ (the “Smith isomorphism”) and
Resσ, with Indσ vanishing. Meanwhile, the pure gravitational part is mapped isomorphically
by Resσ, since by definition we do not need the Z/2 symmetry to detect it, and Z/2 acts
transitively on S(σ), so the residual family anomaly is determined by the anomaly of the
unbroken subgroup, which is just the gravitational part.

We can also compute the SBLES associated with breaking of a time reversal symmetry
by a single real order parameter transforming in the sign representation. This turns out to
be more interesting, since we no longer have a Smith isomorphism, and Indσ may be nonzero.
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There is a similar identification of the group over the sphere as ΩD
Z/2,SO,σ(S(σ)) = ΩD

SO.

ΩD−1
Z/2,SO ΩD

O ΩD
SO

−1 0 0 Z

0 Z Z/2 0

1 0 0 0

2 Z/2 Z/2 0

3 0 0 Z

4 Z⊕ Z/2 Z/2 ⊕ Z/2 0

5 0 Z/2 Z/2

6 (Z/2)3 (Z/2)3 0

7 Z/2 Z/2 0

Defσ Resσ

Consider for example the 3rd to 4th rows. We have the sequence

Ω3
Z/2,SO,σ(S(σ)) Ω3

Z/2,SO Ω4
O

Z Z⊕ Z/2 Z/2 ⊕ Z/2

∼= ∼= ∼=

( 2 0 ) ( 1 0
0 1 )

The generator of the first nonzero group is the S(σ) ∼= S0-family with an E8 phase [51] at
one point (the generator of Ω3

SO
∼= Z), and its inverse phase at the other point. To compute

the index map, we study a domain wall between the E8 and its inverse, which with the
standard boundary conditions has chiral modes with cL = 16, cR = 0. The induced unitary
Z/2 symmetry is anomaly-free, since k = 0 mod 8 of the modes are charged. This theory
represents the anomaly (2, 0) ∈ Z ⊕ Z/2 ∼= Ω3

Z/2,SO.
The next map sends the E8 state, representing (1, 0) in that group, to the time-reversal

symmetric phase described by a gravitational θ = π angle, or 1
2w

2
2. This encodes the well-

known fact that the time reversal domain wall at the boundary of that theory (known as efmf

in [52]) hosts cL = 8 mod 16 gapless chiral modes. Meanwhile, it sends the Levin-Gu SPT [53]
associated to 1

2A
3 and representing (0, 1) in Ω3

Z/2,SO, to the phase associated with 1
2w

4
1.

4.3 Z/2 symmetry breaking for fermions

Now we turn to the same Z/2 symmetry breaking scenario for fermions. In the fermionic
setting, there are four different types of Z/2 symmetry: either unitary with U2 = 1 or
U2 = (−1)F , or time reversing with T 2 = 1 or T 2 = (−1)F , as discussed in section 2.
The relevant classifications are collection in table 3, corresponding to low-degree bordism
groups that are explicitly calculated in the following references: Milnor [46] (spin bordism),
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D ΩD
Spin ΩD

Z/2,Spin ΩD
Z/2,Spin,σ = ΩD

Pin− ΩD
Z/2,Spin,2σ = ΩD

Spin×Z/2Z/4 ΩD
Z/2,Spin,3σ = ΩD

Pin+

−1 Z Z 0 Z 0

0 0 0 Z/2 0 Z/2

1 Z/2 (Z/2)2 Z/2 Z/4 0

2 Z/2 (Z/2)2 Z/8 0 Z/2

3 Z Z⊕ Z/8 0 Z Z/2

4 0 0 0 0 Z/16

5 0 0 0 Z/16 0

6 0 0 Z/16 0 0

Table 3. Fermionic invertible field theories in D spacetime dimensions with symmetry Z/2F ,
Z/2U × Z/2F , Z/2T × Z/2F , Z/4U , or Z/4T , respectively.

Giambalvo [54] (Pin+ bordism), Kirby-Taylor [36] (Pin− bordism), García-Etxebarria and
Montero [55, (C.18)] (Spin × Z/2 bordism),7 and Giambalvo [58] (Spin ×Z/2 Z/4 bordism).

There are four different SBLES concerning symmetry breaking by the order parameter σ,
one for each of the four types of Z/2 symmetry. We have computed an initial segment of
each. Observe that by (3.4), we have ΩD

Z/2,Spin,nσ(S(σ)) = ΩD
Spin for any n, so the third group

in the long exact sequence classifies pure gravitation anomalies. First we study Z/2U × Z/2F

breaking to Z/2F .

ΩD−1
Pin− ΩD

Z/2,Spin ΩD
Spin

−1 0 Z Z

0 0 0 0

1 Z/2 (Z/2)2 Z/2

2 Z/2 (Z/2)2 Z/2

3 Z/8 Z/8 ⊕ Z Z

4 0 0 0
5 0 0 0
6 0 0 0

7 Z/16 Z/16 ⊕ Z2 Z2

Defσ Resσ

7This calculation, or more precisely its equivalent analogue in ko-homology, was first done by Mahowald-
Milgram [56], with ko∗(BZ/2) worked out explicitly by Bruner-Greenlees [57, Example 7.3.1], but the cited
reference lists spin bordism groups specifically.
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Next we study Z/2T × Z/2F breaking to Z/2F .

D ΩD−1
Z/2,Spin,2σ ΩD

Pin− ΩD
Spin

−1 0 0 Z

0 Z Z/2 0

1 0 Z/2 Z/2

2 Z/4 Z/8 Z/2

3 0 0 Z

4 Z 0 0
5 0 0 0
6 Z/16 Z/16 0

7 0 0 Z2

Defσ Resσ

One generator of Ω2
Pin−

∼= Z/8 is represented by a T -odd Majorana zero mode. Upon
forgetting the T symmetry, this still has a gravitational anomaly, associated with Ω2

Spin
∼= Z/2.

If we have two T -odd Majoranas γ1,2, we can write the T -odd pairing iγ1γ2 which leads to a
unique ground state. Changing the sign of this term toggles the fermion parity of this ground
state, so the associated operator has unit charge under the induced unitary symmetry U ,
since U2 = (−1)F . This “anomaly” represents a generator of Ω1

Z/2,Spin,2σ
∼= Z/4.

Next we have the breaking of a unitary symmetry U with U2 = (−1)F down to Z/2F as
well as breaking of a time reversal symmetry T with T 2 = (−1)F down to Z/2F .

D ΩD−1
Pin+ ΩD

Z/2,Spin,2σ ΩD
Spin

−1 0 Z Z

0 0 0 0
1 Z/2 Z/4 Z/2

2 0 0 Z/2

3 Z/2 Z Z

4 Z/2 0 0

5 Z/16 Z/16 0

Defσ Resσ

D ΩD−1
Z/2,Spin ΩD

Pin+ ΩD
Spin

−1 0 0 Z

0 Z Z/2 0

1 0 0 Z/2

2 (Z/2)2 Z/2 Z/2

3 (Z/2)2 Z/2 Z

4 Z⊕ Z/8 Z/16 0

Defσ Resσ
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D ΩD
Spin ΩD

Z/3,Spin

−1 Z Z
0 0 0
1 Z/2 Z/3 ⊕ Z/3
2 Z/2 Z/2
3 Z Z⊕ Z/3
4 0 0
5 0 Z/9
6 0 0
7 Z2 Z2 ⊕ Z/9
8 0 0
9 (Z/2)2 (Z/2)2 ⊕ Z/3 ⊕ Z/27
10 (Z/2)3 (Z/2)3

11 Z3 Z3 ⊕ Z/3 ⊕ Z/27

Table 4. Classification of invertible field theories with Z/2F and Z/3 × Z/2F symmetry in D

spacetime dimensions.

The short exact sequence from D = 3 to D = 4 was analyzed in section 3.3.3 in the
context of time reversal domain walls of 2 + 1D Majorana fermions.

Finally, we may also consider composing two of the defect maps in this section, which
produces a defect map and an SBLES corresponding to symmetry breaking by an order
parameter transforming under 2σ. Note that an 2σ order parameter is a pair of Z/2-odd
operators. Unlike symmetry breaking by an σ order parameter, this process preserves the
(anti)-unitarity of the symmetry operator, and exchanges the symmetry types Z/2T × Z/2F

and Z/4T , and symmetry types Z/2U ×Z/2F and Z/4U . We discuss the case of Z/4T (Pin+)
breaking to Z/2T × Z/2F (Pin−). Note that the residual family anomaly is more than just
gravitational, as it falls outside of the cases considered in eq. (3.4). In particular, it is
classified by ΩD

Z/2,Spin,σ(S(2σ)) = Ω̃D+1
Spin (RP 2).

ΩD−2
Pin− ΩD

Pin+ Ω̃D+1
Spin (RP 2)

−1 0 0 0

0 0 Z/2 Z/2

1 0 0 Z/2

2 Z/2 Z/2 Z/4

3 Z/2 Z/2 Z/2

4 Z/8 Z/16 Z/2

5 0 0 0
6 0 0 0

Def2σ Res2σ

Consider the D = 4 short exact sequence from the table above. As noted above, the generator
of Z/16 can be represented by 2 + 1D Majorana fermions. One Majorana fermion has a single
T -odd Majorana mass term O1, and we have considered its symmetry breaking. However,
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as discussed in section 3.1.1, we can’t find a second T -odd operator such that

r cos θO1 + r sin θO2 (4.2)

is nondegenerately gapped for large r and all θ. This corresponds to the Z/2 residual anomaly
in Ω4

Spin(S(2σ)). However, if we have two Majorana fermions, then we can find two T -odd
operators such that (4.2) gaps the system for all θ. The codimensional two vortex is precisely
the Majorana zero modes, which have a Z/8 classification.

4.4 Z/3 symmetry breaking for fermions

An interesting case which demonstrates some of the more typical complexity of the SBLES
is Z/3 symmetry breaking in fermionic systems via a charge 1 order parameter. Such
a symmetry must be unitary and the symmetry group must have the product structure
Z/3U × Z/2F . The relevant classification is shown in table 4; the new piece of information
we need is ΩSpin

∗ (BZ/3), worked out in degrees 11 and below in [16, section 12.2] using work
of Bruner-Greenlees [57, example 7.3.2].

The anomaly group over the sphere S(ρ) simplifies as ΩD
Z/3,Spin(S(ρ)) = ΩD

Spin ⊕ ΩD−1
Spin ,

and the long exact sequence is the following:

D ΩD−2
Z/3,Spin ΩD

Z/3,Spin ΩD
Spin ⊕ ΩD−1

Spin

−1 0 Z Z

0 0 0 Z

1 Z Z/2 ⊕ Z/3 Z/2

2 0 Z/2 (Z/2)2

3 Z/2 ⊕ Z/3 Z⊕ Z/3 Z⊕ Z/2

4 Z/2 0 Z

5 Z⊕ Z/3 Z/9 0

6 0 0 0

7 Z/9 Z2 ⊕ Z/9 Z2

8 0 0 Z/2

9 Z/2 ⊕ Z/9 (Z/2)2 ⊕ Z/3 ⊕ Z/27 (Z/2)2

10 0 (Z/2)3 (Z/2)5

11 (Z/2)2 ⊕ Z/3 ⊕ Z/27 Z3 ⊕ Z/3 ⊕ Z/27 Z3 ⊕ (Z/2)3

Defρ Resρ

(1)

(3)
(0

1) (1,0)

(
1 0
0 0

)(
0 0
0 1

)
(

1 0
0 0

)
(0,1)

(
−3
1

)
(1,3)

(0,1) (1
0)
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Note that because there is no twist, ΩD
Z/3,Spin = Ω̃D

Z/3,Spin ⊕ΩD
Spin, where Ω̃D

Z/3,Spin denotes the
subgroup of those phases which become trivial upon breaking Z/3. This subgroup is finite
and has no 2-torsion, so Resρ is always zero on it, while it maps the ΩD

Spin factor injectively.
It follows that the long exact sequence splits into a series of short exact sequences of the form

0 → ΩD−2
Spin

Indρ−−−→ ΩD−2
Z/3,Spin

Defρ−−−→ Ω̃D
Z/3,Spin → 0 (4.3)

There are four interesting ones:

• D = 1: Z → Z → Z/3

• D = 2: Z/2 → Z/2 ⊕ Z/3 → Z/3.

• D = 4: Z/2 → Z/2.

• D = 5: Z → Z⊕ Z/3 → Z/9.

Let us consider for example D = 5. The first Z ∼= Ω3
Spin = Ω̃4

Z/3,Spin(S(ρ)) is generated by
a 3+1D family which pumps a generator of Ω3

Spin to the boundary over each third of the
S(ρ) ∼= S1. When we compute the first map, the index map, we look at the vortex where the
order parameter windings all the way around S(ρ). This has three 1+1D gapless Majorana
modes of the same chirality, with Z/3 acting as a permutation. This can be written as a
neutral chiral Majorana and a charge 1 Weyl, so it has anomaly (3, 1) ∈ Z ⊕ Z/3. The
calculation of the next map, the defect anomaly map, follows section 3.2.1.

D = 1 is also interesting. Since it involves phases in “negative dimension” we need to
think in terms of families (compare section 3.3.2). The map Defρ : Z → Z/3 says that if we
have an S2 family of quantum states, with Z/3 acting as a 2π/3 polar rotation, the difference
in the Z/3 charges of the states at the poles equals the Chern number mod 3.

4.5 Z/4 symmetry breaking for fermions

Now we consider symmetry breaking of a unitary symmetry U with U4 = (−1)F by a charge
1 order parameter (defining the representation ρ). The relevant classifications are given in
table 5; the new bordism groups we need as input are ΩSpin

∗ (BZ/4) and ΩSpin×Z/2Z/8
∗ , which

appear explicitly in [16, section 12.1, section 13.2] (the former building on a calculation of
Bruner-Greenlees [57, Example 7.3.3]), see also appendices A.3 and A.4 of [59]. Finally, there
is an isomorphism ΩD

Z/4,Spin,ρ(S(ρ)) = ΩD
Spin ⊕ ΩD−1

Spin .
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D ΩD
Spin ΩD

Z/4,Spin ΩD
Z/4,Spin,ρ

−1 Z Z Z

0 0 0 0

1 Z/2 Z/2 ⊕ Z/4 Z/8

2 Z/2 (Z/2)2 0

3 Z Z⊕ Z/2 ⊕ Z/8 Z⊕ Z/2

4 0 0 0

5 0 Z/4 Z/32 ⊕ Z/2

6 0 0 0

Table 5. The classification of Z/4 symmetric invertible field theories in D spacetime dimension. Here
ρ is the charge one representation of Z/4, giving a unitary symmetry class with U4 = (−1)F .

The symmetry breaking long exact sequence is as follows:

D ΩD−2
Z/4,Spin ΩD

Z/4,Spin,ρ ΩD
Spin ⊕ ΩD−1

Spin

−1 0 Z Z

0 0 0 Z

1 Z Z/8 Z/2

2 0 0 (Z/2)2

3 Z/2 ⊕ Z/4 Z⊕ Z/2 Z⊕ Z/2

4 (Z/2)2 0 Z

5 Z⊕ Z/8 ⊕ Z/2 Z/32 ⊕ Z/2 0

6 0 0 0

Defρ Resρ

(1)

(4)

(
1 0
0 2

)(
0 0
0 1

)
(

2 0
0 0

)(
1 0
0 1

)

Let us study the subsequence from D = 2 toD = 4. The first map is Indρ : Ω2
Z/4,Spin,ρ(S(ρ)) →

Ω1
Z/4,Spin. The Ω2

Spin generator is the 1+1D topological superfluid we discussed around (4.1)
test and gets mapped to the Ω1

Spin generator as we discussed there. The other Z/2 generator
pumps four fermionic charges to the boundary when traversing S(ρ) ∼= S1. Let Oi, i = 1, 2, 3, 4
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be the four operators creating these charges, which anticommute. The Z/4 symmetry acts
on them by Oi 7→ Oi+1. The vortex operator of the whole family is the product O1O2O3O4,
which we compute is charge 2 under Z/4. This corresponds to 2 ∈ Z/4 ∼= Ω̃1

Z/4,Spin.
The next group is Ω3

Z/4,Spin,ρ
∼= Z⊕ Z/2. The Z generator represents the anomaly of a

charge 1/2 (charge 1 under Z/8F ) 1+1D Weyl fermion, while the Z/2 generator represents
that of a Dirac fermion with chiral charges ±1/2 for the left and right handed components.
In the second case, if we break the symmetry by adding a Dirac mass (which transforms
in the representation ρ) we get a Thouless pump with a unit Z/4-charged vortex operator,
matching the defect anomaly map Z/4 → Z/2. Resρ maps the Z generator to two times the
Z generator of Ω3

Spin, since a Weyl fermion is two Majorana-Weyl fermions.
Another interesting subsequence goes from D = 4 to 5, in particular exactness requires

the index map to be

Indρ : Ω4
Z/4,Spin(S(ρ)) Ω3

Z/4,Spin

Z Z⊕ Z/8 ⊕ Z/2.
∼= ∼=

(4 1 0)T

Let us verify this. The generator of the source is a family which pumps the generator of
Ω3

Spin
∼= Z to the boundary over each quarter of the circle S(ρ). When we form the ρ-defect,

we have four copropagating 1+1D chiral Majorana modes, with Z/4 acting as a permutation.
This corresponds to a charge 1 and a charge 2 left-handed Weyl. If this was a U(1) symmetry,
its chiral anomaly would be 12 + 22 = 5, which is indeed coprime to 8, so when U(1) is
reduced to Z/4, this is a generator of Z/8.

4.6 SU(2) symmetry breaking for fermions

Now we discuss SU(2) and SO(3) symmetry breaking in fermion systems. There are three
cases of interest, SU(2)×Z/2F , SO(3)×Z/2F , and SU(2)F , where the latter has a spin-charge
relation where fermions carry half integer spin and bosons carry integer spin. We will consider
symmetry breaking by both spin-1/2 and spin-1 order parameters. The relevant classifications
are shown in table 6. Once again we refer the reader to [1, section 7] for the computation of
the anomaly groups and long exact sequences. As input, we need ΩSpin

∗ , as discussed above,
and several families of bordism groups that have not yet appeared in this paper.

• ΩSpin
∗ (BSO(3)) is calculated in low degrees by Wan-Wang [47, section 5.3.3].

• ΩSpin
∗ (BSU(2)) is calculated in low degrees by Lee-Tachikawa [60, appendix B.2].

• ΩSpinh

∗ is calculated in low degrees by Freed-Hopkins [27, Theorem 9.97].

First we will consider SU(2) × Z/2F symmetry breaking to Z/2F by a complex spin-1/2
order parameter, which is the simplest case. We use that ΩD

SU(2),Spin(S(ρ)) = ΩD
Spin (see (3.4)).

Note that this is another instance of the “Smith isomorphism” where the long exact sequence
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D ΩD
Spin ΩD

SU(2),Spin ΩD
SO(3),Spin ΩD

SO(3),Spin,1

−1 Z Z Z Z
0 0 0 0 0
1 Z/2 Z/2 Z/2 0
2 Z/2 Z/2 (Z/2)2 0
3 Z Z2 Z2 Z2

4 0 0 0 0
5 0 Z/2 0 (Z/2)2

6 0 Z/2 Z/2 (Z/2)2

7 Z2 Z4 Z4 Z4

Table 6. Anomaly groups relevant to the SU(2) families of long exact sequences of field theories.

splits and ΩD−4
SU(2),Spin ≃ Ω̃D

SU(2),Spin.

D ΩD−4
SU(2),Spin ΩD

SU(2),Spin ΩD
Spin

−1 0 Z Z

0 0 0 0
1 0 Z/2 Z/2

2 0 Z/2 Z/2

3 Z Z2 Z
4 0 0 0
5 Z/2 Z/2 0

6 Z/2 Z/2 0

7 Z2 Z4 Z2

Defρ Resρ

The generator of Ω5
SU(2),Spin

∼= Z/2 corresponds to Witten’s SU(2) anomaly [61]. For example,
we can consider Nf = 2 QCD with chiral SU(2)L × SU(2)R symmetry. In the usual chiral
symmetry breaking scenario, the order parameters are mass terms and form a complex
SU(2) doublet. The defect anomaly map here is capturing the fact that skyrmions in this
theory are fermions.

Next we study SU(2) × Z/2F symmetry breaking to U(1) × Z/2F by a real spin-1 order
parameter. Note that ΩD

SU(2),Spin(S(ρ)) = ΩD
U(1),Spin as SU(2) acts surjectively on S(ρ) with
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stabilizer group U(1) (see (3.4)).

D ΩD−3
SU(2),Spin ΩD

SU(2),Spin ΩD
U(1),Spin

−1 0 Z Z

0 0 0 0

1 0 Z/2 Z/2 ⊕ Z

2 Z Z/2 Z/2

3 0 Z2 Z2

4 Z/2 0 0

5 Z/2 Z/2 Z2

6 Z2 Z/2 0

7 0 Z4 Z4

Defρ Resρ

The residual family anomaly in D = 3 maps the gravitation Chern-Simons term associated
with Ω3

Spin
∼= Z to itself, while the level 1 SU(2) Chern-Simons term corresponding to the other

generator of Ω3
SU(2),Spin maps to a level 2 Chern-Simons term for the unbroken U(1) subgroup.

If we have a level 1 Chern-Simons term, the ρ-defect acts as a U(1) monopole (this is like an
’t Hooft-Polyakov monopole), and is thus fermionic, which is captured by the index map.

Now we study SO(3) × Z/2F symmetry breaking to U(1) × Z/2F by a real spin 1 order
parameter. Once again we use that ΩD

SO(3),Spin(S(ρ)) = ΩD
U(1),Spin.

D ΩD−3
SO(3),Spin,1 ΩD

SO(3),Spin ΩD
U(1),Spin

−1 0 Z Z

0 0 0 0

1 0 Z/2 Z⊕ Z/2

2 Z (Z/2)⊕2 Z/2

3 0 Z2 Z2

4 0 0 0

5 0 0 Z2

6 Z2 Z/2 0

7 0 Z4 Z4

Defρ Resρ

(1)

(0,1)

(2,0)

(1,0)
(0,1)

∼=

(1,2)

(1,0)
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Finally we study SU(2)F symmetry breaking to U(1)F by a real spin 1 order parameter.
Note that ΩD

SO(3),Spin(S(ρ)) ∼= ΩD
Spinc .

D ΩD−3
SO(3),Spin ΩD

SO(3),Spin,1 ΩD
Spinc

−1 0 Z Z

0 0 0 0

1 0 0 Z

2 Z 0 0

3 0 Z2 Z2

4 Z/2 0 0

5 (Z/2)⊕2 (Z/2)⊕2 Z2

6 Z2 (Z/2)⊕2 0

7 0 Z4 Z4

(1)

(1)

Defρ Resρ

(2,1)

(1,0)

∼=

2

mod 2

5 The symmetry breaking long exact sequence in group cohomology

So far, we have been assuming the SPT-cobordism conjecture section 2.1. However, our
symmetry breaking long exact sequence exists for any classification, including the group
cohomology classification [62]. In this setting, we have explicit formulas for the three maps.
Indeed, the SBLES is equivalent to the Thom-Gysin sequence for the fibration

S(ρ) → S(ρ)//G π−→ BG. (5.1)

The space in the middle is the homotopy quotient

S(ρ)//G := EG×G S(ρ), (5.2)

where EG is a contractible space with a free G action. Recall that BG is defined as EG/G.
By projecting onto the EG coordinate then, we define a map

π : S(ρ)//G→ BG. (5.3)

We can think of this as the S(ρ) bundle over BG associated to the universal G bundle. The
importance of S(ρ)//G is that its ordinary cohomology equals the (Borel) G-equivariant
cohomology of S(ρ) :

HD(S(ρ)//G,A) = HD
G (S(ρ), A), (5.4)

where A is some arbitrary coefficients. Given a representation η of G, we get a U(1) local
system over S(ρ)//G by pulling back the usual U(1) local system over BG (twisted by the
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determinant line of η). This defines

HD(S(ρ)//G,U(1)η) = HD
G (S(ρ),U(1)η), (5.5)

which classifies group cohomology invariants of anomaly-free G-equivariant invertible families,
where η remembers which symmetries of G are anti-unitary. In other words, these are
η-twisted U(1)-valued D-forms ζ(A, ϕ) on spacetime, constructed from a G gauge field A

and a section ϕ of the S(ρ) bundle associated to the G gauge bundle.
The Thom-Gysin sequence gives us the following formulas

Defρ : HD−k(BG,U(1)η+ρ) → HD(BG,U(1)η)
α 7→ e(ρ) ∪ α,

(5.6)

where e(ρ) ∈ Hk(BG,Zρ) is the Euler class of ρ.

Resρ : HD(BG,U(1)η) → HD(S(ρ)//G,U(1)η)
ω 7→ π∗ω,

(5.7)

where π∗ is the pullback along the projection above. Finally

Indρ : HD(S(ρ)//G,U(1)η) → HD−k+1(BG,U(1)η+ρ)

ζ 7→
∫

S(ρ)
ζ,

(5.8)

where this integral indicates integration against the (ρ-twisted) homology class of the S(ρ)
fiber in S(ρ)//G.

6 Outlook

In this paper, we have presented a long exact sequence in symmetry breaking, relating three
maps: the residual family anomaly which captures the equivariant family anomaly when we
move around the order parameter space and which gives the obstruction to having a local
ρ-defect, the defect anomaly map which reconstructs the bulk anomaly from that of the
ρ-defect, and the index map which describes the anomaly of the ρ-defect in an anomaly-free
equivariant family on a sphere and describes how the different symmetry breaking patterns are
distinguished by their ρ-defects. The kernel of each map is the image of the next, connecting
anomaly matching formulas for a given group and representation in all dimensions.

There are a few directions for future work we think are promising. The first is to better
understand how to formulate the twisted symmetry Gρ on the lattice. We can use the CPT
symmetry to obtain this symmetry in Lorentz invariant, unitary theories, as described in [7].
However, on the lattice there may be no such symmetry and it is not clear how to proceed.

One approach which seems fruitful is to make contact with the recent anomaly approaches
to Lieb-Schultz-Mattis (LSM) theorems [63–65]. In particular, we can think of the recon-
struction of the bulk Gρ anomaly from the Gρ anomaly of the ρ-defect as a pure point-group
LSM theorem. Indeed, in this case the LSM map of [65] (see appendix I there) is given
by cup with the Euler class of ρ and agrees with the defect anomaly map we computed.
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It seems that the two anomalies are related by the crystalline equivalence principle, which
we intend to revisit in future work.

The SBLES is a convenient tool for computing classifications of anomalies in different
symmetry classes, since different symmetry breaking patterns can be combined to obtain
more constraints on the classification group in terms of lower dimensional groups, and the
maps are often determined by exactness. This approach is complementary to the “decorated
domain wall” methods [66], which are mathematically formalized as an Atiyah-Hirzebruch
spectral sequence [19, 24, 67, 68]. In these methods, low dimensional invertible phases are
glued together to form higher dimensional ones, allowing one to bootstrap the classification,
simply knowing the gluing rules. These rules however, known as the spectral sequence
differentials, have still not been completely computed. However, the physical interpretation
of these differentials (see for instance [68]) matches the index map we have defined, and it
seems possible that all differentials may be computable in terms of it. This is a direction
we are currently exploring.

Another interesting direction is to see if the residual family anomalies we have defined
yield new results for quantum field theories. Indeed, we know of no other proof even for the
statement in section 3.1.1 regarding two T -odd deformations of the 2+1D free Majorana
fermion. This may yield new predictions on the phase diagrams near such models.

The ρ-defect is a very symmetric defect, and vortices and other defects which occur
in experiments will not have this symmetry, especially in problems involving vortex and
skyrmion scattering or lattices. It would be very interesting to understand how such symmetry
breaking imprints on the anomalous modes at the vortex core. When G acts projectively in
the core, presumably the degeneracy is split when the vortex is not symmetric, but we expect
there will be a non-trivial Berry phase in this splitting to match the anomaly.
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