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SMITH HOMOMORPHISMS AND Spinh STRUCTURES

ARUN DEBRAY AND CAMERON KRULEWSKI

Abstract. In this article, we answer two questions of Buchanan-McKean [BM23] about bordism

for manifolds with spinh structures: we establish a Smith isomorphism between the reduced

spinh bordism of RP∞ and pinh− bordism, and we provide a geometric explanation for the

isomorphism ΩSpinc

4k
⊗Z[1/2] ∼= ΩSpinh

4k
⊗Z[1/2]. Our proofs use the general theory of twisted spin

structures and Smith homomorphisms that we developed in [DDK+24] joint with Devalapurkar,

Liu, Pacheco-Tallaj, and Thorngren, specifically that the Smith homomorphism participates in

a long exact sequence with explicit, computable terms.
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1. Introduction

At the start of the 1960s, C.T.C. Wall challenged the readers of [Wal60] to study the bordism

groups of spin manifolds—and by the end of the decade, Anderson-Brown-Peterson [ABP67] had

completely solved this problem, determining not just the spin bordism groups but also a convenient

decomposition of the spectrum MT Spin itself, catalyzing computations of other, related bordism

groups.

One such example is bordism for a complex analogue of spin structures, referred to as spinc struc-

tures (see Example 2.2), which was solved almost immediately after Anderson-Brown-Peterson’s

work (see [Sto68, Chapter XI]). Similarly, one can replace the complex numbers with the quater-

nions, leading to the notion of a spinh structure, i.e. a reduction of structure group to the group1

(1.1) Spinh
n := Spinn ×{±1} SU2.

Spinh structures have been studied in the mathematics and physics literature since the 1960s,

with applications to quantum gravity [BFF78, Bec24], index theory, e.g. in [May65, Nag95, Bär99,

FH21, Che17], Seiberg-Witten theory [OT96], immersion problems [Bär99, AM21], almost quater-

nionic geometry, e.g. in [Nag95, Bär99, AM21], and invertible field theories [FH21, BC18, WWW19,

Date: June 13, 2024.
1Here and elsewhere in this article, the notation G ×{±1} H indicates that there are central subgroups {±1} ⊂ G,

{±1} ⊂ H each isomorphic to the multiplicative group {±1} ⊂ R×; then G ×{±1} H is the quotient of G × H by

the diagonal {±1} subgroup. These subgroups of G and H will be clear from context.
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WWZ20, WW20, DL21, DY22, Ste22, WWW22, BI23, DDK+23]. See [Law23] for a review of the

mathematical aspects of spinh structures.

However, spinh bordism has attracted interest only in the last few years, beginning with Freed-

Hopkins’ work [FH21] applying low-degree spinh bordism groups to condensed-matter physics;

other important results include obstruction theory for spinh structures [AM21], the construction

of a quaternionic Atiyah-Bott-Shapiro map [FH21, Hu23] and an Anderson-Brown-Peterson-style

splitting of the spinh bordism spectrum at the prime 2 [Mil23].2

Recently, Buchanan-McKean [BM23] proved a number of key results on spinh bordism, includ-

ing describing the above splitting in terms of characteristic classes and showing that a collection of

characteristic classes valued in quaternionic K-theory detect a manifold’s spinh bordism class. Us-

ing this splitting, they give an algorithm for computing ΩSpinh

n for all n and analyze the asymptotics

of the size of the nth spinh bordism group in n.

Buchanan-McKean also ask several questions on spinh bordism [BM23, §10] coming from their

work. The main goal of this article is to answer two of these questions, which we now describe.

Anderson-Brown-Peterson [ABP69] established a Smith isomorphism smσ : Ω̃Spin
n (RP∞)

∼=
→ ΩPin−

n−1 ,3

described concretely by taking a spin manifold M with a map M → RP
∞ to the zero set of a generic

section of the pullback of the tautological line bundle to M . Then, Bahri-Gilkey [BG87a, BG87b]

constructed a completely analogous isomorphism smc
σ : Ω̃Spinc

n (RP∞)
∼=
−→ ΩPinc

n−1 .

Question 1.2 (Buchanan-McKean [BM23, Question 10.8]). Let Pinh−
n := Pin−

n ×{±1} SU2.4 Is

there a Smith isomorphism for pinh− bordism?

We affirmatively answer this question.

Theorem 3.1. For all n, there is an isomorphism

(1.3) smh
σ : Ω̃Spinh

n (RP∞)
∼=

−→ ΩPinh−

n−1

given by sending a pair (M, f) of a spinh manifold M with a generic map f : M → RP∞ to the

zero set of a generic section of the pullback of the tautological line bundle σ → RP∞ by f .

Part of this theorem is the assertion that such a zero set is generically a closed (n − 1)-manifold

with pinh− structure.

The technique we use to prove Theorem 3.1 also enables us to solve another one of Buchanan-

McKean’s questions.

Question 1.4 (Buchanan-McKean [BM23, Question 10.3]). For all k ≥ 0, rank(ΩSpinc

4k ) = rank(ΩSpinh

4k ).

Is there a geometric explanation for this fact? Is there a procedure to produce generators for the

free summand of ΩSpinh

4k from those of ΩSpinc

4k ?

To answer this question, we exhibit a map p∗ : ΩSpinc

n → ΩSpinh

n induced from an inclusion

Spinc
n →֒ Spinh

n. We show that p∗ is part of a long exact sequence of bordism groups whose third

term is ΩSpin
n−3(BSO3) (4.10), and give geometric interpretations to the three maps of the long exact

sequence in (LES-1)–(LES-3). Exactness yields a quick proof of the following theorem.

2However, not everything carries over: just as the quaternions have less structure than R or C, spinh bordism has

less structure than spin or spinc bordism. For example, ΩSpin
∗ and ΩSpinc

∗ have ring structures induced from the

direct product of manifolds, but ΩSpinh

∗ does not. Thus the twisted Atiyah-Bott-Shapiro map mentioned above is

not a ring homomorphism.
3Pin− structures are an unoriented generalization of spin structures that we discuss in Example 2.5.
4This group was first defined by Freed-Hopkins [FH21, (9.21)], who call it G−.
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Theorem 4.13. For all k ≥ 0, the map

(1.5) p∗ : ΩSpinc

4k ⊗ Z[1/2] −→ ΩSpinh

4k ⊗ Z[1/2],

where p∗ is as above, is an isomorphism.

This answers the first part of Question 1.4. Unfortunately, there is quite a bit of 2-torsion in

ΩSpin
∗ (BSO3), preventing us from lifting to Z. This also suggests that answering the second part

of Buchanan-McKean’s question, building manifold generators of free summands of spinh bordism

from manifold generators of free summands of spinc bordism, would be very difficult.

We use the same technique to prove both Theorems 3.1 and 4.13: a method of easily producing

geometrically-defined long exact sequences of bordism groups. The input is a virtual vector bundle

V and a vector bundle W of ranks rV , resp. rW , both over a space X . From this data, there is a

long exact sequence

(1.6) · · · −→ ΩSpin
n (S(W )p∗V )

p∗
−→ ΩSpin

n (XV −rV )
smW−−−→ ΩSpin

n−rW
(XV +W −rV −rW ) −→ · · ·

where p denotes the bundle map S(W ) → X for the sphere bundle of W and smW is the Smith

homomorphism, the map on bordism defined by taking a smooth representative of the Poincaré

dual of the cobordism Euler class of W . This long exact sequence is natural in the data of X ,

V , and W . The spin bordism of the Thom spectrum XV −rV may be interpreted in terms of

twisted spin bordism: the bordism of manifolds M equipped with a map f : M → X and a spin

structure on T M ⊕ f∗(V ) (see Definition 2.1 and Lemma 2.11). The exact sequence (1.6) is

attributed to James and is well-known; its relationship to the Smith homomorphism is explained

in our work [DDK+23, DDK+24] joint with Devalapurkar, Liu, Pacheco-Tallaj, and Thorngren.

We call (1.6) the Smith long exact sequence. We prove Theorems 3.1 and 4.13 by making judicious

choices for X , V , and W , then invoking exactness of the resulting instances of (1.6).

In §2, we go over the background we need to prove Theorems 3.1 and 4.13: twisted spin

structures in §2.1 and the Smith long exact sequence in §2.2, including several examples of each.

In §3, we prove Theorem 3.1, and in §4, we prove Theorem 4.13.

Acknowledgements. We especially want to thank Jonathan Buchanan and Stephen McKean

for asking the questions that inspired our project in [BM23] and for their interest in our work.

In addition, we warmly thank Yu Leon Liu, Natalia Pacheco-Tallaj, and Ryan Thorngren for

conversations helpful to this paper. Part of this project was completed while AD and CK visited

the Perimeter Institute for Theoretical Physics for the conference “Higher Categorical Tools for

Quantum Phases of Matter”; research at Perimeter is supported by the Government of Canada

through Industry Canada and by the Province of Ontario through the Ministry of Research &

Innovation. CK is supported by NSF DGE-2141064.

2. Background

Here we review the Smith long exact sequence and the concepts needed to set it up.

2.1. Twisted spin structures. Recall that a spin structure on a vector bundle W → Y is defined

to be a homotopy class of lift of the principal GLr(R)-bundle of frames of W to a principal Spinr-

bundle, where r is the rank of W . This data is equivalent to a trivialization of the Stiefel-Whitney

classes w1(W ) and w2(W ) [BH59, §26.5]; i.e. data of nullhomotopies of the maps Y → K(Z/2, 1)

and Y → K(Z/2, 2) representing w1(W ), resp. w2(W ).



4 ARUN DEBRAY AND CAMERON KRULEWSKI

Definition 2.1 ([HKT20, §4.1]). Let V → X be a virtual vector bundle. An (X, V )-twisted spin

structure on a virtual vector bundle W → Y is data of a map f : Y → X and a spin structure on

W ⊕ f∗(V ).

This notion encompasses many commonly considered variations of spin structure.5

Example 2.2. A spinc structure on a virtual vector bundle W → Y is a reduction of the structure

group of W to the group [ABS64, §3]

(2.3) Spinc
n := Spinn ×{±1} U1,

where the map to On is the composition

(2.4) Spinc
n

proj1−−−→ SOn →֒ On.

This amounts to the data of a trivialization of w1(W ) and a class c ∈ H2(Y ;Z) and an identification

of c mod 2 = w2(W ) (i.e. a trivialization of c mod 2 + w2(W )). As BU1 is a K(Z, 2), there is a

complex line bundle L → Y with c1(L) = c, and L is unique up to isomorphism.

The condition “c1(L) mod 2 = w2(W )” is equivalent to “W ⊕ L is spin”: the Whitney sum

formula shows w2(W ⊕ L) = w2(W ) ⊕ w2(L), because w1(W ) and w1(L) both vanish. Then,

w2(V ) = c1(V ) mod 2 for any complex vector bundle V .

Finally, since all complex line bundles are pullbacks of the tautological bundle VU1
→ BU1

in a unique way up to isomorphism, the data of a spinc structure on W is equivalent to a map

f : Y → BU1 and a spin structure on W ⊕f∗(VU1
). That is, spinc structures are (BU1, VU1

)-twisted

spin structures.

Example 2.5. The same argument as in Example 2.2 identifies several more kinds of twisted spin

structures. The pin+ and pin− groups are defined as central extensions

(2.6) 1 {±1} Pin±
n On 1.

Central extensions of this form are classified by H2(BOn; {±1}); Pin+
n is the extension correspond-

ing to the class w2, and Pin−
n corresponds to w2 + w2

1 .

Standard obstruction theory then implies a pin+ structure on a vector bundle W → Y is equiv-

alent to a trivialization of w2(W ), while a pin− structure on W is equivalent to a trivialization of

w2(W )+w1(W )2. A similar characteristic-class argument as in Example 2.2 shows that pin+ struc-

tures are equivalent to (BZ/2, −σ)-twisted spin structures, where σ → BZ/2 is the tautological

bundle; similarly, pin− structures are equivalent to (BZ/2, σ)-twisted spin structures.

Campbell [Cam17, §7.8] proves a related statement for 2σ: (BZ/2, 2σ)-twisted spin structures

are equivalent to G-structures for G = Spin ×{±1} Z/4.

Example 2.7. If one imitates the definition of Spinc
n from (2.3) using the pin groups, the resulting

group and its map down to On is the same whether one begins with Pin+
n or Pin−

n . Thus using

either, the group Pinc
n is defined to be [ABS64, Corollary 3.19]

(2.8) Pinc
n := Pin±

n ×{±1} U1.

The map to On is analogous to that for Spinc
n, and a pinc structure on W → Y is the data of a

class c ∈ H2(Y ;Z) with c mod 2 = w2(W ); i.e. the same as a spinc structure with no condition on

w1. This is equivalent to a (BZ/2 × BU1, σ ⊕ VU1
)-twisted spin structure.

5However, see Stolz [Sto98, §2.6] for a different notion of twisted spin structure and [DY23, §3.1] for examples
showing that Stolz’ definition is strictly more general than Definition 2.1.
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Example 2.9. A quaternionically-minded reader might expect analogues of Examples 2.2 and 2.7

with SU2 in place of U1. Indeed, there are groups

Spinh
n := Spinn ×{±1} SU2(2.10a)

Pinh±
n := Pin±

n ×{±1} SU2.(2.10b)

Unlike for Pinc
n, Pinh+

n and Pinh−
n do not define equivalent tangential structures. Freed-Hopkins [FH21,

(10.20)] show that spinh structures are equivalent to (BSO3, VSO3
)-twisted spin structures and

pinh± structures are equivalent to (BO3, ±VO3
)-twisted spin structures, where for G = SO3 or O3,

the bundle VG → BG is the tautological bundle.

We will study bordism groups of manifolds with (X, V )-twisted spin structures. To do so, we

express these twisted spin structures as untwisted tangential structures.

Lemma 2.11 (Shearing). Given V → X as above, (X, V )-twisted spin structures on a vector

bundle W → Y are in natural bijection with homotopy classes of lifts in the diagram

(2.12)

BSpin × X

Y BO.

VSpin−V +rank(V )

W

Here VSpin → BSpin is the tautological virtual vector bundle.

The rank term appears so that the entire virtual bundle has rank zero.

Corollary 2.13. The Thom spectrum whose homotopy groups correspond under the Pontrjagin-

Thom theorem to the bordism groups of manifolds with (X, V )-twisted structures on the tangent

bundle is homotopy equivalent as MT Spin-modules to MT Spin ∧ XV −rank(V ).

Here the −V becomes a +V because we want tangential bordism, not normal bordism. For the

same reason, we use the Madsen-Tillmann spectrum MT H , which is the Thom spectrum whose

homotopy groups are the bordism groups of manifolds with H-structures on their stable tangent

bundles. In homotopy theory, one more often encounters MH , which is the Thom spectrum for

manifolds with H-structures on their stable normal bundles. For H = Spin, Spinc, and Spinh,

there is a canonical homotopy equivalence MT H ≃ MH , but this is not true for all H : for

example, MT Pinh± ≃ MPinh∓.

2.2. The Smith long exact sequence. Next, we introduce our main tool: the Smith long exact

sequence. We detailed this long exact sequence in [DDK+24] as part of a general framework for

studying Smith homomorphisms. We begin by defining Smith maps: maps of Madsen-Tillman

spectra induced by the inclusion of the zero section of a vector bundle.

Let V → X be as in the previous section, and let W → X be a real vector bundle. The inclusion

of the zero section 0 →֒ W induces a map of Thom spaces X+ → Th(X ; W ), and upgrading this

map to incorporate twisting by V yields the following.

Definition 2.14. Let V → X be a virtual vector bundle and W → X be a vector bundle. The

Smith map associated to X , V , and W is the map of Thom spectra

(2.15) smW : XV → XV +W

induced by the map v 7→ (v, 0): V → V ⊕ W .
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Remark 2.16. In the case that V is a vector bundle, the formula v 7→ (v, 0) describes an actual

function of spaces which descends to a map of Thom spaces

(2.17) smW : Th(X ; V ) → Th(X ; V ⊕ W ).

Then (2.15) is Σ∞ applied to (2.17).

For more general V , one makes sense of (2.15) as follows: if X is homotopy equivalent to a

finite-dimensional CW complex, we may replace V with an actual vector bundle up to a trivial

summand, which only (de)suspends the map of Thom spectra. In general, one takes a colimit over

n-skeleta. See [DDK+24, Definition 3.13] for more details.

We will consider the maps induced by Smith maps on spin bordism. There is a similar story for

other generalized (co)homology theories; see [DDK+24, §7] for more examples.

Definition 2.18. With X , V , and W as above, let rV := rank(V ) and rW := rank(W ). The

Smith homomorphism associated to X , V , and W is the homomorphism

(2.19) smW : ΩSpin
n (XV −rV ) −→ ΩSpin

n−rW
(XV +W −rV −rW )

induced by applying ΩSpin
n to (2.15).

We describe the homomorphism (2.19) on the level of manifolds in (LES-2).

Example 2.20. Let X = BZ/2, V = 0, and W = σ, the tautological line bundle. Including the

zero section into σ defines a map of spectra

(2.21) smσ : BZ/2+ → (BZ/2)σ,

and taking spin bordism gives the Smith homomorphism

(2.22) smσ : ΩSpin
n (BZ/2) → ΩSpin

n−1((BZ/2)σ−1).

Using Example 2.5 and Lemma 2.11, we may recognize this as a map

(2.23) smσ : ΩSpin
n (BZ/2) → ΩPin−

n−1

between the bordism groups of spin manifolds equipped with a principal Z/2-bundle and pin−

manifolds. Restricted to reduced spin bordism, (2.23) is an isomorphism for all n [ABP69]; we will

later establish this as a consequence of Example 2.34.

Example 2.24. Taking X and W as above but starting with V = σ, we obtain a map of spectra

(2.25) smσ : (BZ/2)σ → (BZ/2)2σ,

which on spin bordism gives a Smith homomorphism

(2.26) smσ : ΩSpin
n ((BZ/2)σ−1) → ΩSpin

n−1((BZ/2)2σ−2).

Example 2.5 and Lemma 2.11 allow us to rewrite this as a map

(2.27) smσ : ΩPin−

n → Ω
Spin×{±1}Z/4
n−1 .
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This map is generally not an isomorphism. For example, when n = 2, ΩPin−

2
∼= Z/8 [ABP69,

Theorem 5.1]6 and Ω
Spin×{±1}Z/4
1

∼= Z/4 [Cam17, Theorem 7.9]. Unlike in Example 2.20, we

cannot solve this problem by discarding a basepoint.

Example 2.28. Next, we again take X = BZ/2, V = 0, and W = σ, but instead take spinc

bordism. In other words, we smash with MT Spinc instead of MT Spin and then take homotopy

groups. We get

(2.29) smc
σ : ΩSpinc

n (BZ/2) → ΩSpinc

n−1 ((BZ/2)σ−1).

Using Examples 2.2 and 2.7 and Lemma 2.11, we can rewrite the codomain:

(2.30) ΩSpinc

n−1 ((BZ/2)σ−1) ∼=
(2.2)

ΩSpin
n−1((BZ/2)σ−1 ∧ (BU1)VU1

−2) ∼=
(2.7)

ΩPinc

n−1 ,

allowing us to rephrase (2.29) as a map

(2.31) smc
σ : ΩSpinc

n (BZ/2) → ΩPinc

n−1 .

Like in Example 2.20, when restricted to reduced spinc bordism of BZ/2, (2.31) is an isomorphism

for all n. This is a theorem of Bahri-Gilkey [BG87b]; we will prove it in Example 2.34.

We could equivalently describe this example using X = BZ/2 × BU1, V = 0, and W = σ ⊕ VU1

and taking spin bordism, applying Example 2.7.

Proving the quaternionic analog of Examples 2.20 and 2.28 is our objective in the next section.

Before then, we shall extend Smith homomorphisms to a long exact sequence, toward our second

application. To do so, we identify the fiber of Equation (2.15). We write S(W ) for the sphere

bundle of a vector bundle W → X .

The following theorem is attributed to James (see, e.g., [KZ18, Remark 3.14]). See for exam-

ple [DDK+24, Theorem 5.1] for a proof.7

Theorem 2.32. Let V be a virtual bundle and let W be real vector bundle over X. Write

p : S(W ) → X for the projection map. Then there is a fiber sequence in spectra:

(2.33) S(W )p∗V → XV → XV ⊕W .

Example 2.34. Return to the setup with X = BZ/2, V = 0, and W = σ from Example 2.20.

Since the sphere bundle of σ → BZ/2 gives the universal fibration EZ/2 → BZ/2, we see that

S(σ) is contractible. Since V = 0, we simply we get a fiber sequence

(2.35) S → BZ/2+
smσ−−→ (BZ/2)σ.

Lemma 2.36. The sequence (2.35) splits. Explicitly, the crush map c : (BZ/2)+ → S is a section

and the restriction of smσ to the fiber of c is a homotopy equivalence s̃mσ : Σ∞BZ/2 ≃ (BZ/2)σ.

This is a standard fact: see, e.g. [Koc96, Lemma 2.6.5]. In a sense, its proof is trivial: the crush

map always splits S off of X+ for any space X , and the rest follows from that and general properties

of fiber sequences of spectra. The heart of the lemma is that the inclusion of a basepoint in BZ/2

6Within the statement of [ABP69, Theorem 5.1], the piece relevant for ΩPin−

2 is “The contribution to ΩPin
∗ of terms

π∗(RP∞ ∧ BO〈8n〉) is as follows. . . Z2
4k+3 in dim 8n + 8k + 2, k ≥ 0.” For us n = k = 0. There is a typo: Z2

4k+3

should be Z24k+3 . See Giambalvo [Gia73, Theorem 3.4(b)] and Kirby-Taylor [KT90, Lemma 3.6] for additional

calculations of ΩPin−

2 .
7This theorem can also be deduced from a theorem of Conner-Floyd [CF66, §16]; see [DDK+24, §5.1] for more
information.
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suspends to participate in a Smith fiber sequence, which is more nontrivial.8 After smashing with

MT Spin, MT Spinc, or MT Spinh and invoking the Pontrjagin-Thom theorem, (2.35) produces the

Smith isomorphisms of Examples 2.20 and 2.28 and Theorem 3.1.9

There are many examples of Smith maps with more interesting fibers, including the Smith map

(4.5) that we discuss in Section 4.

Corollary 2.37. Taking the spin bordism of (2.33) yields a homology long exact sequence:

(2.38)

· · · −→ ΩSpin
n (S(W )p∗V )

p∗
−−→ ΩSpin

n (XV )
smW−−−→ ΩSpin

n−rW
(XV +W −rW )

∂
−−→ ΩSpin

n−1(S(W )p∗V ) −→ · · ·

The central map is the Smith homomorphism, and the other two are the pullback and the con-

necting homomorphism. This long exact sequence is remarkably useful for bordism computations,

specifically for resolving extension problems that arise in spectral sequence calculations. Moreover,

we understand this sequence on the level of manifolds:

(LES-1) Let [M, h] be the bordism class of an n-manifold M equipped with a map h : M → S(W )

such that T M ⊕ h∗p∗V is spin, so that [M, h] ∈ ΩSpin
n (S(W )p∗V ). Its image under p∗ is

the class [M, M
h
−→ S(W )

p
−→ X ] of the same underlying manifold equipped with a map to

X given by composing with the projection.

(LES-2) Let [M, f ] ∈ ΩSpin
n (XV ), so that M is an n-manifold such that T M ⊕f∗V is spin. Consider

the pullback of W to M . The intersection of the zero section of W with a generic section is,

by transversality, a submanifold N of codimension rW . The image of M under the Smith

homomorphism is the class [N, N →֒ M
f
−→ X ]. In this setting, the normal bundle ν → N

of the embedding i : N →֒ M is isomorphic to W |N , so T N ⊕ (i ◦ f)∗W ⊕ (i ◦ f)∗V ∼=

i∗(T M ⊕ f∗V ) is spin, and therefore N has a (X, V ⊕ W )-twisted spin structure.

(LES-3) Let [N, g] be a class in ΩSpin
n (XV +W −rW ), so g : N → X is such that T N+g∗(V +W ) is spin.

The image of [N, g] under the connecting homomorphism is the class [S(W )|N , S(W )|N →֒

S(W )] ∈ ΩSpin
n−1(S(W )) given by restricting the sphere bundle of W to N .

For a justification of these descriptions, see [DDK+24, Appendix A].

3. A Pinh− Smith Isomorphism

In this section we answer [BM23, Question 10.8] (Question 1.2 in this article): is there a Smith

isomorphism for pinh− bordism, generalizing Examples 2.20 and 2.28?

Theorem 3.1. For all n, there is an isomorphism smh
σ : Ω̃Spinh

n+1 (RP∞)
∼=
−→ ΩPinh−

n given by sending

a pair (M, f) of a spinh manifold M with a map f : M → RP
∞ (which may without loss of

generality be assumed to be transverse to RP
∞−1 ⊂ RP

∞) to the pinh− manifold f−1(RP∞−1).

The idea of our proof is this: using Example 2.9 and Lemma 2.11, pinh− bordism is isomorphic to

the spin bordism of the Thom spectrum (BO3)3−VO3 , and spinh bordism is isomorphic to the spin

bordism of (BSO3)3−VSO3 , where again VG → BG denotes a tautological bundle. The isomorphism

O3
∼= SO3 ×Z/2 allows one to factor (BO3)3−VO3 as a smash product of (BSO3)3−VSO3 and a piece

that corresponds to RP∞, leading to the isomorphism in the theorem statement.

8Another way to approach Lemma 2.36 is to directly observe that the Thom space of σ → RPn is homeomorphic to
RPn+1 and that the zero section inside the Thom space can be homotoped into the standard inclusion RPn →֒ RPn+1

coming from the equatorial Sn →֒ Sn+1. Then check compatibility as n → ∞ and conclude.
9The Smith homomorphism interpretation of this equivalence is well-known, but we are not sure who was the first
to discuss it in general: see [DDK+24, §7.1] and the references therein.
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Now we give the details, beginning with some lemmas. Recall that H∗(BO3;Z/2) ∼= Z/2[w1, w2, w3]

with |wi| = i [Bor53a], H∗(BZ/2;Z/2) ∼= Z/2[a] with |a| = 1, and H∗(BSO3;Z/2) ∼= Z/2[w2, w3]

with |wi| = i [Bor53a, Proposition 8.1]. (The classes wi are the usual Stiefel-Whitney classes, but

we write w so that the classes on BO3 and BSO3 have different names.)

Lemma 3.2. Write ϕ : SO3×Z/2
∼=
→ O3 for the isomorphism. Then the map ϕ∗ : H∗(BO3;Z/2) →

H∗(BZ/2 × BSO3;Z/2) on cohomology is such that ϕ∗(w1) = a and ϕ∗(w2) = a2 + w2.

Proof. Since ϕ is an isomorphism, so is ϕ∗. Therefore, since w1 6= 0, ϕ∗(w1) must also be nonzero.

Since H1(BZ/2;Z/2) ∼= Z/2 · a and H1(BSO3;Z/2) ∼= 0, the Künneth formula tells us that the

only nonzero class, which must be ϕ∗(w1), is a.

To match w2, we have three nonzero classes: w2, a2, and w2 + a2. To tell them apart, first

consider the map i1 : BSO3 → BO3 induced by the inclusion SO3 →֒ O3; this factors through ϕ

and i∗
1(w2) = w2 by definition, so ϕ∗(w2) must be either w2 or w2 + a2. Likewise, take the map

i2 : BZ/2 → BO3 induced by ϕ; since this map is defined by sending 1 ∈ Z/2 to an inversion in

O3, Z/2 acts on the pullback representation i∗
2VO3

as {±1}, i.e. as the representation 3σ. Thus

i∗
2(w2) = w2(3σ), which by the Whitney sum formula is w1(σ)2, i.e. a2. Thus ϕ∗(w2) must have

an a2 term, and we already saw it must have an w2 term, so ϕ∗(w2) = w2 + a2. �

If V1 → X1 and V2 → X2 are virtual vector bundles, then there is a homotopy equivalence

(X1 × X2)V1⊞V2 ≃ (X1)V1 ∧ (X2)V2 . Since BO3 splits as a direct product, one might hope that

3 − VO3
→ BO3 is an external direct sum, leading to a splitting of (BO3)3−VO3 . This is not true,

but we will be able to replace 3 − VO3
with a different vector bundle that is an external direct sum

using the following lemma.

Lemma 3.3 (Relative Thom isomorphism, c.f. [Deb21, Theorem 1.39] or [DY23]). Let V1, V2 → X

be rank-zero vector bundles. A spin structure on V2 determines a homotopy equivalence of MT Spin-

module spectra MT Spin ∧ XV1
≃
−→ MT Spin ∧ XV1+V2 .

We will replace ±(VO3
− 3) with ±((3σ − 3) ⊞ (VSO3

− 3)), so we must check the hypothesis of

Lemma 3.3.

Lemma 3.4. The virtual vector bundles ϕ∗(±(VO3
− 3)) − ±((3σ − 3) ⊞ (VSO3

− 3)) are spin.

Proof. Directly compute with the Whitney sum formulas that w1(V1 ⊕ V2) = w1(V1) + w1(V2) and

w2(V1 ⊕ V2) = w2(V1) + w1(V1)w1(V2) + w2(V2). For any vector bundle E, setting V1 = E and

V2 = −E (so that V1 ⊕ V2 = 0) gives that w1(−E) = w1(E) and w2(−E) = w2(E) + w1(E)2.

Stability of the Stiefel-Whitney classes implies we may add or subtract trivial bundles without

affecting their characteristic classes.

Thus, for E+ := ϕ∗(VO3
− 3) − ((3σ − 3) ⊞ VSO3

− 3), we have using Lemma 3.2 that

(3.5)

w1(E+) = w1(ϕ∗(VO3
− 3)) + w1(−((3σ − 3) ⊞ (VSO3

− 3)))

= ϕ∗(w1(VO3
)) + w1(−3σ) + w1(−VSO3

)

= ϕ∗(w1) + w1(3σ) + w1(VSO3
)

= a + a + 0 = 0,
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and

(3.6)
w2(E+) = w2(ϕ∗(VO3

− 3)) + w1(ϕ∗(VO3
− 3))w1(−(3(σ − 3) ⊞ (VSO3

− 3))) + w2(−((3(σ − 3) ⊞ (VSO3
− 3)))

= ϕ∗(w2(VO3
)) + ϕ∗(w1(VO3

))(w1(−3σ) + w1(−VSO3
)) + w2(−3σ) + w1(−3σ)w1(−VSO3

) + w2(−VSO3
)

= w2 + a2 + a2 + w2(3σ) + w1(3σ)2 + w1(3σ)w1(W ) + w2(VSO3
) + w1(VSO3

)2

= w2 + a2 + a2 + a2 + a2 + 0 + w2 + 0 = 0.

Since the first and second Stiefel-Whitney classes of E+ vanish, E+ is spin. This also implies w1

and w2 of −E+ vanish, so we have proven the claim for both bundles in the lemma statement. �

Corollary 3.7. There are equivalences of spectra (in fact, of MT Spin-module spectra)

(3.8) MT Spin ∧ (BSO3)VSO3
−3 ∧ (BZ/2)±(3σ−3) ≃ MT Spin ∧ (BO3)±(VO3

−3).

Proof. We prove the + case; the − case is analogous. Lemma 3.3 tells us that, since ϕ∗(VO3
− 3) −

((3σ − 3) ⊞ (VSO3
− 3)) is spin and rank-zero, there are equivalences of MT Spin-module spectra

(3.9)
MT Spin ∧ (BO3)VO3

−3 ≃ MT Spin ∧ (BZ/2 × BSO3)ϕ∗VO3
−3

≃ MT Spin ∧ (BZ/2 × BSO3)(3σ−3)⊞(VSO3
−3).

As we noted above, the Thom spectrum functor sends external direct sums to smash products, so

the Thom spectrum in (3.9) factors as MT Spin ∧ (BZ/2)3σ−3 ∧ (BSO3)VSO3
−3, as we wanted to

prove. �

Now we are ready to prove the main theorem of this section.

Proof of Theorem 3.1. Example 2.9 and Lemma 2.11 combine to produce homotopy equivalences

MT Spinh ≃ MT Spin ∧ (BSO3)VSO3
−3(3.10a)

MT Pinh± ≃ MT Spin ∧ (BO3)±(VO3
−3),(3.10b)

which are originally due to Freed-Hopkins [FH21, (10.2)]. Combining (3.10) with Corollary 3.7, we

have produced equivalences

(3.11) MT Pinh± ≃ MT Spinh ∧ (BZ/2)±(3σ−3).

One can check using the Whitney sum formula that the bundle 4σ → BZ/2 has a spin structure.

Thus we may once again invoke Lemma 3.3 to obtain an equivalence MT Spin ∧ (BZ/2)−(3σ−3) ≃

MT Spin ∧ (BZ/2)σ−1: the difference between the two vector bundles is 4σ − 4, which is spin, so

adding 4σ − 4 to −(3σ − 3) does not change the homotopy type.

The only remaining task is to get from (BZ/2)σ−1 to RP
∞ and interpret the resulting equivalence

as a Smith isomorphism. This is done in Example 2.34. �

Remark 3.12. Buchanan-McKean’s original question asked about a Smith isomorphism between

pinh− bordism and the spinh bordism of HP∞. These bordism groups are not isomorphic: to see

this, run the Atiyah-Hirzebruch spectral sequence

(3.13) E2
p,q = H̃p(HP

∞; ΩSpinh

q (pt) ⊗ Q) =⇒ Ω̃Spinh

p+q (HP
∞) ⊗ Q.

All Atiyah-Hirzebruch spectral sequences with Q coefficients collapse, so E2
4,0

∼= H̃4(HP
∞;Q) ∼=

Q [BH58, §15.5] implies Ω̃Spinh

4 (HP
∞) ⊗ Q 6= 0, but ΩPinh−

3 is zero [FH21, Theorem 9.97].
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The pin− and pinc Smith isomorphisms of Examples 2.20 and 2.28 both use BZ/2 ≃ RP
∞,

ultimately because Pin−
n , resp. Pinc

n are extensions of Z/2 by Spinn, resp. Spinc
n. That Pinh−

n is

also an extension of Z/2, this time by Spinh
n, suggested to us that the Smith isomorphism should

also use BZ/2. Smith isomorphisms involving BSU2 ≃ HP∞ do exist [DDK+24, Example 7.42],

in a setting where one group is an extension of SU2 by another.

4. Rational Generators for Spinh Bordism from Spinc Bordism

Next, we address the Question 10.3 asked by Buchanan and McKean in [BM23] comparing spinc

and spinh bordism in dimensions 0 mod 4.

Theorem 4.1 (Buchanan-McKean [BM23, Corollary 8.6]). For all k ≥ 0, rank(ΩSpinc

4k ) = rank(ΩSpinh

4k ).

Question 4.2 ([BM23, Question 10.3]). Is there a geometric explanation for the equality of ranks

in Theorem 4.1 between degree-4k spinc and spinh bordism? Specifically, is there a procedure for

producing generators for the free part of ΩSpinh

4k from that of ΩSpinc

4k ?

We use the Smith long exact sequence to mostly answer this question: it provides a geometric

explanation for the equality of ranks and allows one to produce rational generators for spinh

bordism from generators of spinc bordism. In the course of the proof, we will lift from Q to Z[1/2],

but we will also see why it is hard to lift to a result over Z.

Construction 4.3. The inclusion {±1} →֒ SU2 used in the definition of Spinh
n (Example 2.9)

factors as the composition of the usual inclusion {±1} →֒ U1 and the standard inclusion U1 →֒ SU2.

Taking the product with Spinn and quotienting by the diagonal central {±1} subgroup, we obtain

an inclusion ι : Spinc
n →֒ Spinh

n commuting with the structure maps to On.

Given a vector bundle V → X with spinc structure s, the spinh structure ι(s) is called the

induced spinh structure of s.

Theorem 4.4.

(1) Taking the induced spinh structure of a spinc structure defines a map of bordism groups

ΩSpinc

n → ΩSpinh

n that participates in a Smith long exact sequence.

(2) The induced map ΩSpinc

4k ⊗ Z[1/2] → ΩSpinh

4k ⊗ Z[1/2] is an isomorphism.

In particular, part (2) follows from (1) and a few computations in the literature. In light of the

explicit interpretations of the maps in a Smith long exact sequence in (LES-1)–(LES-3), we believe

Theorem 4.4 provides a geometric answer to the first part of Question 4.2.

Consider the Smith map of spectra (2.15) for X = BSO3 and V = W = VSO3
, where VSO3

is

the tautological rank-three oriented bundle:

(4.5) smVSO3
: (BSO3)VSO3 → (BSO3)2VSO3

By Theorem 2.32, the fiber is given by the Thom spectrum over the sphere bundle: S(VSO3
)p∗VSO3 .

Lemma 4.6. For all n ≥ 1, there is a homotopy equivalence ϕ : S(V |SOn
)

≃
−→ BSOn−1, and ϕ

identifies the bundle map p : S(V |SOn
) → BSOn with the map BSOn−1 → BSOn induced by the

standard inclusion SOn−1 →֒ SOn, up to homotopy.

This is well-known; see [DDK+24, Example 7.57] for a proof. Because of Lemma 4.6, we will

also write p for the map BU1 → BSO3 induced by the standard inclusion U1
∼= SO2 →֒ SO3.

Then, the pullback p∗VSO3
to BSO2 is the rank-two tautological bundle over BSO2 plus a trivial
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real line bundle, and under the equivalence SO2
∼= U1, the tautological rank-two oriented bundle

VSO2
→ BSO2 is identified with the tautological complex line bundle VU1

→ BU1.10 Overall, we

have argued an equivalence

(4.7) S(VSO3
)p∗VSO3 ≃ (BU1)VU1

⊕R ≃ Σ(BU1)VU1 .

To study spin bordism, we smash the fiber sequence for smVSO3
with MT Spin:

(4.8) MT Spin ∧ Σ(BU1)VU1 → MT Spin ∧ (BSO3)VSO3

smVSO3−−−−−→ MT Spin ∧ (BSO3)2VSO3 .

Under shearing, this sequence becomes more familiar. Using Example 2.2 and Corollary 2.13, we

may recast the first spectrum as Σ3MT Spinc. By Example 2.9, the second spectrum becomes

Σ3MT Spinh. Finally, the third spectrum represents (BSO3, 2VSO3
)-twisted spin bordism, but this

twist is actually this is no twist at all: since 2VSO3
is spin, this spectrum reduces to Σ6MT Spin ∧

(BSO3)+ by Lemma 3.3.

Altogether, after desuspending thrice, we have a fiber sequence of spectra11

(4.9) MT Spinc p
−→ MT Spinh

smVSO3−−−−−→ Σ3MT Spin ∧ (BSO3)+.

The associated Smith long exact sequence is

(4.10) · · · −→ ΩSpinc

n
p∗

−→ ΩSpinh

n

smVSO3−−−−−→ ΩSpin
n−3(BSO3)

∂
−→ ΩSpinc

n−1 −→ · · ·

Lemma 4.6 and (LES-1) imply that p∗ is the map taking the induced spinh structure of a spinc

manifold, proving the first part of Theorem 4.4.

We are interested in (4.10) in degrees i = 4k after inverting 2.

Lemma 4.11.

(1) ΩSpinc

∗ ⊗ Z[1/2] is concentrated in even degrees.

(2) ΩSpinh

∗ ⊗ Z[1/2] is concentrated in degrees 0 mod 4.

(3) ΩSpin
∗ (BSO3) ⊗ Z[1/2] is concentrated in degrees 0 mod 4.

Proof. (1) is in Stong [Sto68, Chapter XI, p. 349]. For (2), use the equivalence ΩSpinh

∗ ⊗ Z[1/2] ∼=

ΩSpin
∗ ⊗H∗(BSU2;Z[1/2]) [Hu23, Remark A.2] together with the fact that both ΩSpin

∗ ⊗Z[1/2] and

H∗(BSU2;Z) are concentrated in degrees 0 mod 4 ([ABP67], resp. [Bor53b, §29]); use the universal

coefficient theorem to get to H∗(BSU2;Z[1/2]) and thus to ΩSpin
∗ ⊗ Z[1/2].

For (3), use the Atiyah-Hirzebruch spectral sequence of signature

(4.12) E2
p,q = Hp(BSO3; ΩSpin

q ⊗ Z[1/2]) =⇒ ΩSpin
p+q (BSO3) ⊗ Z[1/2]

to compute. As noted above, spin bordism tensored with Z[1/2] is concentrated in degrees 0 mod 4,

and H∗(BSO3;Z[1/2]) ∼= Z[1/2, p1] is concentrated in degrees divisible by 4 as well [Bor53b, §29],

so the spectral sequence collapses on E2 and the result is also concentrated in degrees 0 mod 4. �

Theorem 4.13. For all k ≥ 0, the map

(4.14) p∗ : ΩSpinc

4k −→ ΩSpinh

4k

10One way to see this is that these two vector bundles are induced from the defining representations SO2 → GL2(R),
resp. U1 → GL1(C), and that the standard isomorphism C ∼= R2 induces an isomorphism of these two representations,
hence also of their associated bundles.
11This fiber sequence and its corresponding Smith homomorphism also appears in [DDK+24, Example 7.45 and
Appendix B]; it has the interesting property that the Smith homomorphism cannot be defined using ordinary
cohomology: one must take the Poincaré dual submanifold in ko-cohomology or in spin cobordism.
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defined by taking the induced spinh structure is an isomorphism after tensoring with Z[1/2].

Proof. We discussed the interpretation of p∗ as taking the induced spinh structure right after (4.10),

so all that remains is the isomorphism away from 2. Tensor the long exact sequence (4.10)

with Z[1/2]; since Z[1/2] is a flat Z-module, the resulting sequence is still exact. Then plug

in Lemma 4.11 and conclude. �

This finishes the proof of Theorem 4.4.
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