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Abstract
Kreck’s modified surgery theory reduces the classifica-
tion of closed, connected 4-manifolds, up to connect sum
with some number of copies of 𝑆2 × 𝑆2, to a series of bor-
dism questions. We implement this in the case of unori-
entable 4-manifolds𝑀 and show that for some choices of
fundamental groups, the computations simplify consid-
erably. We use this to solve some cases in which 𝜋1(𝑀)

is finite of order 2 mod 4: under an assumption on coho-
mology, there are nine stable diffeomorphism classes
for which 𝑀 is pin+, one stable diffeomorphism class
for which 𝑀 is pin−, and four stable diffeomorphism
classes for which 𝑀 is neither. We also determine the
corresponding stable homeomorphism classes.
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1 INTRODUCTION

The classification of closed 4-manifolds up to diffeomorphism is impossible in general: a solu-
tion would also solve the word problem for groups. Even if one fixes the fundamental group to
avoid this problem, the classification is still currently intractable. For this reason, topologists study
weaker classifications of 4-manifolds which are coarse enough to be calculable yet fine enough to
be useful.
Stable diffeomorphism is an example of such an invariant. Two closed 4-manifolds 𝑀 and

𝑁 are stably diffeomorphic if there are 𝑚, 𝑛 ⩾ 0 such that 𝑀#𝑚(𝑆2 × 𝑆2) is diffeomorphic to
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2220 DEBRAY

𝑁#𝑛(𝑆2 × 𝑆2). This notion of equivalence has applications to quantum topology: for example,
Reutter [26, Theorem A] shows that the partition functions of 4d semisimple-oriented TFTs are
insensitive to stable diffeomorphism along the way to showing that such TFTs cannot distinguish
homotopy-equivalent closed, oriented 4-manifolds. And stable diffeomorphism classes are com-
putable: once the fundamental group𝐺 is fixed, Kreck [21] shows how to reduce the classification
of 4-manifolds up to stable diffeomorphism to a collection of bordism computations, and formany
choices of 𝐺, the classification of closed, connected, oriented 4-manifolds with 𝜋1(𝑀) ≅ 𝐺 up to
stable diffeomorphism has been completely worked out, thanks to work of Wall [33], Teichner
[30], Spaggiari [28], Crowley-Sixt [6], Politarczyk [25], Kasprowski–Land–Powell–Teichner [16],
Pedrotti [23], Hambleton–Hildum [13], and Kasprowski–Powell–Teichner [17].
Researchers interested in topological manifolds also study stable homeomorphism of topolog-

ical manifolds, that is, homeomorphism after connect-summing with some number of copies
of 𝑆2 × 𝑆2. Kreck’s theorem applies to this case too, reframing the question in terms of bor-
dism of topologicalmanifolds. Stable homeomorphism classifications are studied by Teichner [30,
§5],Wang [35], Hambleton–Kreck–Teichner [14], Kasprowski–Land–Powell–Teichner [16, §§4–5],
Hambleton–Hildum [13], and Kasprowski–Powell–Teichner [17, §2.3],
Much less work has been done on unorientable 4-manifolds, even though the theory still works

and is simpler in some cases, as we explain below. There is some work in the literature, such as
that of Kreck [20], Wang [35], Kurazono [22], Davis [7], and Friedl–Nagel–Orson–Powell [10, §12].
The goal of this paper is to compute sets of stable diffeomorphism and stable homeomor-

phism classes for a class of unorientable 4-manifolds, as well as determining the corresponding
complete stable diffeomorphism and homeomorphism invariants. As a consequence of our Theo-
rem 2.1, for many finite groups 𝐺, the classification of stable diffeomorphism or homeomorphism
classes of unorientable 4-manifolds with 𝜋1(𝑀) ≅ 𝐺 reduces to the stable classifications for a
smaller 2-group. For example, we show that the stable diffeomorphism, respectively, homeo-
morphism classification when 𝜋1(𝑀) ≅ ℤ∕2 determines the stable diffeomorphism, respectively,
homeomorphism classification for some groups 𝐺 of order 2 mod 4. We then compute these
classifications using Kreck’s techniques.
Suppose that 𝐺 is the fundamental group of an unorientable manifold. Then there is an

extension

(1.1)

where 𝐺 ↠ ℤ∕2 is defined by classifying loops as orientation-preserving or orientation-reversing.
Therefore ℤ∕2 acts on 𝐾.

Theorem (Main theorem). Let𝐺 be a finite group of order 2 mod 4,† and suppose that in (1.1),ℤ∕2
acts trivially on𝐻∗(𝐵𝐾).

(1) There are fourteen equivalence classes of closed, connected, unorientable 4-manifolds 𝑀 up to
stable diffeomorphism: nine for which𝑀 is pin+, one for which𝑀 is pin−, and four for which𝑀
is neither.

(2) There are twenty equivalence classes of closed, connected, unorientable topological 4-manifolds
𝑀 up to stable homeomorphism: ten for which𝑀 is pin+, two for which𝑀 is pin−, and eight for
which𝑀 is neither.

†Equivalently, the Sylow 2-subgroup of 𝐺 is isomorphic to ℤ∕2.
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STABLE DIFFEOMORPHISM CLASSIFICATION OF SOME UNORIENTABLE 4-MANIFOLDS 2221

This is a combination of Theorems 3.1, 3.5, 4.2, and 4.5. In those theorems we also determine
complete stable diffeomorphism/homeomorphism invariants for these manifolds. The classifica-
tion for𝑀 neither pin+or pin−can be extracted fromwork of Davis [7, Theorem 2.3], but the other
parts are new.
We prove these theorems by establishing isomorphisms of bordism groups. Specifically, Kreck’s

modified surgery theory associates to 𝐺 a set of symmetry types 𝜉 ∶ 𝐵 → 𝐵O and expresses the
set of stable diffeomorphism classes in terms of the bordism groups Ω𝜉

4
; we show that when

|𝐺| ≡ 2 mod 4 and the assumption about𝐻∗(𝐾) holds, the Thom spectra of these symmetry types
are homotopy equivalent to the Thom spectra for unoriented, pin+, and pin−bordism. In the
smooth case, the bordism groups ΩO

4
, ΩPin+

4
, and ΩPin−

4
are well known. The topological versions

of these bordism groups are less well known, but Kirby–Taylor [19, §9] compute ΩTopPin±

4
and

provide enough information for us to compute ΩTop
4

, which we do in Proposition 4.7.
The argumentweuse to establish the isomorphism from 𝜉-bordism to a simpler kind of bordism

applies to more general choices of 𝜋1(𝑀).

Theorem 2.1. Suppose that 𝐺 is a finite group fitting into an extension

(1.2)

where |𝐾| is odd and 𝑃 is a 2-group, and suppose that 𝑃 acts trivially on 𝐻∗(𝐵𝐾). For any unori-
entable virtual vector bundle 𝑉 → 𝐵𝑃, 𝜑 induces an equivalence of Thom spectra (𝐵𝐺)𝜑

∗𝑉
≃
→

(𝐵𝑃)𝑉 .

The Pontrjagin–Thom construction turns this equivalence into isomorphisms of bordism
groups from the unorientable symmetry types Kreck associates to 𝐺 to the unorientable symme-
try types for 𝑃, which we can use to compute stable diffeomorphism classes. The proof strongly
requires the assumption that 𝑉 is unorientable; nothing like this is true in the oriented case.
Our main theorem above covers the case |𝐺| ≡ 2 mod 4. The next step would be to consider

𝑃 ≅ ℤ∕2 × ℤ∕2 orℤ∕4, whichwould suffice formany groups𝐺 of order 4 mod 8. For these choices
of 𝑃, many of the needed bordism groups have already been computed in the literature for other
applications. For 𝑃 ≅ ℤ∕4, see Botvinnik–Gilkey [3, §5]; for 𝑃 ≅ ℤ∕2 × ℤ∕2, see work of Guo–
Ohmori–Putrov–Wan–Wang [12, §7], the author in [15, Appendix F] and [8, §4.4], andWan–Wang–
Zheng [34, Appendix A].
We begin in §1 with a quick review of Kreck’s theorem [21] on stable diffeomorphism classes

of 4-manifolds within a given 1-type. In §2, we study the Thom spectra of unorientable vector
bundles over 𝐵𝐺, where 𝐺 is a finite group, proving Theorem 2.1. In §3, we specialize to the case
where |𝐺| ≡ 2 mod 4, determining the three possible normal 1-types and computing the sets of
stable diffeomorphism classes for them. We prove Theorems 3.1 and 3.5, which together form the
smooth part of the main theorem above. In Example 3.4, we discuss an example: ℝℙ4 is home-
omorphic but not stably diffeomorphic to Cappell–Shaneson’s fake ℝℙ4. This fact was known to
Cappell–Shaneson [4, 5] and the proof using Kreck’s surgery theory is due to Stolz [29]. In §4, we
consider stable homeomorphism classes of topological manifolds with |𝜋1(𝑀)| ≡ 2 mod 4, and
prove Theorems 4.2 and 4.5, which form the topological part of the main theorem above.
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2222 DEBRAY

2 REVIEW: NORMAL 𝟏-TYPES, NORMAL 𝟏-SMOOTHINGS, AND
STABLE DIFFEOMORPHISM CLASSES

We review some standard definitions in this area. We will always assume that our manifolds are
closed and connected. Except in §4, we also assume that they are smooth.

Definition 2.1. A normal 1-type of a manifold𝑀 is a fibration 𝜉 ∶ 𝐵 → 𝐵O such that there is a lift
of the map 𝜈∶ 𝑀 → 𝐵𝑂 classifying the stable normal bundle of𝑀 to a map 𝜈∶ 𝑀 → 𝐵 such that
𝜉◦𝜈 = 𝜈, 𝜈 is 2-connected, and 𝜉 is 2-coconnected.
A choice of such a lift is called a normal 1-smoothing of𝑀.

Any two normal 1-types of a given manifold are homotopy equivalent as spaces over 𝐵O, so we
will abuse notation and say “the” normal 1-type.
The map 𝜉 ∶ 𝐵 → 𝐵O determines a bordism theory of manifolds with a lift of the stable nor-

mal bundle across 𝜉, which we denote Ω𝜉
∗; a normal 1-smoothing of𝑀 determines a class in this

bordism group. Different normal smoothings of the samemanifold do not always define the same
class in Ω𝜉

∗.
Let 𝑉SO → 𝐵SO, 𝑉Spin → 𝐵Spin, and so on, denote the tautological stable vector bundles over

their respective spaces. We use the convention that maps to 𝐵O are represented by rank-zero
virtual vector bundles, which is why we write 𝐸 − dim𝐸 in (2.3), for example.

Example 2.2 Kreck [21, §2, Proposition 2]. When 𝑀 is unorientable, Kreck classifies the possi-
ble normal 1-types of𝑀 into two families: almost spin and totally non-spin. Let𝑀′ → 𝑀 be the
universal cover of𝑀, which is classified by a map 𝜃∶ 𝑀 → 𝐵𝜋1(𝑀).

Almost spin: If 𝑀′ admits a spin structure, 𝑀 is called almost spin. In this case, 𝑤1(𝑀) =

𝜃∗𝑥1 and 𝑤2(𝑀) = 𝜃∗𝑥2 for some 𝑥1, 𝑥2 ∈ 𝐻∗(𝐵𝐺;ℤ∕2). Assume that there is a vector
bundle 𝐸 → 𝐵𝐺 such that 𝑤𝑖(𝐸) = 𝑥𝑖 for 𝑖 = 1, 2.† Then, the normal 1-type of𝑀 is

(2.3)

Totally non-spin: If𝑀′ does not admit a spin structure,𝑀 is called totally non-spin. In this
case,𝑤1(𝑀) = 𝜃∗𝑥 for some 𝑥 ∈ 𝐻1(𝐵𝐺;ℤ∕2). Let 𝐸 → 𝐵𝐺 be a line bundle with𝑤1(𝐸) =

𝑥. Then the normal 1-type of𝑀 is

(2.4)

† The assumption that 𝑥1 and 𝑥2 are Stiefel–Whitney classes of some vector bundle on 𝐵𝐺 is not true for arbitrary 𝐺, but is
true for the groups we consider in this paper. The classification of normal 1-types into almost spin versus totally non-spin
holds for all 𝐺, however.
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STABLE DIFFEOMORPHISM CLASSIFICATION OF SOME UNORIENTABLE 4-MANIFOLDS 2223

Because 𝑆2 × 𝑆2 has trivial stable normal bundle, taking connect sum with 𝑆2 × 𝑆2 does not
change the normal 1-type of a 4-manifold; thus, the classification of 4-manifolds up to stable dif-
feomorphism can proceed one normal 1-type at a time.Moreover, because 𝑆2 × 𝑆2 is null-bordant,
one might conclude that stably diffeomorphic 4-manifolds𝑀 and𝑁 are bordant — or, more pre-
cisely, that 𝑀 and 𝑁 admit normal 1-smoothings which are bordant in Ω𝜉

4
. So a plausible lower

bound for the set of stable diffeomorphism classeswith normal 1-type 𝜉would beΩ𝜉
4
modulo some

identifications arising from inequivalent normal 1-smoothings of the same underlying manifold.
Remarkably, this turns out to be a complete classification!

Theorem 2.5 Kreck [21, Theorem C; §3, Proposition 4].

(1) If 𝑀 and 𝑁 are 4-manifolds of the same normal 1-type 𝜉 ∶ 𝐵 → 𝐵O admitting normal
1-smoothings which are bordant inΩ𝜉

4
, then𝑀 is stably diffeomorphic to𝑁.

(2) If 𝜋1(𝐵) is finite, every class in Ω
𝜉
4
can be realized as the normal 1-smoothing of a 4-manifold

with normal 1-type 𝜉.

The upshot is that ifAut(𝜉) denotes the group of fiber homotopy equivalences of 𝜉 ∶ 𝐵 → 𝐵O, the set
of stable diffeomorphism classes of 4-manifolds with normal 1-type 𝜉 isΩ𝜉

4
∕Aut(𝜉).

The set of bordism classes of normal 1-smoothings of a given 4-manifold is contained within
an Aut(𝜉)-orbit of Ω𝜉

4
, so one effect of the quotient is to identify these as all coming from the

same manifold.
This illustrates the standard way to calculate stable diffeomorphism classes: determineΩ𝜉

4
and

then determine the Aut(𝜉)-action. These bordism groups are the homotopy groups of the Thom
spectrum𝑀𝜉 of 𝜉, so in the next sectionwe begin the calculation of stable diffeomorphism classes
by simplifying𝑀𝜉.

3 SIMPLIFYING THOM SPECTRA

Theorem 2.5 tells us to investigate the Thom spectra of the normal 1-types in Example 2.2. In
both cases, the vector bundle is an exterior direct sum, so the Thom spectra split, as 𝑀𝑆𝑝𝑖𝑛 ∧

(𝐵𝜋1(𝑀))𝑉 in the almost spin case and 𝑀𝑆𝑂 ∧ (𝐵𝐺)𝑉 in the totally non-spin case, where 𝑉 is a
rank-zero unoriented virtual vector bundle. We attack the problem by simplifying (𝐵𝜋1(𝑀))𝑉 for
some choices of 𝜋1(𝑀).

Theorem 3.1. Suppose that 𝐺 is a finite group fitting into an extension

(3.2)

where |𝐾| is odd and 𝑃 is a 2-group, and suppose that 𝑃 acts trivially on 𝐻∗(𝐵𝐾). For any unori-
entable virtual vector bundle 𝑉 → 𝐵𝑃, 𝜑 induces an equivalence of Thom spectra (𝐵𝐺)𝜑

∗𝑉
≃
→

(𝐵𝑃)𝑉 .

We will prove this in a series of lemmas.

 14692120, 2022, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12688 by M

IL
L

S C
O

L
L

E
G

E
 -O

A
K

L
A

N
D

 -U
SA

, W
iley O

nline L
ibrary on [21/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2224 DEBRAY

Definition 3.3. Let𝐻 be a group, 𝐴 be an abelian group, and 𝛼 ∈ 𝐻1(𝐵𝐻;ℤ∕2). Using the iden-
tification𝐻1(𝐵𝐻;ℤ∕2) ≅ Hom(𝐻,ℤ∕2), let𝐴𝛼 be the ℤ[𝐻]-module which is the abelian group ℤ
with the𝐻-action in which g ∈ 𝐻 acts by (−1)𝛼(g).

Lemma 3.4. In the situation of Theorem 3.1, both 𝐻̃∗((𝐵𝐺)𝜑
∗𝑉) and 𝐻̃∗((𝐵𝑃)𝑉) are 2-torsion.

Proof. Using Definition 3.3, we define the ℤ[𝑃]-module 𝐴𝑤1(𝑉)
and the ℤ[𝐺]-module 𝐴𝑤1(𝜑

∗𝑃),
which is isomorphic to the pullback of 𝐴𝑤1(𝑉)

by 𝜑. The Thom isomorphism provides
isomorphisms of graded abelian groups

𝐻∗(𝐵𝑃; ℤ𝑤1(𝑉)
)

≅
⟶ 𝐻̃∗((𝐵𝑃)𝑉), (3.5a)

𝐻∗(𝐵𝐺;ℤ𝑤1(𝜑
∗𝑉))

≅
⟶ 𝐻̃∗((𝐵𝐺)𝜑

∗𝑉), (3.5b)

so we will prove the lemma using group cohomology — specifically, using the Lyndon–
Hochschild–Serre spectral sequence

𝐸
𝑝,𝑞
2

= 𝐻𝑝(𝐵𝑃; (𝐻𝑞(𝐵𝐾;ℤ))𝑤1(𝑉)
)⟹ 𝐻𝑝+𝑞(𝐵𝐺;ℤ𝑤1(𝜑

∗𝑉)). (3.6)

Here it is crucial that 𝑃 acts trivially on 𝐻∗(𝐵𝐾); otherwise, we would have a different local
coefficient system than𝐻𝑞(𝐵𝐾;ℤ)𝑤1(𝑉)

in (3.6).
Since 𝐸𝑝,𝑞

2
≅ 𝐻𝑝(𝐵𝑃;𝑀𝑞) for some ℤ[𝑃]-module 𝑀𝑞, 𝐸

𝑝,𝑞
2

is 2-torsion for 𝑝 > 1 by Maschke’s
theorem.† When 𝑝 = 0,

𝐸
0,𝑞
2

≅ 𝐻0(𝐵𝑃;𝐻𝑞(𝐵𝐾)𝑤1(𝑉)
) ≅ (𝐻𝑞(𝐵𝐾)𝑤1(𝑉)

)𝑃. (3.7)

We will show this vanishes. First,𝐻𝑞(𝐵𝐾) is ℤ for 𝑞 = 0 and is odd-primary torsion for 𝑞 > 0 (by
Maschke’s theorem, because 2 ∤ #𝐾). Therefore if 𝑎 ∈ 𝐻𝑞(𝐵𝐾) and−𝑎 = 𝑎, 𝑎 = 0. Since𝑤1(𝑉) ≠

0, there is some g ∈ 𝑃 which acts on ℤ𝑤1(𝑉)
as −1, hence also acts on 𝐻𝑞(𝐵𝐾)𝑤1(𝑉)

as −1, so the
subgroup of invariants of𝐻𝑞(𝐵𝐾)𝑤1(𝑉)

is {0}.
Considering the line 𝑞 = 0 proves 𝐻∗(𝐵𝑃; ℤ𝑤1(𝑉)

) is 2-torsion. For 𝐻∗(𝐵𝐺;ℤ𝑤1(𝜑
∗𝑉)), we have

shown the 𝐸2-page is 2-torsion, so the graded abelian group the spectral sequence converges to is
also 2-torsion. □

Lemma 3.8. With 𝐺 and 𝑃 as in Theorem 3.1, 𝜑∗ ∶ 𝐻∗(𝐵𝑃; ℤ∕2) → 𝐻∗(𝐵𝐺;ℤ∕2) is an
isomorphism of graded rings.

Proof. Since 𝐾 has odd order, its mod 2 cohomology is ℤ∕2 in degree 0 and vanishes elsewhere,
so the result follows from the Leray–Hirsch theorem applied to the fibration 𝐵𝐾 → 𝐵𝐺 → 𝐵𝑃

induced by (3.2). □

†We use Maschke’s theorem as follows: if 𝐺 is a finite group and 𝑘 is a field of characteristic 0 or characteristic 𝓁 ∤ #𝐺,
the category of 𝑘[𝐺]-modules is semisimple. Therefore all positive-degree Ext groups vanish, in particular 𝐻𝑚(𝐵𝐺;𝑀) ≅

Ext𝑚
𝑘[𝐺]

(ℤ,𝑀) for any 𝑘[𝐺]-module𝑀 and𝑚 > 1. Combined with the universal coefficient theorem, this implies that for
any ℤ[𝐺]-module𝑀 and𝑚 > 1, 𝐻𝑚(𝐺;𝑀) is torsion (𝑘 = ℚ), and lacks 𝓁-torsion if 𝓁 ∤ #𝐺.
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STABLE DIFFEOMORPHISM CLASSIFICATION OF SOME UNORIENTABLE 4-MANIFOLDS 2225

Proof of Theorem 3.1. Use the homology Whitehead theorem: if 𝑓∶ 𝑋 → 𝑌 is a map of bounded-
below spectra which induces an isomorphism on rational cohomology and onmod 𝑝 cohomology
for every prime 𝑝, then 𝑓 is a homotopy equivalence. Lemma 3.4 and the universal coefficient
theorem imply that if 𝑘 = ℚ or 𝑘 = ℤ∕𝑝 for an odd prime 𝑝, 𝐻̃∗((𝐵𝐺)𝜑

∗𝑉; 𝑘) and 𝐻̃∗((𝐵𝑃)𝑉; 𝑘)

both vanish, so the map between them is vacuously an isomorphism. The sole remaining case is
𝑝 = 2. Since 1 ≡ −1 mod 2, (ℤ∕2)𝑤1(𝑉)

carries the trivial 𝑃-action; thus, the Thom isomorphism
has the form

𝐻∗(𝐵𝑃; ℤ∕2)
≅
⟶ 𝐻̃∗((𝐵𝑃)𝑉; ℤ∕2). (3.9a)

Analogously, there is a Thom isomorphism

𝐻∗(𝐵𝐺;ℤ∕2))
≅
⟶ 𝐻̃∗((𝐵𝐺)𝜑

∗𝑉; ℤ∕2). (3.9b)

As the Thom isomorphism is functorial with respect to pullbacks of vector bundles, Lemma 3.8
lifts to imply that

𝜑∗ ∶ 𝐻̃∗((𝐵𝑃)𝑉; ℤ∕2)⟶ 𝐻̃∗((𝐵𝐺)𝜑
∗𝑉; ℤ∕2) (3.10)

is an isomorphism. □

4 THE CASE |𝝅𝟏(𝑿)| ≡ 𝟐 𝐦𝐨𝐝 𝟒

If𝑀 is an unorientablemanifold, the description of loops as orientation-preserving or orientation-
reversing defines a surjection 𝑝∶ 𝜋1(𝑀) → ℤ∕2, so 𝜋1(𝑀) cannot have odd order. Thus the
simplest case occurs when |𝜋1(𝑀)| ≡ 2 mod 4, so that | ker(𝑝)| is odd; equivalently, the Sylow
2-subgroup of 𝜋1(𝑀) is isomorphic to ℤ∕2. For the rest of this section, fix such a group 𝐺, and
assume that ℤ∕2 acts trivially on𝐻∗(𝐵 ker(𝑝)).
In this case, Theorem 3.1 applies to show that if ℤ∕2 acts trivially on 𝐻∗(𝐵 ker(𝑝)) and

𝑉 → 𝐵ℤ∕2 is any unorientable virtual vector bundle, the map (𝐵𝜋1(𝑀))𝑝
∗𝑉

≃
→ (𝐵ℤ∕2)𝑉 is

an equivalence.
Let 𝜎 → 𝐵ℤ∕2 denote the tautological line bundle and 𝑥 ∶= 𝑤1(𝜎) ∈ 𝐻1(𝐵ℤ∕2; ℤ∕2), so

𝐻∗(𝐵ℤ∕2; ℤ∕2) ≅ ℤ∕2[𝑥]. Because ker(𝑝) has odd order, the Leray–Hirsch theorem implies
𝑝∗ ∶ 𝐻∗(𝐵ℤ∕2; ℤ∕2) → 𝐻∗(𝐵𝜋1(𝑀); ℤ∕2) is an isomorphism.

4.1 The almost spin case

Example 2.2 shows that there are two unorientable normal 1-types in this case: 𝑤1(𝜈) ≠ 0, so it
must be the pullback of 𝑝∗𝑥 ∈ 𝐻1(𝐵𝜋1(𝑀); ℤ∕2), and for 𝑤2, we have two choices: 𝑤2 = 0 (the
normal bundle is pin+) and 𝑤2 = 𝑝∗𝑥2 (the normal bundle is pin−).
Recall that for a manifold𝑀,𝑀 is pin± (that is, the tangent bundle is pin±) if and only if the

normal bundle is pin∓. A (tangential) pin+4-manifold 𝑀 has a ℤ∕16-valued invariant given by
the 𝜂-invariant of a twisted Dirac operator [29, §4]; let 𝜂′ be the invariant assigning to a pin+4-
manifold𝑀 the image of this 𝜂-invariant in the nine-element set (ℤ∕16)∕(𝑥 ∼ −𝑥). We will see in
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2226 DEBRAY

the proof of Theorem 3.1 that all pin+structures on𝑀 give the same value of 𝜂′, so we may define
it as an invariant of manifolds which admit a pin+structure, without choosing such a structure.

Theorem 4.1. There are nine stable diffeomorphism classes of unorientable 4-manifolds with
𝜋1(𝑀) ≅ 𝐺 that admit a (tangential) pin+structure, and there is a single stable diffeomorphism
class of manifolds with 𝜋1(𝑀) ≅ 𝐺 that admit a (tangential) pin−structure. In the pin+case, 𝜂′ is
a complete stable diffeomorphism invariant.

Proof. Both choices of (𝑤1, 𝑤2) arise from vector bundles: (𝑝∗𝑥, 0) from𝑝∗𝜎, and (𝑝∗𝑥, 𝑝∗𝑥2) from
𝑝∗(3𝜎). Thus the normal 1-types are

𝑉Spin ⊕ (𝑝∗𝜎 − 1)∶ 𝐵Spin × 𝐵𝜋1(𝑀) ⟶ 𝐵O, (4.2a)

𝑉Spin ⊕ (𝑝∗(3𝜎) − 3)∶ 𝐵Spin × 𝐵𝜋1(𝑀) ⟶ 𝐵O, (4.2b)

and their Thom spectra are𝑀𝑆𝑝𝑖𝑛 ∧ (𝐵𝜋1(𝑀))𝑝
∗𝜎−1, respectively,𝑀𝑆𝑝𝑖𝑛 ∧ (𝐵𝜋1(𝑀))𝑝

∗(3𝜎)−3. By
Theorem 2.1, these are equivalent to𝑀𝑆𝑝𝑖𝑛 ∧ (𝐵ℤ∕2)𝜎−1, resp.𝑀𝑆𝑝𝑖𝑛 ∧ (𝐵ℤ∕2)3𝜎−3.

Theorem 4.3 Peterson [24, §7], Kirby–Taylor [18, Lemma 6]. There are equivalences 𝑀𝑆𝑝𝑖𝑛 ∧

(𝐵ℤ∕2)𝜎−1 ≃ 𝑀𝑇𝑃𝑖𝑛− and𝑀𝑆𝑝𝑖𝑛 ∧ (𝐵ℤ∕2)3𝜎−3 ≃ 𝑀𝑇𝑃𝑖𝑛+.†

These bordism groups are known.

∙ In the case 𝑤2(𝜈) = 0, Ω𝜉
4
≅ ΩPin−

4
≅ 0 [1, 19] — all 4-manifolds with this normal 1-type are

stably diffeomorphic.
∙ When 𝑤2(𝜈) = 𝑝∗𝑥2, Ω𝜉

4
≅ ΩPin+

4
≅ ℤ∕16 [11, 18, 19].

Kreck [20, §5] shows that in the pin+case, Aut(𝜉) ≅ ℤ∕2 and the action of the non-trivial auto-
morphism on ℤ∕16 sends 𝑥 ↦ −𝑥. We thus obtain nine equivalence classes: 0, ±1, ±2, … , ±7, 8,
detected by the image of the 𝜂-invariant in (ℤ∕16)∕(𝑥 ∼ −𝑥). □
As a consequence of Kreck’s classification in Example 1.2, we have seen that all unorientable,

almost spin 4-manifolds𝑀 with 𝜋1(𝑀) ≅ 𝐺 are either pin+or pin−, and that this determines their
normal 1-type. This is not true for more general 𝐺.

Example 4.4. Cappell–Shaneson [4, 5] construct a closed, smooth 4-manifold 𝑄 that is homeo-
morphic but not diffeomorphic to ℝℙ4, and show that 𝑄 and ℝℙ4 are not stably diffeomorphic.
Stolz [29] gives another proof of this fact by computing the classes of ℝℙ4 and 𝑄 in Ω𝜉

4
∕Aut(𝜉).

We briefly summarize Stolz’ proof.
Since 𝜋1(ℝℙ4) ≅ ℤ∕2 and 𝑤2(ℝℙ

4) = 0, the proof of Theorem 4.1 shows𝑀𝜉 ≃ 𝑀𝑇𝑃𝑖𝑛+,Ω𝜉
4
≅

ℤ∕16, and the set of stable diffeomorphism classes is Ω𝜉
4
∕Aut(𝜉) ≅ (ℤ∕16)∕(𝑥 ∼ −𝑥). Stolz [29]

chooses an isomorphism Ω
𝜉
4

≅
→ ℤ∕16 and shows that it sends the two pin+structures on ℝℙ4 to

±1 and the two pin+structures on 𝑄 to ±9; therefore, ℝℙ4 and 𝑄 are not stably diffeomorphic.

† There is an important subtlety in the names of these spectra in the literature:𝑀𝑃𝑖𝑛± denotes the Thom spectra classifying
pin± structures on the stable normal bundle, and 𝑀𝑇𝑃𝑖𝑛± denotes the Thom spectra classifying pin± structures on the
stable tangent bundle. There are equivalences𝑀𝑃𝑖𝑛± ≃ 𝑀𝑇𝑃𝑖𝑛∓. Information on pin± bordism is usually stated in terms
of𝑀𝑇𝑃𝑖𝑛±.
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STABLE DIFFEOMORPHISM CLASSIFICATION OF SOME UNORIENTABLE 4-MANIFOLDS 2227

4.2 The totally non-spin case

Theorem 4.5. There are four stable diffeomorphism classes of unorientable, totally non-spin 4-
manifolds with 𝜋1(𝑀) ≅ 𝐺. The Stiefel–Whitney numbers 𝑤4 and 𝑤2

2
detect these classes.

This theorem can also be extracted from work of Davis [7, Theorem 2.3], who computes a
different set of invariants.

Proof. Example 1.2 shows that there is only one unorientable normal 1-type in this case:𝑤1(𝜈) ≠ 0,
so it must be pulled back from 𝑝∗𝑥 ∈ 𝐻1(𝐵𝜋1(𝑀); ℤ∕2). Since 𝑝∗𝑥 = 𝑤1(𝑝

∗𝜎), the normal 1-type
is

𝑉SO ⊕ (𝑝∗𝜎 − 1)∶ 𝐵SO × 𝐵𝜋1(𝑀)⟶ 𝐵O, (4.6)

and its Thom spectrum is𝑀𝑆𝑂 ∧ (𝐵𝜋1(𝑀))𝑝
∗𝜎−1, which by Theorem 2.1 is equivalent to𝑀𝑆𝑂 ∧

(𝐵ℤ∕2)𝜎−1.

Lemma 4.7 Atiyah [2, Proposition 2.3]. There is an equivalence𝑀𝑆𝑂 ∧ (𝐵ℤ∕2)𝜎−1 ≃ 𝑀𝑂.

So Ω
𝜉
4
≅ ΩO

4
, and ΩO

4
≅ ℤ∕2 ⊕ ℤ∕2 [32, Corollaire following Théorème IV.12]. The Aut(𝜉)-

action is trivial. To see this, first observe that Aut(id∶ 𝐵O → 𝐵O) is trivial, hence acts trivially on
ΩO
4
. Thus theAut(𝜉)-orbit of a class inΩ𝜉

4
maps to a single class inΩO

4
, soAut(𝜉)-orbits are single-

tons. Therefore any complete bordism invariant for ΩO
4
is also a complete stable diffeomorphism

invariant for the normal 1-type 𝜉, such as (𝑤2
2
, 𝑤4). □

Remark 3.8. If 𝑀 is pin+or pin−, then its double cover is spin, and hence 𝑀 is almost spin. So
totally non-spinmanifolds are neither pin+nor pin−. Therefore the three normal 1-types that occur
when 𝜋1(𝑀) ≅ 𝐺 and𝑀 is unorientable are the cases pin+, pin−, and neither pin+nor pin−.

5 STABLE HOMEOMORPHISM CLASSES

In order to classify stable homeomorphism classes of topological 4-manifolds, we run the same
story, replacing𝐵Owith𝐵Top, whereTop𝑛 is the topological group of homeomorphismsℝ𝑛 → ℝ𝑛

that fix the origin and Top ∶= lim
aa→𝑛

Top𝑛. As in the previous section, fix a group 𝐺 finite of order
2 mod 4 with a surjective map 𝑝∶ 𝐺 → ℤ∕2, and assume that ℤ∕2 acts trivially on𝐻∗(𝐵 ker(𝑝)).
Given a topological manifold 𝑀, there is a map 𝜈∶ 𝑀 → 𝐵Top called the stable topological

normal bundle, so we can define normal 1-types, and Kreck’s classification argument still applies
in the topological setting, this time determining stable homeomorphism classes.

Lemma 5.1. Let𝑀 be a closed, unorientable 4-manifold. The possible normal 1-types of𝑀 are the
sameas inExample 1.2, except replacing𝐵Owith𝐵Top,𝐵SOwith𝐵STop, and𝐵Spinwith𝐵TopSpin.

Proof. The proof is very similar to Kasprowski–Land–Powell–Teichner’s determination of the pos-
sible normal 1-types of topological 4-manifolds in the orientable case [16, Proposition 4.1]. Since
the Stiefel–Whitney classes of a manifold are homotopy invariants, notions of almost spin and
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2228 DEBRAY

totally non-spin make sense for topological manifolds. In the almost-spin case, we have to check
that a lift𝑀 → 𝐵TopSpin × 𝐵𝜋1(𝑀) is 2-connected: the proof is the same as in the smooth case,
because 𝜋2(𝐵TopSpin) = 0. For the totally non-spin case, 𝜋2(𝐵STop) ≅ ℤ∕2, detected by 𝑤2, and
since𝑀 is totally non-spin,𝑤2(𝑀) ≠ 0, so the lift is surjective on𝜋2 just as in the smooth case. □

Our arguments below make use of the fact that bordism groups of topological manifolds are
homotopy groups of Thom spectra, which requires a transversality argument. In dimension 4,
Scharlemann [27] proves the topological transversality theorem that we need. See Teichner [31,
§IV] for more information.
Let 𝐸8 denote Freedman’s 𝐸8manifold [9]. The obstruction to admitting a triangulation defines

a bordism invariant ΩTop
4

→ ℤ∕2 [19, §9] which is non-zero on 𝐸8.

5.1 The almost spin case

There are topological versions of spin and pin± structures; see Kirby–Taylor [19, §9] for details.
Kirby–Taylor also produce a homomorphism 𝑆∶ Ω

TopPin+

4
→ Ω

TopPin−

2
≅ ΩPin−

2
≅ ℤ∕8 sending a

pin+topological 4-manifold𝑀 to the pin−bordism class of a continuously embedded representa-
tive of the Poincaré dual of 𝑤1(𝑀)2, which has an induced pin−structure and a unique smooth
structure. Let 𝑆′ be the invariant sending a topological pin+4-manifold𝑀 to the image of 𝑆(𝑀) in
the set (ℤ∕8)∕(𝑥 ∼ −𝑥).

Theorem 5.2.

(1) There are ten stable homeomorphism classes of unorientable pin+topological 4-manifolds
with 𝜋1(𝑀) ≅ 𝐺. These classes are detected by the invariant 𝑆′ constructed above and the
triangulation obstruction.

(2) There are two stable homeomorphism classes of unorientable pin−topological 4-manifolds with
𝜋1(𝑀) ≅ 𝐺. These classes are detected by the triangulation obstruction.

Proof. Following the same line of argument as in the proof of Theorem 3.1, the two nor-
mal 1-types’ Thom spectra are𝑀𝑇𝑜𝑝𝑆𝑝𝑖𝑛 ∧ (𝐵𝜋1(𝑀))𝑝

∗𝜎−1 and𝑀𝑇𝑜𝑝𝑆𝑝𝑖𝑛 ∧ (𝐵𝜋1(𝑀))𝑝
∗(3𝜎)−3,

and Theorem 2.1 simplifies these to 𝑀𝑇𝑜𝑝𝑆𝑝𝑖𝑛 ∧ (𝐵ℤ∕2)𝜎−1 and 𝑀𝑇𝑜𝑝𝑆𝑝𝑖𝑛 ∧ (𝐵ℤ∕2)3𝜎−3,
respectively.

Lemma 5.3. There are equivalences𝑀𝑇𝑜𝑝𝑆𝑝𝑖𝑛 ∧ (𝐵ℤ∕2)𝜎−1 ≃ 𝑀𝑇𝑇𝑜𝑝𝑃𝑖𝑛− and𝑀𝑇𝑜𝑝𝑆𝑝𝑖𝑛 ∧

(𝐵ℤ∕2)3𝜎−3 ≃ 𝑀𝑇𝑇𝑜𝑝𝑃𝑖𝑛+.

Proof. There are surjective maps 𝑑𝑛 ∶ Top𝑛 ↠ {±1} given by assigning to a homeomorphism the
automorphism it defines on 𝐻𝑛(ℝ

𝑛, ℝ𝑛 ⧵ 0) ≅ ℤ. These commute with the inclusions Top𝑛 ↪
Top𝑛+1, and passing to the colimit defines a map 𝑑∶ Top ↠ {±1}. This is a topological version of
assigning an orthogonalmatrix its determinant, classifying whether it preserves or reverses orien-
tation. Given a principal Top-bundle 𝑃 → 𝑀, let Det(𝑃) → 𝑀 be the line bundle 𝑃 ×Top ℝ → 𝑀,
where Top acts onℝ through 𝑑. Themaps Top𝑛 × O1 → Top𝑛 × Top1 → Top𝑛+1 allow us tomake
sense of “𝑃 ⊕ 𝑛Det(𝑃)” as a principal Top-bundle.
We abuse notation for a moment to say that a 𝐺-structure on a principal Top-bundle 𝑃 → 𝑀

is a reduction of structure group of 𝑃 from Top to 𝐺. Then, just as in the smooth case, there is a
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STABLE DIFFEOMORPHISM CLASSIFICATION OF SOME UNORIENTABLE 4-MANIFOLDS 2229

natural equivalence between the set of TopPin−-structures on 𝑃 and the set of TopSpin structures
on 𝑃 ⊕ Det(𝑃), and similarly between the set of TopPin+-structures on 𝑃 and the set of TopSpin
structures on𝑃 ⊕ 3Det(𝑃). The proof is the same as in the smooth case. These equivalences are the
only facts we need to know about Pin± in order to prove Theorem 3.3 in the smooth setting, so the
argument in the topological setting can proceed in the same way. Therefore by Theorem 2.1, our
two normal 1-types are equivalent to𝑀𝑇𝑇𝑜𝑝𝑃𝑖𝑛±. The caveat about switching between pin+and
pin−when one passes between the tangent and normal bundles still applies here.

Theorem 5.4 (Kirby–Taylor [19, Theorem 9.2]).

(1) Ω
TopPin−

4
≅ ℤ∕2, generated by 𝐸8.

(2) Ω
TopPin+

4
≅ ℤ∕8 ⊕ ℤ∕2, with ℝℙ4 generating the ℤ∕8 summand and 𝐸8 generating the ℤ∕2

summand.
(3) The map ΩPin+

4
→ Ω

TopPin+

4
is identified with a map ℤ∕16 → ℤ∕8 ⊕ ℤ∕2 which surjects onto

the first factor and does not hit 𝐸8.†

(4) The homomorphism 𝑆∶ Ω
TopPin+

4
→ Ω

TopPin−

2
≅ ΩPin−

2
≅ ℤ∕8 sends ℝℙ4 to a generator.

Since ℤ∕2 is rigid, we conclude that there are two stable homeomorphism classes in the
pin−case, detected by the triangulation obstruction. For the pin+case, the same line of reasoning
in the proof of Theorem 3.1 allows us to reduce to the case when 𝜉 is a topological pin+structure,
so we can compute the action ofAut(𝜉) on the generators. Since 𝐸8 is simply connected, it admits
a unique topological pin+structure, so is fixed by Aut(𝜉). Every topological pin+structure on ℝℙ4
arises from a smooth pin+structure, so we can reuse the argument from Theorem 3.1 to conclude
that the Aut(𝜉)-orbit of ℝℙ4 is again ±[ℝℙ4]. Therefore the set of stable diffeomorphism classes
is ((ℤ∕8)∕(𝑥 ∼ −𝑥)) × ℤ∕2, which has ten elements, and the triangulation obstruction and 𝑆′ are
together a complete invariant. □

5.2 The totally non-spin case

By Lemma 5.1, there is only one normal 1-type to worry about.

Theorem 5.5. There are eight stable homeomorphism classes of unorientable, totally non-spin
topological 4-manifolds with 𝜋1(𝑀) ≅ 𝐺. The triangulation obstruction and the Stiefel–Whitney
numbers 𝑤4 and 𝑤2

2
are together a complete stable homeomorphism invariant.

Again, this can be extracted from a theorem of Davis [7, Theorem 2.3], who uses a different but
equivalent set of invariants.

Proof. Following the same line of reasoning as in Theorem 3.5, Lemma 4.1 tells us we only have
one normal 1-type, and its Thom spectrum is𝑀𝑆𝑇𝑜𝑝 ∧ (𝐵ℤ∕2)𝜎−1.

Lemma 5.6. There is an equivalence𝑀𝑇𝑜𝑝 ≃ 𝑀𝑆𝑇𝑜𝑝 ∧ (𝐵ℤ∕2)𝜎−1.

† The identification of the kernel of ΩPin+

4
→ Ω

TopPin+

4
with ℤ∕2, generated by the K3 surface, is an earlier theorem of

Kreck [20, §5].
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Proof. The proof goes through as in the smooth case, since we have a determinant map and
the fact that for any Top-bundle 𝑃 → 𝑀, 𝑃 ⊕ Det(𝑃) is canonically oriented, analogously to the
smooth case. □

So we need to calculate ΩTop
4

.

Proposition 5.7. ΩTop
4

≅ (ℤ∕2)⊕3, with a basis given by the classes ofℝℙ4,ℝℙ2 × ℝℙ2, and𝐸8. The
Stiefel–Whitney numbers 𝑤4 and 𝑤2

2
and the triangulation obstruction are linearly independent on

this bordism group.

Proof. Draw the Atiyah–Hirzebruch spectral sequence computing ΩTop
4

as ΩSTop
4

((𝐵ℤ∕2)𝜎−1). It
collapses for degree reasons in total degree 4 and below, and the 4-line of the 𝐸∞-page has order
8. Therefore it suffices to find three linearly independent non-zero elements of ΩTop

4
, which can

be done by computing𝑤4,𝑤2
2
, and the triangulation obstruction onℝℙ4,ℝℙ2 × ℝℙ2, and 𝐸8. □

Just as in the smooth case, Aut(𝜉) acts trivially. □
Remark 3.8 also applies in the topological case: the three normal 1-types for unorientable topo-

logicalmanifoldswith𝜋1(𝑀) ≅ 𝐺 are precisely the caseswhere𝑀 has a topological pin+structure,
𝑀 has a topological pin−structure, and𝑀 has neither.
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