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Abstract: Type IIB supergravity enjoys a discrete non-Abelian duality group, which has

potential quantum anomalies. In this paper we explicitly compute these, and present the

bordism group that controls them, modulo some physically motivated assumptions. Quite

surprisingly, we find that they do not vanish, which naively would signal an inconsistency of

F-theory. Remarkably, a subtle modification of the standard 10d Chern-Simons term cancels

these anomalies, a fact which relies on the specific field content of type IIB supergravity. We

also discover other ways to cancel this anomaly, via a topological analog of the Green-Schwarz

mechanism. These alternative type IIB theories have the same low energy supergravity limit

as ordinary type IIB, but a different spectrum of extended objects. They could either be part

of the Swampland, or connect to the standard theory via domain walls.
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1 Introduction

Dualities constitute one of the deepest features of string theory. These are exact statements

relating equivalent formulations of quantum gravity in different regimes of validity.

Of particular significance is the duality group GIIB of type IIB string theory and its

geometric uplift to F-theory [1–4]. At the level of type IIB supergravity, the duality group

is really SL(2,R), but the presence of quantized BPS objects reduces this to SL(2,Z), the

group of large diffeomorphisms of an elliptic curve. Including chiral degrees of freedom (the

fermions and the self-dual form), it is actually more appropriate to state that the IIB duality

group is GL+(2,Z), the Pin+ cover of GL(2,Z) (see [5] as well as [6]).

F-theory provides arguably the most complete picture for formulating non-perturbative

phenomena in string theory, and has led to a range of applications, from concrete moduli

stabilization scenarios [7, 8]; to the construction of string-based particle physics scenarios

[9–11]; and to the classification and study of six-dimensional superconformal field theories

(see [12] for a review).

Undergirding all of this is the assumption that the duality group of type IIB strings

is really retained at the quantum level. The duality group is first encountered as a global

symmetry of the low-energy type IIB supergravity Lagrangian. But if it is truly a duality

of quantum gravity it should actually be gauged: we should be allowed to introduce duality

defects (indeed, these are predicted by F-theory [2, 13, 14], see [15] for a connection to

Swampland arguments and the cobordism conjecture) and the type IIB partition function

should sum over GIIB bundles. Furthermore, Swampland arguments also show that if GIIB is

an exact symmetry of the theory, then it must be gauged (see e.g. [16–18] and [19] for a recent

review). However, in order to be able to gauge a symmetry, it first needs to be anomaly free.

Thus, if we take F-theory seriously and insist on gauging GIIB, we are naturally led to the

central question of this paper:

Is the IIB duality group GIIB anomalous?

One’s first instinct might be that the answer must be a resounding “No”, on account of

the massive amount of evidence that we have accrued in favor of F-theory and the web of

string dualities. Still, to our knowledge, there has been no direct verification of this important

feature (see however [20, 21] which discuss a related anomaly; see also [22]). One obstacle

in performing such a computation is that the evaluation of the partition function requires a

detailed understanding of the self-dual field, a topic which is notoriously difficult. We follow

the presentation in [23], which builds on the seminal works [24, 25] and later work by Monnier

(see also [26–31]).
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Following a general pattern, the duality anomaly is captured by an 11d topological quan-

tum field theory, with 10d type IIB supergravity formally viewed as living on the boundary.1

Anomalies are captured by evaluating the partition function of the 11d anomaly theory on a

general Euclidean background with M = ∂X:

Z[M ] = e2πiA(X) , (1.1)

where in our case A depends on the η-invariants for the gravitini and dilatini, as well as a

slight extension of the anomaly theory of the chiral 4-form of type IIB supergravity developed

in [23, 27–29]. Specifically, the anomaly theory relies on the existence of a canonical choice

for the quadratic refinement of the pairing in differential cohomology (or, more generally,

the relevant differential cohomology theory for IIB RR fields, which is differential K-theory

if duality backgrounds are ignored), a feature which has only been shown to exist for Spin

manifolds without a duality bundle turned on; in this paper, we assume that such a canonical

choice exists for general Spin-GL+(2,Z) manifolds. This can be motivated by M-/F-duality,

since on the M-theory side we do not need to specify a quadratic refinement as additional

data. With this assumption, the cobordism classification of invertible topological quantum

field theories (tQFTs) [39, 40] implies that the partition function above is a bordism invariant

of the group Ω
Spin-GL+(2,Z)
11 , which we computed explicitly to be

Ω
Spin-GL+(2,Z)
11

∼= Z8 ⊕ (Z2)⊕9 ⊕ Z3 ⊕ Z27. (1.2)

The details of this computation, which is based on the Adams and Atiyah-Hirzebruch spectral

sequences, will be presented in a forthcoming publication [41].

To compute anomalies, we just need to evaluate the partition function of the anomaly

theory on representatives of the generators of the bordism group above. We explicitly do this

and, rather surprisingly, we find that the answer to the question in the box above is “Yes”:

Type IIB supergravity, in the form in which it is written in textbooks today, has a duality

anomaly, and hence cannot be the low-energy limit of a theory where the duality symmetry

is truly present, like type IIB string theory or F-theory.

Before dismissing F-theory and thus the entire duality web as inconsistent, we must

first assess whether there might be additional (albeit quite subtle) interaction terms present

which would have remained invisible to previous analyses. Happily, we find that there is

a specific 10d topological term which appears to rescue the original IIB superstring theory.

The anomalies can be cancelled by a small modification of the triple Chern-Simons term

C4∧H3∧F3 of type IIB supergravity (or more precisely, the quadratic refinement mentioned

above), by including a particular torsion term that encodes the duality bundle:

Inew = F5 ∪
[(
β(a)2 + λ2

(p1)3

2

)
∪ a+

1

2
[(p1)4 − P(w)] ∪ b+ κβ(b)2 ∪ b

]
, (1.3)

1See for example references [32–36] (as well as [37, 38]) for related analyses of duality anomalies in the
context of quantum field theory.
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where F5 is the self-dual five-form field strength a and b are respectively Z3 and Z4 torsional

one-forms, β(a), β(b) are corresponding 2-form “discrete fluxes” for a and b, respectively, and

the (p1)n are mod n reductions of the first Pontryagin class, with P(w) a characteristic class

built from the second Stiefel-Whitney class of the background. The coefficient λ2 = ±1 is a

sign, and κ is an integer modulo 4. The last term does not contribute in the cases we can

explicitly evaluate but might lead to non-trivial contributions on non-Spin manifolds. The

delicate character of this term may explain why it seems to have evaded previous tests of

string dualities.

The details of the mechanism we propose rely on precise numerical coincidences that

would not have worked if the duality properties of the spectrum of type IIB supergravity

were even slightly different. For instance, one of the anomalies we find (obtained from an

11-dimensional lens space S11/Z3) takes values in the group Z27. Out of the 26 non-vanishing

(anomalous) possibilities, only two of them can be cancelled via the quadratic refinement

mechanism, and exactly one can be cancelled with the quadratic refinement of the Chern-

Simons term associated to S11/Z3 (which we determine independently). In this way, the fact

that we can cancel the anomaly via this mechanism is vaguely reminiscent of the miraculous

cancellation that already occurs at the level of perturbative gravitational anomalies in type

IIB supergravity [42].

Perhaps even more striking, for some choices of 11d background geometry, the proposed

term (1.3) cannot possibly help. However, by going over the full list of 11d geometries which

generate Ω
Spin-GL+(2,Z)
11 , we find the fortuitous coincidence that in nearly all cases where it

cannot contribute, the 11d anomaly vanishes anyway! There is precisely one exceptional case

involving a non-Spin manifold with a Spin-D8 structure, and the anomaly (which is at most

a sign) depends on the value of the Arf invariant of a certain quadratic refinement, which we

do not know how to determine. For one choice of sign, the anomaly would also cancel, and

we leave a complete independent verification of this case to future work.

The proposed topological interaction term also correctly accounts for some of the quali-

tative features of known type IIB compactifications, which we view as a preliminary check of

our general considerations. For example, S-fold backgrounds [43, 44] contribute a fractional

D3-brane charge which is tightly correlated with a specific duality bundle. The term (1.3) can

partially capture these charge shifts. Relatedly, a stack of D3-branes has a particular duality

anomaly in its worldvolume N = 4 super-Yang-Mills theory, which should appear as a 5d

topological term in the gravity dual background. With some caveats, the term of equation

(1.3) correctly captures such a term. Altogether, this suggests a self-consistent picture which

relies on the existence of the topological interaction term (1.3).

All in all, the story that we present here is ultimately a happy ending for F-theory and

dualities. But as in most good stories, there is a twist: we also find several alternative ways

to cancel the duality anomaly, via the topological Green-Schwarz mechanism [45]. All these

alternatives have an identical low-energy description (that of type IIB supergravity), and differ

at the level of extended operators (or equivalently, massive states, due to the completeness
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Figure 1. We have found several seemingly consistent versions of type IIB theory with a non-anomalous
duality group, which differ from each other at the level of massive states and extended objects. Perhaps
some (or all) of these alternate versions are in the Swampland. But it does raise the question of whether
the usual M-theory star picture should be replaced by a multi-sheeted one with different topological
sectors. In that scenario we would expect all of these to be connected to each other via cobordism
domain walls [47].

principle [17, 19, 46]). We did not do an exhaustive classification, and there are probably

more options. Some of these possibilities do not correspond to the familiar type IIB string

theory, since some backgrounds and branes that should be there (such as certain orbifolds

and S-folds [43, 44]) turn out to be absent, instead being confined at the endpoints of other

objects. But are they inconsistent, i.e., do they belong to the Swampland? Or did we just

find that there are several different quantum theories of gravity (which would be connected

by dynamical domain walls [47]) with the same type IIB supergravity as their low-energy

limit? A similar question arises for the discrete θ angle in M-theory introduced in [48], as

well as for type I strings [49]. At present, we do not know how to distinguish between these

two intriguing possibilities, but all things considered, there seems to be mounting evidence

that the usual M-theory “star picture” might be spikier than previously thought (see Figure

1).

The rest of this paper is organized as follows. Section 2 contains a brief introduction

to the topic of anomalies, their classification via bordism, and the particular class of “Dai-

Freed” anomalies that this paper focuses on, reviewing an heuristic argument from [50] which

explains why they should cancel in a quantum theory of gravity where topology changes

are allowed (although they must also cancel in systems without gravity where topology can

fluctuate, such as D-brane worldvolumes [5]). In Section 3 we review the duality group of type

IIB supergravity and its extensions involving fermions and worldsheet orientation-reversal
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symmetries. We also introduce characteristic classes that will be useful to characterize duality

bundles later on. Section 4 contains the main results of the paper, where we present the

bordism group classifying the anomaly theory of type IIB supergravity, the concrete anomaly

theory, and we evaluate it for a specific choice of generators. We find several anomalies and

explain how to cancel most of them with certain topological couplings in the theory, in a

variety of ways. Section 6 discusses in some detail the generator of the single bordism class

where we do not know how to evaluate the anomaly even in principle. Finally, Section 7

contains our conclusions. Additional information and the technical computations underlying

our main results are carried out in the Appendices.

2 Bordism groups and anomalies

In its most basic formulation, the appearance of an anomaly indicates the violation of a

symmetry due to quantum effects (see e.g. [51]). This can be diagnosed by a lack of gauge

invariance when coupling the theory to a background connection for the symmetry. The usual

perturbative anomalies can be deduced from one-loop diagrams which determine the change of

the partition function under infinitesimal gauge transformations, i.e., gauge transformations

that are close to the identity. The groups we are interested in here, however, are discrete

and their anomalies cannot be captured in terms of Feynman diagrams. Original studies on

anomalies of discrete symmetries [52], or some studies on anomalies of transformations not

continuously connected to the identity [53] were often “artisanal” and relied on techniques

such as embedding the discrete symmetry in an auxiliary continuous one. Nowadays, we

have a standard procedure that allows us to study anomalies of either discrete or continuous

symmetries in a uniform fashion.

This perspective advocates that the presence of an anomaly in a d-dimensional quantum

field theory Z means that Z is a boundary theory to a (d + 1)-dimensional invertible field

theory (IFT) e2πiA, called the anomaly field theory of Z [54]. Invertible field theories are

almost, but not quite, trivial; the state spaces of A are complex lines. Since Z is a boundary

theory to e2πiA, the partition function of Z on a closed d-manifold M is an element of the

state space of A. Formally, we can represent this by saying that the partition function on M

arises from evaluating the anomaly theory on an open manifold:

Z[M ] = e2πiA(X) , ∂X = M . (2.1)

Here, X is some manifold with boundary M , on which any relevant structures (Spin structure,

background fields, etc.) are suitably extended. It is in general not possible to uniformly

trivialize these state spaces to obtain partition functions that are numbers, representing the

ambiguity in the partition function of an anomalous theory. Equivalently, the prescription

given in (2.1) may depend on the choice of X.

This ambiguity will be absent only if the anomaly theory A is trivial on any closed (d+1)-

manifold X. When X is a mapping torus, i.e. of the form (M × [0, 1])/ ∼, where ∼ acts as a
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diffeomorphism on M and identifies the two ends of the interval, a non-trivial e2πiA(X) means

that the symmetry is anomalous in the background M ; there is no consistent way to assign

a value to the partition function Z[M ], as the mapping torus explicitly exhibits a path in

configuration space where the phase of this partition function changes.

For more general X, the conclusion is not as clear; it is certainly not possible to define

Z[M ] in a consistent way if splitting and joining of manifolds is allowed [55, 56], but whether

this constitutes an issue depends on the context. Following the nomenclature in [50], we

will say that a non-vanishing anomaly theory A, which nevertheless vanishes on all mapping

tori, has Dai-Freed anomalies. In a field theory with Dai-Freed anomalies but no ordinary

(perturbative or global) anomalies, the symmetry is still preserved even at the quantum level,

but the theory will not admit a lattice regularization with on site symmetry [57]. Depending

on the physical context, this can be perfectly fine.

By contrast, in quantum gravity, a Dai-Freed anomaly means that the relevant symmetry

is broken by topology-changing processes [50]. Therefore such a symmetry should not be

gauged, and we should demand triviality of A for any exact (gauged) symmetry in a quantum

theory of gravity. A similar argument applies, for the same reasons, for the worldvolume

theories of D-branes [5], since the topology of a D-brane worldvolume fluctuates.

So, given a physical theory, how do we determine A? The non-perturbative approach

to anomalies uses classification theorems for various classes of invertible field theories to

determine it. In our setting, the anomaly theory is unitary. In [39] Freed and Hopkins classify

unitary (by which we actually mean reflection-positive in the Euclidean setup) invertible field

theories in terms of Abelian groups called bordism groups, which can be computed using

standard techniques in algebraic topology. In a little more detail, the dth bordism group

is the Abelian group of closed d-manifolds modulo the equivalence relation where M1 is

equivalent to M2 if M1 q M2 bounds a compact (d + 1)-manifold X; the Abelian group

structure is disjoint union. The higher-dimensional manifold can intuitively be understood

as an appropriate deformation of one of the boundary components into the other, where

topology can change—for example holes or handles can grow and reattach—see Figure 2. In

the quantum gravity context, the bordism receives a physical interpretation; it can literally be

regarded as a generalization of the field theory mapping torus, describing a topology-changing

non-contractible path in the configuration space of geometric backgrounds of quantum gravity

[50].

Importantly, this procedure must take into account the additional structure of the back-

ground, which must extend in the right way to the bordism. For instance, any background

gauge fields for symmetries must extend in a non-singular way, and similarly, if the theory

contains fermions, the Spin structure must extend into the bulk. The additional structure

specified by the background is formalized mathematically as a tangential structure ξ [58], and

the Abelian group of d-manifolds with ξ-structure modulo bordism is denoted Ωξ
d.

In [39] the Abelian group of (d + 1)-dimensional unitary invertible field theories of ξ-

manifolds (i.e. the group of possible anomalies for d-dimensional QFTs on ξ-manifolds) is
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Figure 2. Schematic picture of a bordism manifold between two bounding circles.

classified as an extension

0 Tors(Hom(Ωξ
d+1,C

×)) {unitary IFTs} Hom(Ωξ
d+2,Z) 0 .

(2.2)

Tors(Hom(Ωξ
d+1,C

×)) denotes the torsion subgroup of the Abelian group of C×-valued bor-

dism invariants; these classify the subgroup of unitary IFTs which are topological. That is,

the partition function of a unitary invertible tQFT is a bordism invariant and determines

e2πiA up to isomorphism.

The rightmost Abelian group in (2.2), Hom(Ωξ
n+2,Z), captures the perturbative infor-

mation in an anomaly field theory: It is a group of characteristic classes of manifolds with

ξ-structure, and the image of the anomaly field theory in this group is the anomaly polynomial.

In the particular case of interest in this paper, that of type IIB supergravity, perturbative

anomalies vanish famously, due to a miraculous cancellation [42].

So in short, global as well as Dai-Freed anomalies are captured by an invertible tQFT,

whose partition function is a bordism invariant. Therefore the study of these anomalies is

mapped to the question of computing the relevant bordism groups, finding their generators,

and evaluating the anomaly theory on them. For the kinds of tangential structures ξ that

occur in physics, the bordism groups in (2.2) are generated by a small number of manifolds,

so one can determine the isomorphism class of an anomaly theory by calculating it on that

generating set. This approach has been used in [5, 23, 27–29, 35, 48, 50, 56, 59–94], and is

the approach we will use to determine the duality anomaly of type IIB string theory.

3 Duality in type IIB string theory

In order to identify the correct tangential structure entering the bordism classification dis-

cussed above we need to describe a precise version of the duality group of type IIB string

theory. Since non-trivial duality backgrounds are then classified by a discrete bundle, we will
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also construct the relevant characteristic classes that enter in the classification of bordism

generators.

3.1 Duality group of type IIB string theory

We will start by introducing the detailed realization of the duality group of type IIB string

theory, which will be the main character in the rest of the paper. Some of the material in

this section is standard; we refer the reader to [6], and especially the Appendix of [5], for a

particularly clear exposition.

It is a well-known fact [95] that the type IIB supergravity action has a perturbative

SL(2,R) symmetry under which the bosonic action remains invariant. In the presence of

quantized fluxes and the corresponding charged objects, this symmetry group is broken to

the discrete duality group SL(2,Z). This is the group of 2 × 2 matrices with integer entries

and unit determinant, i.e., (
a b

c d

)
, ad− bc = 1 , (3.1)

and is generated by two elements conveniently chosen to be [35]2

U =

(
0 −1

1 1

)
, S =

(
0 −1

1 0

)
. (3.2)

In terms of these, SL(2,Z) can be presented as

SL(2,Z) = 〈U, S |S4 = 1 , S2 = U3〉 . (3.3)

Interestingly, there is a way to write SL(2,Z) as an amalgamated free product, which is

particularly useful for the computation of bordism groups, see e.g. [23, 35]. This amalgam

structure is given as

SL(2,Z) = Z4 ∗Z2 Z6 , (3.4)

where the individual factors Z4 : 〈S |C ≡ S2 , C2 = 1〉 and Z6 : 〈U |C ≡ U3 , C2 = 1〉 are

identified along a common Z2 : 〈C |C2 = 1〉.
The standard action of SL(2,Z) on the bosonic fields in the type IIB supergravity action

is given by

τ = C0 + ie−φ −→ aτ + b

cτ + d
,

(
C2

B2

)
−→

(
a b

c d

)(
C2

B2

)
, with

(
a b

c d

)
∈ SL(2,Z) , (3.5)

whereas the RR 4-form field C4 and the spacetime metric are invariant.

2The relation to the more common generator T =

(
1 1
0 1

)
is given by T = S−1U .
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Including the fermions of type IIB supergravity one can deduce their transformation

under general SL(2,Z) transformations, see [6]. For that we form complex fermions out of

the two Majorana-Weyl gravitini Ψi
µ and dilatini λi. These complexified fields transform as

Ψµ = Ψ1
µ + iΨ2

µ −→
(
cτ + d

cτ + d

)1/4

Ψµ , λ = λ1 + iλ2 −→
(
cτ + d

cτ + d

)−3/4

λ . (3.6)

The fact that we must take quartic roots in the above expression means that there is a sign

ambiguity, and demands an extension of SL(2,Z) to a double cover known as the metaplectic

group Mp(2,Z). This group has the presentation [23]

Mp(2,Z) = 〈Û , Ŝ| Ŝ8 = 1 , Ŝ2 = Û3〉 . (3.7)

Here, Ŝ4 = (−1)F is a central element that gets mapped to the identity under the map

Mp(2,Z)→ SL(2,Z). Given the above, we can also write an amalgam structure for Mp(2,Z),

Mp(2,Z) = Z8 ∗Z4 Z12 . (3.8)

where the groups Z8 : 〈Ŝ | Ĉ ≡ Ŝ2 , Ĉ4 = 1〉 and Z12 : 〈Û | Ĉ ≡ Û3 , Ĉ4 = 1〉 are identified

along a common Z4 : 〈Ĉ | Ĉ4 = 1〉.
SL(2,Z) can also be extended in a different way, including an action corresponding to

orientation reversal of the type IIB worldsheet, as well as worldsheet left-moving fermion

number, see [5]. This extends the duality group acting on the bosons to GL(2,Z) and the RR

4-form C4 is odd under the additional generator R, which can be chosen to be

R =

(
0 1

1 0

)
, (3.9)

of determinant −1, thus extending SL(2,Z) to GL(2,Z). Note that the generators above

satisfy

RSR = S−1 , RUR = U−1 , (3.10)

indicating that {R,S} and {R,U} generate the dihedral groups D8 and D12, respectively,

and where we define in general D2n = 〈R,S |Sn = R2 = 1 , RSR−1 = S−1〉 which is the

group of symmetries of a regular n-gon. The group GL(2,Z) can then be presented as

GL(2,Z) = 〈U, S,R |S4 = 1 , RSR−1 = S−1 , RUR−1 = U−1 , S2 = U3〉 . (3.11)

This can also be written as an amalgam

GL(2,Z) = D8 ∗D4 D12 , (3.12)
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with the subgroups

D8 = 〈R,S |C ≡ S2 , C2 = R2 = 1 , RSR−1 = S−1〉 ,
D12 = 〈R,U |C ≡ U3 , C2 = R2 = 1 , RUR−1 = U−1〉 ,
D4 = 〈C,R |C2 = R2 = 1〉 .

(3.13)

Finally, to extend the action of R to fermions, we need to consider a double cover, as above.

The Majorana-Weyl spinors of type IIB supergravity are only compatible with a double cover

that squares reflections to the identity, R̂2 = 1, i.e. the Pin+ cover. We finally arrive at the

full duality group of IIB supergravity [5], the Pin+ cover of GL(2,Z), which we denote as

GL+(2,Z) for short. It has the presentation

GL+(2,Z) = 〈Û , Ŝ, R̂ | Ŝ8 = 1 , Ŝ2 = Û3 , R̂2 = 1 , R̂ŜR̂ = Ŝ−1 , R̂Û R̂ = Û−1〉 . (3.14)

As above, this group is an amalgam of dihedral groups,

GL+(2,Z) = D16 ∗D8 D24 , (3.15)

where

D24 = 〈Û , R̂ | Ĉ ≡ Û3 , Ĉ4 = 1, R̂2 = 1 , R̂Û R̂ = Û−1〉 ,
D16 = 〈Ŝ, R̂ | Ĉ ≡ Ŝ2 , Ĉ4 = 1 , R̂2 = 1 , R̂ŜR̂ = Ŝ−1〉 ,
D8 = 〈Ĉ, R̂ | Ĉ4 = 1, R̂2 = 1, R̂ĈR̂ = Ĉ−1〉 .

(3.16)

As explained beautifully in the Appendix of [5], the appearance of GL+(2,Z) can be under-

stood geometrically in terms of F-/M-theory duality, which maps the duality group of type

IIB to the group of large diffeomorphisms of the M-theory torus. Since M-theory makes sense

on non-orientable manifolds, this is GL(2,Z); but since a Pin+ structure is required [96, 97],

the symmetry group is actually the Pin+ cover GL+(2,Z).

For our later calculations it will prove useful to evaluate the expressions at certain values

of the axio-dilaton which are invariant under some of the generators of the duality group. At

these points the action on the fermions takes a particularly simple form in terms of a complex

phase. For the first factor in (3.15) the relevant value is given by τ = i, which is invariant

under Ŝ. For the second factor in (3.15) one has τ = e2πi/3 invariant under Û . At these

special points the transformations of the fermions read

τ = i ŜΨµ = e2πi 1
8 Ψµ Ŝ λ = e−2πi 3

8λ

τ = e2πi/3 Û Ψµ = e2πi 1
12 Ψµ Û λ = e−2πi 3

12λ
(3.17)

i.e., the gravitino has charge 1 and the dilatino has charge −3 under the corresponding duality

transformations. These have to be supplemented by the transformation property of the chiral
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4-form

R̂ C4 = −C4 , (3.18)

which only transforms under orientation reversal.

3.2 Non-trivial duality backgrounds

With the complete version of the duality identified, we can investigate the different non-trivial

duality backgrounds of type IIB.

The fact that the duality group of type IIB involves fermion parity (−1)F has interesting

consequences, since this (−1)F should be identified with the center of the Spin cover of the

underlying spacetime manifold. This twists the Spin structure of the spacetime manifold and

the duality symmetry into what we call a Spin-GL+(2,Z) structure. In particular, this means

that on a general type IIB background, the fermion fields are sections of an associated vector

bundle for the group
Spin×GL+(2,Z)

Z2
. (3.19)

Thus, type IIB supergravity makes sense on manifolds that do not have a Spin structure,

but which do have a Spin-GL+(2,Z) structure. The most familiar example of manifolds

with twisted Spin structures are Spinc manifolds, where the fermions are charged under an

additional U(1) bundle. But there are many other examples of twisted Spin structures; for

instance, see [43, 66, 71]. In general, a Spin-G structure, for G a group with a Z2 center,

describes fermions whose transition functions take values in a group like (3.19) with GL+(2,Z)

replaced by G. For instance, in later realizations we consider examples of Spin-GL+(2,Z)

manifolds which are in the image of the map D16 → GL+(2,Z) given by the amalgamation

above, and we refer to them as having a Spin-D16 structure. Similarly, we also discuss Spin-

D8 manifolds. In these cases the twisting also restricts the allowed representations of the

fermions under the factors in (3.15), see Appendix B.

In the familiar Spinc case, the fermions are not sections of a U(1) bundle, but one can

construct a principal U(1) bundle by squaring the transition functions of the fermions. Simi-

larly, on a general Spin-GL+(2,Z) manifold we will not have a well-defined GL+(2,Z) duality

bundle, but there is a natural associated GL+(2,Z)/Z2 ' GL(2,Z) principal bundle. We will

use this principal GL(2,Z) bundle to characterize the duality background we have turned on;

as usual, it can be efficiently described by using characteristic classes, which are obtained by

pulling back cohomology classes of the associated classifying space BGL(2,Z). The existence

of the Spin-GL+(2,Z) structure is equivalent to a certain condition involving tangent bundle

Stiefel-Whitney classes and characteristic classes of the GL(2,Z) bundle, which we describe

below. Again, this is in complete analogy to the more familiar Spinc case, where the Chern

class of the associated U(1) bundle c1 is related to w2 of the tangent bundle by w2 = c1 mod 2.

We now describe several characteristic classes that will be important in our later discussions:

Mod 2 characteristic classes: From the amalgam structure (3.12) it follows that at primes
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2 and 3 BGL(2,Z) has the same cohomology ring as BD8 and BD6, respectively.3 The

cohomology ring of BD8 with Z2 coefficients is generated by three classes, x, y, and w

of degrees 1, 1, and 2, respectively. They are subject to the relation xy = y2, i.e.,

H∗(BD8,Z2) =
Z2[x, y, w]

(xy = y2)
. (3.20)

See [99, Theorem 4.6], [100, §2.3], or [101, Theorems 5.5 and 5.6]. The generators can

be described as Stiefel-Whitney classes of associated bundles:

• Let ρ : D8 → O(2) denote the standard representation of D8 as the symmetries

of a square (see Appendix B for some information on representations of dihedral

groups), and let Vρ → BD8 be the associated rank-2 vector bundle. Then x =

w1(Vρ) and w = w2(Vρ).

• Let χ : D8 → {±1} be the character in which quarter turns are sent to −1 and

reflections are sent to 1, and let Lχ → BD8 be the associated line bundle. Then

y = w1(Lχ).

Mod 3 characteristic classes: The cohomology of BD6 with Z3 coefficients is generated

by two classes q, q̃ in degrees 3 and 4, respectively, with the relation q2 = 0:

H∗(BD6;Z3) ∼=
Z3[q, q̃]

(q2 = 0)
. (3.21)

If β : H∗(–;Z3)→ H∗+1(–;Z3) denotes the Bockstein homomorphism associated to the

short exact sequence

0 Z3 Z9 Z3 0 , (3.22)

then q̃ = β(q). See [102] and [103] for a proof, using the fact that D6 is isomorphic to

the symmetric group of order 3.

One can also consider characteristic classes obtained by pulling back cohomology classes

of BD6 for a local coefficient system, in which the reflection in D6 acts as multiplication

by −1. In this way one obtains a class q̂ with twisted Z3 coefficients in degree 1 and q̂5

in degree 5 [101, Theorems 5.8 and 5.9]. In physics terms, “twisted” just means that

the corresponding classes are not invariant under GL+(2,Z) reflections; but they will

still be useful to us.

In fact, all of these characteristic classes can be naturally associated to the cohomology

of BZ3 via pullback under the map

BZ3 → BD6 . (3.23)

3Although this is not immediate, the logic we follow here is the same as in Exercise 3 of Chapter II.7 of
[98] (see also [35]). Further details will be given in [41].
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The cohomology ring of BZ3 with Z3 coefficients is generated by a class a in degree 1 and

a class β(a) in degree 2, again connected by the Bockstein homomorphism associated

to (3.22). The cohomology ring is [104, Example 3.41]

H∗(BZ3;Z3) =
Z3[a, β(a)]

(a2 = 0)
. (3.24)

Note that the class a fully specifies the Z3 bundle. Embedding BZ3 into BD6, reflections

send a to −a. As a result, the pullback of a characteristic class of a D6 bundle of the

form β(a)n ∪ a represents an element in H∗(BD6,Z3) if n is odd and an element in

H∗(BD6, Z̃3) if n is even, where Z̃3 indicates the twisted coefficient system. With this

one has, where ∼ denotes equivalence under pullback,

q ∼ β(a) ∪ a , q̃ ∼ β(a)2 , q̂ ∼ a , q̂5 ∼ β(a)2 ∪ a . (3.25)

In the following we will write the mod 3 characteristic classes of the duality bundle in

terms of a and β(a) keeping in mind that they are associated to the cohomology of BD6

with twisted and untwisted coefficients under pullback. Only classes with untwisted

coefficients can give rise, via integration, to bordism invariants.

Mod 4 characteristic classes: These classes can be constructed analogously to the mod 3

classes above, by studying the cohomology rings H∗(BD8,Z4) and H∗(BD8, Z̃4) using

the embedding

BZ4 → BD8 , (3.26)

with Z4 generating rotations. This leads to a class b in degree 1; if β denotes the

Bockstein associated to the short exact sequence

0 Z4 Z16 Z4 0 , (3.27)

then b and β(b) generate the cohomology ring [104, Example 3.41]

H∗(BZ4;Z4) =
Z4[b, β(b)]

b2 = 2β(b)
. (3.28)

Again, b fully specifies the Z4 bundle. The reflections send b to −b and again one

can associate the elements in the (un)twisted cohomology of BD8 via the pullback to

combinations of b and β(b) as above. This identification is understood in the following,

where we will denote the mod 4 classes in terms of b and β(b).

Finally, with the identification of the characteristic class of the duality bundle we can for-

mulate the requirement for a well-defined Spin-GL+(2,Z) structure. For an orientable d-

dimensional spacetime manifoldM with tangent bundle TM the existence of a Spin-GL+(2,Z)
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structure demands a correlation between the second Stiefel-Whitney class of the tangent bun-

dle w2(TM) and the characteristic class w of the principal GL(2,Z) bundle, namely that

w2(TM) = w , (3.29)

where w is the mod 2 characteristic class described above.4

4 Duality anomalies of type IIB string theory

We will now apply the general discussion of Section 2 to the particular case of type IIB string

theory. As reviewed in Section 3.1, there are three versions of the duality group of type IIB

string theory, in which one successively includes the effects of fermions, and of orientation

reversing worldsheet symmetries. Consequently, there are three bordism groups one could

discuss:5

ΩSpin
11

(
BSL(2,Z)

) ∼= (Z2)⊕2 ⊕ (Z8)⊕2 ⊕ Z128 ⊕ Z3 ⊕ Z27 ,

Ω
Spin-Mp(2,Z)
11

∼= Z8 ⊕ (Z2)⊕2 ⊕ Z3 ⊕ Z27 ,

Ω
Spin-GL+(2,Z)
11

∼= Z8 ⊕ (Z2)⊕9 ⊕ Z3 ⊕ Z27.

(4.1)

In the above, the notation ΩSpin-G
∗ means Spin-G bordism, which is different from ΩSpin

∗ (BG),

where there is no twist (in the same sense used above line 3.19)). Since type IIB string

theory contains fermions, the first group is not of direct physical relevance. However, this

illustrates how the introduction of fermions already gets rid of many potential anomalies that

could have been realized by an SL(2,Z)-invariant bosonic theory. Enlarging the structure

group introduces new equivalence relations between manifolds, thereby reducing the potential

anomalies (see [47] for more instances of the same phenomenon).

As discussed in full generality above, our task is to determine the anomaly theory A of

type IIB supergravity in terms of the characteristic classes of the spacetime manifold and the

duality bundle and evaluate it on 11-manifolds that represent the generators of the relevant

bordism groups above. We directly construct the anomaly theory associated to the duality

group GL+(2,Z) and then determine a complete list of generators for the bordism classes

in the last entry of (4.1). This enables us to study the presence of duality anomalies in full

generality.

4.1 The IIB anomaly theory

We are finally in a position to study the duality anomaly of type IIB supergravity. As

reviewed in Section 3.1, classical type IIB supergravity—the effective field theory that arises

4I.e., a Spin-GL+(2,Z) structure encodes information about the trivialization of w2(TM)− w.
5For the computation of these bordism groups and their generators we used techniques including the

Atiyah-Hirzebruch as well as the Adams spectral sequence. We will go into these computations in detail in
the upcoming work [41]; see also [80, 105].
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as the low-energy limit of IIB string theory—can be formulated on Spin-GL+(2,Z) manifolds,

and we would like to see if this feature survives the inclusion of quantum effects. Determining

the anomaly theory of a general QFT is not an easy task; and here we have one coupled

to gravity. But because it has a large amount of supersymmetry, type IIB supergravity

has a path-integral formulation [95, 106], and the familiar perturbative formulas for fermion

anomalies reviewed in [50, 55] can be used, even at strong coupling.6 A similar situation

takes place for 11-dimensional M-theory, or the worldvolume theory of M2-branes [96, 97],

which have no weak coupling but whose low-energy limit is also controlled by a path integral

description.

We should also note the works [20, 21] which study a duality anomaly of type IIB

supergravity/F-theory as well. This anomaly is, however, different from the ones discussed

below, and strictly speaking, it only arises after gauging the duality group of type IIB super-

gravity. We elaborate on the connection between the two anomalies in Appendix A.

So which supergravity fields can have an anomalous variation under duality transforma-

tions? As described in Section 3.1, the usual chiral fields of type IIB supergravity, namely

the gravitini, dilatini, and the self-dual chiral 4-form, all transform under the duality group.

Moreover, (C2, B2) are not invariant but instead transform in the two-dimensional represen-

tation of the duality group (3.5) (see Section 3.1 or e.g. [106], sec. 3.1).

A similar story holds for the dual 6-form fields, as well as the axio-dilaton. Although

these fields transform non-trivially under dualities, they do not have an anomalous variation.

The easiest way to see this is to exhibit the possibility of turning on a symmetry-preserving

mass term in the Lagrangian [55]. Equivalently, if one can construct a Pauli-Villars regulator

for the field in question while preserving the symmetries, the field is not anomalous. Although

we will not do it in detail, this turns out to be the case for both the axio-dilaton τ as well

as the 2-form fields (C2, B2). This means that the integration over these fields in the path

integral will not contribute to the duality anomaly; however, the background values of the

fields, which can appear in additional topological couplings can (and do) affect the anomaly.

Moreover, the supergravity fields can transform under higher-form symmetries, e.g.,

C2 → C2 + dΛC , B2 → B2 + dΛB . (4.2)

These could also have anomalies of their own, or mixed anomalies with dualities, diffeomor-

phisms, etc. (see e.g. [107] for a recent example of the phenomenon). For these anomalies

we expect all fields to contribute.7 While we do not include these mixed anomalies, eluci-

dating the full symmetry type of ten-dimensional supergravities at the quantum level is an

important open problem. To summarize, in the setups that we consider below, the only fields

that contribute to the duality anomaly are the usual suspects: the fermions and the self-dual

6Strictly speaking the path integral prescription also includes integration over the graviton variable, since
this is a dynamical field in IIB string theory. As usual, by the low-energy EFT we mean the theory of all fields
excluding gravity.

7Generically, we expect to find anomalies in most of these cases. This is not an inconsistency, since most
of these symmetries are broken explicitly by the various branes in type IIB string theory [95, 108].
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4-form.

The full anomaly theory of type IIB supergravity, including duality symmetry, and eval-

uated on an 11-manifold X, is given by a generalization of the theory introduced in [23],

including the representations under the duality group:

A(X) = ηRS
1 (X)− 2ηD

1 (X)− ηD
−3(X)− 1

8η
Sig
− (X) + Arf(X)− Q̃(c̆) . (4.3)

Here, ηRS
q denotes the η-invariant of the 11d Rarita-Schwinger operator (a Dirac operator

coupled to the tensor product of the tangent and Spin bundles), coupled to Spin-GL+(2,Z)

in the representations given by (3.6) (the subscripts of +1 for gravitino and −3 for dilatino

denote the effective U(1) charges one would get from the representation (3.6) by embedding

into Mp(2,R) as done in [20, 21]). Similarly, ηD
q is the η-invariant of the ordinary Dirac

operator coupled to the same representation [109]. Finally, the last three terms ηSig
− (the minus

subscript indicates the transformation properties under orientation reversal (3.18)), Arf, and

Q̃(c̆) come from the anomaly theory of the self-dual field coupled to the Spin-GL+(2,Z)

structure background as in [23], which is more complicated and will be discussed briefly

below.

In order to elucidate the terms on the right-hand side of (4.3) as well as their physical

origin in the context of associated index theorems we will describe them individually in the

following:

• The dilatini comprise a complex Weyl fermion λ transforming in the representation (3.6)

of the duality group. The anomaly theory is determined in terms of the 11d η-invariant

−ηD
−3 of a charged fermion.8

This η-invariant can be connected to the APS index theorem [109] in the following way.

Let Y be a 12-dimensional Spin-GL+(2,Z) manifold with boundary ∂Y = X; then the

η-invariant on X is related to the index on Y as follows

ηD
q (X) = IndexD(Y )−

∫
Y
ID , (4.4)

where ID is the usual index density; it is the same as in the purely gravitational case

(i.e., it is determined in terms of the Â-genus), because the duality group is discrete.

In this paper we will be interested in 11-manifolds X which are not boundaries; the

computation of the η-invariants is more subtle in this case.

• The complex gravitino Ψµ transforms in the corresponding representation (3.6) of the

duality group. To determine the anomaly theory, we note that an 11-dimensional Rarita-

Schwinger operator has a 10-dimensional boundary mode consisting of a 10d Rarita-

Schwinger field plus a Dirac fermion of opposite chirality. Moreover, the 10-dimensional

8The additional minus sign corresponds to the fact that we use conventions in which the gravitino has
positive chirality, i.e., the dilatino has negative chirality.
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Rarita-Schwinger field itself decomposes as a gravitino plus a second Dirac field repre-

sentation. The anomaly theory associated to the gravitino is then [23, 50, 110]

ηGravitino
1 = ηRS

1 − 2ηD
1 . (4.5)

In relating ηRS to a 12-dimensional index via the APS theorem, we must take into ac-

count that the 12-dimensional Rarita-Schwinger operator reduces to an 11-dimensional

Rarita-Schwinger field plus a Dirac fermion. Thus, the correct expression is that on Y

with boundary X,

ηRS
q (X) = IndexRS −

∫
Y

(
IRS − ID

)
. (4.6)

• Finally, as discussed in Section 3.1, the chiral 4-form C4 with self-dual 5-form field

strength picks up a sign under reflections in GL(2,Z), see (3.18). The corresponding

anomaly theory has been worked out in [23], and it includes three terms:

A4-form(X) = −1
8η

Sig
− (X) + Arf(X)− Q̃(c̆) . (4.7)

Here, ηSig
− is (modulo an integer) the η-invariant of the operator appearing as the bound-

ary contribution to the APS index theorem for the 12-dimensional signature operator,

ηSig
− = Signature−

∫
Y

L , (4.8)

where L is the Hirzebruch L-genus (see e.g. [110]).

As discussed at length in [23, 27–29], to properly define the partition function of a

self-dual field requires specifying a quadratic refinement Q̃ of the bilinear pairing in

differential cohomology9. But because reflections in the duality group act on C4, this

pairing is actually defined on a twisted differential cohomology group. We take the next

few paragraphs to explain how to define this pairing, the quadratic refinement, and the

Arf invariant.

IfX is a Spin-GL+(2,Z)-manifold, it has a canonical local system L, defined to be the as-

sociated local system to the duality GL(2,Z)-bundle via the determinant det : GL(2,Z)

→ Aut(Z) = {±1}. In other words, if the monodromy of the duality bundle around

a class γ ∈ π1(X) is a reflection, γ acts on L by −1; otherwise γ acts by the identity.

Because reflections in GL(2,Z) act by −1 on C4, C4 is actually a cocycle for the twisted

9Or a more sophisticated differential cohomology theory. For instance, in perturbative string theory, RR
fields are quantized in differential K theory. This theory has a map to differential cohomology, and the
discussion in the main text holds, with the caveat that one must restrict to differential cohomology classes in
the image from the map in differential K theory. The differential K-theory description is difficult to reconcile
with duality [62]; We expect that similar features hold for whichever differential cohomology theory must be
used when general duality bundles are turned on.
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differential cohomology group Ȟ5(X;L). GL(2,Z) acts by the identity on L⊗L, which

means that the product of two twisted cohomology classes untwists.

The chiral 4-form field C4 is the boundary mode of a 5-form field C5, which is what is

actually used in the construction of the anomaly theory. The field strength F6 of C5 is

a cocycle for Ȟ6(X;L). The bilinear pairing is a map

〈–, –〉 : Ȟ6(X;L)× Ȟ6(X;L)→ R/Z (4.9)

given by “cup product, then integrate.” Specifically, the product in differential coho-

mology is a map

∗ : Ȟ6(X;L)× Ȟ6(X;L)→ Ȟ12(X;L⊗ L) ∼= Ȟ12(X;Z). (4.10)

Integration lowers the degree by dim(X), so when X is 11-dimensional, the map lands

in Ȟ1(pt) ∼= R/Z, as promised.10

Now suppose 〈–, –〉 : A × A → R/Z is any bilinear pairing on an Abelian group A. A

quadratic refinement of 〈–, –〉 is defined to be a map Q̃ : A→ R/Z satisfying

〈v, w〉 = Q̃(v + w)− Q̃(v)− Q̃(w) + Q̃(0) , (4.11)

for all v, w ∈ A. If A is finite, the Arf invariant of Q̃, denoted Arf(Q̃) ∈ R/Z, is defined

to satisfy

Arf(Q̃) =
1

2π
arg

(∑
a∈A

e2πiQ̃(a)

)
. (4.12)

Since Ȟ6(X;L) need not be finite, we restrict the bilinear pairing to flat differential

cohomology classes which are torsion; the subgroup of such classes is finite when X is

compact.

The third term in (4.7), Q̃(c̆), which involves the quadratic refinement, accounts for the

coupling of the self-dual form to a background 5-form field c̆ [23]. This term is actually

essential in IIB supergravity, because the Chern-Simons coupling

SCS ∼
∫
C4 ∧ F3 ∧H3 (4.13)

implies that the potential B2∧H3 (or more precisely, its differential cohomology version

c̆ ∼ B̆2∗C̆2) acts as a background field for the self-dual form [23, 29]. An 11-dimensional

10The anomaly theory A is topological, and therefore one might expect that this pairing can be defined on
H6(X;L) ×H6(X;L), rather than on differential cohomology, and by replacing F6 with its image under the
characteristic class map, which lives in H6(X;L). This is true: in this case this is the usual torsion pairing as
described in [111], albeit with a twist. Once again the fact that the cup product of two twisted classes untwists
means the definition goes through. Computing with ordinary cohomology or with differential cohomology gives
the same value for the anomaly theory. See also the discussion in Appendix D.3.
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background in which Q̃(B̆2 ∗ C̆2) 6= 0 signals a mixed anomaly involving the 4-form and

gauge transformations for the B2, C2 fields. Since the latter transform non-trivially

under the duality group, there could also potentially be a mixed anomaly as well. As

we will see later on, cancelling anomalies in discrete symmetries involves the addition of

topological terms to the action; we expect that, in any background where the sum over

B2, C2 induces an anomaly, there will be topological terms that cancel it, rendering IIB

supergravity well-defined. Studying these terms would be very interesting on its own,

but lies outside of the scope of the present paper.11

So far, we have discussed how the anomaly theory of the self-dual field works, but there

is an essential issue we have sidestepped;12 we have not discussed the construction

of the quadratic refinement Q̃. In fact, canonical quadratic refinements depend on

the particular cohomology theory under study, and do not exist in general for oriented

manifolds. Reference [23] (see also [116]), constructed a canonical Q̃ for ten-dimensional

Spin manifolds using differential K-theory, but the construction does not extend to non-

Spin manifolds or situations with a non-trivial duality bundle, which are precisely the

ones of interest in the present paper.

We do not know how to extend the construction of [23] to provide a quadratic refinement

for general Spin-GL+(2,Z) manifolds, or to provide an alternative. Given this, one could

entertain the possibility that there is no canonical choice of quadratic refinement outside

of the realm of Spin manifolds considered in [23]. In this case, specifying the quadratic

refinement would be part of the data needed to make sense of the partition function

of a 10d theory with self-dual fields, analogous to how, for example, one must specify

a choice of Spin structure in theories with fermions. In this case, the bordism groups

we have computed, which ignore this information, would not provide an exhaustive

classification of the anomalies, and there would be more global anomalies than the ones

we consider in this paper.13

The other possibility is that there is a canonical choice of quadratic refinement for

each Spin-GL+(2,Z) manifold, even if we cannot construct it at present. Although we

cannot rigorously prove it, this is the more natural possibility consistent with M-/F-

theory duality, since M-theory only requires an mc structure to make sense [48], and at

11In fact, the proper formulation of RR fields involves differential K-theory, and treats C4 and C2 in a
unified manner [62, 112–115]. It is not known how to make this formulation compatible with duality, and it
is conceivable that doing this would also solve the issues with the choice of quadratic refinement, discussed
below. The results of this paper point to natural structures in type IIB string theory, which will hopefully be
reproduced by a more delicate analysis.

12We are indebted to Y. Tachikawa and K. Yonekura for bringing this point to our attention.
13Let us note that at least in the context of 6d chiral 2-forms as defined by their coupling to a bulk 7d Chern-

Simons-like theory of three-forms, additional data such as a Wu structure is needed to properly quantize the
edge mode theory (see e.g. [117]). Here, a Wu structure functions as the higher-dimensional analog of specifying
a Spin structure for 3d Chern-Simons and its coupling to chiral edge modes. In the present context specified
by quantum gravity, this option is less natural because fixing such a choice “from the start” is somewhat
awkward. For example, in the 2d worldsheet theory of a superstring, one actually sums over possible Spin
structures.
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no point does one need to specify data analogous to a quadratic refinement. A related

comment here is that similar considerations apply to compactifications in any number of

dimensions. Indeed, given an F-theory compactification on an elliptically fibered space

YD, reduction on a circle takes us to M-theory on YD (in the limit of large elliptic fiber),

so duality again suggests that this additional structure should not be required to make

sense of the corresponding F-theory backgrounds.14

Given this state of affairs, in this paper we will assume that there is a canonical choice

of quadratic refinement for each Spin-GL+(2,Z) manifold. In fact, in most cases that

will be of interest to us later on, we will be able to determine which quadratic refine-

ment should be chosen in each manifold we consider, solely from the requirement of

anomaly cancellation. Amazingly, we will find that anomalies can always be cancelled

by some (essentially unique) choice of quadratic refinement. Thus, our results should

be regarded as a “bottom-up” approach, in which we are able to bootstrap the correct

quadratic refinement. In turn, this can be interpreted as providing experimental ev-

idence suggesting that the choice of quadratic refinement is indeed unique. However,

since we are only interested in anomalies involving the duality bundle, we will set c̆ = 0

for the time being. That being said, the term Q̃(c̆) will make an important appearance

later on.

Putting the above contributions together, we recover (4.3). As a cross-check of the above,

one can evaluate the anomaly theory on a manifold X with [X] = 0 in Ω
Spin-GL+(2,Z)
11 , i.e.,

X bounds a Spin-GL+(2,Z) 12-manifold Y . The APS index theorems (4.4), (4.6) and (4.8)

(after taking into account the Arf invariant contribution, too) allow one to rewrite (4.3) as

IRS − 4ID − 1
8L = 0 , (4.14)

which is the celebrated type IIB anomaly cancellation identity [42].

4.2 Computation of the anomaly

We now turn to the central question of this paper: is the theory (4.3) non-trivial for some

Spin-GL+(2,Z) manifolds? Equation (4.14) shows that the anomaly theory (4.3) is a bordism

invariant. We have computed the relevant bordism group, which is

Ω
Spin-GL+(2,Z)
11

∼= ΩSpin-D16
11 ⊕ ΩSpin

11 (BD24) = Z8 ⊕ (Z2)⊕9 ⊕ Z27 ⊕ Z3 , (4.15)

14In the context of F-theory in its original formulation as a 12d theory [2] on a background geometry
of signature 10 + 2, the corresponding graviton supermultiplet contains both a 4-form potential C4 and a
privileged 1-form µ (see e.g. [118, 119]), and as proposed in [31], this can alternatively be formulated in terms
of a chiral 5-form C5 which produces the 4-form of 10 + 2 supergravity via C4 = µ ·C5 as in [31]. Viewing 10d
type IIB supergravity as an edge mode of this bulk 12d theory, there is a corresponding topological coupling
µ ∧ C5 ∧ dC5. Reduction on a timelike circle descends to the 11d topological term we have been discussing,
while reduction on a null circle passes directly to the 10d edge mode theory and the theory of a chiral 4-form
in ten dimensions. It would be interesting to make further contact between our current analysis and the more
speculative aspects of [31], but we defer such issues to future work.
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where again, the notation ΩSpin-G
∗ means Spin-G bordism, which is different from ΩSpin

∗ (BG),

where there is no twist (in the same sense used above line (3.19)). The result (4.15) comes

from a combination of Adams spectral sequence techniques and computations of η-invariants,

which we will report (alongside bordism groups of lower degree) in a separate publication

[41]. For our considerations here, the importance of having (4.15) is to guarantee that there

are no more anomalies than the ones that we will study momentarily.

To check for anomalies we need to find representatives for the generators of each of

the factors in (4.15) and evaluate the anomaly theory (4.3) on each of them.15 One of the

generators, X11 which we will call “Arcanum XI”, seems to not have been discussed in the

mathematical or physics literature, and we describe it in Section 6 as well as in more detail

in Appendix C. Moreover, we relegate the details of the calculations of the anomalies to

Appendix D, where several useful formulas including the η-invariants of spin-3
2 fermions on

lens spaces are derived. The results are summarized in the following table, where we list, for

each of the factors in (4.15), a generator, a cohomology class or η-invariant that detects it

(using the notation in Section 3.1), and the value of the anomaly theory on each of them:

Factor Generator Detector A(gen.)

Z27 L11
3 ηD

1 − ηD
3

1
3

Z3 HP2 × L3
3 ηRS

1 − ηRS
3

1
3

Z8 Q11
4 ηD

1 − ηD
3

k
4

Z2 HP2 × L3
4 η̃RS

1 − 2η̃D
1 − η̃D

−3
1
2

Z2 RP11 x11 0

Z2 R̃P11 y11 0

Z2 HP2 × RP3 w2
4 x

3 0

Z2 HP2 × R̃P3 w2
4 y

3 0

Z2 X10 × S1 w4w6 x 0

Z2 X10 × S̃1 w4w6 y 0

Z2 X11 w4
2 x

3 0 or 1
2

Z2 X̃11 w4
2 y

3 0 or 1
2

(4.16)

Here, η̃ are reduced η-invariants introduced in (D.14) in Appendix D. We now describe some

of the manifolds in the second column of (4.16):

• L2k−1
n denotes the lens space S2k−1/Zn, where Zn acts as

(z1, z2, . . . zk) ∈ C2k → e
2πi
n (z1, z2, . . . zk) , (4.17)

and S2k−1 is regarded as the unit sphere in C2k. Principal Zn bundles over L2k−1
n are

15The generators we use are natural from a mathematical perspective, but they may not be the most
natural possibilities from a physics standpoint. For instance, we do not care about how many supercharges are
preserved etc. This will be more relevant in our upcoming work [41], where we will study lower-dimensional
bordism groups and their bordism defects (which are generalizations of S-folds).
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classified by H1(L2k−1
n ,Zn). The lens spaces for all the entries in (4.16) are equipped

with the Zn bundle S2k−1 → L2k−1
n ; the class of this bundle is a generator of the

cohomology group H1(L2k−1
n ;Zn). This Zn bundle specifies the associated principal

GL(2,Z) bundle over the lens space, via the embeddings Z4 → GL(2,Z), Z3 → GL(2,Z)

sending the generators to S and U , respectively. In these cases, the lift from the GL(2,Z)

bundle to a Spin-GL+(2,Z) bundle is unique, so the solutions are specified completely.

• HP2 is the quaternionic projective plane, one of the two generators of ΩSpin
8 [120], with

a trivial duality bundle over HP2. As a cross-check, we also computed anomalies for

the other generator of ΩSpin
8 , the Bott manifold, although an Adams spectral sequence

argument (which we will explain in [41]) shows that the anomaly on products of Bott

manifolds and lens spaces is linearly dependent with the anomaly on HP2×L3
n as written

here. For completeness, we recall that a Bott manifold is defined as a Spin 8-manifold

with unit Dirac index; we consider here the particular example with p1 = 0 discussed

in [48]. We take a trivial duality bundle over the Bott manifold. With these choices,

all anomalies involving products of Bott manifolds vanish. Although we do not use this

fact here, it is worth noting that there are examples of Bott manifolds with Spin(7)

exceptional holonomy [121] which therefore preserve two real supercharges when used

as compactification spaces of type II string theory and M-theory.

• Q11
4 is a lens space bundle with fiber L9

4 over the 2-sphere, see e.g. [122]. The lens space

bundle is obtained by a quotient of the sphere bundle embedded into the rank 5 complex

vector composed out of four trivial line bundles and the tensor square of the Hopf line

bundle over S2. The group action of Z4 on the fiber is the same as the action above for

lens spaces, with the duality bundle determined by this group action. This manifold

is not Spin, but it admits a Spin-Z8 (and in fact a Spinc) structure. Although there

is no fundamental obstacle to evaluating the anomaly theory in this background, the

non-trivial fibration over the base S2 complicates the computation, which we have not

performed. Instead, we study anomalies in this bordism class indirectly by computing

the anomalies in the 11-dimensional lens space L11
4 , which is Spin and generates a Z2

subgroup of the full Z8 factor generated by Q11
4 . With the techniques developed in

Appendix D we can evaluate the anomaly theory in this background to be A(L11
4 ) =

1
2 . Additionally, we can use indirect arguments involving the anomaly cancellation

mechanism we discuss below to establish that A(Q11
4 ) = k/4 for some k an integer as

indicated in Table (4.16). While we were not able to fully determine k, we check the

anomaly cancellation for L11
4 and present some arguments that suggest that also the

anomaly associated to Q11
4 is cancelled.

• The generators we have discussed so far, above the dashed line, are in the image of

the natural map Ω
Spin-Mp(2,Z)
11 → Ω

Spin-GL+(2,Z)
11 . Equivalently, the duality bundles only

involve duality transformations of determinant +1 (see Section 3.1). This is not the

case for the generators below the dashed line; they are manifolds with duality bundle
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involving GL+(2,Z) reflections. As explained in Section 3.1, a Spin-D16 manifold has

a Spin-GL+(2,Z) structure in a canonical way; the generators below the dashed line in

(4.16) are in fact all Spin-D16 manifolds. Additionally, all the examples turn out to have

Spin-D8 structures, which are defined analogously to Spin-D16 structures (see Section

2). There are two embeddings i, ı̃ : D8 → D16, as illustrated in Figure 3, and therefore

a Spin-D8 manifold M has two associated Spin-D16 structures, which we denoted M

and M̃ , respectively, in the table above.

To describe these embeddings in more detail, consider D8 as the group of symmetries

of the square [−1, 1] × [−1, 1] ⊂ R2. Let r be rotation by π/2 counterclockwise and s

be a reflection through the x-axis; likewise, consider D16 as the group of symmetries of

a regular octagon in a plane, oriented such that four of its sides are parallel to the x-

and y-axes. Then i : D8 → D16 sends r to a counterclockwise rotation by π/2 and s to

reflection through the x-axis; ı̃ : D8 → D16 sends r to the same rotation, but sends s

to the reflection through the line y = x/2, which meets two vertices of the octagon. In

Figure 3, i corresponds to the embedding on the left and ı̃ corresponds to the embedding

on the right.

Figure 3. The two embeddings i, ı̃ : D8 → D16 of the symmetries of a square into the symmetries of
an octagon.

Much like a Spinc manifold has an associated principal U(1) bundle, a Spin-D8 manifold

has an associated D4 = Z2 × Z2 bundle. For the generators X we list below, we

will specify this principal Z2 × Z2 bundle, and any Spin-D8 structure on X with this

associated bundle can be chosen.

• RPn is the usual real projective space. The Z2 × Z2 bundle is non-trivial in its first

factor only.

• X10 is the Milnor hypersurface that is one of the generators of ΩSpin
10 = (Z2)⊕3 [62]. The

Dirac and Rarita-Schwinger indices on this manifold vanish, and it is detected by an

integral of Stiefel-Whitney classes of the tangent bundle,
∫
w4w6. The Z2 × Z2 bundle

over X10 is trivial, and the Z2×Z2 bundle over S1 is specified by demanding that going

around the circle picks up an action of the first Z2. The two embeddings of this Z2 into

D8 correspond to S1 and S̃1, as above.

• The “Arcanum XI” manifold X11 and its Spin-D8 structure do not seem to have ap-

peared in the literature before, and are described briefly in Section 6 and also in Ap-

pendix C. Here, we will only comment that X11 is constructed as a quotient of S6× S5
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by a Z2 × Z2 action, and that it can also be understood as a non-trivial fibration of

RP5 over RP6. X11 is the only class whose anomaly we were unable to compute (or

even connect to another closely related computation, as in the case of Q11
4 ); because

2[X11] = 0 in the bordism group, its anomaly is listed as “0 or 1
2” in (4.16). We will

also explain the difficulties in computing the Arcanum anomaly in Section 6.

There are special points in the upper half plane which are invariant under finite subgroups

of the duality symmetry group Spin-GL+(2,Z). These special points are τ = i, where a Z8

is restored, and τ = e2πi/3, where a Z6 is restored. The D8 generated by (the Pin+ lift

of) reflections leaves any purely imaginary τ invariant.16 As explained in Section 3.1, the

full duality group is an amalgam of the finite groups restored at these special points, which

suggests that the full duality anomaly can be reconstructed from the anomalies in these

finite generating subgroups. The results in (4.16) show that this is indeed the case: for the

generators above the dashed line, the axio-dilaton is constant and fixed to one of the special

values τ = e2πi/3 (first two cases) or τ = i (last two), and the transition functions of the

duality bundle are contained within Z6 and Z8, respectively. Below the dashed line, the

axio-dilaton can take any imaginary value, but the duality bundle is contained within the D8

subgroup which includes reflections.

4.3 Physical interpretation and anomaly cancellation

The results in (4.16) indicate that there is no consistent way to define pure type IIB su-

pergravity on an arbitrary manifold. Importantly, none of the generators of the bordism

group where the anomaly is non-vanishing is a mapping torus, i.e. an 11-manifold of the form

(X × [0, 1])/ ∼, where ∼ acts as a diffeomorphism on X and identifies the two ends of the

interval. Indeed, mapping tori are precisely the type of manifolds associated to anomalies in

the traditional sense of the word [55]. The anomalies we have uncovered are more subtle,

being of the “Dai-Freed type” which signify an inconsistency of the theory if one allows for

topology changes, as explained in Section 2. This is a natural thing to do in the context of a

theory of gravity, so as discussed in Section 2 we take the point of view that the anomalies

(4.16) signal a pathology of the theory and must be cancelled.

An analogous situation occurs for N = 1 supersymmetric theories in 10 dimensions.

There, the fermion content of the theory leads to a perturbative anomaly in a gauge symmetry,

which is cancelled by the contribution of a topological term via what is known as the Green-

Schwarz mechanism [124]. As we will now see, the anomalies in (4.16) above the dashed line

can be cancelled by a similar mechanism. Specifically, we will show that a subtle modification

of the Chern-Simons term of type IIB supergravity is enough to cancel the anomalies. As

discussed above, we check anomaly cancellation in the Z8 factor for a Z2 subgroup generated

by L11
4 explicitly, and present an argument why we believe that this cancellation extends to

Q11
4 . On classes below the dashed line the anomaly cannot be cancelled by the mechanism

16See e.g. reference [123] for further discussion on the physical significance of this special locus in the context
of 4d QFTs with interfaces at strong coupling.
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we are about to describe. However, all of the possible anomalies vanish, except possibly for

those associated to X11, which we were not able to compute.

To see this, recall that in Subsection 4.1 we explained that a background connection

can be coupled to the self-dual field C4, and that this is connected with mixed anomalies

involving C4, C2, and B2. The proper formalism, developed in [23], represents the background

connection c̆ as an element in differential cohomology, and the anomaly theory when taking

into account this background connection contains a term of the form

A ⊃ −Q̃(c̆) , (4.18)

in terms of the quadratic refinement involved in the construction of the anomaly of the

self-dual field. For the particular case of Spin manifolds, a canonical choice of quadratic

refinement exists [23, 116], and in Appendix C we determine it from anomaly cancellation in

lens spaces without duality bundle. Using these techniques, we can construct the following

table, involving the four Spin-Mp(2,Z) entries in (4.16)17 as well as L11
4 (which is bordant to

four copies of Q11
4 ):

Class A Arf Q̃ β(a)2 ∪ a (p1)3
2 ∪ a β(b)2 ∪ b 1

2 [(p1)4 − P(w)] ∪ b
L11

3 1/3 1/4 n2/3 1 0 0 0

L3
3 ×HP2 1/3 1/4 n2/3 0 1 0 0

L11
4 1/2 3/8 3n2/8 0 0 0 2

L3
4 ×HP2 1/2 3/8 3n2/8 0 0 0 2

(4.19)

The first column lists representatives of the relevant bordism classes, and the second

column lists their anomalies. The third column gives the Arf invariant associated to the cor-

responding space, determined from the requirement that anomalies without a duality bundle

turned on should cancel; see Appendix D. Note that since Q11
4 is not Spin, one cannot turn

off the duality bundle and derive the Arf invariant in this way. The numbers in the last four

entries of the table denote entries in torsion cohomology in terms of the characteristic classes

of the tangent bundle of the spacetime manifold as well as the duality bundle discussed in

Section 3.2. To evaluate these for the given manifolds we use that the Pontryagin class of the

lens space L2k−1
n is given by [125, 126]

p = (1 + x2)k , (4.20)

where x is a generator of H2(L2k−1
n ,Z) = Zn, together with the Pontryagin classes of HP2

(discussed in Appendix D, or also e.g. in [48, 127]). These classes should be understood as

integers modulo n for Zn. This means that the first two classes are elements of Z3 and the

latter two are classes in Z4. The fourth column lists the only quadratic refinement compatible

17An additional line involving manifolds of the form Lens×Bott would show vanishing anomalies, if we take
the particular Bott manifold constructed in [48, §5.3].
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with the given Arf invariant, which can be determined using (4.12). Finally, in the last entry,

P is the Pontryagin square operation [128].

To compute the entries in the last two columns of the table, it is important to take into

account that L11
4 and L3

4 are Spin manifolds, and so, per the general considerations of Section

2, the principal Z4 bundle associated to the Spin-Z8 structure has a class which is an even

number of times the generator of H1 with Z4 coefficients.

Notice the peculiarity that all the anomalies that we can explicitly determine can be

cancelled by the term associated to the quadratic refinement for a particular choice of c̆,

where we further set the background fields B2 and C2 to zero. A bit of guesswork reveals

that the following combinations can cancel the anomalies:

c̆0 = Y5 =

(
λ1β(a)2 + λ2

(p1)3

2

)
∪ a+

λ3

2
[(p1)4 − P(w)] ∪ b+ κβ(b)2 ∪ b , (4.21)

where λi are signs (they can only be ±1), which we leave undetermined for now. Here, (p1)j
denotes the reduction of the first Pontryagin class modulo j. The coefficient κ cannot be

determined from the anomalies in (4.19), but potentially contributes for Q11
4 as we will argue

below.

This opens up a very simple and elegant possibility to cancel all anomalies. Suppose that

the full action of IIB string theory contains a term of the form

(C4, Y5) ≈
∫
F5 ∪

[(
λ1β(a)2 + λ2

(p1)3

2

)
∪ a+

λ3

2
[(p1)4 − P(w)] ∪ b+ κβ(b)2 ∪ b

]
, (4.22)

where the second term should be understood as taking values in cohomology with U(1) coef-

ficients. Since λ3[(p1)4 −P(w)] lives in mod 4 cohomology, dividing it by 2 is not automatic,

and indeed there are closed, oriented manifolds for which λ3[(p1)4 − P(w)] is not equal to

twice another mod 4 class.18 On Spin-Mp(2,Z) manifolds, though, we can divide, as proven

in Appendix D.2.

Having the term (4.22) in the action ensures that c̆ is turned on according to Table

(4.19), so that anomalies cancel in all accessible cases. The topological coupling we discuss

here mixes discrete and continuous fields in type IIB supergravity, realizing a version of the

Green-Schwarz mechanism different from both the ordinary one in [124] and the topological

Green-Schwarz mechanism described in [45], whose possible application we discuss in Section

5.1.

We will now explain why (4.21) is the right kind of class to couple to the chiral 4-form.

In particular, it is possible to interpret it as a differential cohomology class with coefficients

twisted by the determinant representation of GL+(2,Z). That the twisting must appear was

shown in Section 3.1, since reflections map a → −a, b → −b. The characteristic classes on

the right hand side of (4.21) are elements in H5(X, Z̃3) and H5(X, Z̃4), respectively. Both of

18This is a combination of a calculation of P(w2) in [129, 130] and a description of H4(BSO;Z4) in [131,
Theorem 1].
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these can be regarded as elements of H5(X, Ũ(1)) via the natural maps instead. As explained

in [23], elements of this group precisely define a flat twisted differential cohomology class.

Thus, the coupling above is well-defined.

The value of the coefficients λ1 and λ3 can be fixed by an indirect, heuristic argument

demanding agreement with the charge quantization properties of S-fold backgrounds [43, 44],

which we now present. It would be desirable to check this argument rigorously; this would

involve dimensional reduction of the anomaly theory of the self-dual field with fixed boundary

conditions.

Consider a stack of N D3-branes in flat space. The type IIB duality symmetry acts as a

global symmetry of the worldvolume theory. As studied in [71], this symmetry is anomalous,

and the anomaly can be related to the quantization properties of the charges in generalized

S-fold backgrounds. These are type IIB backgrounds of the form S5/Zn, for n = 2, 3, 4, 6,

which also involve a non-trivial duality bundle on the lens space.

As shown in [5, 23], a stack of N D3-branes moving in a closed loop around this space

picks up a total phase given by ∫
S5/Zn

F5 +A ∈ Z, (4.23)

where A is the duality anomaly of the Maxwell theory in the S-fold background on the

worldvolume theory of the brane stack. The value of this anomaly was computed in [71] for

several cases, it is fractional, and matches the values of
∫
F5 determined by an M-theory

computation.

Thus, consistency forces the background S5/Zn to have fractional
∫
F5 flux threading

it. While the argument involving Dirac quantization is solid, in principle the quantization

condition on F5 should come directly from an analysis of the 10-dimensional theory. We will

now see how the term (4.22) may give such a fractional contribution, and in doing so, we

will fix the value of λ1 and λ3. Consider the near-horizon geometry of the N D3-branes.

This is described by the familiar AdS5 × S5 geometry. In the holographic context, we expect

anomalies of the boundary field theory to arise as topological sectors in the action of the bulk

dual geometry [132]. In particular, this means that dimensional reduction of 10d type IIB

supergravity should produce a 5d action including a term of the form

S5d ⊃
∫

AdS5

A , (4.24)

involving the duality bundle. A naive reduction of the 10d term (4.22) on a sphere with N

units of five-form flux produces

S5d ⊃ N
∫

AdS5

[(
λ1β(a)2 + λ2

(p1)3

2

)
∪ a+

λ3

2
[(p1)4 − P(w)] ∪ b+ κβ(b)2 ∪ b

]
, (4.25)

which has the right form to match the duality anomaly of the boundary theory. We will see

this is the case for the Z3 and Z4 part, separately.
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For Z3, consider the 5d theory on S5/Z3. The duality anomaly has a contribution of −2
9

coming from the gauge fields, and a second contribution of −1
9 per complex fermion. Since

there are four of these, we get a total anomaly of −6
9 ∼ +1

3 . Since according to formula

(4.20) the Pontryagin classes of S5/Z3 are trivial, the λ2 term does not contribute and we

get agreement if we set λ1 = +1. This matching is not entirely trivial; had the anomaly not

been a multiple of 3, it would not have been possible to capture it with a term of the form

(4.25). As we will see in the next Section, this is also related to the fact that the Z3 part of

anomaly theory (5.3) is in fact a bosonic tQFT, even though it is the anomaly of a theory

which includes fermions.

For the Z4 S-folds, things do not work out so simply. The Pontryagin class is p1 = 3x2,

where x is the generator of H2(S5/Z4,Z) = Z4. Since the space S5/Z4 is not Spin, p1

is not divisible by 2; the term P(w) = β(b)2 solves this, with the result that the class
1
2 [(p1)4 − P(w)] = x2. Adding the possible contribution from the κβ(b)2 ∪ b term in (4.21),

this becomes (λ3 + κ)x2 ∪ b. This is a modulo 4 class, yet the correct S-fold charge is 3/8.

The discrepancy, which is just a factor of two, is possibly related to the fact that we did not

perform the dimensional reduction of the theory of the self-dual field properly, but rather

treated it as if it was an ordinary bilinear pairing. This seems to be fine at prime three, but

not at prime 2. It would be very interesting to solve this problem and provide a more rigorous

consistency check of our proposal.

So far we have (partially) reproduced the duality anomaly of the D3-brane worldvolume

theory in the case where no background fields have been turned on. The U(N) worldvolume

theory (including the center of mass degrees of freedom) also has electric and magnetic U(1)

1-form symmetries for which 2-form backgrounds can be turned on. This is what happens

in some S-fold backgrounds, and we should account for their charges too. In the following

we will do this, again heuristically. Analogous to the procedure above, we would expect that

the difference of F5 charges between these two backgrounds should be given by a term of the

form

N

∫
B2 ∪ F3 =

N

2

∫
(B2F3 − C2H3) =

N

2

∫
(B2, C2) , (4.26)

where in the last equality we have replaced the product in cohomology by 1
2 of the SL(2,Z)

duality invariant differential cohomology pairing constructed in [23]. This division by two

does not make sense in general, but it can be replaced by its quadratic refinement

N

2

∫
(B2, C2) → NQ(c̆2) , (4.27)

where c̆2 is the differential cohomology class encoding the discrete flux on the S-fold back-

ground. As was proven in [23, 71], this term correctly accounts for the charge differences

between the different S-folds, provided the appropriate quadratic refinement is chosen in each

example.

Thus, we have reproduced, at least heuristically, part of the duality and 1-form anomalies

of the worldvolume theory of D3-branes, providing some support that the term (4.22), which
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also cancels the ten-dimensional anomalies, is indeed correct. Nevertheless, a full consistency

check involving additional constraints that can further fix the coefficients λ2 and κ would be

desirable.

Another check we have not performed comes from the anomaly on Q11
4 , which we did not

evaluate due to technical difficulties. If the mechanism we propose is correct, the anomaly on

Q11 should cancel as well once the contribution of the duality bundle is taken into account.

We will now explain the entry for Q11
4 in (4.16), justifying why the anomaly should be of

the form k/4, for k an integer. The actual anomaly theory of IIB, including the Q(c̆) piece,

should be an invertible tQFT, and hence a Spin-GL+(2,Z) bordism invariant. As we have

just seen, it evaluates to zero on the lens space L11
4 with nontrivial duality bundle, which is

in turn bordant to four copies of Q11
4 . That means that the anomaly theory satisfies

A(Q11
4 )−Q(c̆Q11

4
) =

k′

4
, (4.28)

for some integer k′. On the other hand, as reviewed in Appendix D.3, any possible quadratic

refinement of the torsion pairing on H6(Q11
4 ,Z) = Z4⊕Z4 evaluates to k′′/4 for some integer

k′′. Taking k = k′−k′′ gives the advertised result. It would be extremely interesting to check

this explicitly.

The anomaly cancellation mechanism we outlined here can also be presented in a different

light. As explained in Section 4.1, we have assumed the existence of a canonical quadratic

refinement for a given Spin-GL+(2,Z) structure. For most of the generators of the bordism

group, we were able to determine this canonical quadratic refinement indirectly, by demanding

that anomalies without a duality bundle are cancelled. Our results can be recast as the

statement that anomalies are cancelled by an appropriate choice of quadratic refinement, even

with a duality bundle. Then, the term (4.22) encodes the shift in the quadratic refinement

that takes place when the duality bundle is turned on. It may very well be that, once

an appropriate top-down general prescription for the quadratic refinement is found, it will

reproduce the effects of (4.22). Doing this would be extremely interesting on its own, and

would also provide yet another non-trivial check of our proposal.

We end this section with a final comment. We have seen how the duality symmetry GIIB
of type IIB has an anomaly that can be cancelled, rendering the theory consistent. Of course,

we expected this, since the fact that this symmetry is gauged is the essential ingredient in

F-theory. In fact, the duality bundle is interpreted in terms of the Spin cover of the group of

large diffeomorphisms of the elliptic fiber. One could imagine that this trivializes the duality

anomaly, i.e. perhaps an elliptic fibration cannot produce the most general Spin-GL+(2,Z)

bundle, and so F-theory would automatically be anomaly free. This is not the case, as all

the bundles and generators in our table (4.16) can be explicitly shown to correspond to an

elliptic fibration in this way.
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5 Alternative type IIB theories

In the previous section we described a simple way to cancel the duality anomalies by modifying

the topological couplings of the theory. Importantly, this did not require the introduction

of new fields in the supergravity theory. However, there are other possibilities to cancel the

anomaly using a topological version of the Green-Schwarz mechanism [45]. If these have a

UV completion they would lead to alternative versions of type IIB string theories. Another

natural question is whether anomaly considerations of the type above can rule out certain

alternative duality groups of type IIB, associated to certain subgroups of SL(2,Z). We will

discuss these two classes of different realizations of type IIB theories in the following.

5.1 Cancellation via a topological Green-Schwarz mechanism

Since the duality anomaly is discrete, in some cases it can be cancelled via the introduction

of anomalous gapped degrees of freedom. Following [45], where a similar mechanism was

introduced to match anomalies of 8d theories, we will call this the topological Green-Schwarz

mechanism. In this scenario, the correct low-energy limit of IIB string theory would not only

contain the ordinary type IIB supergravity, but it would also include a (non-invertible) tQFT

denoted Ξ, with no local degrees of freedom, and the property that its partition function on

a 10-manifold M which is the boundary of an 11-dimensional manifold X is given by

ZΞ(M) = e−2πiA(X) . (5.1)

Together with the explicit expressions for the anomalous phase of the path integral of IIB

supergravity given in Table (4.19), the combination

ZIIB(M)ZΞ(M) , (5.2)

has vanishing anomaly. Notice that the quadratic refinement of the self-dual field (the term

indicated in (4.18)) is not turned on in this alternate anomaly cancellation mechanism.

Another way of saying that Ξ is a tQFT is that the anomaly theoryA admits a (symmetry-

preserving) gapped boundary condition. The topological Green-Schwarz mechanism only

works if this is indeed the case. However, not every tQFT admits a gapped boundary con-

dition, and we are presently lacking a classification concerning that property (see, however,

[133, 134] for partial results). The situation is better for bosonic tQFT’s, those which can be

completely written in terms of cohomology classes.

We now demonstrate that at least the Z3 part of the duality anomaly of type IIB super-

gravity is of this form, and then comment on the Z4 part of the anomaly. The Z3 part of the

anomaly can be recast using the characteristic classes of the duality as well as the tangent

bundle in the following way

AZ3 =

∫
[β(a)4 + (p2)3] ∪ β(a) ∪ a] . (5.3)
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Here, (p2)j denotes the mod j reduction of the second Pontryagin class. The fact that this is

possible guarantees that the anomaly can be cancelled by a bosonic tQFT, which is special

for the following reason. Since perturbative anomalies cancel, AZ3 is a bordism invariant,

and so in a class like the generator of Z27 one would have expected it to take a generic value

mod 27. A value like, e.g., 1
27 , can be captured by a fermionic tQFT, but not by a bosonic

theory. The exact value that A takes, 9 mod 27, is precisely such that it can be represented

by a cohomology class.

Using the fact that the Pontryagin class of the lens spaces is given by (4.20), one can

check that the right hand side of (5.3) equals the value of A in the first two bordism classes

above the dashed line in (4.16), which we will demonstrate explicitly for L11
3 . The duality

bundle is specified by an element in H1(L11
3 ,Z3) = Z3 under pullback from the classifying

space BZ3, which can be identified with the characteristic class a of the bundle. Similarly,

we can pullback the class in H11(BZ3,Z3) which, using the cohomology ring (3.24), can be

identified with β(a)5∪a. This means that if we integrate the class β(a)5∪a, or more precisely

its pullback over the lens space with the given duality bundle, we obtain the class 1 mod 3 in

H11(L11
3 ,Z3). From (4.20) we further know that the second Pontryagin class of L11

3 is given

by 15x4 = 0 mod 3, and the second term in (5.3) vanishes in this background. Therefore, we

find

AZ3(L11
3 ) =

∫
L11
3

β(a)5 ∪ a = 1
3 , (5.4)

which reproduces the desired result (4.16). Similarly, AZ3 reproduces the anomaly for L3
3 ×

HP2.

Bosonic tQFTs always admit families of gapped boundary conditions which can be ex-

plicitly constructed, as described in detail in [45]. These provide alternatives to the anomaly

cancellation mechanism outlined in the previous section, which involved a modification to

the background coupling of an existing massless field (the self-dual form). These alternative

anomaly free versions are completely fine from the point of view of the low-energy super-

gravity. However, the equations of motion of the new fields often impose constraints for the

allowed field backgrounds of the type IIB supergravity fields, which forbid configurations we

know are present in ordinary type IIB string theory. Thus, these variant possibilities cannot

correspond to the low-energy limit of type IIB string theory. This opens up two possibilities:

• These alternative versions of type IIB supergravity are in the Swampland [16]. That is,

they cannot be UV completed to consistent theories of quantum gravity. It would be

nice to understand exactly why.

• The alternative theories are consistent, and correspond to different UV completions

of the ordinary IIB supergravity. Although these possibilities are indistinguishable at

the level of massless fields, the completeness principle [17, 18, 46] demands that they

differ in their spectrum of extended objects, as we will discuss below. In this case,
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the cobordism conjecture [47] would require that these different UV completions are

connected to ordinary IIB string theory via dynamical domain walls.

It would be highly interesting to investigate which of the two possibilities is actually realized.

We will now explain how to cancel the Z3 part of the discrete anomalies in Section 4

using the topological Green-Schwarz mechanism, and we start by summarizing the discussion

in [45]. Consider a higher-form version of the topological BF theory, where the explicit

degrees of freedom are a (d − p)-form field B and a (p − 1)-form field A, with field strength

F . The Lagrangian of the theory is given explicitly by19

ZΞ(M) = e−SBF , SBF = 6πi

∫
M
B ∧ F . (5.5)

This topological theory can be shown to be equivalent in a different duality frame to pure

(p− 2)-form Z3 gauge theory [17]. The theory has manifest discrete (p− 1)-form electric and

(d− p)-form magnetic symmetries, which we can couple to background fields Xp and Yd−p+1,

modifying (5.5) to

SBF = 2πi

∫
M

(3B ∧ F +B ∪Xp +A ∪ Yd−p+1) . (5.6)

This theory has a mixed anomaly between the electric and magnetic higher-form symmetries,

which is captured by the anomaly theory ABF in (d + 1) dimensions that can be written in

terms of the background fields Xp and Yd−p+1,

ABF = 1
3(−1)d−p+1

∫
X
Xp ∪ Yd−p+1 . (5.7)

It takes values in Z3. It follows that if a given anomaly theory can be written as the product

of two Z3 cohomology classes the corresponding anomaly can be cancelled by coupling to the

BF theory discussed above, thus realizing the topological Green-Schwarz mechanism. Due to

the expression (5.3), at least the Z3 part of the duality anomaly theory of IIB supergravity

is of such a form that it can be cancelled by the inclusion of additional discrete Z3 fields in

type IIB string theory. Note that they are not part of the massless fields in the low-energy

supergravity description. Further, because the anomalies they take part in are at strong

coupling, it is difficult to imagine they can be detected in perturbative string theory as well.

BF theories like the one above also contain non-trivial extended operators which are the

higher-dimensional generalization of “Wilson and ’t Hooft” lines. These are given by

exp
(

2πi

∫
Σp−1

A
)
, exp

(
2πi

∫
Σd−p

B
)
. (5.8)

The completeness principle [17, 18, 46] requires the existence of extended objects on which

19Strictly speaking, this should be done at the level of differential cohomology, replacing the pairing B ∧ F
by its differential-cohomology version B ∗A described in [23].
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these operators can end (see [135, 136] for recent extensions involving non-invertible symme-

tries). These objects have a (p− 1)- and (d− p)-dimensional worldvolume, respectively, and

are the electrically and magnetically charged objects of the higher-form symmetries discussed

above. The fact that they are mutually non-local objects, i.e., they have a non-trivial Dirac

pairing, has to be remedied by the introduction of localized degrees of freedom on the brane

worldvolumes [5, 23]. Moreover, the associated anomaly theories are determined in terms of

the background fields of the higher-form symmetries and read

AA =

∫
Xp , AB =

∫
Yd−p+1 . (5.9)

These objects are very similar to Nielsen-Olesen strings and the Zn charged particles in

ordinary four-dimensional BF theory [17, 137, 138]. Note also that the topological operators

(5.8) coupling to these objects are torsional. This implies that a sufficient number of the

charged states, three in the examples discussed above, can decay to the vacuum since they

do not carry charge.

In our particular case, the inclusion of a term (5.5) to cancel the discrete duality anomalies

in connection with the completeness hypothesis demands the existence of branes with localized

degrees of freedom charged under the duality group. Clearly, the specific realization of objects

depends on the choice of the Green-Schwarz mechanism. We now briefly discuss different

possibilities that cancel the Z3 part of the duality anomaly as well as the correlated spectrum

of extended objects:20

• X3 = β(a)∪a, Y8 = β(a)4 +(p2)3. The electrically charged extended objects are strings,

and their magnetic duals are 7-branes.

• X4 = β(a)2, Y7 = β(a)3 ∪ a, together with X ′4 = (p1)3 and Y ′7 = (p1)3 ∪ β(a) ∪ a (this

requires two copies of the topological GS mechanism). The electric objects are 2-branes,

and their magnetic duals are 6-branes.

Finally, the topological Green-Schwarz mechanism also places restrictions on the allowed

backgrounds. This can be seen from the equations of motion of the theory (5.5) which require

that Xp = Yd−p+1 = 0. Integrating out these fields we hence end up with the original theory

with additional constraints imposed as restrictions on the duality background. These are

enough to show that type IIB supergravity with the topological Green-Schwarz mechanism

(5.5) does not uplift to type IIB string theory. For instance the lens space S3/Z3 with Z3

duality bundle is obstructed, but in type IIB string theory, this is just the near-horizon

geometry of a C2/Z3 singularity. This shows that the first example in the list above is

incompatible with the known string dualities; similar caveats apply to other examples of the

form (5.5).

So far, we have focused on the cancellation of the Z3 part of the anomaly above, since for

this case we have a simple presentation of the anomaly theory in terms of cohomology classes

20Note that this is a far from exhaustive list of possibilities.

– 34 –



of the duality bundle. Our understanding of the Z4 part of the anomaly is at the moment more

limited, since in this case, the evaluation of the 11d anomaly theory on manifolds such as Q11
4

suggests that a fermionic tQFT would be necessary to realize a topological Green-Schwarz

mechanism. The main complication here is that as far as we know, a general treatment about

the conditions necessary to arrange for gapped boundary conditions in fermionic tQFTs are

less well understood when compared with their bosonic counterparts. If such a boundary

condition is available, then we can repeat a quite similar analysis to what we presented in the

Z3 case. That being said, one could also imagine a “hybrid scenario” in which the Z3 part is

cancelled by the topological Green-Schwarz mechanism, while the Z4 part is cancelled by the

additional Chern-Simons-like coupling we proposed for type IIB supergravity.21

To summarize, we argued that there are several distinct versions of the topological Green-

Schwarz mechanism that cancel at least part of the duality anomaly found in Section 4. These

correspond to seemingly consistent supergravity theories but, as far as we can tell, are in-

compatible with F-/M-theory duality and so cannot be the low energy limit of the type

IIB string theory we know. As emphasized in Section 4.1, we assume the existence of a

canonical quadratic refinement for each Spin-GL+(2,Z) manifold, depending solely on its

Spin-GL+(2,Z) structure, but we do not have a way to construct it. It may very well be that

a top-down prescription for the quadratic refinement in general Spin-GL+(2,Z) manifolds is

incompatible with the variant IIB theories outlined before, explaining why they are incon-

sistent. For instance, it may be that the term (4.22) is included as part of the prescription

for the “correct” quadratic refinement when a duality bundle is turned on. We will further

discuss possible fates for these variant IIB theories in Section 7.

5.2 Comment on congruence subgroups and the Swampland

An anomaly can signal an inconsistency of the theory, and so it can be a great tool to

place effective field theories in the Swampland. This is particularly true of theories with

high supersymmetry, where anomalies and Swampland considerations can become extremely

powerful [139–145]. Here, we briefly report on what we could say about type IIB and its

duality symmetry by thinking along these lines.

When one says that type IIB string theory has a Spin-GL+(2,Z) symmetry, what is

meant is that the spectrum of non-perturbative D-brane states is compatible with such a

symmetry. There is ample evidence coming from dualities that this is the right answer. But

who is to say that there is not a different version of type IIB string theory, with the same

low-energy supergravity limit, and a different duality group? For instance, one could replace

the role of SL(2,Z) by a such as Γ0(n) even though there is evidence that these theories are

in the Swampland.22 One may wonder if anomalies and and their cancellation might put

21If one could establish that a gapped boundary condition for the Z4 part exists, then one could also
contemplate a hybrid situation where the Z3 part is cancelled by our Chern-Simons-like coupling, while the
Z4 part is cancelled by a topological Green-Schwarz mechanism.

22Replacing SL(2,Z) with Γ0(n) for n sufficiently large leads to non-contractible cycles in the corresponding
moduli space; see also the discussion in [15].
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constraints or even rule out these possibilities. Unfortunately, the answer is no. Suppose

we replace GL+(2,Z) by a finite index subgroup D. Then, any Spin-D manifold is also a

Spin-GL+(2,Z) manifold in a natural way. Therefore we cannot gain any new information

about the anomaly by examining Spin-D manifolds. The anomaly cancellation mechanisms

discussed above still work, provided the characteristic classes that define the duality bundle

survive. Thus, it does not seem possible to constrain the duality group via these anomalies,

at least in a straightforward way.

6 The manifold X11

The purpose of this section is to briefly discuss X11, “Arcanum XI,” and summarize some of

its properties.23 We provide the corresponding proofs in Appendices C and D.

Most of the manifolds appearing in our list of generators are familiar objects, such as lens

spaces and projective spaces; the kinds of manifolds one would expect to find as generators of

a Spin bordism group.24 Though a Spin-GL+(2,Z) manifold need not be Spin, these familiar

generators with the exception of Q11
4 admit Spin structures, making the calculation of the

anomaly theory for the self-dual field easier, partly because there is a canonical choice of

quadratic refinement.

However, it is not possible to represent all elements of Ω
Spin-GL+(2,Z)
11 below the dashed

line in Table (4.16) with Spin manifolds: as a consequence of the Adams spectral sequence

computation we undertake in [41], the bordism invariants
∫
w4

2x
3 and

∫
w4

2y
3, thought of as

homomorphisms Ω
Spin-GL+(2,Z)
11 → Z2, are linearly independent, and in particular non-zero

(which also implies that the manifold is not Spin, since w2 6= 0). Therefore, any set of

generating manifolds for the bordism group below the dashed line must contain at least two

non-Spin manifolds. Moreover, many of the standard examples one might use to try to realize

these last two generators do not work, and the generators we found – the same underlying

manifold, called X11, equipped with two different Spin-GL+(2,Z) structures – are unwieldy

to work with; in particular, we were not able to calculate the anomaly theory for the self-dual

field on these generators, though we can constrain it.

23Following [146], Arcanum XI, or Arcanum 11 is the tarot card of Force, Strength, or Fortitude, but is also
often referred to as the “Enchantress”. Quoting from [146]:
“According to the Egyptian tradition, this describes the transmuting of energies though [sic] directed thinking
and induced emotions. What does this mean? Sometimes we don’t have control over our circumstances, but
we do have control over how we decide to respond to our circumstances.”

But to some, there is also another side to Arcanum XI. Again quoting from [146]:
“Unfortunately, there is another side to this card, too. The Enchantress has a nickname among a small group
of people who belong to the Church of Light, which is the 10% solution card. The reason for this nickname
is that, more often than not in a reading, this card does not represent spiritual struggle but represents a con
artist, or someone that it pulling the wool over the eyes of the querent; for example a beguiling lover who is
not truthful or faithful, or an agent who is not honest.”

Let us also note that the arch nemesis of the Swamp Thing (and thus indirectly the entire Swampland
program) is Anton Arcane, the evil necromancer genius (first appearance in Swamp Thing #1 (November
1972), first full appearance in Swamp Thing #2 (January 1973)).

24For example, compare with the lists of generators in [48, 50, 66, 147].
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In the following we will briefly outline the construction of X11. Label the coordinates in

R13 by (x1, . . . , x7, y1, . . . , y6), and consider S6 × S5 ⊂ R13 as the locus |~x| = |~y| = 1. The

Klein four-group Z2 × Z2 = {1, α, β, αβ} acts freely on S6 × S5 as follows:

α(x1, . . . , x7, y1, . . . , y6) = (−x1, . . . ,−x7,−y1, y2, y3 . . . , y6)

β(x1, . . . , x7, y1, . . . , y6) = (x1, . . . , x7,−y1, . . . ,−y6).
(6.1)

X11 is defined to be the quotient

X11 =
S6 × S5

Z2 × Z2
. (6.2)

This is a closed, oriented 11-manifold. Projecting onto the xi coordinates defines a map

X11 → RP6; this is a fiber bundle with fiber RP5.

The quotient map S6 × S5 → X11 is a principal Z2 × Z2 bundle. We use this to define

two different principal GL(2,Z) bundles on X11, via two different embeddings i, ı̃ : Z2×Z2 →
GL(2,Z).25 In C.12, we show that these two duality bundles give rise to Spin-GL+(2,Z)

structures, which we denote X11 and X̃11; C.12 also shows that X11 is not Spin.

For our purposes in this paper, we need to know the following facts about X11:

• For X11,
∫
w4

2x
3 = 1 and

∫
w4

2y
3 = 0; for X̃11,

∫
w4

2x
3 =

∫
w4

2y
3 = 1 (see C.7). This

means that we can use X11 and X̃11 as the two remaining non-Spin manifolds in our

generating set.

• For both X11 and X̃11, the η-invariants associated to the Dirac, Rarita-Schwinger, and

signature operators vanish (D.49). Therefore, A(X11) and A(X̃11) depend solely on the

quadratic refinement associated to the self-dual field.

• The torsion subgroup of H6(X11;L), where L is the local system that C4 transforms in,

is isomorphic to Z2 ⊕ Z2 (D.53). Therefore, (D.57), the (exponentiated) Arf invariant

of any quadratic refinement of the torsion pairing must be either ±1 or ±i. Moreover,

the fact that X11 generates a Z2 factor suggests that the Arf invariant is constrained to

be ±1. The same is true for X̃11.

Unlike in most of the previous examples, we were not able to completely determine the

quadratic refinement on X11 or X̃11. In the end, this is the reason why we cannot determine

its anomaly. In fact, it is not clear that there is a canonical quadratic refinement: as discussed

briefly in Section 4.1, the constructions given in [116] and [23] do not apply (at least in a

straightforward way) to Spin-GL+(2,Z) manifolds for which w2 6= 0. The point of view that

we took elsewhere in this paper (that a canonical quadratic refinement exists, even if we

do not know to construct it generally) is not helpful now, since we cannot switch off the

duality bundle on X11. Showing that a canonical quadratic refinement exists in general Spin-

25These are the two embeddings D4 → D8 analogous to the ones depicted in Figure 3 followed by the
standard inclusion D8 ↪→ GL(2,Z).
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GL+(2,Z) manifolds and providing a prescription to compute it are the main obstacles in

evaluating the anomaly for Arcanum XI.

7 Conclusions and future directions

Type IIB string theory has an exact GL+(2,Z) symmetry, which is supposed to be gauged.

This is not only demanded by general Swampland considerations about the absence of global

symmetries [16–19]; it is also a fundamental ingredient in the web of dualities in string theory,

and in particular is mapped to a geometric (and thereby manifestly gauged) symmetry under

F-theory and its duality with M-theory.

Yet for this picture to be consistent, GL+(2,Z) must be free from anomalies. The goal

of this paper was to figure out whether it actually is. Of course, in the end the answer turns

out to be yes, but in a very interesting way. We determined the bordism group controlling

the anomaly, the precise anomaly theory of type IIB supergravity (relying heavily on the

results of the seminal works [5, 23, 71]), and evaluated it to find that the theory indeed has

Z4- and Z3-valued anomalies. The anomalous backgrounds involve three and 11-dimensional

versions of lens spaces, and are natural generalizations of the S-fold backgrounds discussed in

the literature [43, 44].

Amazingly, the anomalies we found are exactly of the right kind to be cancelled by a subtle

modification of the Chern-Simons coupling of type IIB supergravity. The anomaly cancel-

lation mechanism we describe only works because the anomalies discussed above take very

particular values (concretely, the values the anomaly theory takes are always the quadratic

refinement of the torsion linking pairing of the manifolds where the anomaly is evaluated).

This is particularly clear for the Z27 factor of the bordism group, for which only one possible

value can be cancelled by this mechanism – precisely the one realized by string theory. We

checked that the same mechanism works for all the other Spin-Mp(2,Z) anomalies, with the

caveat that we were able to explicitly check the cancellation only for a Z2 subgroup of the Z8

factor. Even in this case, we gave arguments why we expect this to extend to the full Z8. Fur-

thermore, we provided some heuristic arguments that the modification that we construct is

also related to known quantization conditions on the RR charges of S-fold backgrounds, which

gives some support that the terms are indeed part of the ten-dimensional action. It would

be very interesting to provide further checks that can help us elucidate whether the terms

we propose are correct and explicitly evaluate the anomaly theory on Q11
4 . In particular, we

should explore its ramifications under the duality web, and pinpoint a concrete counterpart

in the M-theory dual. This is true more generally, as a comment on S-fold backgrounds.

For instance, the S5/Z3 background must have a fractional F5 flux. In the dual M-theory

perspective, where the background is (S5 × T 2)/Z3, the F5 flux becomes a quantization con-

dition on G7 flux. This is directly related to a diffeomorphism anomaly of M5-branes in this

background, as was shown in [23].

One of the results of our investigations is particularly intriguing. We have constructed

several families of type IIB supergravities in which the usual duality group GL+(2,Z) can
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be gauged, but which at the same time cannot be the low-energy limit of IIB string theory,

because some familiar orbifold backgrounds are forbidden. The symmetry type of these

theories is different from ordinary type IIB supergravity, and so maybe one can show some

of them are inconsistent, by studying compactifications in generalized backgrounds required

by the cobordism conjecture as in [47]. Yet another, exciting possibility is that in fact these

theories are just fine quantum gravities, different UV completions of the same IIB supergravity

theory, in a similar fashion to the possible global forms that a gauge group can have for a

given algebra. There are hints of similar discrete choices in 11-dimensional M-theory [48] and

type I strings [49]. Of course, we would expect all of these possibilities to be part of a single

landscape, connected by domain walls [47].

Strictly speaking, our results involved extending the anomaly theory of the self-dual field

in [23] beyond its realm of validity. This anomaly theory depends on a crucial way on a cer-

tain quadratic refinement of a differential cohomology theory pairing, and [23] constructed it

only for Spin manifolds and the particular case of differential K theory. An essential assump-

tion of the present paper is that the construction can be extended to general Spin-GL+(2,Z)

manifolds in some way, which we left unspecified. Interestingly, this assumption together

with anomaly cancellation seems to be enough to “bootstrap” the quadratic refinement in

all cases discussed above, which correspond to “Spin-Mp” anomalies, for which the corre-

sponding duality bundles only involve elements in the subgroup Mp(2,Z) ⊂ GL+(2,Z) (up

to some subtleties with the Z8 generator Q11
4 ). We have also explored all nine possible non-

perturbative genuine GL+(2,Z) anomalies. For seven cases, we could show that the anomalies

vanish identically. Interestingly, it is not possible to modify the topological term that cancels

the Mp(2,Z) anomalies so that it cancels genuine GL+(2,Z) anomalies as well. In this sense,

it is good news for our proposed mechanism that these anomalies cancel by themselves.

There are just two bordism classes, both generated by the manifold we called X11, Ar-

canum XI, for which we could not constrain the anomaly. The manifold X11, which we

constructed explicitly, is a non-Spin manifold with a Spin-D8 structure, where D8 is the dihe-

dral group with eight elements. The anomaly of type IIB supergravity in this background is

at most a sign, but we could not determine which one. Doing so will likely involve an exten-

sion of the formalism for self-dual fields in [23], since as outlined above one needs a canonical

choice of a quadratic refinement using tools other than the Spin structure. Studying a general

prescription for the quadratic refinement and computing this anomaly are natural directions

for future research.

Another direction is the full determination of the duality bordism groups of type IIB

supergravity in any number of dimensions. Via the cobordism conjecture [47], they naturally

lead to a classification of generalized S-fold backgrounds and defects in type IIB string theory.

Furthermore, the bordism groups should be extended to take into account backgrounds of

RR fields. We will report on this in an upcoming publication [41].

All in all, our work raises more questions than answers – on the mathematical framework

underlying self-dual fields, topological terms in type IIB supergravity, and the uniqueness of

string theory. As a final question that we attacked but could not solve with anomalies alone,
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we could not exclude that there are versions of type IIB supergravity where the duality group

is replaced by e.g. a congruence subgroup of SL(2,Z). Together with the alternate anomaly

free versions of type IIB involving topological Green-Schwarz terms we described above, we

regard it as a very important question to determine whether they exist as new phases of string

theory with the same low-energy dynamics as type IIB string theory, or they belong to the

Swampland. We must find out whether there is a (discrete) Landscape of duality groups, or

if, on the contrary, the GL+(2,Z) duality symmetry was truly meant IIB.
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A Varying axio-dilaton and the SL(2,R) anomaly

This paper is not the first to study non-perturbative duality anomalies in type IIB string

theory. References [20, 21] explore a duality anomaly which is only present when a singular

axio-dilaton profile is turned on. The two anomalies are different, and cancelled by different

couplings (though many of the techniques used to study both of them are related). We

explain the precise relation in this Appendix. Since the anomalies in [20, 21] involve singular

axio-dilaton profiles, they really only make sense in the context of F-theory, in contrast with

the IIB anomalies discussed above. In hindsight, studying anomalies of F-theory backgrounds

before checking that duality anomalies vanish as we just did above is a bit putting the cart

before the horse; we only know that F-theory is consistent because Spin-GL+(2,Z) anomalies

cancel in the first place.

The duality group of type IIB supergravity that we discussed so far embeds in a per-

turbative Spin-Mp(2,R) symmetry group, broken to the duality group Spin-Mp(2,Z) by the

effect of massive states (the reflections in GL+(2,Z) remain unbroken, but will not play a

role in the discussion). Since Spin-Mp(2,R) is not a symmetry, type IIB supergravity does

not provide a dynamical gauge field, and anomalies for this perturbative symmetry need not

cancel.

Even though we have no dynamical connection, type IIB supergravity provides the next

best thing: the low energy Spin-Mp(2,R) is also spontaneously broken by the axio-dilaton τ ,

down to a Spinc subgroup. Because of this, the axio-dilaton target space M has a natural

U(1) bundle over it, and the pullback of any connection AM via τ defines a Spinc connection

on spacetime (see also [35]):

ASpacetime = τ∗AM . (A.1)
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The connection ASpacetime encodes the correct holonomies of fermions (which follow from

(3.6)) for a non-constant axio-dilaton background. So when computing the fermion path

integral in a non-trivial spacetime background, we need to couple the fermions to ASpacetime,

even if there is no corresponding dynamical field in the type IIB string theory. The field

strength of ASpacetime has a Chern-Weil representative given by [20, 21]

F = i
dτ ∧ dτ̄

4τ2
2

. (A.2)

The crucial point in [20, 21] is that there is some ambiguity in this procedure, since it depends

on the particular choice of connection AM. In physical terms, if we shift ASpacetime by a

gauge transformation, we get another equally valid connection for the fermions, yielding the

same holonomies. The actual phase of the partition function should be independent of this

choice, which means that the corresponding Spinc fermion anomalies must cancel. These are

described by a twelve-dimensional anomaly polynomial, P12. There is a purely gravitational

contribution to P12, but it is famously cancelled by the chiral 4-form [42]; so we will not

consider it here.

Up to now, the discussion was the same whether we take Mp(2,Z) to be gauged or not,

but this matters in the end, since the allowed axio-dilaton backgrounds are very different. A

supergravity person, who has no reason to gauge Mp(2,Z), would take the axio-dilaton target

space to be the upper half plane H. Since H = SL(2,R)/U(1), we have a natural fibration

U(1)→ SL(2,R)→ H , (A.3)

and because H is contractible, the U(1) bundle is trivial, so the Chern class of the connection

ASpacetime obeys the constraint that
∫
F = 0 over any two-cycle. Said differently, the con-

nection behaves more like an R-connection. This constraint must be satisfied in the auxiliary

space where we compute anomalies. The anomaly theory of the fermions, which is obtained

from P12 via descent, will then vanish identically. There is no anomaly to discuss, because

if we do not gauge Mp(2,Z), only non-singular axio-dilaton profiles are allowed, and the

resulting connection admits a canonical trivialization.

On the other hand, after including the anomaly cancellation mechanism, the duality

symmetry is gauged in IIB supergravity. In this case, the axio-dilaton moduli space is replaced

by H/SL(2,Z), the moduli space of complex structures of a torus, and the fibration (A.3)

descends to a U(1) fibration over this space (it is just the canonical U(1) bundle of any

complex manifold). Strictly speaking, we should take the one-point compactification of this

space, since the axio-dilaton can run all the way to τ = i∞ at the core of D7-branes. The

one-point compactification is topologically a Riemann sphere, whose canonical U(1) bundle

is non-trivial.

The connection AM now must have has non-trivial fieldstrengths, such that
∫
F can be

non-vanishing. All in all, we are simply saying that (A.2) can have a δ-function singularity

at the core of a D7-brane, but not in non-singular axio-dilaton profiles. So now we can really
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demand anomaly cancellation in the standard sense. References [20, 21] found that one can

indeed make anomalies cancel, but only after introducing a coupling

S′′ =

∫
ln g(τ) ∧W10 , (A.4)

in the 10d type IIB action. Here, W10 is a particular linear combination of characteristic

classes which can be found in [20] and whose precise form will not matter to us, and g(τ) is

an explicit function of the axio-dilaton, designed to exactly cancel the shift of the fermion

path integral under gauge transformations. To achieve this, g(τ) must shift under infinitesimal

Spinc transformations as in (3.6), and more concretely, (3.17) along the self-dual points. One

possibility suggested in [20, 21] is

g(τ) =

(
η(τ)j1/12(τ̄)

η̄(τ̄)j1/12(τ)

)
, (A.5)

but g(τ) is intrinsically ambiguous, since it could be multiplied by any function of τ which

does not transform under infinitesimal Spinc gauge transformations. A final subtlety is that

the coupling (A.4) is anomalous under Mp(2,Z) transformations; one could say that (A.4) has

a mixed SL(2,Z)-U(1) anomaly. The duality anomaly must cancel in all allowed backgrounds,

since SL(2,Z) was gauged to begin with; this puts a non-trivial constraint on F-theory back-

grounds. This constraint can be demystified by expanding (A.5) in terms of the RR axion

and dilaton, to find that (A.4) induces a coupling

S′′ ⊃
∫
C0 ∧ F ∧ X̃8 + . . . , (A.6)

where X̃8 only involves gravitational couplings. As discussed in [20, 21], these couplings are

related to tadpole cancellation in non-trivial ways.

To recapitulate: Type IIB supergravity fermions in non-trivial τ backgrounds must couple

to a composite Spinc connection, which should be non-anomalous. If the duality group is not

gauged, anomalies cancel automatically. If it is gauged, anomaly cancellation requires the

introduction of a counterterm like (A.4), which forces constraints related to tadpole conditions

on allowed F-theory backgrounds.

As we have emphasized, cancellation of the anomalies we studied in Section 4 are a

precondition to discuss the ones in [20, 21]. The two anomalies are independent: A term like

(A.4) will not contribute to any anomaly that one can detect at constant axio-dilaton.

B Representations of the dihedral group

In this Appendix we briefly describe the irreducible representations of the dihedral group with

2n elements denoted by D2n. We further argue that fermions on Spin-D2n manifolds have to

transform in two-dimensional representations of a certain kind.
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The group structure and elements of D2n are defined as follows

D2n = 〈R,S|Sn = R2 = 1 , RSR = S−1 = Sn−1〉 . (B.1)

Here, R acts via reflections and S via discrete rotations. Since all one-dimensional represen-

tations are commutative they are representations of the Abelianization of D2n given by

Ab(D4k+2) = Z2 , Ab(D4k) = Z2 ⊕ Z2 , (B.2)

generated by {R} and {R,S}, respectively. In the case of interest to us, the fermions of

type IIB transform under D16, i.e., n even. Moreover, for a non-trivial Spin-D16 structure

to be possible they have to transform non-trivially under S4. However, for one-dimensional

representations one has S4 = 1 and they are not suitable for the fermions in the system.

The real two-dimensional representations are given by

R =

(
0 1

1 0

)
, S =

(
cos(2πk/n) −sin(2πk/n)

sin(2πk/n) cos(2πk/n)

)
, (B.3)

which clearly demonstrates their interpretation as reflection and rotation. Setting again n = 8

for the case relevant to us we see that fermions need to transform in representations with

k ∈ {1, 3} mod 4 on manifolds with a Spin-D16 structure. This is clearly the case for type

IIB fermions as can be seen from (3.17).

C More details on X11

Most of Ω
Spin-GL+(2,Z)
11 can be generated by lens spaces (or lens space bundles) and their prod-

ucts with HP2 and X10 – the standard examples to try in this sort of bordism problem. But

these manifolds only generate a subgroup of Ω
Spin-GL+(2,Z)
11 whose complement is isomorphic

to Z2 ⊕ Z2. In this Appendix, we discuss the two missing generators, defining them and

showing that they represent the remaining Z2 ⊕ Z2 summand.

C.1 Narrowing the search space

Searching for missing generators of a bordism group can be quite difficult in general. We

approached this problem by applying techniques that narrowed the space we had to search

over: calculations that imply that we can choose generators which have a relatively simple

form. Once we have enough information, it is easier to make a good guess as to what the

generators should be. In this subsection only, we assume some familiarity with Thom spectra

and the Steenrod algebra as discussed in [105].

Because we need to account for a Z2⊕Z2 subgroup of Ω
Spin-GL+(2,Z)
11 , we can approximate

Spin-GL+(2,Z) bordism with a simpler notion of bordism which captures all 2-torsion infor-

mation in bordism groups. This simpler notion is Spin-D16 bordism, in which the duality

bundle is associated to a principal D8-bundle via the standard embedding D8 ↪→ GL(2,Z).
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The reason that we know to look at Spin-D16 manifolds comes down to the way GL+(2,Z)

factors as an amalgamated product, as we saw in (3.15): this implies the map D16 ↪→
GL+(2,Z) is an isomorphism on Z2 cohomology. The Thom isomorphism implies that the

induced map on Thom spectra for Spin-D16 and Spin-GL+(2,Z) bordism also induces a mod

2 cohomology isomorphism, and by the stable Whitehead theorem, the map ΩSpin-D16
∗ →

Ω
Spin-GL+(2,Z)
∗ is an isomorphism on 2-torsion subgroups.

Let V → BD8 be the associated vector bundle for the standard two-dimensional real

representation of D8 as the symmetries of a square, and let MT (Spin-D16) denote the Thom

spectrum for Spin-D16 bordism: the homotopy groups of this spectrum are the Spin-D16

bordism groups. In [41], we will prove an equivalence of Thom spectra

MT (Spin-D16) ' MTSpin ∧ (BD8)V⊕3Det(V )−5. (C.1)

For brevity, let M8 = (BD8)V⊕3Det(V )−5. The mod 2 cohomology of M8 is easy to understand

– it is a free H∗(BD8;Z2) module on a single generator U , which is in degree zero – so we

would like to convert information in the cohomology of M8 to information about Spin-D16

bordism.

First suppose B is a space and M is a Thom spectrum over a space B′ such that some

notion of “Spin-B bordism” is computed as the Spin bordism of M . For example, we are

interested in Spin-D16 bordism, for which M = M8 and B′ = BD8. Then elements of

Hn(B′;Z2) define characteristic classes for manifolds with a Spin-B structure, and the inte-

grals of these classes are Z2-valued bordism invariants. Let Sq2 : H∗(–;Z2) → H∗+2(–;Z2)

denote the second Steenrod square, a mod 2 stable cohomology operation.

Theorem C.2. Let c ∈ Hn(B′;Z2) and suppose the corresponding class Uc ∈ H̃n(M ;Z2)

is such that Sq2Sq2Sq2(Uc) 6= 0. Then there is an n-dimensional Spin-B manifold W with∫
W c 6= 0, and W generates a Z2 summand of ΩSpin-B

n .

This is a combination of several theorems: Margolis’ theorem [148] relating free summands

over the Steenrod algebra A to spectrum-level splittings; [120, 149] allowing us to change rings

from A to A(1); a result on using mod 2 cohomology classes detect bordism classes (see [48,

§8.4]); and the fact that free, rank-one A(1)-modules are characterized as the cyclic A(1)-

modules on which Sq2Sq2Sq2 is non-zero [39, Lemma D.8]. We will discuss theorem C.2

in more detail in [41]; the point is that information about bordism (generally hard) can be

deduced from computations in cohomology (usually easier).

Recall from Section 3.1 the cohomology classes x, y, and w in the ring H∗(BD8;Z2).

In H̃∗(M8;Z2), Sq2Sq2Sq2(Uw4x3) and Sq2Sq2Sq2(Uw4y3) are linearly independent, so by

theorem C.2 the characteristic classes w4x3 and w4y3 detect two Z2 summands in ΩSpin-D16
11 .

Furthermore, both of these characteristic classes vanish on the generators we built using lens

spaces, HP2, and X10. Therefore we need to find two Spin-D16 manifolds, one on which

w4x3 6= 0 and w4y3 = 0, and the other on which w4x3 = 0 and w4y3 6= 0.
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The last simplification we make replaces D16 with a simpler subgroup. An oriented

manifold M admits a Spin-D16 structure if it has a principal D8 bundle P →M with w(P ) =

w2(M). If the principal D8 bundle is induced from a principal D4 = (Z2×Z2) bundle, we call

a Spin-D16 structure on M a Spin-D8 structure. Because D4 is Abelian, Spin-D8 structures

are easier to construct and study than Spin-D16 structures.

If r, s denote the standard generators of D4 and r′, s′ denote the standard generators

of D8, consider the two maps i, ı̃ : D4 → D8 defined by i(r) = ı̃(r) = r′, i(s) = s′, and

ı̃(s) = r′s′; see Figure 3 for an analogous picture for D8 → D16. There is an isomorphism

H∗(BD4;Z2) ∼= Z2[a, b] with |a| = |b| = 1 such that

• i∗(w4x3) = a7b4 + a3b8 and i∗(w4y3) = 0,

• ı̃∗(w4x3) = ı̃∗(w4y3) = a7b4 + a3b8, and

• i∗(w) = ı̃∗(w) = ab+ b2.

We are thus led to look for an 11-dimensional manifold X11 with a principal D4 = Z2 × Z2

bundle with characteristic classes a, b ∈ H1(X11,Z2) which satisfy w2(TX11) = ab + b2 and

a7b4 + a3b8 6= 0 – and one can show that in the Thom spectrum for Spin-D8 bordism,

Sq2Sq2Sq2(U(a7b4 + a3b8)) 6= 0, (C.3)

so we know such a Spin-D8 manifold actually exists. Now we go and find it.

C.2 Finding the manifold

The Klein group Z2×Z2 does not have a free action on a sphere of any dimension [150, 151];

the next best thing is to look at products of spheres. In particular, we have

X11 =
S6 × S5

Z2 × Z2
, (C.4)

where Z2 × Z2 acts as follows. Take R13, and label coordinates there as (x1, . . . x7, y1, . . . y6).

Then S6 × S5 is the locus specified by the equations

|~x|2 = 1, |~y|2 = 1 ⊂ R13 . (C.5)

The Z2 × Z2 is given by generators α and β given by

α : (~x, ~y) → (−~x,−y1, y2, . . . , y6), β : (~x, ~y) → (~x,−~y). (C.6)

The second action corresponds to antipodal mapping on the S5, and that projection onto the

first factor is well-defined up to a sign. This means that X11 is a fiber bundle over RP6, with

fiber RP5. It is also orientable, since both α and β preserve the induced volume form.

We have H1(X11,Z2) ∼= Z2 ⊕ Z2. The quotient map S6 × S5 → X11 is a principal D4

bundle, and its characteristic classes a, b generate H1(X11,Z2). We can construct associated
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vector bundles in the sign representation of each Z2, sections of these vector bundles are

represented by real-valued functions on S6 × S5 that are even or odd under the actions of α

or β, respectively.

Proposition C.7. On X11,
∫
a3b8 = 1 and

∫
a7b4 = 0.

That is, X11 indeed represents the bordism classes we are searching for.

Proof. We can compute these cup products dually, by passing to intersections in homology.

Taking k generic functions fi on S6×S5 which correspond to class a, and ` functions gi that

correspond to class b, with k + ` = 11, the number of isolated solutions of the equations

f1 = f2 = . . . = g1 = g2 = . . . = 0 , (C.8)

divided by four, is the intersection pairing
∫
akb`. We can obtain some such functions simply

from the transformation properties under α and β of the coordinate functions in the ambient

R13, which are
Action xi y1 yi>1

α − − +

β + − −
(C.9)

From this, we see that
∫
a3b8 corresponds to the number of solutions of the equations

x1 = x2 = x3 = y1 · x4 = y1 · x5 = y1 · x6 = y2 = y3 = y4 = y5 = y6 = 0 ⊂ S6 × S5 . (C.10)

There are four such points, with y1 = ±1, x7 = ±1. So the pairing
∫
a3b8 is 1. On the other

hand, to compute
∫
a7b4, we count solutions of

x1 = x2 = x3 = x4 = x5 = x6 = x7 = y2 = y3 = y4 = y5 = 0 ⊂ S6 × S5 , (C.11)

which has no solutions.

All that is left is to compute w2(X11). This can be done via techniques similar to those

used to compute the cohomology of RPn.

Lemma C.12. w2(X11) = ab+ b2, and therefore X11 has a Spin-D8 structure.

Proof. The normal bundle of S6 × S5 ⊂ R13 is trivial, since the unit normal vectors to the

two spheres provide two everywhere non-vanishing sections, so T (S6 × S5) ⊕ R2 = TR13.

After quotienting by Z2×Z2, the sections of the normal bundle still survive, so the left hand

side becomes the sum of TX11 ⊕ R2 while the right hand side becomes a particular sum of

line bundles over X11 as indicated in table (C.9). Taking the Stiefel-Whitney class of both

bundles, we obtain the formula

w(TX11) = (1 + a)7(1 + b)5(1 + a+ b) , (C.13)
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and in particular w2 = ab+ b2, proving that X11 has a Spin-D8 structure.

D Computation of the anomaly

In this Appendix we compute the η-invariants involved in evaluating the anomaly theory (4.3)

in the bordism classes in (4.16).

As described in Section 4, the generators of the bordism groups are products of Spin

manifolds and lens spaces, apart from a couple exotic cases. To evaluate A on product

backgrounds, we will use repeatedly the formula for the η-invariant of a Dirac operator on a

product space A×B with A odd-dimensional and B even-dimensional [48, 147, 152, 153],

ηD(A×B) = ηD(A)× IndexD(B) , (D.1)

and its generalization for the Rarita-Schwinger operator,

ηRS(A×B) = ηRS(A)× IndexD(B) + ηD(A)× IndexRS(B) . (D.2)

These formulas just encode the physics of dimensional reduction; reducing the theory of a

Dirac fermion on B produces IndexD(B) chiral fermion zero modes, whose anomaly is then

captured by ηD(A). Similarly, reduction of a vector-spinor ψM on B produces vector-spinor

modes ψµ ⊗ λ, where λ is a Dirac zero mode, and Dirac modes ψ ⊗ λi, where λi is a vector-

spinor zero mode. As a cross-check of the Rarita-Schwinger formula, we note that a 10d chiral

vector-spinor reduced on K3 produces −40 modes26, which is the correct quantity [154].

The inclusion
Mp(2,Z)× Spin

Z2
→ GL+(2,Z)× Spin

Z2
, (D.3)

induces a group homomorphism of the corresponding bordism groups,

Ω
Spin-Mp(2,Z)
11 → Ω

Spin-GL+(2,Z)
11 . (D.4)

The finite factors in Ω
Spin-GL+(2,Z)
11 naturally fall into two classes, those in the image of the

homomorphism in (D.4) and those in the complement of the image. They are separated by

the dashed line in (4.16). In physical terms, classes in the image from Ω
Spin-Mp(2,Z)
11 have

transition functions involving only elements in the duality group of determinant +1; while

the others involve reflections. We will consider both cases separately.

26In reduction of the heterotic theory to 6d, these −40 real modes are grouped into −20 complex ones, as the
relevant 6-dimensional spinors are not real. Adding an opposite chirality 10d Dirac fermion to account for the
constraint on the gravitino we obtain an index of −42, and a total of −21 complex modes, the superpartners
of the K3 moduli. In our applications in this Appendix, we will always reduce on an 8-manifold, and so the
reality properties of the fermions remain the same.
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D.1 Anomalies for Spin-Mp(2,Z) manifolds

As listed in (4.16), most of these bordism classes are generated by products of lens spaces

with Spin manifolds. As described in the main text, for each of these generators the Mp(2,Z)

bundle is an associated bundle for a principal Z3 or Z8 bundle. Consequently, the fermions

transforming in representations (3.6) behave as if they had Z3 or Z8 charge only, and the

self-dual form does not see the duality bundle at all, as discussed in Section 3.1. Thus, we

need to know the η-invariants of fermions and the signature operator coupled to Zn bundles

on lens spaces. In the following we will focus only on the Z2 subgroup of the Z8 factor, which

is generated by L11
4 , which is Spin and allows for an application of the techniques below.27

Consider a lens space L2k−1
n ≡ S2k−1/Zn with a principal Zn bundle whose class is given

by that of a generator of H1(L2k−1
n ;Zn) associated to S2k−1 → L2k−1

n . The η-invariant of a

fermion of charge q under this bundle is [23, 147]

ηD
q

(
L2k−1
n

)
= − 1

n ik

n−1∑
j=1

e−2πiqj/n(
2 sin(πj/n)

)k . (D.5)

The η-invariant for the same fermion but a bundle whose class is m times the generator

of H1(L2k−1
n ,Z) is given by the above formula under the replacement q → mq. For the

applications in this paper, where k is always even, q is directly the Zn charge of the fermion

(see [23] for the general case). Finally, when n is even and k is odd, the space L2k−1
n above is

not Spin, but it admits a Spin-Zn structure, hence a Spin-Mp(2,Z) structure for n ∈ {2, 4}.
We also need the η-invariant of the Rarita-Schwinger operator in a lens space L2k−1

n , which

for n > 2 can be determined as follows [23, 55]. In this case, ηRS
q is simply the η-invariant

of a Dirac operator coupled to TL2k−1
n ⊗ Lq, where L is the complex line bundle associated

to the Zn bundle by the representation of Zn on C by rotations. The complexification of the

tangent bundle TL2k−1
n satisfies (see Lemma 1.1 of [155])(

TL2k−1
n ⊗ C

)
⊕ C ≈ k(L ⊕ L−1) . (D.6)

Tensoring with Lq, we get(
TL2k−1

n ⊗ Lq
)
⊕ Lq ≈ k(Lq+1 ⊕ Lq−1) , (D.7)

so that

ηRS
q

(
L2k−1
n

)
= k ηD

q+1

(
L2k−1
n

)
+ k ηD

q−1

(
L2k−1
n

)
− ηD

q

(
L2k−1
n

)
= − 1

n ik

n−1∑
j=1

e−2πiqj/n(
2 sin(πj/n)

)k (2k cos(2πj/n)− 1
)
.

(D.8)

27The formula for η-invariants of Dirac fermions on spaces of the form Q11
4 is provided in [122]. However, at

present we were not able the extend these to the other contributions to the anomaly, which would be needed
to explicitly evaluate the anomaly theory in Q11

4 .
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This is also what one gets from direct application of the equivariant index theorem [23, 156].

We also record the η-invariant for the signature operator [23]:

1
8η

Sig
s

(
L2k−1
n

)
= − 1

8n ik

n−1∑
j=1

e−2πijs/n(
tan(πj/n)

)k . (D.9)

With these formulas, we can compute the anomaly theory directly for the 11-dimensional

lens spaces, save for the term involving the Arf invariant in (4.3). To compute it, we need to

determine a canonical quadratic refinement for the torsion pairing

H6(X,Z)×H6(X,Z)→ Q/Z , (D.10)

of the 11-dimensional manifold [23]. While there is a canonical quadratic refinement for 11-

dimensional Spin manifolds [23], it is not easy to determine. In fact, it is easier to use anomaly

cancellation of type IIB supergravity to determine the Arf invariant. Take for instance the

11-dimensional lens space L11
3 , but with trivial duality bundle; we will denote it as L̃11

3 . This

manifold is Spin, and since ΩSpin
11 = 0, its total anomaly must cancel. One can compute, using

(D.5), (D.8), and (D.9) that

ηRS
1 (L̃11

3 )− 2ηD
1 (L̃11

3 )− ηD
−3(L̃11

3 )− 1
8η

Sig
+ (L̃11

3 ) = −1
4 , (D.11)

which implies Arf(L̃11
3 ) = 1

4 . The relevant cohomology group is Z3, and indeed, the two

possible quadratic refinements for a binary form over Z3 have Arf invariants ±1
4 , so this is

consistent. One can similarly consider L11
4 without duality bundle and conclude that the Arf

invariant is 3
8 , which is one of the possible values for a quadratic refinement of the torsion

pairing of H6(L11
4 ,Z) = Z4.

While these are nice consistency checks, we need a way to bypass an explicit evaluation

of the Arf invariant if we are to find anomalies when duality bundles are introduced. We

will do so by rewriting the anomaly of the self-dual field in terms of fictitious fermion fields.

Note that aside from Q11
4 , all the generators above the dashed line in table (4.16) are Spin

manifolds, and Q11
4 is a Spin-Z8 manifold (and in fact Spinc). This can be checked by explicit

computation of the Stiefel-Whitney classes, which for a lens space with n > 2 are just the

mod 2 reduction of the Chern classes of the complexified tangent bundle [157]. It also follows

directly from group theory arguments [23, 43]. As a result, for the Spin manifolds we can

subtract from (4.3) the anomaly theory of a fictitious gravitino, dilatino, and self-dual field,

which transform trivially under the Mp(2,Z) part of the duality group:

Aaux = ηRS
0 − 3ηD

0 − 1
8η

Sig
+ + Arf = 0 . (D.12)

This is because, as we saw in (2.2), the group of anomaly theories is an extension of the

group Hom(ΩSpin
12 ,Z) (the perturbative anomalies) by the torsion subgroup of Hom(ΩSpin

11 ,C×).

Because the type IIB anomaly polynomial vanishes, the image of this anomaly theory in
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Hom(ΩSpin
12 ,Z) is 0, and since ΩSpin

11 = 0, the anomaly (D.12) must vanish. As a result, we

can rewrite for a Spin manifold,

Ã = A−Aaux = η̃RS
1 − 2 η̃D

1 − η̃D
3 = 0 , (D.13)

where we have defined reduced η-invariants, denoted by η̃,

η̃RS
q ≡ ηRS

q − ηRS
0 , η̃D

q ≡ ηD
q − ηD

0 . (D.14)

Unlike their unreduced counterparts, these η-invariants are bordism invariants in the group

ΩSpin-GL+(2,Z). Another way of looking at this procedure is that we have used the fact that the

self-dual field does not see the duality bundle to compute the relevant Arf invariant implicitly,

as in (D.11), and use it to evaluate the anomaly when a nontrivial duality bundle is turned

on.

For the cases involving products with an 8-manifold we can use the formula

IndexRS(X8) = 24 IndexD(X8)− σ(X8) , (D.15)

where σ is the signature of the 8-manifold (see e.g. [110] for a discussion in the context of

anomalies). Using this, we obtain (for the Bott manifold constructed in [48])

IndexD(Bott) = 1 , σ(Bott) = −224 , IndexRS(Bott) = 248 , (D.16)

as well as

IndexD(HP2) = 0 , σ(HP2) = 1 , IndexRS(HP2) = −1. (D.17)

We now compute the anomalies in the corresponding cases:

• The manifold L11
3 is Spin, so we can use the modified anomaly theory (D.13). Doing

this, we have that

Ã
(
L11

3

)
= η̃RS

1

(
L11

3

)
− 2 η̃D

1

(
L11

3

)
, (D.18)

where the other terms vanish because both the dilatino and self-dual field transform

trivially under the Z3 subgroup of the duality group. We can now evaluate (D.18) using

(D.8) and (D.5), obtaining

Ã
(
L11

3

)
= 1

3 . (D.19)

• The manifold L3
3 can be treated in a similar manner as the one above, using the η̃-

invariants. Using again (D.18) and (D.8), together with (D.5) (D.16) and (D.17), we

get

Ã
(
Bott× L3

3

)
= 0, Ã

(
HP2 × L3

3

)
= 1

3 mod 1 . (D.20)

Again, the anomaly does not cancel in HP2. The Arf invariant in this case is 1
4 .

• We now switch to manifolds involving an action of Z8. In general, these manifolds are
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not Spin, and only have a Spin-Z8 structure as is the case for Q11
4 ; but the lens spaces

we use as generators of a Z2⊕Z2 subgroup of the full Z8⊕Z2 bordism group are actually

Spin, and may be regarded as classes in ΩSpin
11 (BZ4) for the purposes of computing the

anomaly. Related to this, the gravitino and dilatino charges under the Z4 principal

bundle are 1 and −3 with respect to the associated principal Z4 bundle, respectively,

and the self-dual form is uncharged so it drops out of the reduced anomaly theory

(D.13). The Spin-Z8 structure requires that the principal Z4 bundle has a classifying

class given by twice that of the generator of H1(L11
4 ,Z4) = Z4, in order for the fermion

transition functions to be well-defined [23]. This effectively multiplies the charges of

every field above by two, and so, using again (D.8), (D.18) and (D.5)

Ã
(
L11

4

)
= 1

2 mod 1 . (D.21)

• The anomaly on Bott × L3
4 as well as HP2 × L3

4 can be computed by now familiar

techniques, obtaining

Ã
(
Bott× L3

4

)
= 0 mod 1 , Ã

(
HP2 × L3

4

)
= 1

2 mod 1 . (D.22)

This completes the calculation for Spin-Mp(2,Z) manifolds.

D.2 Divisibility of (p1)4 − P(w) by two

In Section 4.3, we introduced a class 1
2 [(p1)4−P(w)] in the anomaly theory of IIB supergravity,

which is necessary to cancel anomalies via the quadratic refinement. For this class to make

sense, we need to show that (p1)4 − P(w) is twice another cohomology class. We will now

show that this is the case for Spin-Mp(2,Z) manifolds.

Let V → X be a vector bundle with a Spin-Mp(2,Z) structure. Then there is a canonical

class µ(V ) ∈ H4(X;Z4) such that

2µ(V ) = p1(V ) mod 4− P(w) . (D.23)

From [131, Theorem 1] we learn that H4(BSO;Z4) ∼= Z4 ⊕Z2, where p1 mod 4 generates the

Z4 summand and the Z2 summand is generated by a class θ(w4), which is the image of w4

under the multiplication-by-2 map θ : H∗(–;Z2)→ H∗(–;Z4). For any oriented vector bundle

V → X, we have [129, 130] (see also [158, Theorem C] and [159, (6.1)])

p1(V ) mod 4− P(w2(V )) = θ(w4(V )) . (D.24)

A Spin-Mp(2,Z) vector bundle has an associated real rank-2 oriented vector bundle E → X,

and there is an induced Spin structure on V ⊕E.28 Apply (D.24) to V ⊕E; since this bundle

28This is an analogue of the more familiar fact that if V has a Spinc structure with determinant line bundle
L, V ⊕ L has a canonical Spin structure.
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is Spin, w2(V ⊕ E) = 0. Therefore

p1(V ⊕ E) mod 4 = θ(w4(V ⊕ E)) . (D.25)

This is the class we want to divide by 2.

Since w1(E) = 0, w2(E) = w2(V ), and w4(E) = 0, w4(V ⊕ E) = w4(V ) + w2(V )2, and

therefore

θ(w4(V )) = p1(V ⊕ E) mod 4 + θ(w2(V )2) . (D.26)

Since V ⊕ E is Spin, it has a characteristic class λ(V ⊕ E) ∈ H4(X;Z) with 2λ(V ⊕ E) =

p1(V ⊕ E). And θ(w2
2) = 2(p1 mod 4) ∈ H4(BSO;Z4). Therefore we can choose

µ = (λ(V ⊕ E) + p1(V )) mod 4 . (D.27)

We note, however, that it does not seem possible to do this on Spin-GL+(2,Z) manifolds in

general.

D.3 The anomaly for Q11
4

Though we cannot completely determine the value of the anomaly theory on the generator

Q11
4 of the Z8 factor, we collect some useful properties of this manifold.

Recall from Section 4.2 that Q11
4 is a L9

4-bundle over S2, specifically the “lensification”

of the bundle V := C4 ⊕ O(2)→ CP1 = S2. That is, m ∈ Z4 acts on V fiberwise by

(z1, . . . , z5) 7→ im (z1, . . . , z5) . (D.28)

If S(V )→ S2 denotes the unit sphere bundle for V with respect to a Z4-invariant Hermitian

metric, then Q11
4 := S(V )/Z4.29

Since V is a sum of line bundles over CP1, S(V )→ S2 admits a section. Composing with

the quotient map S(V )→ Q11
4 , we obtain a section σ : S2 → Q11

4 of π.

Proposition D.29. For A = Z and A = Z4, H∗(Q11
4 ;A) ∼= H∗(L9

4;A)⊗H∗(S2;A). That is,

1. H∗(Q11
4 ;Z) ∼= Z[x, z, t]/(4x, x5, xz, z2, y2), where |x| = 2, |z| = 9, and |t| = 2; and

2. H∗(Q11
4 ;Z4) ∼= Z[b, β(b), t̃]/(b2 = 2β(b), β(b)5, t̃2), where |b| = 1, |β(b)| = 2, and |t̃| = 2.

Reduction mod 4 sends x 7→ β(b) and t 7→ t̃. In the above | · | refers to the degree of a class.

Proof. Set up the Serre spectral sequence for the fiber bundle L9
4 → Q11

4 → S2 with Z and Z4

coefficients. We draw this in Figure 4. This uses H∗(L9
4;Z) ∼= Z[x, z]/(4x, xz, z2, x5) with x

in degree 2 and z in degree 9; the mod 4 cohomology of L9
4 is the same as that of BZ4 except

with the additional relation β(b)5 = 0.

29The name “lensification” is by analogy with projectivization; if we took the quotient by all of U(1) instead
of just Z/4, we would have obtained P(V )→ S2. The condition that the Hermitian metric be Z4-invariant is
no obstacle: if h is any Hermitian metric on V , average it over the Z4-action to obtain an invariant one.
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Figure 4. The Serre spectral sequence for the cohomology of Q11
4 . Left: Z coefficients. Right: Z4

coefficients. We will show the three indicated differentials vanish, which implies both spectral sequences
collapse.

In the spectral sequence for Z coefficients, all differentials save d2(z) vanish because ei-

ther their domain or codomain is 0. Since π1(Q11
4 ) ∼= Z4, the Hurewicz theorem tells us

H1(Q11
4 ;Z) ∼= Z4. Poincaré duality says H10(Q11

4 ;Z) ∼= Z4 too, forcing d2(z) = 0. Therefore

the spectral sequence for Z cohomology collapses, which means that as a H∗(S2;Z)-module,

H∗(Q11
4 ;Z) ∼= H∗(S2;Z)⊗H∗(L9

4;Z). This splits all extension questions: we know the exten-

sion question inH2 splits, because π : Q11
4 → S2 has a section. We know theH∗(S2;Z)-module

structure on H∗(Q11
4 ;Z), which uniquely constrains multiplication by t. A priori, it is possi-

ble that multiplication by x sees an extension, but if this were true, we would see it on the

E∞-page, and we do not. This finishes the proof for Z cohomology.

The proof for Z4 cohomology is similar. By degree reasons, all differentials dr with

r > 2 vanish, and since this spectral sequence is multiplicative, d2 is determined by its

values on b and β(b). The section of π : Q11
4 → S2 forces d2(b) = 0. Since β(b) = x mod 4,

d2(β(b)) = d2(x) mod 4 = 0. Therefore this spectral sequence also collapses. The argument

that there are no multiplicative extensions is similar to the case with Z coefficients.

Finally, we knew x mod 4 = β(b) because this is true for L9
4, and we know t mod 4 = t̃

because this is true for S2.

We also want to know the Arf invariant of the quadratic refinement of the torsion pairing.

Since Q11
4 is not Spin, the tricks we used in the previous subsection do not work, and we are

unable to determine the quadratic refinement completely, though we are able to constrain

it somewhat. Since Q11
4 is Spin-Mp(2,Z), the torsion pairing is on untwisted cohomology.

Recall from proposition D.29 that H6(Q11
4 ;Z) ∼= Z4 ⊕ Z4, generated by x3 and x2t.
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Proposition D.30. The torsion pairing

〈–, –〉 : Tors(H6(Q11
4 ;Z))⊗ Tors(H6(Q11

4 ;Z))→ Q/Z

has the following values: 〈x3, x3〉 = 〈x2t, x2t〉 = 0 and 〈x3, x2t〉 = 1/4.

Proof. Though we defined the torsion pairing using differential cohomology in Section 4.1, it

can also be defined in ordinary cohomology. Specifically, let X be an oriented 11-manifold

and βQ/Z : H∗(X;Q/Z)→ H∗+1(X;Z) be the Bockstein for the short exact sequence

0 Z Q Q/Z 0 . (D.31)

Let a, b ∈ Tors(H6(X;Z)). Since b is torsion, its image in H6(X;Q) vanishes, and therefore

there is some class b ∈ H5(X;Q/Z) such that βQ/Z(b) = b. Then a ∪ b ∈ H11(X;Q/Z), and

the torsion pairing of a and b is defined to be

〈a, b〉 :=

∫
X
a ∪ b ∈ Q/Z . (D.32)

This value does not depend on the choice of b ∈ β−1
Q/Z(b).

Because 4Tors(H∗(Q11
4 ;Z)) = 0, we can do something easier. There is a commutative

diagram of short exact sequences

0 Z Z Z4 0

0 Z Q Q/Z 0

17→4

17→1/417→1/4 (D.33)

Everything in the above definition of the torsion pairing is natural in maps of short exact

sequences, so if we replace Q/Z with Z4, we obtain the same value of the torsion pairing.

And we can take advantage of the ring structure on mod 4 cohomology: if x ∈ H∗(X;Z) and

y ∈ H∗(X;Z4), then x ∪ y = (x mod 4) ∪ y. This is compatible with the maps in (D.33).

Lemma D.34. Let β0,4 : H∗(Q11
4 ;Z4)→ H∗+1(Q11

4 ;Z) denote the Bockstein associated to the

short exact sequence

0 Z Z Z4 0 . (D.35)

Then β0,4(bβ(b)k) = xk+1 and β0,4(bβ(b)k t̃) = xk+1t.

Proof. Let β4 be the Bockstein for the short exact sequence 0 → Z4 → Z16 → Z4 → 0.

Then β0,4(α) mod 4 = β4(α). Proposition D.29 shows us that the mod 4 map H∗(Q11
4 ;Z)→

H∗(Q11
4 ;Z4) is injective on 4-torsion, so it suffices to understand β4, then pull back to Z coho-

mology. Because H3(Q11
4 ;Z) = 0, β0,4(t̃) = β0,4(β(b)) = 0, and therefore β4(t̃) = β4(β(b)) =
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0, and we know β4(b) = β(b). Now, β4 satisfies the Leibniz rule [104, §3.E, (∗)]

β4(α1α2) = β4(α1)α2 + (−1)|α1|α1β(α2) , (D.36)

so we know the value of β4, hence also of β0,4, on products including bβ(b)k and bβ(b)k t̃.

Now we directly compute the torsion pairing.

• For 〈x3, x3〉, Lemma D.34 tells us β0,4(bβ(b)2) = x3, and Proposition D.29 tells us

x3 mod 4 = β(b)3, so

〈x3, x3〉 =

∫
Q11

4

bβ(b)5 = 0 . (D.37a)

• For 〈x3, x2t〉, Lemma D.34 says β0,4(bβ(b)t̃) = x2t, and we know x3 mod 4 = β(b)3.

Therefore

〈x3, x2t〉 =

∫
Q11

4

bβ(b)4t̃ = 1
4 . (D.37b)

• Finally, for 〈x2t, x2t〉, we know β0,4(bβ(b)t̃) = x2t and Proposition D.29 gives us x2t mod

4 = β(b)2t̃, so

〈x2t, x2t〉 =

∫
Q11

4

bβ(b)3t̃2 = 0 . (D.37c)

For this torsion pairing, the possible quadratic refinements’ Arf invariants are of the form

k/4 with k ∈ Z. Let us see how this comes about. Let us denote a general element of Z4×Z4

by a pair of integers modulo 4, (n1, n2). As explained in [23], a quadratic refinement of the

bilinear pairing (A,B) is defined by the property that

Q(A+B)−Q(A)−Q(B) +Q(0) = 〈A,B〉 . (D.38)

We are interested in quadratic refinements with Q(0) = 0, so we drop the last term on the

left hand side. Evaluating (D.38) for A = B = (1, 0) or (0, 1), we get

Q(2A) = 2Q(A), Q(3A) = 3Q(A) . (D.39)

We will denote Q((0, 1)) = k1/4 and Q((1, 0)) = k2/4 for some integers k1, k2. Finally, we

also have

Q((n1, n2)) = k1n1 + k2n2 + 1
4n1n2 . (D.40)

This is the most general possible quadratic refinement. The Arf invariants can now be com-

puted explicitly, and they turn out to be multiples of 1
4 in all cases.

D.4 Anomalies for the rest of the classes

Below the dashed line in (4.16), the duality bundle only involves the action of reflections and

half-turns; the corresponding relevant representations are real, and the bundles are generated
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by an inclusion D4 → GL(2,Z) (or on the double cover, D8 → GL+(2,Z)). Furthermore, for

each class, there are two different variants, which we denote in (4.16) as tilded and untilded,

and which differ in the way the inclusion takes place; the reflections in D8 can be embedded as

reflections along the sides or along the diagonal in Spin-D16 ⊂ Spin-GL+(2,Z), as illustrated

in Figure 3. At the level of the associated principal GL(2,Z) bundle, these correspond to a

Z2 reflection subgroup acting on the fermions as multiplication by either of the two matrices

R+ =

(
1 0

0 −1

)
or R× =

(
0 1

1 0

)
. (D.41)

Since both matrices are equivalent by a change of basis, the fermion anomalies will not be able

to distinguish tilded and untilded versions of the theory; they will all have the same anomaly.

The same applies to the self-dual field, which couples via the determinant representation

which sends both matrices in (D.41) to a sign. As a result, we only need to evaluate the

anomaly theory for untilded classes, lowering our workload from eight to four classes.

One can also see this directly using bordism. Let GL+(2,R) denote the Pin+ cover

of GL(2,R); then one can define Spin-GL+(2,R) structures analogously to Spin-GL+(2,Z)

structures. Using the inclusion j : GL+(2,Z) → GL+(2,R), a Spin-GL+(2,Z) structure on a

manifold M induces a Spin-GL+(2,R) structure on M .

Lemma D.42. Let M be a closed Spin-D8 manifold, and let M and M̃ denote the two Spin-

GL+(2,Z)-structures on M given by the maps i and ı̃. As Spin-GL+(2,R)-manifolds, M and

M̃ are bordant.

Proof. We will show that there is a homotopy H between the two maps j ◦ i, j ◦ ı̃ : D8 →
GL+(2,R). Using H, define a Spin-GL+(2,R) structure on [0, 1] × M which on {t} × M

is induced by Ht : D8 → GL+(2,R). This is a Spin-GL+(2,R) bordism from M to M̃ , as

desired.

The image of D16 in GL+(2,R) is contained in Pin+(2) ∼= O(2); in the rest of this

paragraph, we regard j ◦ i and j ◦ ı̃ as maps into O(2). Let r be a generating rotation of D8

and s be a generating reflection. Then, both j ◦ i and j ◦ ı̃ send r to 0 and s to a reflection

through some line through the origin. These maps are homotopic because we can rotate the

line for j ◦ i to the line for j ◦ ı̃.

The partition functions of the anomaly theories for the fermion and the self-dual field

only depend on the underlying Spin-GL+(2,R)-structure, so are equal on M and on M̃ .

To compute anomalies in the classes involving real projective spaces, we need the analogs

of (D.5) and (D.8) for these cases. Both examples that concern us, HP2 × RP3 and RP11,

are Spin, and so the anomalies are the same as those of fermions coupled to an ordinary Z2

bundle.

We will denote the η-invariant of a real Dirac operator coupled to the Z2 in either the

trivial or sign representation as ηD
±. We have that ηD

±(RPn) is given by 1
2 of the result (D.5)
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for n = 3, 11, since the Z2 action behaves as charge conjugation on the complex fermions.

Following a similar logic as the one leading to (D.8),

ηRS(RPn) = n ηD
±(RPn)− ηD

∓(RPn) . (D.43)

We also need to write down the η-invariants that appear in (4.3) in terms of ηD
±. Both matrices

in (D.41) can be diagonalized, resulting in exactly one +1 and one −1 eigenvalue. As a result,

the η-invariants of the IIB supergravity fermions decompose as

ηD
q = ηD

+ + ηD
− , ηRS

q = ηRS
+ + ηRS

− . (D.44)

Finally, we will also need the η-invariant for the self-dual field coupled to the sign represen-

tation. The explicit expression is given by (D.9).

We are now in a position to evaluate the anomalies on the classes in (4.16) involving real

projective spaces. One can check explicitly that

ηD
q (RPn) = ηRS

q (RPn) = ηSig
− (RPn) = 0 . (D.45)

For the fermions, the contribution with η+ cancels that of η− in (D.44). For the self-dual

field, the result vanishes identically. These results can be understood as a consequence of

anomaly cancellation, together with the facts that the η-invariants are defined over the reals

and that that these bordism classes are Z2. For concreteness, consider RP11. The 12-manifold

is defined as

Z12 =
RP11 × S1

Z2
, (D.46)

where the Z2 acts by reflecting the S1 coordinate. This has boundary given by two copies

of RP11, with opposite induced orientations. Now consider the anomaly theory 8A, given by

eight times the actual anomaly theory in (4.3). The partition function of 8A is a bordism

invariant, but it only depends on η-invariants. We can use the APS index theorems to

evaluate these explicitly as the equivariant indices of the corresponding operators in Z12; the

zero modes of an elliptic operator in Z12 correspond to Z2-invariant zero modes in RP11×S1.

There are no fermion zero modes in RP11 × S1, and so the corresponding η’s must vanish.

For the self-dual field, there is a single Z2-odd zero mode (given by the polyform obtained as

the sum of the harmonic forms in degrees 1 and 10), but we need to subtract the contribution

from the zero modes of the boundary [23], of which there is just one. As a result, the anomaly

for the self-dual field vanishes as well.

Having dealt with the η-invariants, we must now deal with the Arf invariant in (4.3).

This is simpler because we must use cohomology in the local coefficient system L that we

defined in Section 4.1, and

H6(RP11;L) = H2(RP3;L) = 0 , (D.47)
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so the Arf invariant must vanish. The anomaly in all these cases therefore vanishes.

We can evaluate A in the classes X10 × S1 and X10 × S̃1 directly by using (D.1). Since

both manifolds are products, (D.1) relates the anomaly to the Dirac, Rarita-Schwinger, and

self-dual indices30 of X10, respectively. But this being a 10-manifold, the index densities all

vanish. As a result,

A = 0 for X10 × S1, X10 × S̃1. (D.48)

We are left with the classes involving X11.

Lemma D.49. The η-invariants of the Dirac, Rarita-Schwinger, and signature operators

vanish on X11.

Proof. We can realize X11 as the boundary of a 12-manifold

Y12 ≡
S6 × S6

Z2 × Z2
, (D.50)

where, following the same conventions as in Appendix C, we realize S6 × S6 as the locus

|~x| = |~y| = 1, (D.51)

in an ambient R14 parametrized as (~x, ~y) where each of the vectors has seven components. The

two Z2 factors act by flipping ~x and y1, and by flipping all the coordinates in ~y except for y7,

respectively. The corresponding action has fixed points at y7 = ±1; excising these produces

a manifold with boundary homeomorphic to two copies of X11 with opposite orientation. We

can then run the same argument as around (D.46); the Dirac and Rarita-Schwinger fields

have no zero modes on S6. Taking into account the Z2 action, the self-dual field has one zero

mode given by the sum of the harmonic forms in degree 1 and 12; but one has to subtract

the boundary contribution, which is again a single class at top degree, so that there are no

zero modes either.

As a result,

A(X11) = Arf(X11), (D.52)

depends only on the Arf invariant. A priori this is an element of Z8, but since 2[X11] = 0 in

Ω
Spin-GL+(2,Z)
11 , we know that this Arf invariant is either 0 or 1

2 mod 1.

As a consistency check, we compute the torsion subgroup of H6(X11;L), where L is the

local coefficient system from Section 4.1. The torsion subgroup is isomorphic to Z2 ⊕ Z2;

the possible Arf invariants of a quadratic refinement of a bilinear pairing on this Abelian

group are {0, 1/4, 1/2, 3/4} mod 1, which is consistent with what we learned from the bordism

consideration above.

30In the case of the self-dual operator, we would apply (D.1) to the Dirac operator for the bispinor field, as
in [23, 110].
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In (C.6), we explicitly identified π1(X11) ∼= {1, α, β, αβ}. For both Spin-GL+(2,Z) struc-

tures we care about, which we denoted X11 and X̃11, α maps to a reflection in GL(2,Z) and

β maps to a rotation, so L is the local system in which α acts by −1 and β acts by 1.

Proposition D.53. H6(X11;L) ∼= Z⊕2 ⊕ Z⊕2
2 .

Proof. For brevity, let V := π1(X11). The universal cover of X11 is the principal V -bundle

S6×S5 → X11; this induces a V -action on S6×S5, hence also on the singular chain complex

C∗(S
6 × S5). Cohomology with local coefficients is defined to be the cohomology of the

cochain complex of maps to L:

Hk(X11;L) := Hk(HomZ[V ](C∗(S
6 × S5), L)) . (D.54)

Abstract nonsense implies we can replace C∗(S
6× S5) with any quasi-isomorphic chain com-

plex of Z[V ]-modules, in particular the complex of CW chains for any CW structure on S6×S5

for which the V -action is cellular. Consider the sequence of embeddings Sn−1 ↪→ Sn as the

equator and inductively define a CW structure Πn on Sn by beginning with Πn−1 on the

equatorial Sn−1, then attaching the northern and southern hemispheres as two n-cells with

orientations inherited from the standard orientation on Sn. If we define the equator in S5

to be the intersection of S5 with {y1 = 0}, then the V -action on S6 × S5 is cellular for the

product CW structure Π6 ×Π5: the image of a cell under any x ∈ V is a union of cells.

Let pi, qi denote the two i-cells in Π6 (0 ≤ i ≤ 6) and rj , sj denote the two j-cells in Π5

(0 ≤ j ≤ 5). Then

∂pi = ∂qi =

{
0, i odd

pi−1 + qi−1, i even,
(D.55)

and ∂rj and ∂sj are analogous. To determine the boundary map in Π6×Π5, use the Leibniz

formula ∂(C×D) = ∂(C)×D+ (−1)deg(C)C×∂(D). We also need to know how V permutes

the cells; α exchanges pi ↔ qi for all i, exchanges r5 ↔ s5, and fixes the remaining rj and sj .

β fixes pi and qi for all i and exchanges rj ↔ sj for all j. With all this data, we know the

CW chains as a complex of Z[V ]-modules.

If e ∈ HomZ[V ](Ck(S
6 × S5), L), e is uniquely specified by its values on cells of the form

pi × rj , where i+ j = k, 0 ≤ i ≤ 6, and 0 ≤ j ≤ 5, because every V -orbit of the set of k-cells

contains exactly one cell of this form. Moreover, the V -action on the set of cells is free, so

e(pi×rj) can be chosen arbitrarily. Let ei,j be the unique element of HomZ[V ](Ck(S
6×S5), L)

with value 1 on pi× rj , and which vanishes on all pi′ × rj′ for (i′, j′) 6= (i, j). The coboundary

map δ can then be calculated as usual, and we find

δ(e2,3) = 2e2,4 δ(e3,3) = −2e3,4

δ(e4,1) = 2e4,2 δ(e5,1) = −2e5,2,
(D.56)

and on the remaining ei,j , δ(ei,j) = 0. Therefore H6(X11;L) = Z · e1,5 ⊕ Z · e6,0 ⊕ Z2 · e2,4 ⊕
Z2 · e4,2.
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Corollary D.57. Let Q : H6(X11;L)→ R/Z be a quadratic refinement of the torsion pairing.

Then the Arf invariant of Q is either 0, 1/4, 1/2, or 3/4.

The proof amounts to a calculation of the possible Arf invariants of a bilinear form on a

two-dimensional Z2-vector space.

References

[1] J. H. Schwarz, Covariant Field Equations of Chiral N=2 D=10 Supergravity, Nucl. Phys. B

226 (1983) 269.

[2] C. Vafa, Evidence for F theory, Nucl. Phys. B 469 (1996) 403–418, [hep-th/9602022].

[3] D. R. Morrison and C. Vafa, Compactifications of F theory on Calabi-Yau threefolds. 1, Nucl.

Phys. B 473 (1996) 74–92, [hep-th/9602114].

[4] D. R. Morrison and C. Vafa, Compactifications of F theory on Calabi-Yau threefolds. 2., Nucl.

Phys. B 476 (1996) 437–469, [hep-th/9603161].

[5] Y. Tachikawa and K. Yonekura, Why are fractional charges of orientifolds compatible with

Dirac quantization?, SciPost Phys. 7 (2019) 58, [1805.02772].

[6] T. Pantev and E. Sharpe, Duality group actions on fermions, JHEP 11 (2016) 171,

[1609.00011].

[7] F. Denef, M. R. Douglas, B. Florea, A. Grassi and S. Kachru, Fixing all moduli in a simple

f-theory compactification, Adv. Theor. Math. Phys. 9 (2005) 861–929, [hep-th/0503124].

[8] F. Denef, M. R. Douglas and S. Kachru, Physics of String Flux Compactifications, Ann. Rev.

Nucl. Part. Sci. 57 (2007) 119–144, [hep-th/0701050].

[9] R. Donagi and M. Wijnholt, Model Building with F-Theory, Adv. Theor. Math. Phys. 15

(2011) 1237–1317, [0802.2969].

[10] C. Beasley, J. J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory - I, JHEP

01 (2009) 058, [0802.3391].
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[34] C. Lawrie, D. Martelli and S. Schäfer-Nameki, Theories of Class F and Anomalies, JHEP 10

(2018) 090, [1806.06066].

[35] N. Seiberg, Y. Tachikawa and K. Yonekura, Anomalies of Duality Groups and Extended

Conformal Manifolds, PTEP 2018 (2018) 073B04, [1803.07366].

[36] C.-T. Hsieh, Y. Tachikawa and K. Yonekura, Anomaly of the Electromagnetic Duality of

Maxwell Theory, Phys. Rev. Lett. 123 (2019) 161601, [1905.08943].

– 61 –

http://dx.doi.org/10.1007/s00220-021-04040-y
http://dx.doi.org/10.1007/s00220-021-04040-y
https://arxiv.org/abs/1810.05338
https://arxiv.org/abs/2102.01111
http://dx.doi.org/10.1088/1126-6708/1998/11/026
https://arxiv.org/abs/hep-th/9810153
http://dx.doi.org/10.1007/JHEP02(2017)025
https://arxiv.org/abs/1611.09575
http://dx.doi.org/10.1016/0550-3213(92)90189-I
https://arxiv.org/abs/hep-th/9202046
https://arxiv.org/abs/2003.11550
https://arxiv.org/abs/hep-th/0605038
https://arxiv.org/abs/hep-th/0611020
http://dx.doi.org/10.1016/S0393-0440(97)80160-X
https://arxiv.org/abs/hep-th/9610234
http://dx.doi.org/10.1007/s00220-013-1845-4
http://dx.doi.org/10.1007/s00220-013-1845-4
https://arxiv.org/abs/1110.4639
http://dx.doi.org/10.1007/s00220-013-1844-5
http://dx.doi.org/10.1007/s00220-013-1844-5
https://arxiv.org/abs/1109.2904
http://dx.doi.org/10.1007/s00023-015-0423-z
http://dx.doi.org/10.1007/s00023-015-0423-z
https://arxiv.org/abs/1309.6642
http://dx.doi.org/10.1007/s11005-016-0839-5
https://arxiv.org/abs/1503.04806
http://dx.doi.org/10.1007/JHEP05(2018)120
https://arxiv.org/abs/1708.02250
http://dx.doi.org/10.1007/JHEP06(2014)180
https://arxiv.org/abs/1403.2530
http://dx.doi.org/10.1007/JHEP12(2016)058
https://arxiv.org/abs/1610.03663
http://dx.doi.org/10.1007/JHEP10(2018)090
http://dx.doi.org/10.1007/JHEP10(2018)090
https://arxiv.org/abs/1806.06066
http://dx.doi.org/10.1093/ptep/pty069
https://arxiv.org/abs/1803.07366
http://dx.doi.org/10.1103/PhysRevLett.123.161601
https://arxiv.org/abs/1905.08943
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