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Abstract

The U-dualities of maximally supersymmetric supergravity theories lead to celebrated non-
perturbative constraints on the structure of quantum gravity. They can also lead to the
presence of global symmetries since manifolds equipped with non-trivial duality bundles can
carry topological charges captured by non-trivial elements of bordism groups. The recently
proposed Swampland Cobordism Conjecture thus predicts the existence of new singular
objects absent in the low-energy supergravity theory, which break these global symmetries.

We investigate this expectation in two directions, involving the different choices of U-
duality groups GU , as well as k, the dimension of the closed manifold carrying the topological
charge. First, we compute for all supergravity theories in dimension 3 ≤ D ≤ 11 the bordism
groups ΩSpin

1 (BGU). Second, we treat in detail the case of D = 8, computing all relevant
bordism groups ΩSpin

k (BGU) for 1 ≤ k ≤ 7. In all cases, we identify corresponding string, M-,
or F-theory backgrounds which implement the required U-duality defects. In particular, we
find that in some cases there is no purely geometric background available which implements
the required symmetry-breaking defect. This includes non-geometric twists as well as non-
geometric strings and instantons.

This computation involves several novel computations of the bordism groups for GU =
SL(2,Z) × SL(3,Z), which localizes at primes p = 2, 3. Whereas an amalgamated product
structure greatly simplifies the calculation of purely SL(2,Z) bundles, this does not extend
to SL(3,Z). Rather, we leverage the appearance of product / ring structures induced from
cyclic subgroups of GU which naturally act on the relevant bordism groups.
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1 Introduction and Conclusions

There is a general expectation that quantum gravity has no global symmetries.1 Much

of the evidence for this comes from interrogating the fate of global symmetries in specific

spacetime backgrounds involving black holes, wormholes, AdS/CFT, and specific top down

string constructions. On the other hand, it is natural to expect that the very nature of

having a quantum mechanically fluctuating spacetime topology ought to play a role in ruling

out global symmetries. Presumably, then, such putative symmetries are broken or gauged.

Along these lines, it is natural to consider field profiles in the effective field theory which

can be interpreted as an extended operator.2 One way to build these is with the spacetime

geometry itself. Introducing a manifold Xk of dimension k, we can in principle also decorate

Xk with additional smooth structures such as non-trivial field profiles / gauge bundles over

Xk. Gluing this into the rest of the spacetime results in a geometry extended over k + 1

dimensions with boundary given by ourXk (equipped with suitable asymptotic field profiles).

In particular, this can be interpreted as an extended object which fills D− (k+1) spacetime

dimensions. If we cannot deform away this extended operator in the low energy effective

field theory then it carries a charge under a global symmetry. The Swampland Cobordism

Conjecture of [12] asserts that in a full theory of quantum gravity, all such Xk’s are in fact

bordant, i.e., they can be viewed as the boundary of a bulk (k+ 1)-dimensional space. This

is often stated as the condition that in quantum gravity, the bordism group is trivial:

ΩQG
k = 0 (1.1)

It is important to note that while there is no precise formulation of ΩQG
k , this conjecture

has many direct practical consequences. Indeed, what makes this conjecture so powerful is

that this in turn requires supplementing the low energy effective field theory by additional

dynamical degrees of freedom which would be singular in the original low energy effective

field theory.3

Said differently, the appearance of an extended operator which cannot be smoothed

away implies it carries a charge under a generalized global symmetry (in the sense of [13]).4

From a bottom up point of view, one can attempt to either gauge or break this symmetry.

For higher-form symmetries, breaking involves supplementing the spectrum by additional

degrees of freedom which can terminate at the end of the extended operator.5 Alternatively,

one might contemplate gauging the generalized symmetry. Even if this can be carried out

1See, e.g., [1, 2] as well as more recent progress such as [3–11].
2Here we use the terminology of quantum field theory (QFT) to refer to these heavy non-dynamical

objects as extended operators.
3If they were smooth field configurations in the original low energy effective field theory they could be

deformed away.
4For a bordism group Ωk, this amounts to a p-form symmetry Hom(Ωk,U(1)) with p = D − (k + 1).
5Recall that in the framework of [13] one considers topological symmetry operators which link with the

extended operator in question. This linking is destroyed if the extended operator can now terminate.
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(assuming the gauging is not obstructed by anomalies) it turns out that this results in

another, magnetic dual generalized global symmetry, and the spectrum of lightest objects

presumably also shuffles around. One is thus still faced with the issue of how to get rid of

this new global symmetry. So, enriching the spectrum by additional degrees of freedom is

inevitable in either case.

Assuming the Swampland Cobordism Conjecture is true, this suggests a natural strategy

for testing the consistency of a given low energy effective field theory, and in particular

whether the spectrum of dynamical objects in the theory is complete. First, given a theory

with a known class of admissible bundle configurations, we can construct mathematical

equivalence relations between smooth manifolds equipped with these structures. These are

the bordism groups and we schematically label these as ΩG
k (we shall be more precise later). A

priori, there is no reason for these bordism groups to vanish and as such, the appearance of a

non-trivial element of ΩG
k predicts the existence of a dynamical object of codimension k+1 in

the effective theory, namely it fillsD−(k+1) dimensions. Tests of the Swampland Cobordism

Conjecture in a variety of different contexts have now been performed, e.g., in [12, 14–35].

In many cases, this sheds new light on previously known string backgrounds, and in some

cases, predicts the existence of new objects [21,28,30,33,35]. One of the overarching themes

in many of these examples is the interplay between a defect predicted by the Cobordism

Conjecture and the realization of an explicit object / background in a UV completion of the

effective field theory.

On the other hand, a given effective field theory can in principle have many different UV

completions. A classic example is maximally supersymmetric supergravity in D spacetime

dimensions; it arises both from placing M-theory on T ℓ as well as type IIB on T ℓ−1 with

ℓ = 11 − D. These different characterizations are of course connected through dualities,

providing a single coherent picture of string / M- / F-theory and the spectrum of objects

under various dualities. Indeed, the supergravity theory itself enjoys an important U-duality

symmetry which acts on the solitonic objects of the spectrum [36, 37]. A celebrated feature

of U-dualities is that they involve strong / weak dualities as well as T-dualities. As such,

the full set of symmetries do not have an obvious geometric characterization in terms of a

single higher-dimensional parent theory. Historically such dualities played a pivotal role in

many aspects of the duality revolution of the mid 1990’s.

Our aim in this paper will be to construct the bordism groups and generators associated

with such U-dualities. More precisely, we shall be interested in the mathematical structures

known as spin-bordism groups for such duality bundles, i.e., ΩSpin
k (BGU), where GU denotes

the U-duality group of a supergravity theory, BGU denotes its classifying space, and the

superscript “Spin” indicates that we require a spin structure for all of our manifolds. We shall

refer to this as exploring the world of “Utopia,” namely we view it as a natural continuation

of investigations already performed in the study of “IIBordia,” i.e., the bordism groups

associated with type IIB dualities [15,19,21,28,29].

To set the stage, let us briefly recall some recent explorations of IIBordia. As is well-

6



known, type IIB string theory and its non-perturbative lift to F-theory enjoys a duality

symmetry SL(2,Z). Taking into account reflections on the F-theory torus associated with

worldsheet parity and left-moving fermion parity, this extends to the Pin+ cover of GL(2,Z).6

Moreover, the interplay between the Spin/Pin+ structures means that the relevant bordism

groups involve a non-trivial twisting with the accompanying duality bundles. A very help-

ful feature of these duality groups is that they admit an amalgamated product structure

GIIB = H1 ∗K H2, where each of the constituents involve either cyclic groups or dihedral

groups. Treating the bordism groups as a generalized (co)homology theory, there is a cor-

responding Mayer-Vietoris long exact sequence which breaks up the contributions into far

simpler constituent building blocks. These in turn can be constrained / computed using the

Adams spectral sequence [40]. In physical terms, these simpler building blocks correspond

to quite simple string backgrounds, such as 7-branes with a constant axio-dilaton profile.

As found in [21, 28], this leads to the discovery of essentially one new non-supersymmetric

object, the reflection 7-brane (R7-brane), as well as a number of supersymmetric and non-

supersymmetric string backgrounds. Geometrically, the topology of a corresponding torus

fiber decorating the ten-dimensional spacetime produces a beautiful geometric characteriza-

tion of all of these duality defects.

But from the perspective of U-dualities, SL(2,Z) is merely a special case of a more

general structure. This strongly motivates the exploration of Utopia with its broader class

of non-perturbative and stringy dualities.

It is here that we encounter a number of surprises compared with the relatively “tame”

world of IIBordia. First of all, the analogous Spin and Pin lifts of the duality group action

are (as yet) unknown. As such, in this work we shall primarily concentrate on just spin-

bordism groups associated with duality bundles. At a technical level, some of the key

simplifications used in the exploration of IIBordia no longer work. In particular, whereas

the IIBordia duality groups admit an amalgamated product structure, this is unavailable for

the U-dualities of the maximally supersymmetric D ≤ 8 supergravity theories. This in turn

means that the identification of “simple physical building blocks” is also somewhat obscure.

The flip side of this is that some of the resulting bordism groups and generators are not fully

geometrizable in terms of compactifications descending from a higher-dimensional theory. As

such, the bordism group generators we find in these cases directly probe the non-geometric

regime of quantum gravity!

The core of our analysis will center on the computation of the bordism groups associ-

ated with U-dualities of maximally supersymmetric supergravity theories in D spacetime

dimensions:

ΩSpin
k (BGD

U ), (1.2)

where we work in the range of 3 ≤ D ≤ 10 and we restrict to 1 ≤ k ≤ D − 1, i.e., we

focus on codimension-two objects up to instanton-like objects.7 So, we can scan over both

6See [38] for the Spin-lift and [39] for the Pin+ lift.
7It is also of interest to consider k = 0 which tells us about domain walls as well as k = D which tells
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D, the total spacetime dimension of the effective field theory, as well as k, the dimension of

bounding spacetime manifolds equipped with duality bundles.

In this paper we specialize along two different routes, depending on whether we scan

over D or k. Along these lines, we determine for all D, the values of ΩSpin
1 (BGD

U ), i.e.,

the spectrum of codimension-two defects. An application of the Atiyah-Hirzebruch spectral

sequence reveals that these are controlled by the Abelianization of GD
U , and as such, can be

directly accessed by purely group theoretic techniques. In particular, we find that for D ≤ 7,

the Abelianization of GD
U is trivial, namely the group is “perfect.” Any contribution to the

bordism group in these cases thus originates from ΩSpin
1 (pt) ≃ Z2. One can also use some

general techniques to find analogous results for any D and k = 2 [42]. Beyond this, however,

requires specific details on the structure of the bordism groups, something we defer to future

work.

We also determine ΩSpin
k (BG8d

U ) for all 1 ≤ k ≤ 7 i.e., the spectrum of defects in 8d

maximally supersymmetric supergravity. While there is no amalagamated product structure

available for all of:

G8d
U = SL(2,Z)× SL(3,Z), (1.3)

there is some additional structure available in this case which makes the computation

tractable compared with the D ≤ 7 case (which we defer to future work). The first key

idea is (much as in IIBordia) to localize the computation of bordism groups one prime at

a time. This is expected to work since the torsional pieces decompose into summands of

the form Zpℓ for suitable prime powers pℓ. In particular, we find that in the case at hand,

localization occurs at primes p = 2, 3. In this case, the relevant pieces of the bordism groups

often simplify to simpler bundle structures involving the classifying spaces of cyclic groups,

dihedral and symmetric groups, and their smash products.8 In principle, this boils the com-

putation down to more tractable questions in group cohomology which can in some cases be

located in the literature. To proceed further, however, we also leverage the fact that these

bordism groups come with a module structure, admitting a group action by suitable cyclic

groups. In physical terms, this suggests an organization of some of our bordism defects into

symmetry multiplets, but we defer a full treatment to future work.

The end result of these computations is that at least forD = 8 maximally supersymmetric

supergravity, we have a full list of bordism groups, generators, as well as candidate string / M-

/ F-theory backgrounds which implement these defects. In particular, a few striking lessons

emerge from this general picture. The first statement is that for dualities involving just the

SL(3,Z) factor, there is a geometric realization available involving M-theory backgrounds

with a suitable T 3 fibration. Likewise, dualities involving just the SL(2,Z) factor can be

interpreted in IIB vacua as coming from fibration of a spacetime 2-torus. On the other hand,

us about discrete theta-angles. The case of k = D + 1 is also relevant in the study of duality anomalies
of Dai-Freed type [41]. For k = 0, the answer turns out to be either trivial or Z, so we neglect it in what
follows. For k ≥ D, we encounter some technical complications and so defer this to future work.

8We give the precise definition of smash products later.
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k ΩSpin
k

(
BSL(2,Z)×BSL(3,Z)

)
1 Z2 ⊕ Z3 ⊕ Z4

2 Z⊕4
2

3 Z⊕3
3 ⊕ Z⊕3

2 ⊕ Z⊕3
8

4 Z⊕ Z⊕2
3 ⊕ Z⊕3

2 ⊕ Z⊕2
4

5 Z⊕2
3 ⊕ Z9 ⊕ Z⊕5

2 ⊕ Z4

6 Z⊕2
3 ⊕ Z⊕3

2 ⊕ Z⊕2
4

7 Z⊕2
3 ⊕ Z⊕3

9 ⊕ Z⊕6
2 ⊕ Z⊕2

8 ⊕ Z⊕2
16 ⊕ Z32

Table 1: Bordism groups for 8d supergravity theories with 32 supercharges (the Spin bordism
ΩSpin
k (pt) contributes a Z2 for k = 1 , 2 and a Z summand for k = 4).

there are also backgrounds where all of the duality bundle structure group participates.

In these cases it appears necessary to appeal to more non-geometric ingredients such as

exceptional field theory (a non-perturbative generalization of double field theory) to give a

target space “geometry” interpretation.9 As one might suspect, identifying the mathematical

computation of bordism groups and generators in these cases is also more challenging, but

also more rewarding since it provides access to the non-geometric corners of quantum gravity.

The resulting bordism groups for D = 8 supergravity with maximal supersymmetry are

given in Table 1. We see that they are far from trivial, suggesting the existence of many

conserved topological charges which have to be taken care of.

Part of this work is based on the recently completed PhD thesis of N. Braeger [42].

The rest of this paper is organized as follows: In the remainder of this section we provide a

summary of the bordism generators and symmetry-breaking defects, as well as a collection of

general lessons and surprises. We also present some potential areas of future investigation.

In Section 2 we review U-duality groups of maximal supergravity theories as well as its

full geometrization within the context of exceptional field theory. We then focus on the

particular U-duality group SL(2,Z)× SL(3,Z) for 8d supergravity and its interpretation in

torus compactifications of M-theory and type IIB in Section 3. Part I contains a detailed

description of the singular fibers in the various UV descriptions in Section 4, a general

analysis of codimension-two defects in 3 ≤ D ≤ 7 in Section 5, as well as the in-depth

investigation of the bordism generators as well as a physics interpretation of their associated

defects for D = 8 in Section 6.

The derivation of the bordism groups is given in Part II. We begin by giving a general

treatment of the bordism groups ΩSpin
k (BGD

U ) for maximally supersymmetric supergravity

theories in dimensions 3 ≤ D ≤ 10. Specializing further to 8d supergravity, we begin by

laying out our general plan of attack, namely we show how the calculation localizes at primes

9See e.g., references [43–50] for recent work in this direction.
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k ΩSpin
k

(
BSL(2,Z)×BSL(3,Z)

)
Generators Defect

1 Z2 S1
+ spin defect

Z3 S1
γ3

N = (2, 0) 6d SCFTs

Z4 S1
γ4

N = (2, 0) 6d SCFTs

2 Z2 S1
+ × S1

+ spin defect on S1

Z2 S1
+ × S1

γ4
codimension-two defect on S1

+

Z2 ⊕ Z2 S1

M
(i)
1

× S1

M
(i)
2

twisted compactification of additional

codimension-two objects (hosting SCFTs)

3 Z3 L3
3,γ3

type IIB on singular local Calabi-Yau

Z3 L3

3,Γ
(1)
3

non-Higgsable cluster on T 2

Z3 L3

3,Γ
(2)
3

twisted compactification of 5d SCFTs

Z2 S1
+ × S1

+ × S1
γ4

codimension-two defect on S1
+ × S1

+

Z2 ⊕ Z2 S1
γ4
× S1

M
(i)
1

× S1

M
(i)
2

(non-geometrically) twisted compactification

of codimension-two defect

Z8 L3
4,γ4

type IIB on singular geometry

Z8 L3

4,Γ
(1)
4

F-theory on singular geometry

Z8 L3

4,Γ
(2)
4

M-theory on singular geometry

4 Z K3 codimension-five spin defect

Z3 ⊕ Z3 S1
γ3
× L3

3,Γ
(i)
3

(non-geom.) twisted compactification of defects

Z4 ⊕ Z4 S1
γ4
× L3

4,Γ
(i)
4

(non-geom.) twisted compactification of defects

Z2 W4 (topolog.) twisted compactification of defect

Z2 ⊕ Z2 A ,A′ (non-geom.) twisted compactification of defects

Table 2: Bordism groups, their generators, and defects for 1 ≤ k ≤ 4.

2 and 3, and in part II.B we carry out the relevant bordism group calculations at prime 3 and

in part II.C we perform the same analysis at prime 2. Some additional technical details are

deferred to the Appendices; in Appendix A we analyze the shape of singular torus fibrations

in some prominent examples, and in Appendix B we review the knit product which enters

in the structure of the U-duality groups.

1.1 Summary of the bordism groups and generators

In this section we summarize the individual generators of the bordism groups in Table 1 as

well as their associated defects. Whenever possible, we describe the the configurations in a

duality frame in which a geometric description is possible. The groups and generators for

dimension 1 ≤ k ≤ 4 are provided in Table 2 and the generators in dimension 5 ≤ k ≤ 7

are given in Table 3. We also include a brief description of the properties of the necessary

defects and their relation to other (known) string and M-theory backgrounds.
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In more detail, the various generators are given by:

• S1
+: A circle, S1, with periodic boundary conditions for fermions.

• S1
M : A circle with non trivial duality bundle specified by the monodromy M ∈

SL(2,Z)× SL(3,Z). For a detailed description of the monodromies see Section 4.

• Lnk,M : An n-dimensional lens space obtained via the quotient Sn/Zk with the mon-

odromy M when traversing the torsion 1-cycle. In case the lens space admits more

than one spin structure we distinguish the two choices by Lnk and L̃nk .

• RPnM : Real projective space Sn/Z2 with the monodromyM around the torsion 1-cycle.

• K3: The K3 manifold.

• E: The Enriques 4-manifold. It appears as a base for the generators of the form

(L3
4×K3)/Z2 above, where the Z2 acts as complex conjugation on C2 which we use to

describe the lens space and an involution on K3. The resulting geometry is a fibration

of L3
4 over the Enriques surface E.

• W4: There are two equivalent ways to construct W4; either one starts with L3
4 × S1

and mods out a Z2 acting as complex conjugation on the lens space (L3
4 ∼ ∂(C2/Z4))

and the antipodal map on S1, or one starts with S3 × S1 and mods out a D8, whose

Z4 subgroup acts to generate the lens space S3/Z4 and the reflection Z2 as described

above. The duality bundle is defined via the embedding D8 ↪→ S4 ↪→ SL(3,Z) together
with the fibration D8 ↪→ (S3 × S1)→ W4.

• A and A′: The 4-manifold RP3 × S1 with duality bundle specified by M
(i)
2 around the

circle factor and
(
γ24 ,M

(i)
1

)
when traversing the torsion 1-cycle of the RP3 factor. We

choose, i = 1, 2 for A and A′, respectively.

• Q5
4: This space is given, as in [28], by the total space of the lens space bundle L3

4 over

CP1. The fibration is generated by regarding the covering S3 of the lens space as the

sphere of constant radius in the sum of complex line bundles L1⊕L2 over CP1, where

in our case we always have

L1 ⊕ L2 = H±2 ⊕ C , (1.4)

with hyperplane bundle H ∼= O(1) and trivial line bundle C ∼= O(0). As opposed to

the lens space L5
4 these spaces admit a spin structure.

• W6: The generator W6 is geometrically the product RP3 × RP3 with duality bundle

specified by (γ24 ,M
(1)
2 ) on the torsion 1-cycle of the first RP3 and R̃ ∈ SL(3,Z) on the

torsion 1-cycle of the second RP3 factor.

11



• (T 4 × RP3)
γ4,M

(i)
1 ,M

(i)
2
: The duality bundle on this manifold can be understood from

different embeddings of Z4 × S4 into the U-duality group, using the indicated mon-

odromies. The monodromies around each circle composing the T 4 factor is given by(
γ4 ,M

(i)
1 ,M

(i)
2 ,M

(i)
2

)
. The monodromy on the torsion 1-cycle of RP3 is given by the

duality element
(
γ24 ,M

(i)
1

)
. We see that this manifold contains A/A′ as a factor.

1.2 Highlights and surprises

During the (long) investigations leading to this work, we were able to learn some general

lessons about the nature of bordism defects and their interpretation. We will highlight these,

and some surprises in the following.

1.2.1 The completeness of string theory

The fact that supergravity theories do not know about all the objects of the UV-complete

theory certainly does not come as a surprise. All the D-branes, perfectly well-defined dynam-

ical objects in string theory, appear as non-perturbative singular object in the supergravity

description. What is surprising, however, is that our knowledge of string and M-theory is

complete enough to find an interpretation of all the symmetry-breaking defects required by

the many non-trivial bordism groups in Table 1. In fact, as opposed to the ten dimen-

sional analysis which required the R7-brane [21, 28, 29], we do not need to introduce any

fundamentally new object.

This does not mean that the backgrounds we encounter are uninteresting. In several

situations we are led to studying configurations that host highly interesting worldvolume

theories, including:

• Interacting superconformal field theories (with various amounts of supersymmetry)

• Twisted compactifications (with geometric as well as non-geometric twists)

• Lower-dimensional T- and U-duality defects

Often these backgrounds go beyond what is studied in the literature, see, e.g., [51–53], and

motivate further investigation of these rather exotic backgrounds. But they are not beyond

the ingredients that are known to be part of string theory compactification.

This completeness and parsimony reinforces the status of string theory as the natural

candidate of a UV-completion to supergravity theories and might even be used as an argu-

ment in favor of string universality (see, e.g., [14,54–62]), i.e., that all consistent theories of

supergravity have a string, M-, or F-theory completion.
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k ΩSpin
k

(
BSL(2,Z)×BSL(3,Z)

)
Generators Defect

5 Z9 L5
3,γ3

type IIB on singular local Calabi-Yau (CY)

Z3 L5

3,(γ3,Γ
(1)
3 )

composite S-string (see [28])

Z3 L5

3,(γ3,Γ
(2)
3 )

non-geometric string

Z2 ⊕ Z2 S1
γ4
× A , S1

γ4
× A′ (non-geom.) twisted compactification of defects

Z2 S1
γ4
×W4 (non-geometrically and topological)

twisted compactification of defect

Z4 Q5
4,γ4

(topolog.) twisted compactification of defect

Z2 Q5

4,(γ4,Γ
(1)
4 )

composite S-fold compactification with

topological twist

Z2 Q5

(γ4,Γ
(2)
4 )

non-geometric 3-branes compactified

with topological twist

6 Z3 ⊕ Z3 L3
3,γ3
× L3

3,Γ
(i)
3

(non-geom.) twisted compactification of defects

Z4 ⊕ Z4 L3
4,γ4
× L3

4,Γ
(i)
4

(non-geom.) twisted compactification of defects

Z2 ⊕ Z2 RP3

M
(i)
1

× RP3

M
(i)
2

(non-geom.) twisted compactification of defects

Z2 W6 (non-geom.) twisted compactification of

additional codimension-four S-fold

7 Z9 L7
3,γ3

type IIB on singular local CY

Z9 L7

3,Γ
(1)
3

composite S-string on T 2 (see [28])

Z9 L7

3,Γ
(2)
3

twisted M-theory compact. on singular local CY

Z3 L7

3,(γ3,Γ
(1)
3 )

composite S-instanton (see [28])

Z3 L7

3,(γ3,Γ
(2)
3 )

non-geometric instanton

Z2 ⊕ Z2 (L3

4,Γ
(i)
4

×K3)/Z2 (topolog.) twisted compactification of defects

Z2 ⊕ Z2 S1
γ4
× RP3

M
(i)
1

× RP3

M
(i)
2

(non-geom.) twisted compactification of defects

Z2 S1
γ4
×W6 (non-geom.) twisted compactification of defect

Z2 ⊕ Z32 L7
4,γ4

, L̃7
4,γ4

type IIB on singular geometry

Z8 ⊕ Z8 (T 4 × RP3)
(γ4,M

(i)
1 ,M

(i)
2 )

(non-geom.) twisted compactification of defects

Z16 ⊕ Z16 L7

4,Γ
(i)
4

F-/M-theory on singular geometry

Table 3: Bordism groups, their generators, and defects for 5 ≤ k ≤ 7.
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Figure 1: Bordism generator in dimension k as fibration of fiber Fp over the base Bk−p
(left). Associated bordism defect interpreted as the twisted compactification of the defect
associated to Fp compactified on Bk−p with non-trivial action on normal directions (right).

1.2.2 Twisted compactifications

In the analysis below we often encounter bordism generators whose geometry decomposes as

a direct product or fibration of two lower-dimensional pieces. These pieces typically appear

on their own as generators of the lower-dimensional bordism group. As in [28], we do not

introduce new defects for this type of generators but describe them as the compactification of

the already included symmetry-breaking objects. In cases where the bordism group generator

is a fibration it will be a twisted compactification, in the sense that the normal coordinates

of the defect transform as non-trivial vector bundles (see Figure 1). However, there also

exist other twists of the defect theories that we want to distinguish:

• Topological twists: In these cases the fiber geometry undergoes rotations when mov-

ing around the base. As in [63] this can be understood as mixing the rotations of

spacetime with rotations of an internal space that can be interpreted as R-symmetry

transformation.

• Monodromy twists: In certain cases the defects naturally split into individual building

blocks, such as SCFT sectors, which are compactified on spaces with a non-trivial

monodromy action. These twists already appear at the level of the singular M-theory

fibers as will be described in Section 4.

• Geometric duality twists: These configurations demand the presence of a non-trivial

duality bundle on the base manifold over which the defect is wrapped. Here, the full

duality bundle allows for a geometric description in one of the UV completions.

• Non-geometric duality twists: As above, the base manifold, over which the defect filling

the fiber is wrapped, requires the presence of a non-trivial duality bundle. This time,

however, there is no duality frame in which both the defect as well as the twist can be

lifted to a geometric configuration in string and M-theory.
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Figure 2: Non-geometric defect (red dot) as endpoint of a transition function that acts as
T-duality on an internal circle.

The first two twists are generally well-defined for wrapped defects, while the last two involve

the structure of the duality bundle in a more intricate way. In practice, checking that a

wrapped object serves as a viable defect requires embedding the total space in a consistent10

string background.

1.2.3 Non-geometric defects

We already encountered one form of non-geometric backgrounds above, i.e., defects that are

compactified on manifolds with duality bundle that does not have a geometric interpretation

(at least not in the duality frame where the defect does). Beyond that, we encounter defects

that themselves are non-geometric.

The prototypical example of such non-geometric backgrounds are T-folds [43], which

involve transition functions acting as T-duality on the internal space. These transition

functions can end on a codimension-two object which can be identified with an exotic brane

[64–66], depicted in Figure 2. While field theories on such a background would be ill-defined,

the exchange of Kaluza-Klein momentum and winding modes allows these configurations in

string theory. One can extend the analysis to include more general U-duality transformations

leading to whole orbits of exotic brane states [64, 65] in codimension-two.

In our work we encounter non-geometric defects in higher-codimension. At their location

the moduli fields degenerate, as for example the torus fiber in F-theory. In general, however,

we find that there is no F-theory or M-theory background in which the duality bundle is

fully geometrized.

Interestingly, such non-geometric defects seem to appear only in high codimension. In

particular, for eight dimensional supergravity theories we find non-geometric defects asso-

ciated to ΩSpin
k (BG8d

U ) for k ≥ 5. One of these defects is of codimension-six, while another

appears as a twisted compactification of a codimension-four defect. For lower k, all de-

fects have a geometric understanding in at least one duality frame, but might be subject to

10We defer issues of supersymmetry, stability and worldvolume dynamics to future work.
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Figure 3: Sketch of symmetry-breaking defect in codimension (k+1) and the conical structure
of the bounding space Yk+1.

non-geometric duality twists.

1.2.4 Dimensionality of the symmetry-breaking defects

Having a non-trivial deformation class Xk in ΩSpin
k (BGD

U ) is associated to a conserved topo-

logical charge carried by Xk. To make sure that this charge is not conserved we include

defects that allow the description of Xk as its asymptotic boundary. In this way Xk becomes

the boundary of a (k + 1)-dimensional manifold Yk+1 with the defect included. In case the

defect is a localized object in Yk+1 it is naturally of (real) codimension (k + 1). The extra

coordinate can be understood as radial direction with Yk+1 being conical (see Figure 3).

We have already seen that this relation between the dimension of the bordism generator

and the dimensionality of the defect can be modified in cases the generator splits into fiber

and base, see Section 1.2.2. If the fiber is given by a generator of the bordism group in lower

dimension, the fibration can be bounded by wrapping the defect on the base, see Figure 1.

One surprise in this work is that sometimes we also encounter new defects of lower

codimension. This happens if the generator of the bordism group splits as a direct product,

but neither of the two factors appeared as generator for bordism groups in lower dimensions.

In these situations it is natural to include new (singular) symmetry-breaking objects with

codimension smaller than (k + 1) and wrap these on the other factor.

In our case this happens for example for k = 2 with the generator given by a torus with

duality bundle associated to two commuting transition functions in the SL(3,Z) factor of

G8d
U , i.e., the generator splits into two circles with SL(3,Z) duality bundle. These are not

generators of ΩSpin
1 (BG8d

U ) since they can be bounded by smooth 2-manifolds equipped with

a duality bundle and do not require any singular defect. This raises the immediate question,

why the same configurations cannot be used to bound the generator in k = 2. The reason is

that the duality bundle of the gravitational configuration is incompatible with the SL(3,Z)
transition function on the other circle and therefore does not lead to a well-defined smooth

3-manifold with the torus as its boundary, see Section 6.2 for more details. Similar behavior

also appears in other dimensions.

We want to mention another possibility, which is that despite the fact that the bordism

generator splits into two factors the symmetry-breaking object might still be of codimension
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Figure 4: Bounding one factor with lower codimension object (left). Bounding the entire
product with higher codimension defect (right).

(k + 1), see Figure 4. However, in this case it is more complicated to think about the

bounding geometry Yk+1 as a cone (as depicted in Figure 3) and it most likely has a more

intricate internal geometry which might involve topology changes, see also [67].

1.2.5 Deformations in supergravity

The relation between non-trivial bordism classes and symmetry-breaking defects also guar-

antees that there are no deformations within the low-energy supergravity that trivialize the

deformation class. Thus, all deformations that preserve the structure of the low-energy the-

ory, which in our case includes the duality bundle as well as the spin structure of spacetime,

are not able to desingularize the symmetry-breaking object. Deformations might however

change the specific realization and interpretation of the object. To illustrate this we want to

discuss two examples:

The first example is the geometric configuration which appears as one of the generators

in ΩSpin
3 (BG8d

U )

(T 2
F × C2)/Z3 × T 2 , (1.5)

where T 2
F refers to the F-theory fiber torus. The resolved geometry is given by F-theory

on a (−3) curve decorated by a type IV fiber. This supports the celebrated 6d su(3) non-

Higgsable cluster of reference [68]. The quotient singularity obtained by blowdown leads

to a 6d SCFT [69, 70].11 Observe that while there is a blowup of the (−3) curve available,

this curve supports an su(3) gauge theory sector, namely a strongly coupled bound state

of [p, q] 7-branes. As such, it includes degrees of freedom which are not present in the 8d

supergravity theory. As in the discussion in Section 1.2.4, the deformation changes the

dimensionality of the symmetry breaking defect which instead of codimension-four is now

give by a codimension-two object wrapped over a compact two-dimensional submanifold (see

Figure 5).

The second example is that of a seven-dimensional lens space L7
4 with an SL(2,Z) bundle,

11See [71,72] for recent reviews of 6D SCFTs.
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Figure 5: Deformation of the bounding manifold in the low-energy theory can change the
specific realization of the defect but cannot fully desingularize it.

which can be described by type IIB on the background

(T 2 × C4)/Z4 . (1.6)

Since the Z4 action does not preserve a holomorphic (5, 0)-form in the type IIB geometry, this

does not correspond to a local singular Calabi-Yau geometry and supersymmetry appears

to be broken completely, see also the next Section 1.2.6. However, even if it was a local

Calabi-Yau geometry, the central C4/Z4 singularity does not allow for a deformation that

preserves supersymmetry since it is a terminal singularity [73]. This, however, does not affect

the topological bordism discussion and we can, for example, describe the lens space as the

asymptotic boundary of the complex line bundle O(−4) over CP3 following the discussion

in [74]. Once more the resolved singularity, the blown-up CP3, remains a singular locus, over

which the T 2 degenerates into T 2/Z4 and the background requires the inclusion of defects.

In the UV description, where there is an internal space, there are more possibilities that

include resolutions involving the fiber coordinates. These deformations are not contained in

the supergravity framework, but can ‘trivialize’ the bordism defect in the UV lift. Indeed, we

will find in various circumstances that symmetry-breaking defects of maximal supergravity

are related to string and M-theory on singular manifolds which do allow for a desingulariza-

tion (that might break supersymmetry). In these cases we do not find analogs of this class

of defects in the higher-dimensional theory, e.g., in the classification of [28].

It is in this sense that the symmetry-breaking defects are necessarily singular in the low-

energy description. Also note that any allowed deformation should not change the bordism

class of the asymptotic boundary, there cannot be any objects that extend all the way to

infinity. It would be a very interesting question to analyze what generalization of bordism

groups might allow for such singularities.

In general it becomes a dynamical question which of the bounding manifolds with defect is

energetically preferred, e.g., whether the CP3 in the example above will dynamically contract

to zero size. The only situation in which we can be sure to find a stable configuration is

whenever the singular backgrounds preserve part of supersymmetry, and the symmetry-
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breaking defects are BPS. This is why in our analysis of the bordism defects we focus on

configurations that are most likely to preserve some supersymmetry.

1.2.6 Spin-lift of defects and supersymmetry

Unfortunately the question whether the defects we introduce preserve part of the supersym-

metry is a difficult one in our analysis. The reason is that we focus on the U-duality group

acting on the bosons of the supergravity theory.

That this cannot be the full answer, can for example be deduced from the description of

maximal supergravity from M-theory on T k for which an SL(k,Z) subgroup of the full U-

duality is given by the large diffeomorphisms of T k. The D-dimensional supercharges lift to

the eleven-dimensional supercharges that transforms as a 32 component Majorana fermion.

At certain points in moduli space there will be a T 2 square sub-torus for which one can act

with the usual S generator of the associated SL(2,Z) subgroup:

S =

(
0 −1
1 0

)
. (1.7)

At these particular points S can be understood as a rotation by π
2
in the internal space,

which makes S4 a rotation by 2π. Of course this acts as the identity on the bosons in

the eleven-dimensional theory and their D-dimensional descendants. On fermions including

the supercharges, however, it acts as multiplication by (−1). Moving away from the loci of

moduli space where one has a square sub-torus the transformation become more complicated

and are in general moduli dependent. Nevertheless, this reasoning shows that the full duality

group should include a non-trivial Z2 extension of the bosonic duality group, a Spin lift, see

also [38, 39].

On top of this, M-theory does not require spacetime to be oriented [75] and one can further

include non-orientable internal spaces leading to a further extension of the duality group.

This M-theory data then suggest a Pin+ lift of the duality group for fermions. While this lift

is known for type IIB in ten dimensions [39], and was used in [19, 28] in the determination

of bordism groups

Ω
Spin-Mp(2,Z)
k (pt) , Ω

Spin-GL+(2,Z)
k (pt) , (1.8)

as opposed to ΩSpin
k (BSL

(
2,Z)

)
we do not know of a full generalization to U-duality groups

of interest here, see [38] for partial results. This has an important effect on the defects,

which we want to illustrate in a simple example.

For this we focus on the Spin lift from SL(2,Z) to the metaplectic group Mp(2,Z), which
describes a non-trivial Z2 extension. Since everything happens at prime 2 the essential

features are captured by

ΩSpin
k (BZ4) vs. ΩSpin-Z8

k (pt) , (1.9)

whose bordism groups can be found in [28]. The Z4 is generated by the S generator with
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the Spin-Z8 structure accounting for its non-trivial lift. For k = 3 one has

ΩSpin
3 (BZ4) = Z2 ⊕ Z8 , ΩSpin-Z8

3 (pt) = Z2 , (1.10)

with both the Z8 summand and the Z2 for Spin-Z8 structure being generated by the lens

space L3
4. However, the bundles are different. While for the Spin generator one can choose

a Z4 action

ψ → e2πi/4 ψ , (1.11)

when traversing the torsion 1-cycle of L3
4, the same is not possible for the Spin-Z8 structure

since the geometric action is linked with the ‘gauge’ action and only

ψ → −ψ , (1.12)

is allowed. This difference is reflected in the bordism groups, which can be determined using

Dirac η-invariants. Lifting back to the full duality group we see that the bosonic monodromy

around the torsion 1-cycle is given by S for Spin and S2 for Spin-Z8 structure.12

In d = 5 the difference becomes even more drastic since the non-Spin manifold L5
4 is a

generator of ΩSpin-Z8

5 (pt) it cannot be a generator of ΩSpin
5 (BZ4) which would have to be Spin,

and is rather given by a L3
4 bundle over CP1 denoted as Q5

4 above.

We see that the Spin lift of the duality group has an important influence on the bordism

group generators. While the Spin lift only affects the prime 2 part of the bordism group,

the reflections in general lead to modification for other primes as well. Since the BPS nature

of defects associated to non-trivial duality bundles clearly depends on the transformation

properties of the fermions in particular the supercharges, we defer the discussion of the

supersymmetric properties of the bordism defects to a case-by-case basis until the appropriate

lifts of the U-duality groups are determined.

1.2.7 Torsion in duality

There is a quite curious feature of our calculations for SL(3,Z) that turns out to have a deeper
physical meaning, which may extend beyond the borders of Utopia. In Section 4.2, we will

see how the calculation for the bordism groups of BSL(3,Z) proceeds by finding different

embeddings of easier groups (like the symmetric group, or cyclic groups) into SL(3,Z). To

get all bordism classes for BSL(3,Z), it turns out that we need to consider some cyclic groups

Zn twice; in particular, for n = 4, we will have to consider defects coming from two different

embeddings of Z4 into SL(3,Z). In each of these, the generator of Z4 is represented by a

different matrix, which we label as Γ
(i)
4 for i = 1, 2. A similar thing happens with Z3, and

12In the geometry of F-theory, where the S action is implemented on the auxiliary torus fiber, this state-
ment becomes that while the total space for the torus fibration constructed from the ΩSpin

3 (BZ4) generator

is not Spin, the total space of the ΩSpin-Z8

3 (pt) generator is.
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the corresponding pair of inequivalent matrices of order three is denoted by Γ
(i)
3 . Explicit

expressions for these matrices can be found in Section 4.2.

Here, we comment on the nature of the difference between these two embeddings. More

concretely, consider a bordism class represented by a manifold X with Z4 bundle. The Z4

can be taken to be generated by either Γ
(1)
4 or Γ

(2)
4 . How are these two related?

The two bordism classes so constructed are not physically equivalent in many cases, and

the reason is that the matrices Γ
(1)
4 and Γ

(2)
4 are not conjugate in SL(3,Z). More concretely,

the SL(3,Z) duality bundle over X can be characterized in terms of transition functions,

which are in turn described by matrices Mi ∈ SL(3,Z) specifying the holonomies of the

discrete gauge field. This can be equivalently described by the conjugated matrices

Mi → U Mi U
−1 , (1.13)

for any U ∈ SL(3,Z); this is just a gauge transformation. Conversely, we would expect two

sets {Mi}, {M ′
i} not related as in (1.13) to be physically inequivalent, in general.

The above explains in which way the classes constructed out of Γ
(1)
4 are different from

those constructed out of Γ
(2)
4 , but it is more interesting to ask in which sense they are similar.

Part of the duality group (or rather, a bosonic approximation to it) in the full quantum

gravity theory is SL(3,Z). However, as familiar from similar discussions about SL(2,Z)
in the IIB context, this is because the theory has (due to completeness principle [76]) a

complete spectrum of extended charged states satisfying the Dirac quantization condition.

By contrast, a low-energy observer, having only access to the supergravity low-energy degrees

of freedom, will not be able to access this information, at least in generic points of moduli

space, since the massive objects are too heavy for them. The duality group still constrains

the low-energy effective field theory action, but the selection rules are indistinguishable from

those of the groups

SL(3,R) , or SL(3,Q) . (1.14)

Both of these provide valid selection rules at low energies. A Swampland-minded effective

field theorist, who knows that at the end of the day there will be extended objects satisfying

a Dirac quantization condition, might more reasonably choose SL(3,Q) as the duality group;

this more-or-less corresponds to allowing for Q-valued charges, which is closer to the properly

integer quantized charges, but this is really a matter of taste.

Irrespectively of the choice in (1.14), the key point we wish to emphasize is that the

low-energy physics of any given bordism class only depends on the SL(3,Q) class of the

associated bundle, not on their SL(3,Z) class. In other words, the low-energy physics will

remain unaltered when U in (1.13) is taken in the wider class of matrices

U ∈ SL(3,Q) . (1.15)

Although this is not a symmetry of the full theory, it is a symmetry of the low-energy
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physics. As a result, any two bordism classes where the U-duality bundles are SL(3,Q)

conjugate describe the same low-energy physics. This is interesting precisely because there

are SL(3,Q)-conjugate matrices that are not SL(3,Z)-conjugate; the pair Γ
(i)
4 for i = 1, 2

(and also Γ
(i)
3 ) is precisely one such example. This means that the smooth bordism classes

constructed via these two different Z4 embeddings will yield identical low-energy physics, but

will differ at high energies, e.g. in their spectrum of extended states. At energies much below

the scale of spacetime topology fluctuations or massive states, the partition function Z(X)

of the theory is a well-defined quantity. If we have two theories differing only in massive

states as above, the quotient

T (X) ≡ Z1(X)

Z2(X)
, (1.16)

will be insensitive to small deformations of the metric or background fields, since these are

deformations of massless fields and hence dependence in Z1 and Z2 will cancel out. We

conclude that T (X) is topological, and since it satisfies all the standard axioms of gluing

and pasting, it defines a TQFT. Thus, very generally, two Z-inequivalent theories that are
Q-equivalent differ by topological couplings. One way to think about this is to observe that

integrating out the massive states in either theory can produce a TQFT at low energies;

since the massive states are different in each theory, they will give rise to different TQFTs,

and T (X) precisely accounts for the difference between these topological sectors.

The above discussion can be used to understand some of the results in [77] in a new light.

In that reference, two discrete θ angles were constructed for compactifications of IIB on

quotients of T 3, equipped with different SL(2,Z) duality bundles. These compactifications

are mapping tori T 2 → S1, so they correspond to circle compactifications with non-trivial

U-duality holonomy. They correspond precisely to holonomies Γ
(i)
4 ; the discrete θ angles

described in [77] for seven-dimensional theories are therefore an example of non-trivial T (X).

Although there is no non-trivial bordism class associated to these seven-dimensional

backgrounds (meaning a smooth geometry can interpolate from one to the other), non-

trivial bordism classes involving these different choices exist in dimension three, since the

bordism going from one to the other in 7d is now obstructed by the additional geometry of

lens spaces. Therefore, the bordism classes in degree three obtained from the different Γ
(i)
3,4

have the same low-energy physics, but differ at high energies. The physics in their bordism

defects will also be different in general, as inflow from T (X) can require the presence of

chiral degrees of freedom in the defect.

We expect the idea of looking at Q-conjugate elements in a properly quantized dual-

ity group may be used to uncover many more examples of discrete θ angles and similar

topological couplings, in string compactifications with 32 supercharges and below.
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1.3 Future Directions

Having dealt with the main contours of what we do in this work, let us now turn to some

natural future directions.

Perhaps the most direct continuation of the present work would be to perform similar

computations for the other U-duality groups. A general complication is that the relevant

stable splittings and group cohomology computations do not appear to be in the literature.

That being said, it is plausible that the knit product structure can be leveraged to extract

many aspects of the physical problem.

Below D < 3, gravity behaves rather differently, and so do the U-duality groups of maxi-

mal supergravity, passing instead to the affine symmetries E9(9)(Z),E10(10)(Z), and E11(11)(Z)
(see e.g., [78, 79]). It would nevertheless be interesting to compute the relevant bordism

groups in these cases as well.

As already mentioned, one item of immediate interest would be to understand appropri-

ate Spin and Pin-lifts of the U-duality groups. We expect these extra symmetries to emerge

at special points of the moduli space, where they can act on the fermionic degrees of freedom

of our supergravity theory. Computation of the corresponding Spin / Pin-twisted bordism

groups would provide an important refinement of the considerations presented here, espe-

cially with regards to finding possibly new, non-supersymmetric backgrounds similar to the

R7-branes found in IIBordia [21,28].

Another curiosity we find in our investigations is an apparent nested structure of defects,

which is highly suggestive of “branes within branes,” similar to what is found for the D-

branes of superstring theory [80]. This suggests that we may have access to even further

topological structures present on these defects, an exciting prospect for future investigations.

On general grounds, the defects we discover involve objects which must be added to a

given low energy effective field theory. In particular, this means that they ought to have

a suitable non-zero tension / mass, namely we can integrate out their effects below some

threshold scale. Giving a proper notion of tension / mass, especially for orbifold type back-

grounds would be quite natural to develop, and it is tempting to speculate that it involves

the stress tensor correlators and / or free energy of the corresponding worldvolume theory.

While we have primarily focused on the case of ΩSpin
k (BGU) for k “small,” it is natural

to ask whether our methods extend to large, and possibly arbitrarily big values of k. Aside

from its importance in pure mathematics, there are potential applications of this in the study

of defects in supercritical string backgrounds, where the effective target space can also be

much bigger than the critical dimension.
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2 U-duality

In this section, we briefly review the U-duality of supergravity theories with 32 real super-

charges in ten to three spacetime dimensions. These dualities leave the supergravity action

invariant and act non-trivially on the states in the theory. Once charge quantization is in-

cluded, the duality groups are discrete. For a more detailed description see [81] (which we

mainly base our discussion on), as well as references therein.

2.1 U-duality groups

Supergravity theories with 32 real supercharges in D dimensions can be obtained by com-

pactifying eleven-dimensional supergravity, the low-energy limit of M-theory, on a (11−D)-

dimensional torus. The fields in the supergravity multiplet arise as zero modes of this

compactification. This further has an interpretation as type IIA on a (10−D)-dimensional

torus, where the radius of the remaining circle parametrizes the string coupling in type IIA.

On the level of the supergravity action, the full U-duality is generated by the Lorentz

transformations on the M-theory compactification torus as well as the T-dualities of the type

IIA description. The resulting group can be denoted as

GD
U,R = SL(ℓ,R) ▷◁ SO(ℓ− 1, ℓ− 1,R) , (2.1)

where we introduced ℓ = 11−D. Here, as in [81] the symbol ▷◁ describes the knit product,

with the resulting group being generated by the non-commuting subgroups (see also Ap-

pendix B). In the range ℓ ∈ {1 , 2 , . . . , 8} these are given by the Cremmer-Julia symmetry

groups, see [82,83],

D GD
U,R HD

U,R

10 R+ 1

9 SL(2,R)× R+ U(1)

8 SL(3,R)× SL(2,R) SO(3)× U(1)

7 SL(5,R) SO(5)

6 SO(5, 5,R) SO(5)× SO(5)

5 E6(6) USp(8)

4 E7(7) SU(8)

3 E8(8) SO(16)

(2.2)

which we reproduce from [81].13 The HD
U,R describes the R-symmetry group in D dimensions,

which is the maximal compact subgroup of GD
U,R. The moduli spacesMD of the associated

13R+ denotes the real half-line.
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maximal supergravity theories are parametrized by the coset space

MD =
GD
U,R

HD
U,R

, (2.3)

which further has to be modded out by the discrete duality action below. In the M-theory

frame these scalar fields originate from the metric components of T ℓ as well as internal

components of the M-theory 3-form CMNR and its dual 6-form. For example, for ℓ = 3 one

has a single scalar field from the 3-form and six scalar fields from the metric parametrized

by the seven-dimensional coset space

M8d =
SL(3,R)× SL(2,R)

SO(3)× U(1)
, (2.4)

and similarly for smaller dimensions.

Once one includes the flux quantization conditions, these continuous groups of the su-

pergravity action are reduced to discrete subgroups that leave the charge lattices invariant

obtained from the knit product

GD
U = SL(ℓ,Z) ▷◁ SO(ℓ− 1, ℓ− 1,Z) , (2.5)

with ℓ = 11−D. These U-duality groups GD
U are given by:

D GD
U

10 1

9 SL(2,Z)
8 SL(3,Z)× SL(2,Z)
7 SL(5,Z)
6 SO(5, 5,Z)
5 E6(6)(Z)
4 E7(7)(Z)
3 E8(8)(Z)

(2.6)

In the following, we will focus on these discrete bosonic U-duality groups.14 The fields

and charges of the supergravity theory will transform under U-duality according to certain

representations, which can be deduced from the transformation properties of the central

charges in the supersymmetry algebra, as discussed in [81].

14See [84] for a discussion of anomalies for the continuous group E7(7)(R).
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2.2 A geometrization of U-duality: Exceptional field theory

Not all duality transformation have a geometric interpretation in terms of the internal T ℓ or

T ℓ−1 of the M-theory or type IIA/B lift, respectively. However, similar to the approach of

F-theory [85] (see [86] for a review) for SL(2,Z) duality in type IIB, there are approaches to

introduce auxiliary internal spaces to geometrize the duality action.

The geometrization of the T-duality subgroup SO(ℓ− 1, ℓ− 1,Z) doubles the number of

internal dimensions [87,43–46] and is referred to as double field theory. It can be understood

as a geometrization of the winding modes in the underlying string theory. The physical

spacetime is then described by an (ℓ − 1)-dimensional subspace of this enhanced internal

geometry, which depends on the choice of the duality frame. The additional inclusion of

dualities which correspond to the other part in (2.5) requires an extension of this setup

known as exceptional field theory (see, e.g., [47–50]).

These D-dimensional exceptional field theories present a covariant formulation of eleven-

dimensional supergravity under the full U-duality group GD
U . Instead of a doubling of the

coordinates one includes even further auxiliary directions, for example, forD = 8 the internal

space coordinates are given by the in term of the six-dimensional (2,3) representation of the

SL(2,Z) × SL(3,Z) duality group.15 The physical spacetime in M-theory is formed by a

three-dimensional subspace, the choice of which corresponds to the chosen duality frame.

The chosen duality frame is also manifest in the solution to the so-called section constraint,

which ensures a closure of the algebra of symmetries in exceptional field theory and restricts

the dependence of fields in the theory to a subset of coordinates. It can be written as

Y MN
PQ ∂M ⊗ ∂N = 0 , (2.7)

which holds when applied to the fields in the theory, and M,N,P,Q label the internal

coordinates. The tensor Y MN
PQ transforms covariantly under the U-duality group. It can

be understood as a projection to some particular representation of the duality group.

The bosonic fields of the supergravity theory naturally appear in representations of the U-

duality group that can be phrased in terms of the index structure of the internal coordinates.

Again, in eight dimensions this involves the duality invariant spacetime metric gµν and 3-

form Cµνρ, the six vectors Aµ and three 2-forms Bµν transforming in the (anti-)fundamental,

and the scalar fields which parameterize the moduli space in (2.3) whose dependence on the

internal directions is restricted via the section constraint, as we discuss in more detail below.

We now focus on the realization of maximal eight-dimensional supergravity, which will

be the main subject of our investigation.

15In lower dimensions the number of auxiliary dimensions is even bigger. For example, for D = 5 one has
27 coordinates that transform in the 27-dimensional representation of E6(6) only six of which are part of the
physical M-theory spacetime.
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3 U-duality in eight dimensions

The (bosonic) U-duality group in eight dimensions is given by

G8d
U ≡ GU = SL(2,Z)× SL(3,Z) , (3.1)

that acts on the fields in the supergravity theory. The bosons are given by

graviton: gµν ,

vectors: Aα,aµ ,

2-forms: Bα
µν ,

3-form: Cµνρ ,

scalars: φI , I ∈ {1 , . . . , 7} .

(3.2)

The index α takes values in {1 , 2 , 3}, and the index a in {1 , 2}, respectively, while µ ∈
{0 , . . . , 7} is the Lorentz index of the eight-dimensional theory. All of these fields are

contained in the supergravity multiplet, which further contains two gravitinos Ψi
µ of opposite

chiralities as well as six fermions χn. The index structure above demonstrates that the fields

transform in certain representations under the U-duality group, where α , β can be regarded

as SL(3,Z) and a , b as SL(2,Z) indices, respectively. In particular, one has

Aα,aµ : (3,2) , Bα
µν : (3,1) , (3.3)

while the scalars transform in a more complicated way, which we will explore further below.

Since configurations related by duality transformations are physically equivalent, the U-

duality group appears as a gauge group in supergravity.16 As mentioned above supergravity

theories with maximal supersymmetry are closely related to superstring theory and M-theory

compactified on tori and hence some subgroups of the full U-duality can be realized as

symmetries of the compactification spaces. We will discuss this in detail for M-theory on T 3

and type IIB on T 2.

3.1 U-duality from M-theory

Let us start with eleven-dimensional supergravity, the low-energy description of M-theory.

The bosonic field content consists of the metric GMN and a (pseudo)three-form potential

CMNR. The maximal eight-dimensional supergravity theory is obtained via compactification

on a 3-torus T 3, whose coordinates we label by α , β , γ ∈ {1 , 2 , 3}. The lower-dimensional

16The field backgrounds can break these discrete gauge symmetries spontaneously.
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Figure 6: M-theory capturing SL(3,Z) ⊂ GU of the U-duality group geometrically.

fields arise as follows:

graviton : Gµν ,

vectors : Gαµ , Cαβµ ,

2-forms : Cαµν ,

3-form : Cµνρ ,

scalars : Gαβ , Cαβγ .

(3.4)

Up to field redefinitions, we find the exact same spectrum as in (3.2). The SL(3,Z) factor
of GU is realized as large diffeomorphisms of T 3 and acts on the internal coordinates labeled

by α , β , γ. This demonstrates that the vector fields transform as two three-dimensional

representations under SL(3,Z) and similarly the 2-forms transform in the three-dimensional

representation. The scalars split into a singlet under SL(3,Z) originating from the internal

components of the 3-form and the symmetric representation associated to the internal metric

components that parameterize both the shape and size of the 3-torus.

We can therefore understand pure SL(3,Z) duality bundles geometrically as T 3-fibrations

in an M-theory framework (see Figure 6). If one of the circles of T 3 is trivially fibered we

can reduce to a type IIA framework, i.e., M-theory on a circle (see Figure 7). Type IIA on

a 2-torus has a T-duality group

SO(2, 2,Z) =
(
SL(2,Z)× SL(2,Z)

)
/Z2 , (3.5)

the first factor being the remnant of the SL(3,Z) subgroup17 and the second factor giving

rise to the SL(2,Z) factor of GU . This second factor acts on the Kähler sector of type IIA,

17This is not the same SL(2,Z) subgroup as the strong-weak coupling duality SL(2,Z)S in type IIB.
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Figure 7: Type IIA capturing SL(2,Z) ⊂ SL(3,Z) ⊂ GU of the U-duality group geometri-
cally.

i.e.,

ωIIA = B + i vol(T 2) . (3.6)

One can lift that to a complexified volume in M-theory by defining

ωM = C + i vol(T 3) , (3.7)

which also transforms under Moebius transformation with respect to the SL(2,Z) factor.

Transition functions in the SL(2,Z) factor of GU thus connect M-theory torus compactifica-

tions of different volume and C-field and in general acts non-geometrically.

3.2 U-duality from type IIB

Similarly, starting with type IIB supergravity (i.e., N = (2, 0)) in ten dimensions, one

obtains maximal supergravity in eight dimensions after compactification on a 2-torus T 2.

We will denote the 10d bosonic fields by gAB for the metric, BAB and CAB for the RR and

NS 2-forms, C+
ABCD for the chiral 4-form with self-dual field strength, as well as τ for the

axio-dilaton, which as usual is given by

τ = C0 + ie−ϕ , (3.8)
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Figure 8: F-theory capturing SL(2,Z)×SL(2,Z)S ⊂ GU of the U-duality group geometrically.

with RR axion C0 and dilaton ϕ. The bosonic fields in (3.2) arise from the type IIB fields

as follows:18

graviton: gµν ,

vectors: gaµ , Baµ , Caµ ,

2-forms: C+
abµν , Bµν , Cµν ,

3-form: C+
aµνρ ,

scalars: τ , gab , Bab , Cab ,

(3.9)

where we label the internal coordinates with a, b ∈ {1 , 2}. Note that since the 4-form field

is chiral (i.e., its field strength is self-dual) it only gives rise to a single 3-form field in eight

dimensions. The internal metric components gab transform in the symmetric representation

of SL(2,Z), while the scalars originating from BAB and CAB transform in the antisymmetric,

i.e., singlet representation. This fixes some of the transformation properties of the scalar

fields.

We see that the internal SL(2,Z) index is given by the coordinates of the T 2 compactifi-

cation torus which acts for example on the two vector fields originating from the same IIB

field in ten dimensions. This is to be expected since the SL(2,Z) subgroup of the full dual-

ity group GU is identified with the group of large diffeomorphisms of the compactification

torus. U-duality backgrounds that only have a non-trivial SL(2,Z) bundle can therefore be

understood geometrically as type IIB geometries described as torus fibrations (see Figure 8).

However, one can do even better by going to the non-perturbative description of type

18Here we only keep track of the Lorentz structure. The connection to the actual 8d fields (3.2) requires
further field redefinitions.
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IIB provided by F-theory [85,86]. This geometrizes the strong-weak coupling duality, which

appears as an SL(2,Z)S subgroup of the SL(3,Z) factor in GU . Thus, F-theory allows for a

geometric realization of

SL(2,Z)× SL(2,Z)S ⊂ GU = SL(2,Z)× SL(3,Z) . (3.10)

Bundles contained in this subgroup can be understood as F-theory backgrounds with its

T 2
F torus fibration encoding the SL(2,Z)S duality, whose base is given by another T 2 torus

fibration encoding the SL(2,Z) (see Figure 8). Note that only the torus T 2 within the

F-theory base is part of spacetime and its volume is physical, whereas the volume of the

F-theory fiber torus T 2
F is not physical and typically set to zero.

A non-trivial SL(2,Z)S bundle indicates the variation of the axio-dilaton in spacetime,

typically leading to regions of strong string coupling and therefore going beyond perturbative

string backgrounds. This action is captured by the Moebius transformations

SL(2,Z)S : τ 7→ aτ + b

cτ + d
,

(
a b

c d

)
∈ SL(2,Z) . (3.11)

Moreover, we know that BAB and CAB transform as a doublet under strong weak coupling

duality, which shows that their descendants in (3.9) transform accordingly. The full SL(3,Z)
includes the Kähler sector of type IIB and acts, for example, on the complexified volume of

the compactification torus

ωIIB = B + i vol(T 2) , (3.12)

which combines the integral of the B-field with metric components, e.g., [88]. In fact this

complex scalar is acted upon by Moebius transformations under a different SL(2,Z) subgroup
of SL(3,Z). This shows that one can generate transition functions that connect different

volumes of the compactification torus and demonstrates the non-geometric nature of these

type of backgrounds in the type IIB duality frame. The full SL(3,Z) in the type IIB frame

can then recovered by dualities.

3.3 M-/F-theory duality

Of course these descriptions are connected via M-/F-theory duality which we now describe

briefly.

As we already discussed above we can single out a circle of the M-theory compactification

in order to reduce to a well-defined type IIA description at small circle volumes, i.e., small

string coupling. The type IIA theory is compactified on the remaining 2-torus. Performing

T-duality along one of the circle factors of this IIA compactification leads to type IIB on

T 2, sending the IIA circle size to zero lets the IIB circle grow and decompactifies to a type

IIB configuration on a circle. Indeed, following the transformation behavior of the fields,

see, e.g., [89, 86], shows that the 2-torus composed of the M-theory type IIA circle as well
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as the T-duality circle combine into the F-theory fiber torus. This identifies the SL(2,Z)S
subgroup of SL(3,Z). In the following we will choose it to be given by elements of the form

SL(2,Z)S ⊂ SL(3,Z) :

1 0 0

0 a b

0 c d

 ,

(
a b

c d

)
∈ SL(2,Z) , (3.13)

which is always possible using conjugations.

The remaining circle direction of the M-theory 3-torus is part of the type IIA compacti-

fication torus and is a spectator in the T-duality to type IIB. It therefore corresponds to the

type IIB compactification circle in the limit of zero fiber volume. This means that general

SL(3,Z) transformations mix spacetime directions in type IIB with the F-theory fiber direc-

tions, underlining once more the non-geometric nature of these transformations in the type

IIB duality frame. This can be understood as the familiar fact that T-duality acts on the

(axio-)dilaton field [90]. Vice versa, the SL(2,Z) factor in GU acts on the compactification

torus T 2 in type IIB and therefore is not realized as a geometric SL(3,Z) element in M-theory

which only has access to one of the compactification circles.

Of course one can also follow the various supergravity fields and string and M-theory

objects, such as branes, under the duality chains, which is conveniently captured by the

representations of the eight-dimensional supergravity fields under the U-duality group, see

[81]. In situations where the compactification tori are fibered over the eight-dimensional

spacetime, one needs to perform the dualities above fiber-wise, which also allows one to

track the effect of U-duality monodromies in the various duality frames.

3.4 Exceptional field theory

We now want to discuss the geometrization of the 8d U-duality group within exceptional

field theory as described in the more general context in Section 2.2.

The 8d supergravity theory has six vector fields which as shown above transform in

the (3,2) representation of the duality group. This motivates the introduction of six extra

internal coordinates Y M , with M ∈ {1 , 2 , . . . , 6}, which describe the action of the duality

bundle. We can also introduce a two index notation in analogy to the vector fields Y αa,

with α ∈ {1 , 2 , 3} and a ∈ {1 , 2}, which are acted upon by the SL(3,R) and SL(2,R),
respectively. Including the eight coordinates of spacetime xµ one finds a 14-dimensional

spacetime parametrized by (xµ, Y M). To reduce to the physical spacetime one needs to

introduce the section constraint, which in eight dimensions takes the form, see, e.g., [91],

ϵαβγϵab∂αa ⊗ ∂βb = 0 , (3.14)

where ϵαβγ is the totally antisymmetric tensor acting on SL(3,R) indices and ϵab its coun-

terpart acting on SL(2,R) indices. We see that this isolates the (1,3) component.
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There are several ways to satisfy the section constraint. For example, we can demand

that fields only depend on Y α1 singling out the a = 1 direction. In this way we find

ϵαβγ∂α1 ⊗ ∂β2 = 0 , (3.15)

since nothing depends on ∂β2. This suggests the physical realization of three of the six

coordinates, which we expect to correspond to an M-theory framework. Similarly, we can

choose that fields only depend on Y 1a, finding that

ϵabϵ1βγ∂1a ⊗ ∂βb = 0 , (3.16)

since ∂βb for β ̸= 1, which is enforced by ϵ1jk, acts trivially. In this frame there are only two

physical coordinates and we expect to find the type IIB interpretation. Note that here one

has a remaining SL(2,R) action on the coordinates β and γ, which encodes the S-duality

and can be thought of as the F-theory torus directions.19

With this one can reconstruct the field content depending on the solution of the sec-

tion constraint in the following way. One starts with the exceptional field theory fields

(gµν ,MMN ,Aµ ,Bµν , . . . ), describing the spacetime metric, internal metric, gauge fields,

and tensor fields, respectively. All of these fields transform in certain U-duality representa-

tions. As we have seen from the particular duality frames in eight-dimensional supergravity

one has

Aµ ∼ (2,3) ,

Bµν ∼ (1,3) ,

Cµνρ ∼ (1,1) .

(3.17)

The choice of solution of the section constraint then breaks the full U-duality group to a

subgroup, which is geometrically realized in the particular duality frame. This leads to a

decomposition of the full GU representations that can be matched to the original fields. For

example, picking the coordinate dependence to be in Y α1 preserves SL(3,R) and we find

(2,3)→ 3⊕ 3 ∼ {Gαµ , Cαβµ} ,
(1,3)→ 3 ∼ {Cαµν} ,
(1,1)→ 1 ∼ {Cµνρ} .

(3.18)

As it should, this precisely matches our M-theory discussion (3.4) above. Similarly, we can

19One can also demand the fields to only depend on Y α1 with i ∈ {1 , 2} which solves the section constraint
and reduces to a type IIA framework.
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pick the physical coordinates to be Y 1a which leads to

(2,3)→ 2⊕ 2⊕ 2 ∼ {gaµ , Baµ , Caµ} ,
(1,3)→ 1⊕ 1⊕ 1 ∼ {C+

abµν , Bµν , Cµν} ,
(1,1)→ 1 ∼ {C+

aµνρ} ,
(3.19)

i.e., the type IIB interpretation (3.9). Here, one could also resolve the unbroken SL(2,R)S
⊂ SL(3,R) which describes the transformation under S-duality, acting for example on the

two 2-forms Bµν and Cµν .

By using the framework of exceptional field theory we can geometrize all duality bundles.

One can then reconstruct the non-geometric backgrounds by different solutions of the section

constraint. The same should work for the associated duality defects, which one can formulate

in the 14-dimensional theory and then take appropriate subspaces for the M-theory or type

IIB/F-theory realization. We hope to come back to a detailed analysis of duality defects in

this framework.20

With the geometrical interpretation of the U-duality group in various duality frames at

hand we can now move to analyze the bordism defects and their string theory origin.

20Note that the geometrization within exceptional field theory is different from S-theory [51] in which one
encodes the SL(2,Z)× SL(3,Z) bundle in terms of a T 2 × T 3 fibration leading to a 13-dimensional theory.
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Part I

Supergravity backgrounds and defects

4 Monodromies and fiber degenerations

Decomposing the U-duality bundles using various subgroups of SL(2,Z)×SL(3,Z) according
to its stable splitting (see Section 8.2), we find a distinguished set of duality transformations

which appear as monodromies in the generators of the bordism group. In many cases these

monodromies have a geometric interpretation in terms of the T 2 compactification of type IIB,

the T 2
F of an F-theory fiber, or the T 3 in M-theory compactifications, as discussed in the UV

realization of the U-duality group in Section 2. The duality defects that break the associated

global symmetry are singular objects in the low-energy effective description. These objects

are located where the fiber geometry becomes singular. Since we are interested in relating the

singular duality defects of the eight-dimensional supergravity theory with stringy objects, it

will be important to have a good understanding of these fiber degenerations.

4.1 SL(2,Z)

The two relevant matrices for SL(2,Z) are given by

γ3 = (ST )2 =

(
−1 −1
1 0

)
, γ4 = S =

(
0 −1
1 0

)
, (4.1)

where we used the usual convention for the generators of SL(2,Z). These monodromy ma-

trices act on a 2-torus whose shape is parameterized by a single complex parameter τ in the

upper half-plane. One can understand that as

T 2 = R2/Λ2 , (4.2)

with the two-dimensional lattice Λ2 spanned by ⟨1 , τ⟩. For general SL(2,Z) transformations

this parameter transforms via Moebius transformations

τ 7→ aτ + b

cτ + d
, with

(
a b

c d

)
∈ SL(2,Z) . (4.3)
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Figure 9: The two relevant orbifolds T 2/Z3 (left), T 2/Z4 (right), with fundamental domain
given by the shaded region, and fixed points marked with black circles (the C/Z2 is indicated
by a further circle).

For the degenerate fiber on the duality defect the monodromy should leave the parameter τ

invariant. Thus, we find that τ is fixed to special values

γ3 : τ = −τ + 1

τ
⇒ τ = e2πi/3 ,

γ4 : τ = −1

τ
⇒ τ = i .

(4.4)

For the 2-tori at these special values of τ , γk acts via rotation by 2π/k in the complex plane

forming the group Zk. The degenerate fiber then takes the form of a torus orbifold T 2/Zk.
For k = 3 and k = 4 these are depicted in Figure 9. The T 2/Z3 orbifold has three conical

singularities of the form C/Z3 located at the orbifold fixed points {0 , 1
3
+ 2τ

3
, 2
3
+ τ

3
}. The

T 2/Z4 orbifold has two singularities of the form C/Z4 at {1
2
, τ
2
} and one of the form C/Z2

at the origin.

4.2 SL(3,Z)

For SL(3,Z) we need to consider the two order-three transformations

Γ
(1)
3 =

1 0 0

0 −1 −1
0 1 0

 , Γ
(2)
3 =

0 1 0

0 0 1

1 0 0

 . (4.5)

We see that Γ
(1)
3 is block diagonal with γ3 in the lower right corner. Therefore, it acts on

a two-dimensional sub-torus of T 3, which we choose to be the one corresponding to the F-

theory fiber T 2
F (see Section 3.3) and fix its complex structure to e2πi/3 as above. Since one

of the circles in T 3 does not transform at all, the singular fiber is given by

T 3/(Z3)Γ(1)
3

= (T 2
F/Z3)× S1 . (4.6)
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Figure 10: The singular fiber T 3/(Z3)Γ(2)
3

as fibration of T 2/Z3 over S1 (right), obtained

by modding out a Z3 rotation indicated in two different perspectives on the left and in the
middle.

Things become more interesting for Γ
(2)
3 , which does not leave any individual circle in T 3

invariant. Since one has (
Γ
(2)
3

)T
Γ
(2)
3 = 1 , (4.7)

it is an element of SO(3) and can be understood as rotation by 2π/3 in R3 along the axis

v = (1, 1, 1). Taking T 3 = R3/Z3 and using translations by lattice vectors we find the action

on T 3 (as shown in Figure 10) given by a rotation along one of the diagonals. From this we

expect a non-isolated singularity of the form (C/Z3) × S1 given by the rotation axis. This

is indeed the case and the singular fiber can be described as

T 3/(Z3)Γ(2)
3

=
(
(T 2/Z3)× S1

)
/Zs3 . (4.8)

The quotient by Zs3 acts as a translation around the base circle and an action on the torus

orbifold that exchanges the three fixed points. For a technique to construct this singular

fiber we refer to Appendix A.

Other relevant SL(3,Z) transformations are of order four and given by

Γ
(1)
4 =

1 0 0

0 0 −1
0 1 0

 , Γ
(2)
4 =

 1 1 1

−1 0 0

0 −1 0

 . (4.9)

As above Γ
(1)
4 is of block-diagonal form which only acts on a two-dimensional torus, which

we choose to be the 2-torus associated to the F-theory fiber under dualities. We find that

the singular fiber is simply given by

T 3/(Z4)Γ(1)
4

= (T 2
F/Z4)× S1 . (4.10)
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Figure 11: The singular fiber T 3/(Z4)Γ(2)
4

as fibration of T 2/Z4 over S1.

For Γ
(2)
4 things are more complicated, especially since it is not an element of SO(3) and we

need to find a good basis for the torus lattice Λ3. This is done in Appendix A. Similar to

the situation above, we find that the resulting singular fiber is given by a fibration of T 2/Z4

over S1 (see Figure 11). The fibration structure is given by

T 3/(Z4)Γ(2)
4

=
(
(T 2/Z4)× S1

)
/Zs2 , (4.11)

where the translational symmetry Zs2 shifts halfway around the base circle and acts on the

fiber. Going around the base circle this action exchanges the two local singularities of form

C/Z4, while the local C/Z2 singularity is mapped to itself.

Finally, we will also encounter the SL(3,Z) monodromies given by the order-two elements

M
(1)
1 =

−1 0 0

0 −1 0

0 0 1

 , M
(1)
2 =

1 0 0

0 −1 0

0 0 −1

 , (4.12)

and

M
(2)
1 =

−1 0 0

1 1 1

0 0 −1

 , M
(2)
2 =

 0 0 1

−1 −1 −1
1 0 0

 . (4.13)

It will be enough to discuss the singular fiber of one of each pair of monodromies which we

will choose to be M
(1)
2 and M

(2)
2 .

For M
(1)
2 we see the same block diagonal form as for Γ

(1)
4 , which acts non-trivially only

on the F-theory fiber T 2
F ⊂ T 3. The singular fiber, does not require a special value for the

complex structure and takes the product form

T 3/(Z2)M(1)
2

= (T 2
F/Z2)× S1 , (4.14)

with the usual 2-torus orbifold as the F-theory fiber.

For M
(2)
2 there is no invariant sub-torus and we employ the same techniques as above
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(see Appendix A) to obtain the singular fiber geometry:

T 3/(Z2)M(2)
1

=
(
(T 2/Z2)× S1

)
/Zs2 , (4.15)

with Zs2 given by a half-shift around a circle in combination with an exchange of the diagonal

fixed points on T 2/Z2.

4.3 SL(2,Z)× SL(3,Z)

Finally, we want to describe singular fibers for simultaneous monodromies in both duality

subgroups. While pairs of the form
(
γ3,Γ

(1)
3

)
and

(
γ4,Γ

(1)
4

)
have a geometric interpretation

in F-theory we will focus on the pairs
(
γ3,Γ

(2)
3

)
and

(
γ4,Γ

(2)
4

)
, which will appear for certain

bordism generators below, and do not act geometrically in any duality frame.

For that we first determine the form of the monodromy when acting on the six coordinates

Y M of the exceptional field theory description, which is simply the tensor product of the

individual monodromy matrices, for example

(
γ3,Γ

(2)
3

)
=

(
−1 −1
1 0

)
⊗

0 1 0

0 0 1

1 0 0

 =



0 −1 0 0 −1 0

0 0 −1 0 0 −1
−1 0 0 −1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0


. (4.16)

Of course this is also an element of order 3. Taking the six internal coordinates to be periodic,

i.e., described by a T 6, the duality matrix acts on this T 6 as an element of SL(6,Z). We can

then proceed to analyze the singular central fiber by using the same techniques as above,

which we do explicitly in Appendix (A.1). There, we find a 9-fold cover T̃ 6 of the original

torus which decomposes as

T̃ 6/(Z3)(γ3,Γ(2)
3 )

= T 2 × (T 2/Z3)× (T 2/Z3) , (4.17)

with the usual 2-torus orbifolds T 2/Z3. This geometry has nine orbifold points that locally

are described by C2/Z3. These get exchanged by the identification generated by shifts

associated to interior points of T̃ 6, discussed in Appendix A.1. A single fundamental domain

of the singular fiber is described by

T 6/(Z3)(γ3,Γ(2)
3 )

=
(
T 2 × (T 2/Z3)× (T 2/Z3)

)
/(Zs3 × Z̃s3) , (4.18)

with Zs3 and Z̃s3 acting as shifts in the first T 2 factor and identifying the orbifold fixed points

in the other two, which hence are non-trivially fibered. A similar discussion can be performed
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Figure 12: Sketch of the solution of the section constraint cutting out a singular subspace of
the non-geometric fiber.

for the Z4 case.

The fact that the structure of the singular fiber involves all of the 6-torus coordinates

underlines the non-geometric nature of the configuration which also involves other moduli

fields. It would be interesting to apply the section constraint to the singular fiber. This

would determine certain singular subspaces of the orbifold (4.18), that define the singular

internal spacetime in a certain duality frame. The non-trivial behavior of the other auxiliary

coordinates on the other would capture the monodromies of the remaining moduli fields,

involving the volumes of the physical internal space.

For example, imposing the solution to the section constraint such that only the Y 1a

behavior is non-trivial, one obtains a two-dimensional subspace of (4.18), with a complicated

singularity structure and monodromies for the other moduli fields, from which one could read

off the non-geometrical realization within type IIB (see Figure 12 and Appendix A.1).

With the structure of the singular fibers determined, we can now move to the discussion

of the U-duality defects which are located at the point of fiber degeneration.

5 General U-duality defects in codimension-two

Before we discuss the symmetry-breaking defects in maximal supergravity in eight dimensions

of any dimensionality we explore the codimension-two defects in spacetime dimension seven

and below. This is possible since (as we find in Section 7), the reduced Spin bordism groups

are:

Ω̃Spin
1 (BGD

U ) = 0 , 3 ≤ D ≤ 7 . (5.1)
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Figure 13: Bounding manifold of S1 with transition function given by g = g1g2g
−1
1 g−1

2 .

This implies that there are no defects of real codimension-two necessary to break global

symmetries induced by non-trivial duality bundles. The reason for this is that the U-duality

groups are perfect, which means that their Abelianization Ab(GD
U ) is trivial and all elements

can be phrased in terms of a product of commutators of the form

g = g1g2g
−1
1 g−1

2 , (5.2)

for g , g1 , g2 ∈ GD
U . The smooth configuration that bounds the potential generator given by

a circle with transition function g is given in analogy to several codimension-two defects in

type IIB as discussed in Section 7.1 of [28], see also the discussion in [16]. The bounding

manifold needs to have a non-trivial topology21 and in the case at hand is a 2-torus with a

disk cut out, see Figure 13.

This bounding manifold can in a sense be understood as a ‘wormhole-like’ gravitational

soliton [16] which changes the codimension-one topological operator implementing the action

of the duality group. These are typically what one would expect from the breaking of a global

symmetry in quantum gravity. In particular, the conservation of topological charge viola-

tion is already accounted for by allowing for topology changes of the underlying spacetime

manifold and does not require extra elementary objects in the theory. The necessity of the

non-trivial topology of the gravitational solution further demonstrates the non-perturbative

nature of these symmetry-breaking effects (even in gravity).22

Note also that this does not diminish the importance of studying the corresponding

codimension-two objects, see, e.g., [64–66, 92–95] for a sample of interesting results. In

particular, it can very well be that the singular objects might be energetically preferred

with respect to the smooth gravitational configurations, for which one has to go beyond

the topological properties of the background and instead one has to analyze the dynamics

21For a discussion of topological properties of smooth bounding manifolds utilizing Morse theory see [67].
22A perturbative breaking could, for example, be generated by including terms in the Lagrangian that are

suppressed with an inverse power of the Planck mass.
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induced by the energy density of the different backgrounds.

Having discussed some general aspects of U-dualities, we now specialize to 8d supergravity

with 32 supercharges, where the U-duality group is:

G8d
U ≡ GU = SL(2,Z)× SL(3,Z). (5.3)

6 Duality defects in eight dimensions

In this section, we analyze the non-trivial bordism generators in dimension k ∈ {1 , . . . , 7}
from a physics viewpoint, and explore what kind of defects we need to introduce in maximal

eight-dimensional supergravity in order to describe them as the boundary of a (k + 1)-

dimensional space. The inclusion of the defects as dynamical objects of the theory breaks the

associated global symmetry. We then give an interpretation of the necessary configurations

within string / F- / M-theory and explore whether we need to include new fundamental

objects or allow for more exotic backgrounds. Whenever possible, we explore the duality

frame in which the U-duality bundle in GU has a geometric realization, which simplifies its

string theory interpretation.

6.1 Codimension-two defects

Besides the generator S1
+ of ΩSpin

1 (pt),23 which requires the introduction of a codimension-

two Spin defect that we will not further explore (see [12,96]), there are two generators of the

reduced bordism group:

Ω̃Spin
1 (BGU) = Z3 ⊕ Z4 . (6.1)

They are given by an S1 with the duality bundle specified by the monodromies γ3 and γ4,

i.e., only the SL(2,Z) bundle is non-trivial. This is due to the fact that for Ω1 only the

Abelianization of the gauge group is relevant, and this is trivial for SL(3,Z) since it is a

perfect group (as are the higher U-duality groups GD
U , see Section 5). Note that one can

pick any spin structure on the S1 since one can relate the two choices by a disconnected sum

with S1
+.

In the type IIB lift this translates into a non-trivial fibration of the compactification torus

over the S1. Filling the circle induces a central fiber of the type discussed in Section 4.1, i.e.,

the fiber torus becomes singular and degenerates to the torus orbifolds T 2/Z3 and T 2/Z4

for γ3 and γ4, respectively. Accordingly, the complex structure of the compactification torus

at the singular fiber is fixed to τ = e2πi/3 and τ = i. While this configuration might be

reminiscent of the F-theory geometry with type IV∗ and type III∗ fiber, (see [28]), here, the

torus is part of spacetime and in particular has a finite volume24 The geometry is conveniently

23Namely, the circle with periodic boundary conditions for fermions.
24In F-theory the fiber volume is unphysical.
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Figure 14: Type IIB realization of the U-duality defects in codimension-two (k ∈ {3, 4}).

described by (
T 2 × C

)
/Zk , with k ∈ {3 , 4} , (6.2)

which has the chosen generators of the bordism group as boundary (see Figure 14).

Given the singularity structure of the central fiber (see Section 4.1), we find that the

geometry (6.2) has several local singularities of the form

C2/Zn , (6.3)

where n is inherited from the type of orbifold singularities in the fiber. Since we can describe

the total space as a patch of an elliptically-fibered, singular K3, the defects preserve part of

the supersymmetry.

The Z3 case leads to three singularities of the form C2/Z3, i.e., three A2 singularities.

In general an An singularity is given by C2/Zn+1 with the action on the local coordinates

(z1 , z2) given by

(z1 , z2) 7→ (ωz1 , ω
−1z2) , ω = e2πi

1
n+1 ,

(
ω 0

0 ω−1

)
∈ Zn+1 ⊂ SU(2) . (6.4)

Type IIB string theory compactified on such a singular space gives rise to an N = (2, 0)

superconformal field theory in six-dimensions [97,71]. In the present defect they are assem-

bled at the three orbifold fixed points of T 2/Z3 and lead to a codimension-two defect in the

eight-dimensional supergravity.

For Z4 one finds two singularities of type A3 and one of type A1, giving rise to the

associated N = (2, 0) SCFT sectors in the type IIB description. These are located on

the orbifold fixed points of T 2/Z4. In the 8d supergravity these are located on the same

codimension-two defect.

The fact that part of the string theory background is compact, given by T 2/Zk, has
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interesting consequences. In particular it is known that the N = (2, 0) theories possess states

charged under 2-form global symmetries corresponding to D3-brane wrapped on relative 2-

cycles, see, e.g., [98–101]. In our setup the global symmetries of the individual sectors are

correlated due to D3-branes stretching between the individual An singularities, which should

be regarded as excitations on the defect. These states break the 2-form global symmetries

at each of the orbifold points to a subgroup, which is Z3 for the γ3 defect and Z2 for the

γ4 defect. These remnant symmetries are related to the torsion cycles of the asymptotic

geometry (T 2 × C)/Zk, see, e.g., [102–104,9, 105].
We see that the UV lift of the eight-dimensional configuration leads to an interpretation

of the symmetry-breaking defect in terms of a well-known string theory background, namely

6d N = (2, 0) SCFT sectors. It further points toward a non-trivial world-volume theory of

the defect which, here is related to the string states coming from wrapped D3-branes. This

phenomenon of the singular supergravity defects lifting to known string backgrounds seems

to be a general feature of the investigation of symmetry-breaking defects which we shall see

repeatedly.

6.2 Codimension-three defects

The codimension-three defects break the global symmetries associated to

Ω̃Spin
2 (BGU) = Z⊕3

2 , (6.5)

where once more we excluded the generator of Spin bordism S1
+ × S1

+, which is trivialized

by the spin defect in codimension-two, which is unrelated to the existence of a non-trivial

duality bundle.

One of the generators can be chosen as a product of S1
+ and the generator in dimension one

with γ4 monodromy above. Since we already trivialized this, no more defects are necessary

for this factor. The resulting string theory background is simply given by the supersymmetry

preserving circle compactification of the partially-compactified combination of SCFT sectors

discussed in Section 6.1.

The two remaining generators are given by a 2-torus T 2 with non-trivial monodromies

around the two 1-cycles. These monodromies sit in two different embeddings of the form

(see Section 8.2)

Z2 × Z2 → S4 → SL(3,Z) . (6.6)

We can choose the two Z2 factors for the different S4 embeddings in the same way, given by

M
(i)
1 =

(
Γ
(i)
4

)2
R(i)

(
Γ
(i)
4

)2
R(i) ,

M
(i)
2 =

(
Γ
(i)
4

)2
,

(6.7)
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Figure 15: Two-dimensional generator given by T 2 with monodromies M
(i)
1 and M

(i)
2 .

with Γ
(i)
4 in (4.9) and

R(1) =

 0 −1 0

−1 0 0

0 0 −1

 , R(2) =

−1 0 0

0 −1 −1
0 0 1

 . (6.8)

Indeed the two monodromy elements correspond to the even permutations of S4, namely

M
(i)
1 = (1 2)(3 4) , M

(i)
2 = (1 3)(2 4) , (6.9)

where we identified the order four element Γ
(i)
4 with the cyclic permutation (1 2 3 4) and the

element R(i) with (1 2).

Since the topology of the bordism manifold is given by a T 2, with two distinct mon-

odromies around the two 1-cycles (see Figure 15) it is natural to describe it as a bound-

ary by filling one of the circles with the inclusion of a defect. However, this defect is a

codimension-two defect rather than codimension-three, and it raises the immediate question

why we have not seen them in our discussion of ΩSpin
1 (BGU) (see also Section 1.2.4). Indeed

the monodromies M (i) are part of the commutator subgroup and hence are trivialized by

gravitational solitons of the form depicted in Figure 13. So why can we not bound one of

the circles in T 2 using this smooth configuration?

The reason the singular defect works but the smooth gravitational soliton described in

Figure 13 does not is as follows. Filling one of the torus cycles, let us choose the one with

transition functionM
(i)
1 . One then has an action ofM

(i)
2 implemented when going around the

non-trivial 1-cycle of the solid torus. Since M
(i)
1 and M

(i)
2 commute, this does not affect the

singular codimension-two object implementing the M
(i)
1 monodromy, see the right-hand side

of Figure 16. For the gravitational soliton, however, one has to expressM
(i)
1 as a (product of)

commutators of two SL(3,Z) elements. In order to generate a valid, smooth configuration

both these elements have to commute with M
(i)
2 , which we argue cannot be the case.

As a first hint we find that M
(i)
1 already has the form of an element in the commutator
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Figure 16: Bounding manifold of the generators in dimension-two using a gravitational
soliton (left), does not work since the remaining monodromy acts non-trivially on it (middle).
Bounding one of the torus cycles with a singular object (right) does work, since the remaining
transition function leaves it invariant.

subgroup of S4

M
(i)
1 = g1g2g

−1
1 g−1

2 , with g1 =
(
Γ
(i)
4

)2
, g2 = R(i) . (6.10)

While g1 commutes with M
(i)
2 , g2 does not and thus this is not a valid choice for a smooth

background of a gravitational soliton. Next, we need to show that this is the case for all

possible decompositions of M
(i)
1 into a product of commutators involving gi ∈ SL(3,Z).

For the particular realizations of monodromies indicated in (6.7) above we find

M
(1)
1 =

−1 0 0

0 −1 0

0 0 1

 , M
(1)
2 =

1 0 0

0 −1 0

0 0 −1

 . (6.11)

Commutation with M
(1)
2 , i.e., giM

(1)
2 =M

(1)
2 gi, implies that the elements gi ∈ SL(3,Z) used

to describe M
(1)
1 in (6.10) are of the form

gi =

ai 0 0

0 bi ci
0 di ei

 . (6.12)

Since gi ∈ SL(3,Z) one has ai = ±1, since the determinant is det(gi) = ai(biei − dici) = 1.

The inverse of such a matrix is also of block-diagonal form with the same ai in the upper

left. Consequently, every commutator of such block-diagonal matrices has a 1 in the upper

left

g1g2g
−1
1 g−1

2 =

a21a22 0 0

0 ∗ ∗
0 ∗ ∗

 , (6.13)

and therefore cannot give rise to M
(1)
1 . The same argument can be applied for the product
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of commutators, all of elements of the form (6.12) in order to commute with M
(1)
2 . For the

other embedding of S4 the monodromies read;

M
(2)
1 =

−1 0 0

1 1 1

0 0 −1

 , M
(2)
2 =

 0 0 1

−1 −1 −1
1 0 0

 , (6.14)

and commutation withM
(2)
2 fixes all but four elements in g̃i ∈ SL(3,Z). This further suggests

that the commutator of two such elements does not allow for an expression of M
(2)
1 , since

one needs to solve nine equations with eight variables. One can check numerically that this

is indeed the case.

Thus, we see that the singular defect given by additional codimension-two objects cannot

be resolved into smooth gravitational configurations, which we discuss below. It would be

interesting to explore more generally when such additional defects of lower codimension

have to be added for different gauge groups. One path might be to analyze the various

characteristic classes of subgroups of the full duality group and their fate under embeddings

of the form (6.6).

One might also ask whether there is a genuine codimension-three objects that can triv-

ialize the elements above. For that it would be useful to have a bordism between T 2 with

the two monodromies and a quotient of S2 which can naturally be identified as enclosing

a codimension-three defect (see, e.g., Figure 4). This seems hard to achieve since the two

non-trivial monodromies require that one takes a free quotient of the sphere with two factors,

but the only finite group with free action on S2 is Z2, via the anti-podal map, which is not

sufficient.

Thus, surprisingly our investigation of non-trivial generators of ΩSpin
2 (BGU) suggests the

existence new objects in codimension-two. Since the monodromy matrices are elements of

SL(3,Z) they have a geometric interpretation in the M-theory description.

For monodromy M
(1)
1 the M-theory geometry is described by the local elliptically-fibered

K3 times a circle, preserving half of supersymmetry,

(T 2
F × C)/(Z2)M(1)

1
× S1 , (6.15)

with the central fiber giving T 2/Z2 with four local C2/Z2, i.e., A1 singularities. M-theory

on such a background gives rise to seven-dimensional super-Yang-Mills theory with gauge

algebra su(2), which suggests that the defect hosts a six-dimensional gauge theory with

gauge algebra su(2)⊕4. Since all of them appear on the same central fiber the generalized

symmetries are modified by the presence of M2-branes states stretching from one to another

orbifold singularity (see the discussion in [102–105], and in particular [9], making use of

the Mayer-Vietoris sequence). The resulting defect is compactified on the second S1 with

monodromy M
(1)
2 .
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Alternatively, one can fill the circle with M
(1)
2 monodromy which also has an F-theory

interpretation, where the fiber volume is set to zero. The corresponding defect is the torus

compactification of an so(8) brane stack (consisting of four D7-branes on top of an O7−

orientifold plane). This type IIB object is then further compactified on a circle with M
(1)
1

monodromy, which involves the third torus direction and therefore will act as a non-geometric

twist. This is potentially dangerous since the SL(2,Z)S subgroup of SL(3,Z) acts on the

brane charges. For this to be well-defined it is necessary that the monodromies M
(1)
1 and

M
(1)
2 commute which is indeed the case. This F-theory configuration can be understood as

the limit of vanishing fiber volume of the M-theory background above, see Section 3.3. In

this limit the shrinking of the central fiber leads to a gauge enhancement to so(8).

For monodromy M
(2)
2 (an equivalent discussion holds for M

(2)
1 ) all three directions are

involved and we describe the topology of the singular fiber in Appendix A. This shows that

the central fiber in this case is given by

T 3/(Z2)M(2)
1
≃
(
T 2/Z2 × S1

)
/Zs2 , (6.16)

where the additional quotient by Zs2 encodes the a fibration structure of T 2/Z2 that, going

around the base circle, exchanges two pairs of fixed points. This means that the resulting

worldvolume theory in the M-theory lift is given by a twisted circle compactification of the

su(2)⊕4 theory, where the twist relates two pairs of su(2) sectors, leaving a linear combination

of two su(2) gauge fields massless. Again, this configuration can be smoothed by resolving

the orbifold singularities, but now the volume of some of the resolution curves are related

via the Zs2 action. This is another instance of the effect discussed in Section 1.2.5, namely

that a full resolution is possible in M-theory but not in the lower-dimensional supergravity.

Indeed in a discussion of defects in M-theory, the backgrounds above do not correspond to

non-trivial bordism generators after blowing up the fiber singularities.

6.3 Codimension-four defects

The relevant bordism group for codimension-four defects is given by

ΩSpin
3 (BGU) = Ω̃Spin

3 (BGU) = Z⊕3
3 ⊕ Z⊕3

2 ⊕ Z⊕3
8 . (6.17)

The Z3 and Z8 summands are generated by lens spaces, which we can interpret as the asymp-

totic boundary of C2/Zk, and carry a non-trivial duality bundle, fixed by the monodromy

around the torsion 1-cycle of the lens space.

For the Z3 summands the three different monodromies on L3
3 = ∂

(
C2/Z3

)
are given by

γ3, Γ
(1)
3 , and Γ

(2)
3 . All of these backgrounds admit a geometrical interpretation within string

theory or M-theory and so do the necessary symmetry-breaking defects.

For γ3 we can use the type IIB description and find that the defect is described by the
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singular background (
T 2 × C2

)
/(Z3)γ3 , (6.18)

which is of the form of a local Calabi-Yau 3-fold, and hence preserves one quarter of the

supersymmetry. At the location of the defect the T 2 degenerates and we find three singular-

ities of the form C3/Z3. This space allows for a crepant resolution by blowing up a CP2 at

the singular points, see, e.g., [69, 106]. The defect can therefore be understood as a partial

compactification of three such sectors in type IIB string theory.25

For Γ
(1)
3 the interpretation is also geometrical in non-perturbative type IIB, i.e., F-theory,

since the SL(3,Z) monodromy only acts on a 2-torus which can be identified with the F-

theory fiber T 2
F . This leads to a F-theory background given by(

T 2
F × C2

)
/(Z3)Γ(1)

3
× T 2 . (6.19)

The first factor now precisely has the geometry of a non-Higgsable cluster, [68]. It can be

resolved into a curve with self-intersection (−3) over which the fiber develops a type IV

singularity, indicating the presence of 7-branes. This is also one of the defects found in the

pure type IIB discussion in [28]. Since the additional spacetime T 2 is unaffected, the defect

is given by the torus compactification of the (−3) non-Higgsable cluster. This also confirms

the expectation that at least some of the bordism defects of the parent theory (here: type

IIB in ten dimensions) persist after compactification. The resulting 4d theory has a strongly

coupled point in the moduli space where a 4d SCFT emerges. For the isolated (−3) non-

Higgsable cluster this theory is given by an Argyres-Douglas theory of the form D3

(
SU(2)

)
,

see [107, 108].26 Here one might be tempted to use the topological soliton in Section 5 to

fill the S1 fiber of the lens space description as circle bundle over CP1 ≃ S2. However,

transition functions of the circle bundle are incompatible with the duality bundle on the

smooth gravitational soliton, similar to the discussion in Section 6.2.

The most interesting defect for the last Z3 summand is given by L3
3 with monodromy Γ

(2)
3 ,

which requires a discussion within M-theory for a geometric interpretation. Once more one

finds that the defect contains singularities of the form C3/Z3, which combine the 8d geometry

of the supergravity theory with two of the three fiber coordinates in the M-theory lift. As

mentioned above these can be resolved by blowing up a CP2 at the singular point. This sig-

nals the appearance of a non-trivial interacting SCFT in M-theory.27 As discussed in Section

25It might be tempting to try to describe this defect as a compactification of the codimension-two object
related to S1 with γ3 monodromy. For that one would resolve the singular C2/Z3 to the total space of O(−3),
a complex line bundle over CP1, and wrap the codimension-two object around the CP1. However, this curve
has self-intersection (−3) and therefore, at least in the presence of supersymmetry, demands a non-trivial
axio-dilaton profile dictated by the discussion of non-Higgsable clusters in [68]. This would change the duality
bundle and the generator, and we are therefore guided towards this new genuinely codimension-four object.

26We thank C. Lawrie for explaining which 4d SCFT emerges in this case.
27This is the celebrated E0 5d SCFT of [109] (see also [110–112]. In the blownup phase, M5-branes

wrapped on the CP2 produce effective strings. Near the singular point, the tension of these effective strings
drops to zero, signalling the presence of a conformal fixed point.
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4, there locally are three such singularities that get exchanged when traversing the invariant

fiber circle of the M-theory T 3. We see that the duality defect, with four-dimensional world-

volume, in the M-theory description has interesting dynamics which consists of a twisted

circle compactification of three 5d SCFT sectors. From the central fiber geometry in (4.8),

we find the defect geometry

(T 3 × C2)/(Z3)Γ(2)
3
≃
(
(T 2 × C2)/Z3 × S1

)
/Zs3 , (6.20)

where the action of Zs3 exchanges the three local SCFTs sectors when going around the S1.

In the resolved geometry, this twist exchanges the three CP2 resolutions of the blow-up,

acting accordingly on the string states, which only leaves a linear combination invariant.

The generators of the Z8 summands are very similar to the ones above with γ3 replaced

by γ4 and Γ
(i)
3 by Γ

(i)
4 , respectively.

The first Z8 is given by type IIB on a spacetime of the form

(T 2 × C2)/(Z4)γ4 . (6.21)

As opposed to the discussion of the Z3 quotients, however, there is no supersymmetric way

of orbifolding when the full Z4 acts on the torus fiber. This can be seen by considering the

transformation of the local (3, 0)-form composed out of the C2 coordinates (z1, z2) and the

T 2 coordinate y

Ω = dy ∧ dz1 ∧ dz2 → e
2πi
4

(±1±1±1)dy ∧ dz1 ∧ dz2 ̸= Ω . (6.22)

The ±1 in the exponent corresponds to the allowed choices for the Z4 action on the individual

coordinates. Thus, it seems that the associated defect breaks supersymmetry. However, we

believe this to be an artifact of considering the duality group SL(2,Z) instead of its Spin lift

Mp(2,Z). In fact for the metaplectic group the Z4 element has a geometrical action of

y → −y , (6.23)

on the torus direction and there is a perfectly supersymmetric orbifold of the type (6.21).

This can also be seen in the results of [28], where the defects were supersymmetric, see

also the discussion in Section 1.2.6. Again, the same caveats of trying to relate the above

backgrounds to a compactification of the S1
γ4

defect apply.

Similarly, the second Z8 summand is given by(
T 2
F × C2

)
/(Z4)Γ(1)

4
× T 2 , (6.24)

with the same issues concerning supersymmetry as above. Since, comparing to the analysis

for Z3, we expect this defect to be the T 2 compactification of a (−4) non-Higgsable cluster
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theory this suggests again that the non-supersymmetric nature seems indeed to be an artifact

of working with the bosonic duality group. For the supersymmetric version, where Z4 acts

on T 2
F by multiplication with −1, there is again a 4d N = 2 SCFT at certain points of the

moduli space, given by SU(2) SQCD with four flavors [107,108].

The last Z8 summand needs an M-theoretic description to be geometric. With the de-

scription of the central fiber as given in Appendix A, we find a geometry of the type(
(T 2 × C2)/Z4 × S1

)
/Zs2 , (6.25)

where the Zs2 action exchanges the two C3/Z4 orbifold points. Again, we find that the

quotient is not compatible with supersymmetry, which should be resolved once one takes

into account the spin-cover of the duality group. Due to the singularities the associated

defect likely carries some SCFT sectors, some of which are exchanged under the Zs2 action.

This leaves three Z2 summands, given by the generators

S1
+ × S1

+ × S1
γ4
, S1

γ4
× S1

M
(1)
1

× S1

M
(1)
2

, S1
γ4
× S1

M
(2)
1

× S1

M
(2)
2

. (6.26)

Each of them contains a direct factor of S1
γ4

and therefore the associated global symmetry is

broken by compactifying the associated codimension-two defect on S1

M
(i)
1

× S1

M
(i)
2

. Since the

monodromiesM (i) involve all coordinates of the T 3 these compactifications will in general be

non-geometric twists (see Section 1.2.3), where the moduli fields of the string background will

undergo non-trivial monodromies as well. It is also reassuring that the defect we compactify

does not contain any type IIB 7-branes which might not be invariant under the monodromies

M (i) and therefore might not be allowed in the compactifications. Thus, there are no actually

new defects needed for this subset of generators.

We see that in codimension four we obtain genuinely new defects that are associated

to singular type IIB geometries but we also find situations in which the lower-codimension

defects found above are compactified. Once more this picture will be very common in the

higher-codimension cases discussed below. It is also the first time that we are confronted

with non-geometry. However, the defects themselves are not non-geometric. Rather, they are

compactified on backgrounds with a generally non-geometric action on the type IIB moduli

fields.

6.4 Codimension-five defects

The Z summand in the d = 4 bordism group is associated to the Spin manifold K3, and we

will not discuss it further. Instead we will focus on the reduced bordism group given by

Ω̃Spin
4 (BGU) = Z⊕2

3 ⊕ Z⊕3
2 ⊕ Z⊕2

4 , (6.27)
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which relies on the presence of non-trivial duality bundles.

The two Z3 summands are given by

S1
γ3
× L3

3,Γ
(i)
3

, (6.28)

where the L3
3 carries an SL(3,Z) duality bundle specified by monodromy Γ

(i)
3 . We see that

these are the direct product of two generators that were already known. Therefore, we can

bound it either by compactifying the codimension-two defects on L3
3 or the codimension-four

defects on S1
γ3
.

As before we can ask whether this further compactification is allowed. Note that the

defect associated to γ3 is a geometric background in type IIB without the presence of branes.

Due to this we expect that the compactification on the three-dimensional lens spaces are

possible, with Γ
(1)
3 allowing for an F-theory description with varying axio-dilaton and Γ

(2)
3

leading to a compactification with non-geometric twist, respectively.

Alternatively, one can compactify the codimension-four defects on S1
γ3
. For Γ

(1)
3 this is the

compactification of the non-Higgsable cluster on a 3-manifold given by the torus fibration over

S1, which presumably can be related to twisted compactification of the D3

(
SU(2)

)
theory

discussed above (at least at scales where the volume of the T 2 becomes small). For Γ
(2)
3 it is

a circle compactification of the theory discussed above, i.e., a twisted circle reduction of the

three copies of 5d SCFTs associated to M-theory on C3/Z3, with a non-geometric twist.28 It

would be interesting to study the effect of this twist on the worldvolume fields at low energy.

Since the compactifications of the higher-dimensional defects does not seem to lead to

inconsistencies, we do not need to include additional objects for these bordism generators.

An analogous story holds for the two Z4 summands being generated by

S1
γ4
× L3

4,Γ
(i)
4

, (6.29)

with SL(3,Z) bundle on L3
4 determined by Γ

(i)
4 . Again we have the choice of compactifying

the codimension-two defects on L3
4 or the codimension-four defects on S1

γ4
. Of course the

same caveats concerning supersymmetry as discussed in Section 6.3 and Section 1.2.6 apply.

Next, one of the Z2 summands is generated by W4 which can be described as

W4 = (L3

4,Γ
(1)
4

× S1)/Z2 , (6.30)

with Z2 acting as complex conjugation on the C2 used to describe the L3
4 and the anti-podal

map on S1. It therefore can be understood as the lens space fibered over S1. Following

28These twists associated to the S1 compactification are reminiscent of automorphism twists which are
often employed to obtain modified SCFTs in lower dimensions, see, e.g., [113–115].
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the discussion in Section 1.2.2 one proceeds by filling in the fiber by the inclusion of a

codimension-four defect described in 6.2, see also the discussion in [28]. The associated

defect is naturally understood as a twisted circle compactification of the higher-dimensional

defect. Since the complex conjugation flips the sign of two of the normal coordinates of the

codimension-four defect it can be understood as a topological twist involving a particular

U(1) subgroup of the full R-symmetry group. This twist will likely project out some of the

massless localized degrees of freedom, but a detailed discussion goes beyond the scope of our

investigation.

The remaining two Z2 are generated by disconnected sums of S1
γ4
× L3

4 described above

and a space, called A in Section 15. This A is given by the geometric configuration

S1 × RP3 . (6.31)

The duality bundle is specified by the monodromy elements when traversing the two non-

trivial 1-cycles, i.e., the S1 and the torsion 1-cycle of RP3, respectively,

monodromy around S1 : M
(i)
2 ∈ SL(3,Z) ,

monodromy around RP3 :

((
−1 0

0 −1

)
,M

(i)
1

)
∈ SL(2,Z)× SL(3,Z) .

(6.32)

We will denote the space with i = 2 by A′. Again, we can use the product manifold structure

leading to two different interpretations. We can compactify the codimension-two defect that

bounds the S1 factor, which was already introduced in Section 6.2, on the RP3 factor with

its non-trivial duality bundle specified by the monodromy indicated in (6.32). Alternatively,

we can define a new codimension-four object bounding RP3 with its bundle, which did not

yet appear from lower-dimensional bordism groups and compactify it on the S1 factor. Since

we already argued for the inclusion of a codimension-two defect, the first possibility is more

natural and we do not need to include further defects.

6.5 Codimension-six defects

The relevant bordism group for codimension-six defect is given by

Ω̃Spin
5 (BGU) = Z⊕2

3 ⊕ Z9 ⊕ Z⊕2
2 ⊕ Z⊕2

2 ⊕ Z2 ⊕ Z4 , (6.33)

where we already paired summands that are related by the different embedding choices.

The Z9 summand has a geometric interpretation in type IIB string theory and is generated

by L5
3 with γ3 monodromy. This can be understood as the asymptotic boundary of

(T 2 × C3)/(Z3)γ3 , (6.34)
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Moreover, by using the Z3 action of the form (ω, ω−1, ω, ω−1) with ω = e2πi/3, we can

interpret this as a local patch of a singular elliptically-fibered Calabi-Yau 4-fold, containing

three singularities of the type C4/Z3 at the singular point. The singularities with Z3 action

defined above are Gorenstein, canonical, and terminal, so allow no crepant resolution [73].

This lead to a string-like singular object in eight-dimensional supergravity, with dynamics

specified by type IIB on C4/Z3. Since it consists of three such singularities one can think of

it as a composite object.

The first Z3 summand is given by the lens space L5
3 with monodromy

(
γ3,Γ

(1)
3

)
acting as

the tensor product γ3 ⊗ Γ
(1)
3 and therefore requires a lift to F-theory. It can be interpreted

as

(T 2
F × T 2 × C3)/(Z3)γ3⊗Γ

(1)
3
, (6.35)

which again seems to have a supersymmetric realization by choosing the Z3 action appro-

priately, e.g.,

Z3 : (ω, ω, ω, ω−1, ω) , (6.36)

with ω as above. These local C5/Z3 singularities cannot be resolved while preserving su-

persymmetry. These objects can be understood as being composite and consisting of three

copies of the S-strings discussed in [28]. The fact that there are three of them, due to the

three singularities of the spacetime torus, also gives an intuition why they only generate a

Z3 summand and not a full Z9 as in [28].

The second Z3 summand is the first time that the tensor product of two monodromies

appears on the same 1-cycle which cannot be interpreted geometrically in any string or M-

theory frame. Thus, this is the first example of a genuinely non-geometric defect, i.e., a

defect which cannot be described by the geometry of an internal space of the UV description

alone, but involves U-duality twists that involve other moduli. They can be understood as a

non-perturbative generalization of T- or U-duality defect (see [64–66]) in higher codimension.

Let us analyze the geometry a little bit more in the M-theory frame, where at least the

T 3 factor has a geometric interpretation. Focusing on the shape moduli of the T 3 we find

the M-theory background

(T 3 × C3)/(Z3)Γ(2)
3
≃
(
(T 2 × C3)/Z3 × S1

)
/Zs3 , (6.37)

where the singular orbifold points undergo monodromy when going around the S1 as de-

scribed in Appendix A. However, at the same time one has the γ3 monodromy which is

non-geometric and instead acts, for example, on the volume of the T 3 and the vacuum ex-

pectation value of C3 integrated over the torus, see Section 3.1. This implies that the torus

fiber is glued to itself potentially at a different volume and value of C3 (see Figure 17). In

fact, since we know that γ3 acts as Moebius transformations on ωM in (3.7) we find that

ωM 7→ −
ωM + 1

ωM

, (6.38)
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Figure 17: Schematic depiction of a non-geometric U-duality defect in M-theory as the
central singularity of a generator, where not only the shape of the internal 3-torus varies,
but also its volume (and 3-form).

which has a fixed point at ωM = e2πi/3. This suggests that the volume of the central

singularity is necessarily of Planck size and the integral of C3 is non-zero. The fact that

the geometry involves cycles of the size of the Planck length suggests that quantum gravity

corrections become important and modify the classical background described above. Beyond

the action on the geometry, there will be further monodromies on the other fields in the eight-

dimensional supergravity. The full duality action should also be captured by the singular

exceptional geometry fiber, discussed in Section 4.3. We will leave a more detailed discussion

of these non-geometric defects, their properties, and worldvolume theory for future work. It

would also be interesting to study more general flux backgrounds on these non-geometrical

string objects and explore what other strings one can find in their duality orbit (see also

[116–120]).

Two of the Z2 summands are generated by S1
γ4
× A and S1

γ4
× A′, with A and A′, being

S1 × RP3 with duality bundle inside the two different embeddings of Z4 × S4 in GU , see

Section 6.4 above. Using the product structure, we can simply compactify the codimension-

two defects, associated to S1
γ4
, on the space A. Since this carries duality bundles in both

factors of GU it is a compactification with non-geometric twist, but it does not require the

introduction of further elementary objects.

We can proceed along the same lines for another Z2 summand generated by S1
γ4
×W4,

whose defect is give by the codimension-two defect wrapped on W4. With W4 itself a fibra-

tion, this leads to a double twisted configuration with both topological and non-geometric

duality twists.

The Z4 summand is given by a five-dimensional Spin manifold Q5
4, which is described as

a L3
4 lens space bundle fibered over CP1. As discussed in [28], this can be understood as

a compactification of the defect associated to the fiber L3
4 on CP1 with a topological twist

associated to the non-trivial fibration. The duality bundle on L3
4 is provided by γ4 and so one
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has the twisted compactification of the codimension-four defect. Since the codimension-four

defect might not lift to the correct defect after the Spin lift of the duality group, the same

is true for this configuration.29

The remaining two Z2 summands have the same spacetime geometry Q5
4 given by the

lens space L3
4 fibered over CP1 as above, but the duality bundle over the L3

4 fiber differs and

is given by two different embeddings of Z4 into GU .

The first embedding corresponds to the tensor product γ4⊗Γ(1)
4 ; it represents an F-theory

geometry given by

(T 2
F × T 2 × C2)/(Z4)γ4⊗Γ

(1)
4
→ CP1 , (6.39)

non-trivially fibered over CP1. The symmetry-breaking defect is the defect of the fiber,

given by a codimension-four object in the eight-dimensional spacetime wrapped on CP1 with

a topological twist. Typically we would expect that such a defect does not survive the

Spin lift to the duality group, because it does not lead to a well-defined spacetime structure

for the type IIB lift. Here, however, the F-theory duality bundle is non-trivial as well,

which can allow type IIB to make sense on non-spin manifolds. Indeed there is a local

Z4 action on C4, given by (ω, ω, ω, ω) with ω = e2πi/4 which has the potential to survive

the lift, leading to a supersymmetric background described by a local singular Calabi-Yau.

The corresponding defects then have an interpretation as composite objects built out of the

codimension-six objects, S-folds, of [28], compactified on CP1 with twist. The fact that a

multiplicity of these objects is needed in the U-duality defect also explains why the associated

bordism group summands are reduced. This is another situation in which the codimension

of the defect does not match the naive expectation from the dimension of the bordism group

generator.

The second embedding is given by the tensor product γ4 ⊗ Γ
(2)
4 , which is non-geometric.

Pending the lift to the fermionic bordism group, this suggests that one should include non-

geometric defects already in codimension four, with asymptotic geometry L3
4 and monodromy

above. The defect for Q5
4 then corresponds to their twisted compactification on CP1.

Let us briefly discuss the M-theory defect associated to the filling of the fiber, whose

geometry is given by

(T 3 × C2)/(Z4)γ4⊗Γ
(2)
4
. (6.40)

Since the action of Γ
(2)
4 is reflected by the variation of geometric moduli one obtains

(T 3 × C2)/(Z4)Γ(2)
4
≃
(
(T 2 × C2)/Z4 × S1

)
/Zs2 , (6.41)

combined with the non-geometric monodromy imposed by γ4. As for the non-geometric

29Indeed, from the discussion in [28], one might expect that after the Spin lift the generator is given by L5
4

which itself is not Spin, but it lifts to a Spin manifold when including the type IIB compactification torus,
i.e., it is Spin-Mp(2,Z). If this is the case the defect would be type IIB on a local singular Calabi-Yau 4-fold
of the form (T 2 × C3)/Z4 with constant axio-dilaton.
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defect for Z3 above, this γ4 acts on ωM via Moebius transformations

ωM 7→ −
1

ωM

, (6.42)

underlining the non-geometric nature of the background. At the defect itself this further

suggests that the ωM needs to fixed at the symmetric value i, and therefore the 3-form

is switched off and the volume is fixed to the Planck scale, suggesting the importance of

quantum corrections. We hope to come back to a more detailed study of these non-geometric

objects including the correct spin lift of the duality group.

6.6 Codimension-seven defects

The defects in codimension-seven associated to

Ω̃Spin
6 (BGU) = Z⊕2

3 ⊕ Z⊕2
2 ⊕ Z2 ⊕ Z⊕2

4 , (6.43)

with one exception, given by the single Z2 summand, are surprisingly simple. The reason is

that all of them are described by product manifolds.

The two Z3 summands are given by L3
3 × L3

3 with γ3 monodromy on the first and Γ
(i)
3

monodromy on the second factor. This means that it is simply one of the corresponding

codimension-four defect described in Section 6.3 compactified on the other lens space. No

additional defects are necessary.

Very similarly, the two Z4 summands are given by L3
4×L3

4 with γ4 monodromy on the first

and Γ
(i)
4 monodromy on the second factor. We can bound these spaces by the compactification

of the codimension-four defects on the second lens space factor.

Two of the Z2 summands are generated by RP3×RP3 with monodromyM
(i)
1 andM

(i)
2 on

the individual factors, respectively. Here, one has two possibilities to introduce symmetry

breaking defects. Either one introduces new codimension-four objects, described by the

singular geometry M-theory geometry

(T 3 × C2)/(Z2)M(i)
k
, (6.44)

with the Z2 acting as multiplication by (−1) on C2, which bound one of the RP3 factors.

These would then be compactified (including the non-geometric twist) on the other RP3

factor. Alternatively, one can resolve the C2/Z2 to the total space of the complex line

bundle O(−2) over CP1, in which case one can wrap the codimension-two defects found in

Section 6.2 over the CP1 and then compactify this configuration on the other RP3 factor.

Since we already needed to include the codimension-two objects the second possibility seems

to be the minimal option.
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This leaves a single Z2 summand with generator W6 described as follows: The spacetime

is given by RP3×RP3 with duality bundle given by monodromy (γ24 ,M
(1)
2 ) around the torsion

1-cycle of the first RP3 factor and

R̃ = R(1)Γ
(1)
4 R(1)

(
Γ
(1)
4

)3
R(1) =

−1 0 0

0 0 −1
0 −1 0

 , (6.45)

which corresponds to the permutation (13) in the S4 subgroup generated by Γ
(1)
4 and R(1),

around the torsion 1-cycle of the second RP3.

The first factor can be described as the boundary of the singular F-theory geometry

(T 2
F × T 2 × C2)/(Z2)γ24⊗M

(1)
2
, (6.46)

which acts as a minus sign on both 2-tori, as well as the C2. This geometry admits an

invariant (4, 0)-form and thus can be described as a singular, local Calabi-Yau 4-fold with

singularities of the type (T 2
F ×C3)/Z2, which signal the presence of gauge degrees of freedom

on a collapsed cycle as in various examples above. The monodromy structure further suggests

a relation to the defect filling the fiber for Q5

4,(γ4,Γ
(1)
4 )

in Section 6.5, as well as a composite

object built of the S-fold geometries in codimension-six in [28]. This defect then needs to

compactified on the second RP3 with duality bundle induced by monodromy R̃ inducing a

non-geometric twist. This is another instance were we are led to include additional defects

in lower codimension due to higher-dimensional generators.30

6.7 Codimension-eight defects

The codimension-eight defects associated to the brodism31 group:

ΩSpin
7 (BGU) = Z⊕2

3 ⊕ Z⊕3
9 ⊕ Z⊕6

2 ⊕ Z⊕2
8 ⊕ Z⊕2

16 ⊕ Z32 , (6.47)

are given by both genuine objects of codimension eight as well as the compactification of the

defects introduced above.

The Z9 factors are given by L7
3 with monodromy γ3 or Γ

(i)
3 . The first defect is geometric

in type IIB and described by the geometry

(T 2 × C4)/(Z3)γ3 , (6.48)

30The same conclusion holds for filling the second RP3 factor which would correspond to an additional
defect in codimension four, which is geometric in the M-theory duality frame.

31Recall that a brodism is the equivalence relation between dudes/dudettes where one is equivalent to an-
other if they are bromantically connected. This has primarily been developed by brofessional mathematicians
and applied to brojective spaces, though it is widely expected that the same methods extend to bro-spectra.
To date, the primary method of proof used in the brodism literature is “just trust me bro.”
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which can be made into a local singular Calabi-Yau 5-fold by choosing the correct Z3 action,

e.g.,

Z3 : (z1 , z2 , z3 , z4 , y)→ (ωz1 , ωz2 , ωz3 , ωz4 , ω
−1y) , ω = e2πi/3 . (6.49)

This geometry describes three local singularities of the form C5/Z3 with the action derived

from the one above. These singularities are Gorenstein, canonical and terminal [73]. They

therefore do not possess a crepant resolution. Demanding supersymmetry to be unbroken one

therefore obtains a fundamental defect, which is localized in the eight-dimensional spacetime,

i.e., an instanton. From the type IIB configuration one can actually see that it is a composite

object formed of three connected C5/Z3 sectors.

Similarly, we can define the defect with monodromy Γ
(1)
3 with the same action as above,

but now with the torus interpreted as the F-theory fiber. The full F-theory geometry has

the form

(T 2
F × C4)/(Z3)Γ(1)

3
× T 2 , (6.50)

and we find the torus compactification of codimension-eight defect of [28]. This string-like

object potentially has an exotic (8, 2) supersymmetry in two dimensions which would be

retained after further compactification on a (Euclidean) torus.

The last defect of this family is geometric only in the M-theory duality frame and given

by the bulk geometry

(T 3 × C4)/(Z3)Γ(2)
3
≃
(
(T 2 × C4)/Z3 × S1

)
/Zs3 , (6.51)

with the first factor having the same singularity structure as above. Thus, one obtains the

twisted circle compactification of three sectors associated to M-theory on C5/Z3.

The remaining generators at prime 3 only generate Z3 summands and are given again by

the lens space L7
3 but with monodromy given by the tensor product γ3 ⊗ Γ

(i)
3 . For Γ

(1)
3 one

has the F-theory geometry

(T 2
F × T 2 × C4)/(Z3)γ3⊗Γ

(i)
3
, (6.52)

which can be made into a local, singular Calabi-Yau 6-fold. It is associated to an instanton-

like object which can also be understood as the composite of nine instanton-like objects

discussed in the context of type IIB string theory in [28], one for each of the orbifold fixed

point of (T 2
F × T 2)/Z3. As in type IIB it is tempting to speculate about preserved super-

symmetry for this zero-dimensional system. Indeed, the naive count for Calabi-Yau 6-folds

would suggest that 1
32

supercharges are conserved, however, since the geometry only is a

local patch there can be enhancements.

The last generator at prime 3 is non-geometric. The geometric action in the M-theory

frame is given by the generator of L7
3 with Γ

(2)
3 monodromy above. However, now there is

also an action on the moduli fields when traversing the torsion 1-cycle. Thus, it can be

called a non-geometric instanton. It would be interesting to investigate the zero modes of
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this background, include further fluxes, or use the techniques of exceptional field theory to

extract more details.

Two of the Z2 summands are described geometrically by

(L7

3,Γ
(i)
4

×K3)/Z2 , (6.53)

where Z2 acts by the Enriques involution on K3 and complex conjugation on L3
4. The

resulting space can also be understood as a fiber bundle over the Enriques surface E with

fiber L3
4. The duality bundle is given by monodromy Γ

(i)
4 when traversing the torsion 1-

cycle of the fiber. Since the Z2 acts on this monodromy this space has a D8 = Z4 ⋊ Z2

bundle. The associated defects are obtained by filling the fiber with the codimension-four

defect associated to L3
4 with monodromy Γ

(i)
4 and compactifying on E. However, this in itself

would likely not be consistent, since E is not a Spin manifold. However, the fibration adds

a topological twist in the compactification which ensures the consistency of fermions living

on the defect with appropriate R-symmetry charge.

Two Z2 summands are generated by S1
γ4
× RP3 × RP3 with duality bundle on the RP3

factors as above, i.e., given byM
(i)
1 andM

(i)
2 around the non-trivial 1-cycles. The associated

defects are hence the compactification of the S1
γ4

defect on the two copies of real projective

space. Since the monodromies M (i) involve all three components of SL(3,Z) this compact-

ification contains a non-geometric twist, with some of the type IIB moduli undergoing a

non-trivial transformation.

Another Z2 summand is given by S1
γ4
×W6 and the defect corresponds to the compacti-

fication of the S1
γ4

defect on the spin 6-manifold with duality bundle described by W6.

The last Z2 summand combines with the Z32 summand to generate a copy of ΩSpin
7 (BZ4)

coming from the SL(2,Z) factor of the full duality group. The generators are given by the

seven-dimensional lens spaces L7
4 and L̃7

4, which differ by the choice of Spin structure and

duality bundle determined by monodromy γ4 around the torsion 1-cycle. The defects have

a geometric interpretation on type IIB given by the geometry

(T 2 × C4)/(Z4)γ4 , (6.54)

with constant axio-dilaton. This geometry is affected by the same spin-lift issues as for L3
4

in Section 6.3. We expect this to be resolved by refining with the spin-lift of the duality

group, for which the correct generator likely becomes a L5
4 bundle over CP1, similar to the

Q5
4 in dimension five, see also [28].

The two Z8 summands are constructed using the geometry

T 4 × RP3 , (6.55)
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with non-trivial duality bundle. The monodromies around the four different 1-cycles of the

torus are given by γ4,M
(i)
1 ,M

(i)
2 , andM

(i)
2 , respectively. The monodromy around the torsion

cycle of RP3 is given by the tensor product γ24 ⊗M
(i)
1 . Due to the appearance of various

circles with monodromies encountered before there are several possibilities for the symmetry-

breaking defect. For example, we can fill the first circle of the T 4 factor by including the

defect associated to S1
γ4
, which then is compactified on the remaining 6-manifold. Since the

monodromies on this 6-manifold involve the full duality group this is a compactification with

a non-geometric twist. Equivalently, one could fill the circle with M
(i)
2 monodromy using

the codimension-two defect discussed in Section 6.2, compactified on the remaining factors

involving the non-geometric twist.

The two Z16 summands are give by L7
4 with monodromy given by Γ

(i)
4 . For the F-theory

generator with monodromy Γ
(1)
4 one encounters a geometry of the form

(T 2
F × C4)/(Z4)Γ(1)

4
× T 2 , (6.56)

for which one finds the same complications involving the spin-lift and supersymmetry as

discussed above. It is therefore described by a torus compactification of a string-like object

associated to F-theory on the singular geometry above, producing a point-like object in the

supergravity theory.

The other generator requires a lift to M-theory and corresponds to the singular geometry

(T 3 × C4)/(Z4)Γ(2)
4
≃
(
(T 2 × C4)/Z4 × S1

)
/Zs2 . (6.57)

This configuration has the same issues concerning the spin-lift. It contains several orbifold

singularities which describe particle-like configurations of M-theory which are compactified

on an additional circle with monodromy action on these particles, producing a point-like

object in supergravity.

We see that the breaking of global symmetries associated to non-trivial bordism classes

for the U-duality groups requires the introduction of many interesting and exotic string /

M- / F-theory backgrounds. However, none of the required objects is fundamentally new, as

opposed to the R7-brane described in [21,28,29].32 Thus, we see that string / M- / F-theory

already come equipped with all the ingredients necessary to break the global symmetry

induced by the topological charges associated with U-duality bundles. Moreover, we want

to stress once more that, in particular at prime 2, the fate of some of the objects needs to

be reexamined after an understanding of the fermionic version of the U-duality groups is

established.

32see also earlier hints of it in [121].
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Part II

Bordism calculations

Having laid out the physical interpretation of the various bordism generators of Ωk(BG
8d
U ),

we now turn to the computation of these structures. There are various stages of analysis we

need to go through. First of all, we need to identify the isomorphism class for the various

groups. All of our bordism groups have the general form of a direct sum of the form:33

Ωk ≃ Z⊕m ⊕
⊕
i

Z
p
ℓi
i
, (6.58)

and in the cases of interest, the reduced Spin-bordism groups (i.e., those obtained by quoti-

enting out by ΩSpin
k (pt)) are pure torsion. Simply identifying the different torsion factors does

not suffice for physics applications, we also need to seek out explicit manifolds Xk equipped

with specific duality bundles that generator them. While there are typically algorithmic

approaches to extracting the isomorphism class of the groups, finding explicit generators (as

far as we are aware) is somewhat of an art form and involves making motivated mathematical

(and physical!) guesses. Indeed, we find that a large number of the generators take the form

of generalized lens spaces equipped with a duality bundle, and can in turn be viewed as the

boundary of a general quotient of the form (Cm × T n)/Γ, where the torus fiber geometrizes

the duality bundle structure.

It is also worthwhile contrasting the specific strategy adopted here with the case of

IIBordia studied in [28]. In the study of IIBordia, the relevant duality groups admit an

amalgamated product structure GIIB = H1 ∗K H2, where the individual factors Hi and K

are cyclic and / or dihedral groups. Since there is a Mayer-Vietoris long exact sequence for

amalgamated products, the whole computation (while still very non-trivial!) boils down to

simpler constituent building blocks. Moreover, these individual building blocks have natural

physical interpretations in terms of specific F-theory backgrounds.

It turns out that this approach does not really extend to the duality groups of Utopia.

The main issue is that all of the SL(n,Z) groups are “perfect” for n ≥ 3, and in particular,

they do not decompose into amalgamated products. As such, identifying natural building

blocks is somewhat more challenging.

That being said, we are still able to greatly simplify the relevant calculations. In par-

ticular, much as in other bordism calculations, the relevant calculations localize at different

prime factors. In particular, the relevant bordism groups localize at primes p = 2, 3. In

this reduction, the most complicated group cohomology we need to contend with is that of

the symmetric group on four letters S4 which has thankfully already been computed in the

33In this work we refer to cyclic groups as Zk as opposed to Z/k or Z/kZ which are also common in the
math literature.
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extant literature. As such, many of the relevant bordism group calculations can be boiled

down to simpler statements.

The other simplification which greatly facilitates the computation of bordism groups is

that of a ring / module structure in which a cyclic group acts on the relevant groups. This has

a natural physical interpretation as organizing our bordism defects into symmetry multiplets

of an appropriate automorphism symmetry.

Our plan in this part will therefore be to first explain the general strategy, and to then

proceed to the computation at prime p = 3 and then prime p = 2.

Subpart II.A First calculations, and the plan

7 First spin bordism of U-duality groups

In this section, we determine ΩSpin
1 (BG) for the U-duality groups in dimensions 3 through

10. As in the rest of this paper, we do not consider how these groups mix with fermion

parity. We collect the results of this section in Table 4.

These calculations amount to determining the Abelianization of G, denoted Ab(G), for

each of the U-duality groupsG. Indeed, an easy application of the Atiyah-Hirzebruch spectral

sequence reveals that

ΩSpin
1 (BG) ∼= H1(BG;Z)⊕ ΩSpin

1 (pt) ∼= Ab(G)⊕ ΩSpin
1 (pt) . (7.1)

Lemma 7.2 (Abelianization of 10d to 7d U-duality groups). Consider the U-duality groups

of 10, 9, 8, and 7 dimensional supergravity:

G10d
U = SL(2,Z) , G9d

U = SL(2,Z)×Z2 , G8d
U = SL(3,Z)×SL(2,Z) , G7d

U = SL(5,Z) . (7.3)

Then,

Ab(G10d
U ) = Z12, Ab(G9d

U ) = Z12 × Z2, Ab(G8d
U ) = Z12, Ab(G7d

U ) = 0 (7.4)

Proof. The Abelianizations of SL(n,Z) are well-known:

Ab
(
SL(1,Z)

) ∼= 1, Ab
(
SL(2,Z)

) ∼= Z12 and Ab
(
SL(n,Z)

) ∼= 0 for n ≥ 3 (7.5)

The claim then follows from the fact that Abelianization respects direct products.

The remaining U-duality groups require more machinery. In part, they require an identifi-

cation of the groups SO(5, 5,Z), SO(6, 6,Z), and SO(7, 7,Z) with a certain class of Chevalley-

Demazure group schemes; see [122, §2-7] for an introduction.

Lemma 7.6. The groups SO(5, 5,Z), SO(6, 6,Z), and SO(7, 7,Z) are perfect.
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Proof. Consider SO(5, 5,Z), where O(5, 5,Z) consists of the matrices A satisfying

AT
(
0 1n
1n 0

)
A =

(
0 1n
1n 0

)
(7.7)

SO(5, 5,Z) is the group of Z-points of a Chevalley-Demazure group scheme of type D5;

see [122, §8]. Let EO(5, 5,Z) ≤ SO(5, 5,Z) be the associated elementary Chevalley-Demazure

group. Since Z is Euclidean, EO(5, 5,Z) = SO(5, 5,Z). The claim that SO(5, 5,Z) is perfect
then follows from the fact that EO(5, 5,Z) is perfect [123, Corollary 4.4]. The same reasoning

can be used to show that SO(6, 6,Z) and SO(7, 7,Z) are perfect.

We also make use of the following lemma due to Obers and Pioline.

Lemma 7.8 (Obers and Pioline, [124]). The D-dimensional U-duality group Eℓ(ℓ), with

ℓ = 11−D, can be written as

Eℓ(ℓ)(Z) = SL(ℓ,Z) ▷◁ SO(ℓ− 1, ℓ− 1,Z) (7.9)

where ▷◁ denotes the knit product.

A review of the knit product and why we should expect the U-duality group to be given

as above is given in Appendix B.

Lemma 7.8 and Lemma 7.6 allow us to determine the remaining Abelianizations.

Lemma 7.10 (Abelianization of 6d to 3d U-duality groups). Consider the U-duality groups

of maximally supersymmetric 6, 5, 4, and 3 dimensional supergravity:

G6d
U = SO(5, 5,Z), G5d

U = E6(6)(Z), G4d
U = E7(7)(Z), G3d

U = E8(8)(Z) (7.11)

Then,

Ab(G6d
U ) ∼= 0, Ab(G5d

U ) ∼= 0, Ab(G4d
U ) ∼= 0, Ab(G3d

U ) ∼= 0 (7.12)

Proof. The claim follows from Lemma 7.8, Lemma 7.6, and that the knit product of perfect

groups is perfect.

We now have everything we need to determine the first spin bordism groups of the various

U-duality groups using (7.1). We summarize the results in Table 4.

The generators of these first spin bordism groups are straightforward to determine. Recall

that for a generalized homology theory E and space X,

E∗(X) ∼= E∗(pt)⊕ Ẽ∗(X) (7.13)

Furthermore, recall that ΩSpin
1 (pt) ∼= Z2 and is generated by S1

+, where S
1
+ is the circle

with Spin structure induced from the Lie group framing, i.e., periodic boundary conditions for
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Dimension D U-duality group GD
U ΩSpin

1 (BGD
U )

10 SL(2,Z) Z2 × Z12

9 SL(2,Z)× Z2 Z2 × Z2 × Z12

8 SL(2,Z)× SL(3,Z) Z2 × Z12

7 SL(5,Z) Z2

6 SO(5, 5,Z) Z2

5 E6(6)(Z) Z2

4 E7(7)(Z) Z2

3 E8(8)(Z) Z2

Table 4: The first spin bordism group of the U-duality groups for the maximally supersym-
metric supergravity theories in various dimensions. These computations are a combination
of (7.1) and Lemmas 7.2 and 7.10.

fermions. Since ΩSpin
1 (BG) ∼= Z2 for the 7d, 6d, 5d, 4d, and 3d U-duality groups, we conclude

that the generator for these groups is S1
+. The first spin bordism groups for the remaining

U-duality groups, those for 10d, 9d, and 8d supergravity, have additional generators. Each

group contains a factor of Z12
∼= Z3 ⊕ Z4; the generators for these groups were determined

in [28]. Finally, the group corresponding 9d supergravity has an additional Z2 summand

coming from Ω̃Spin
1 (BZ2), which is generated by the circle with either spin structure and a

nontrivial Z2-bundle (see for example [28, §14.3.2]).
For some further results on the case of k = 2 see [42].

8 Reducing from SL(2,Z) and SL(3,Z) to finite groups

The most important step in our computations, and the reason we are able to go so much

farther for 8d than for lower-dimensional theories, is a tool called a stable splitting. This

is an idea coming from homotopy theory which expresses generalized (co)homology of a

space as a direct sum of that of simpler spaces. Stable splittings are known for BSL(2,Z),
BSL(3,Z), and BSL(2,Z)×BSL(3,Z); the existence of stable splittings for other U-duality
groups would allow an extension of our methods to lower-dimensional supergravity theories.

We begin in §8.1 with an introduction to stable splittings and a few variants. This is

a standard concept in homotopy theory; we aimed our exposition at a theoretical physics

audience. Then, in §8.2, we give the 2- and 3-local stable splittings of BSL(2,Z), BSL(3,Z),
and BSL(2,Z) × BSL(3,Z) that we will need in order to compute their spin bordism

groups. These results are due to Minami [125], building on Soulé’s calculation [126] of

H∗(BSL(3,Z);A) for various coefficient rings A.

In §8.3, we summarize the implications of these results for the bordism computations we

want to make. This is the bridge between the bordism computations later in this paper,

which are in terms of easier groups than SL(3,Z), and the generators in the physics section
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of this paper.

As will be clear from this section, these stable splittings are absolutely crucial for our

computations. We would be interested in learning of results analogous to Soulé’s or Mi-

nami’s [126,125] for other U-duality groups.

8.1 What is a stable splitting?

Recall that a pointed space is a spaceX equipped with a distinguished point x ∈ X. A map of

pointed spaces is a continuous map that sends the basepoint to the basepoint. The homotopy

theory of unpointed spaces embeds into the homotopy theory of pointed spaces by sending

a space X to X+ := X ⨿ {0}, with 0 as the basepoint. Thus the unreduced (generalized)

(co)homology of X is the reduced (generalized) (co)homology of X+, and indeed this is often

taken as a definition. For E a generalized homology theory, we use Ẽ∗(X) to denote the

reduced E-homology of X.

Definition 8.1 (Spanier [127]). Let f : X → Y be a map of pointed spaces. We say f is an

S-equivalence if for every generalized homology theory E∗, the map f∗ : Ẽ∗(X) → Ẽ∗(Y ) is

an isomorphism.

One may just as well use generalized cohomology theories. Spanier’s original definition

looks different, but is equivalent to this one for all spaces with the homotopy type of CW

complexes.

The wedge sum of pointed spaces X and Y , denoted X ∨ Y , is the quotient of X ⨿ Y
identifying the two basepoints into a single point b. X ∨ Y is pointed, with basepoint b. For

any generalized homology theory E∗, the inclusion maps i1 : X → X ∨Y and i2 : Y → X ∨Y
induce an isomorphism

(i1, i2) : Ẽ∗(X)⊕ Ẽ∗(Y )
∼=−→ Ẽ∗(X ∨ Y ); (8.2)

indeed, this is one of the Eilenberg-Steenrod axioms of a generalized homology theory. An

analogous fact is true for generalized cohomology theories.

Definition 8.3. A stable splitting of a pointed space X is data of maps f : Y → X and

g : Z → X such that (f ∨ g) : Y ∨ Z → X is an S-equivalence. A stable splitting of an

unpointed space X is defined to be a stable splitting of X+.

We define stable splittings of spaces into three or more wedge summands analogously.

Moreover, in view of the suspension isomorphism on generalized (co)homology, we allow f

and g to only be defined after suspending X, Y , and Z k times for some k ≥ 0.

Thus a stable splitting of X realizes the generalized homology groups of X as a direct

sum of those of Y and Z. We will be interested in this for E∗ = ΩSpin
∗ .
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Example 8.4. For any nonempty space X, a choice of basepoint in X induces a stable split-

ting of X+ into S0 ∨X. This realizes the splitting of unreduced (generalized) (co)homology

into reduced (generalized) (co)homology and the (generalized) (co)homology of a point:

E∗(X) ∼= Ẽ∗(X)⊕ E∗(pt), (8.5)

since E∗(pt) ∼= Ẽ∗(S
0).

Example 8.6. For nonempty spaces X and Y with basepoints x0 ∈ X and y0 ∈ Y ,

Example 8.4 can be iterated to produce a stable splitting of X × Y into the four pieces

S0 ∨X ∨ Y ∨ (X ∧ Y ), and analogously with products of more than two nonempty spaces.

Here X ∧ Y is the smash product, defined to be the quotient of X × Y in which we identify

all points of the form (x, y0) and (x0, y) with the basepoint (x0, y0).

Example 8.6 expresses a kind of distributivity of wedge sums/stable splittings over prod-

ucts.

For most spaces of interest in applications to physics, Hn(X) is a finitely generated

Abelian group. Thus we may study H∗(X), as well as many generalized (co)homology

theories on X, by “working one prime at a time:” tensoring with the ring Z(p) of rational

numbers whose denominators are coprime to a chosen prime number p. For finitely generated

Abelian groups, this has the effect of preserving free summands and Zpℓ summands, and

throwing out r-torsion for primes r ̸= p. This is a standard technique in homotopy theory;

see [28, §10.2] for more information.

In particular, we may apply this philosophy to stable splittings.

Definition 8.7. A p-local S-equivalence is a map f : X → Y such that for all generalized

homology theories E∗, the map f∗ : E∗(X)⊗ Z(p) → E∗(Y )⊗ Z(p) is an isomorphism.

A p-local stable splitting is defined identically to Definition 8.3, but with p-local S-

equivalence in place of S-equivalence.

Thus, if H∗(X) is finitely generated in each degree, if we have a p-local stable splitting

of X for every prime p into pieces whose E-homology we can calculate, we can recover the

E-homology of X.

Remark 8.8. The standard definition of stable splitting (as in, for example [128,129]) works

with spectra: a stable splitting of X into Y and Z is a stable homotopy equivalence

Σ∞(Y ∨ Z) ≃→ Σ∞X, and likewise with the p-localizations of these spectra and p-local

stable splittings. One may also allow Y and Z to be spectra. We mostly do not need this

generalization and so chose to give the simpler definition.

8.2 Stably splitting BSL(2,Z)×BSL(3,Z)

The following result is well-known; see [28, Lemmas 12.2 and 12.7], for example, for a proof.
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Proposition 8.9.

1. There is a 2-local S-equivalence BZ4 → BSL(2,Z) induced from the group homomor-

phism ρ2,2 : Z4 ↪→ SL(2,Z) defined by sending 1 ∈ Z4 to the matrix S =

(
0 −1
1 0

)
.

2. There is a 3-local S-equivalence BZ3 → BSL(2,Z) induced from the group homo-

morphism ρ2,3 : Z3 ↪→ SL(2,Z) defined by sending 1 ∈ Z3 to the matrix (ST )2 =(
−1 −1
1 0

)
.

3. If p ≥ 5 is a prime number, BSL(2,Z)→ pt is a p-local S-equivalence.

We use D2n to refer to the dihedral group with 2n elements, with presentation

D2n =
〈
r, s | rn = s2 = 1, srs = r−1

〉
. (8.10)

Definition 8.11. Let ρ1, ρ2 : D6 → SL(3,Z) be the homomorphisms defined on generators

by:

ρ1(r) =

1 0 0

0 −1 −1
0 1 0

 ρ1(s) =

−1 0 0

0 1 1

0 0 −1

 (8.12a)

ρ2(r) =

0 1 0

0 0 1

1 0 0

 ρ2(s) =

 0 0 −1
0 −1 0

−1 0 0

 . (8.12b)

The reader can check that the matrices in (8.12) have determinant 1 and satisfy the

relations in (8.10), so that they define homomorphisms D6 → SL(3,Z) as claimed.

Proposition 8.13 (Brown [130, §6], Soulé [126, Theorem 4(iii)]). For any prime p ≥ 5, the

map BSL(3,Z)→ pt is a p-local S-equivalence.

Proposition 8.14 (Brown [130, §6], Soulé [126, Corollary (i) to Lemma 8], Minami [125, §0]).
The maps Bρ1, Bρ2 : BD6 → BSL(3,Z) define a 3-local stable splitting of BSL(3,Z) into

BD6 ∨BD6.

Remark 8.15. Brown and Soulé expressed their results at the level of cohomology, and did not

discuss stable splittings. The stable splitting follows from their theorems and the Whitehead

theorem in a standard way; Minami [125, §0] explicitly describes Soulé’s theorem as a stable

splitting. Both Soulé and Minami describe Proposition 8.14 using BS3 and BD12 instead of

BD6 twice, but S3
∼= D6 and the standard inclusion D6 ↪→ D12 induces a 3-local homotopy

equivalence on classifying spaces [28, §14.1], so the result is the same.
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The specific matrices come from those used by Soulé as follows: in [126, Prop. 1, p. 9],

he gives explicit matrices generating a D12 subgroup of SL(3,Z) which he calls Q, and the

image of ρ1 is the usual D6 ⊂ D12. For ρ2, Soulé labels a certain S4 subgroup O, and the

image of ρ2 is the usual D6
∼= S3 ⊂ S4. Brown chooses different matrices.

The 2-local stable splitting is slightly more complicated; unlike in the previous cases, the

pieces of the stable splitting are not all induced by inclusions of subgroups.

Mitchell-Priddy [129] define a spectrum L(2) (called Sp4(S0) in their earlier work [128],

with no relation to the symplectic group). We will not need to know much about L(2), but

see [128, §3] for a definition and basic properties.

Proposition 8.16 (Minami [125, Theorem 3.4(iii)]). After 2-localization, there are maps

ψ1, ψ2 : BSL(3,F2)→ BSL(3,Z) and ψ3 : L(2)→ BSL(3,Z) such that34

(ψ1, ψ2, ψ3) : BSL(3,F2) ∨BSL(3,F2) ∨ L(2) −→ BSL(3,Z) (8.17)

is a 2-local stable splitting of BSL(3,Z).

Proposition 8.16 is complicated by the fact that the maps ψ1 and ψ2 are not to our

knowledge induced by group homomorphisms from SL(3,F2) to SL(3,Z). We finish out this

subsection by providing a description of these maps that works well for describing U-duality

defects.

Definition 8.18. Recall that the symmetric group S4 admits a presentation

S4 =
〈
c, τ | c4 = τ 2 = (τc)3 = 1

〉
. (8.19)

where c = (1 2 3 4) and τ = (1 2). Let ρ3 : S4 → SL(3,Z) be the homomorphism defined on

generators by

ρ3(c) =

 0 0 1

0 1 0

−1 0 0

 ρ3(τ) =

−1 0 0

0 0 −1
0 −1 0

 . (8.20)

(8.20) is the pair of matrices Soulé [126, Theorem 2] labeled O; the reader can check

these matrices have determinant 1 and satisfy the relations in (8.19).

Proposition 8.21 (Mitchell-Priddy [128, Theorem B]). Let q : SL(3,Z)→ SL(3,F2) be the

homomorphism reducing the entries of a matrix mod 2, and let σ : S4 → Z2 be the sign

homomorphism. Then there is a stable map ψ4 : BS4 → L(2) such that

(Bσ,B(q ◦ ρ3), ψ4) : BS4 −→ BZ2 ∨BSL(3,F2) ∨ L(2) (8.22)

34If q is a prime power, Fq denotes the finite field with q elements, which is unique up to isomorphism.
When q is prime, Fq

∼= Zq as rings.

70



is a 2-local stable splitting.

Thus for any kind of bordism of BSL(3,F2), every bordism class can be represented by

a manifold with SL(3,F2)-bundle induced from an S4-bundle via q ◦ ρ3.35

Proposition 8.23. There is a homotopy equivalence of stable maps

Bq ≃ ((ψ2, ψ3) ◦ (Bq ◦ ρ3, ψ4)) : BS4 −→ BSL(3,F2) ∨ L(2) −→ BSL(3,Z). (8.24)

That is, in the isomorphism Ω̃Spin
∗ (BSL(3,Z)) ∼= Ω̃Spin

∗ (BSL(3,F2)) ⊕ Ω̃Spin
∗ (BSL(3,F2)) ⊕

ΩSpin
∗ (L(2)) induced by Proposition 8.16, the second and third summands can be realized by

computing Ω̃Spin
∗ (BS4), throwing out all classes which are nontrivial when pulled back to a

Z2 reflection subgroup of S4, and then changing from S4-bundles to SL(3,Z)-bundles via ρ3.

Proof. This almost completely follows by combining Remark 8.15 and Proposition 8.21,

except that we are also claiming that the factors of L(2) match. Fortunately, Minami [125,

Corollary 3.3] shows that the L(2) stable summand of BSL(3,Z) is in fact pulled back to a

stable summand of BS4 via ρ3, so we are all set.

See Dwyer-Wilkerson [131, Theorem 4.1] for a 2-adic analogue of this story, which may

be expressed directly in terms of a representation SL3(F2)→ GL3(Ẑ2).

Finally, we have to dispatch ψ1.

Proposition 8.25 (Minami [125]). Let ρ4 : S4 → SL3(Z) be the homomorphism defined on

generators by

ρ4(c) =

 0 0 −1
−1 0 −1
0 1 1

 ρ4(τ) =

−1 0 0

0 0 1

0 1 0

 , (8.26)

and let i : S4 → SL3(F2) be the usual three-dimensional representation. Then Bρ4 = ψ1 ◦
Bi : BS4 → BSL3(Z).

Thus ψ1 itself is transfer Σ∞
+BSL3(F2) → Σ∞

+BS4 followed by i : BS4 → BSL3(Z). The

matrices in (8.26) are labeled P in [126, Theorem 2].

Remark 8.27. The matrices that appear here, in the definitions of ρ3 and ρ4 above in (8.20)

and (8.26), are not the most convenient choices for the physics applications in the first part

of this paper. Indeed, comparing with (4.9) and (6.7), the reader will notice that we have

replaced ρ3(c), ρ3(τ), ρ4(c), and ρ4(τ) with different matrices: Γ
(1)
4 , R(1), Γ

(2)
4 , and R(2),

respectively. These sets of matrices are conjugate inside SL(3,Z): specifically, if

C(1) =

0 1 0

0 0 1

1 0 0

 and C(2) =

−1 0 0

1 −1 0

0 1 1

 , (8.28)

35In fact, one can pull back further to D8 [128, Theorems A and B], which we used to help constrain the
search space for generators of bordism groups.
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then the reader can verify that det(C(1)) = det(C(2)) = 1 (so that C(1), C(2) ∈ SL(3,Z)) and
that

C(1)ρ3(c)(C
(1))−1 = Γ

(1)
4 C(1)ρ3(τ)(C

(1))−1 = R(1)

C(2)ρ4(c)(C
(2))−1 = Γ

(2)
4 C(2)ρ4(τ)(C

(2))−1 = R(2).
(8.29)

If ϕ, ψ : G1 ⇒ G2 are injective group homomorphisms whose images are conjugate in G2,

their induced maps on classifying spaces are homotopic; therefore, for the purpose of realizing

stable splittings and describing generators of bordism groups, we may use the matrices Γ
(i)
4

and R(i) in (4.9) and (6.7).

Analogously to the stable and/or cohomological splittings by Brown [130], Soulé [126],

and Minami [125] that we used above, there is also related work studying the K-theory of

BSL(3,Z) and similar objects, including that of Adem [132–134], Tezuka-Yagita [135], Juan-

Pineda [136], Lück [137], Sánchez-Garćıa [138], Joachim-Lück [139], Bárcenas-Velásquez [140,

141], Hughes [142], Bárcenas [143], and Lück-Patchkoria-Schwede [144].

8.3 Implications for spin bordism

The previous subsection tells us in principle how to reduce the computation of ΩSpin
∗ (BG)

for G = SL(2,Z), SL(3,Z), or SL(2,Z) × SL(3,Z) to the analogous computations for a few

finite groups Hi. Here, we make these reductions explicit: given generating manifolds for

ΩSpin
∗ (BHi), how do we obtain the generators of ΩSpin

∗ (BG)?

Definition 8.30. Given a group homomorphism ρ : G→ H and a principal G-bundle P →
M , let ρ(P ) → M denote the principal H-bundle given by the reduction of the structure

group of P along ρ; explicitly, ρ(P ) is P ×G H →M .

For SL(2,Z), this is implicit in [28, §12.2]; we review it to set the stage.

Proposition 8.31. Let ρ2,2 : Z4 → SL(2,Z) and ρ2,3 : Z3 → SL(2,Z) be the homomor-

phisms defined in Proposition 8.9. If S2 = {(M1, P1), . . . , (Mk, Pk)} is a linearly independent

generating set for Ω̃Spin
n (BZ4) and S3 = {(N1, Q1), . . . , (Nℓ, Qℓ)} is a linearly independent

generating set for Ω̃Spin
n (BZ4), then

{(M1, ρ2,2(P1)), . . . , (Mk, ρ2,2(Pk)), (N1, ρ2,3(Q1)), . . . , (Nℓ, ρ2,3(Qℓ))} (8.32)

is a linearly independent generating set for Ω̃Spin
n (BSL(2,Z)).

In other words, take the generators for the spin bordism of BZ4 and use ρ2,2 to get to

BSL(2,Z), and do the same for BZ3 and ρ2,3.

Proof. This is a corollary of Proposition 8.9, together with the definition of p-local stable

splitting.
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For SL(2,Z)× SL(3,Z), the story is a little more complicated, but just as explicit.

The following definition asks for a set of generators of Ω̃Spin
k (BS4) to be compatible with

Proposition 8.21.

Definition 8.33. Let S be a linearly independent generating set of Ω̃Spin
k (BS4). We say

S is a splitting-compatible generating set if S = S1 ⨿ S2 ⨿ S3, where S1 is in the image of

the inclusion Ω̃Spin
k (BZ2) → Ω̃Spin

k (BS4), S2 is in the image of the analogous inclusion for

BSL(3,F2), and S3 is in the image of the analogous inclusion for L(2). We will refer to S1,

S2, and S3 as the first, second, and third components, respectively, of S.

We make the analogous definition for BZ4 ∧BS4.

Though the components are defined in terms of other things than BS4, we have defined

Definition 8.33 so that all elements of a splitting-compatible generating set are manifolds

with principal S4-bundles, not for some other group.

Remark 8.34. In Proposition 8.21, we did not specify the inclusions we used in Definition 8.33,

only the projection maps in the other direction. This is fine: Proposition 8.21 implies these

inclusions exist, and that, for any choice of these inclusions compatible with the projections

in Proposition 8.21, there is a splitting-compatible set of generators for Ω̃Spin
k (BS4) for all

k. Below, we only need that a generating set is splitting-compatible for some choice of

inclusions, so this is OK.

We have been representing elements of Ω̃Spin
k (BG) by the data (M,P ), where M is a

closed spin k-manifold and P → M is a principal G-bundle. Below, we will also represent

elements of Ω̃Spin
k (BG∧BH) and Ω̃Spin

k (BG×BH) as the data (M,P, P ′), where P →M is

a principal G-bundle and P ′ →M is a principal H-bundle.

Proposition 8.35. Suppose we are given the following linearly independent generating sets:

1. {(M1,0, P1,0), . . . , (Mk0,0, Pk0,0)} for Ω̃Spin
k (BZ4).

2. A splitting-compatible generating set for Ω̃Spin
k (BS4), with the following components:

First component {(M1,1, P1,1), . . . , (Mk1,1, Pk1,1)}

Second component {(M1,2, P1,2), . . . , (Mk2,2, Pk2,2)}, and

Third component {(M1,3, P1,3), . . . , (Mk3,3, Pk3,3)}.

3. A splitting-compatible generating set for Ω̃Spin
k (BZ4 ∧ BS4), with the following compo-

nents:

First component
{
(M1,4, P1,4, P

′
1,4), . . . , (Mk4,4, Pk4,4, P

′
k4,4

)
}

Second component
{
(M1,5, P1,5, P

′
1,5), . . . , (Mk5,5, Pk5,5, P

′
k5,5

)
}
, and

Third component
{
(M1,6, P1,6, P

′
1,6), . . . , (Mk6,6, Pk6,6, P

′
k6,6

)
}
.

73



4. {(N1,0, Q1,0), . . . , (Nℓ0,0, Qℓ0,0)} for Ω̃Spin
k (BZ3),

5. {(N1,1, Q1,1), . . . , (Nℓ1,1, Qℓ1,1)} for Ω̃Spin
k (BD6),

6.
{
(N1,2, Q1,2, Q

′
1,2), . . . , (Nℓ2,2, Qℓ2,2, Q

′
ℓ2,2

)
}
for Ω̃Spin

k (BZ3 ∧BD6).

Let τ0 denote a trivial bundle and ρ1, ρ2, ρ3, and ρ4 be as in Definitions 8.11 and 8.18

and Proposition 8.25. Then, the union of the following sets is a linearly independent gener-

ating set of Ω̃Spin
k (BSL(2,Z)×BSL(3,Z)):

{(Mi,0, ρ2,2(Pi,0), τ0) | 1 ≤ i ≤ k0}
{(Mi,2, τ0, ρ3(Pi,2)) and (Mi,2, τ0, ρ4(Pi,2)) | 1 ≤ i ≤ k2}

{(Mi,3, τ0, ρ3(Pi,3)) | 1 ≤ i ≤ k3}{
(Mi,5, ρ2,2(Pi,5), ρ3(P

′
i,5)) and (Mi,5, ρ2,2(Pi,5), ρ4(P

′
i,5)) | 1 ≤ i ≤ k5

}{
(Mi,6, ρ2,2(Pi,6), ρ3(P

′
i,6)) | 1 ≤ i ≤ k6

}
{(Nj,0, ρ2,3(Qj,0), τ0) | 1 ≤ j ≤ ℓ0}

{(Nj,1, τ0, ρ1(Qj,1)) and (Nj,1, τ0, ρ2(Qj,1)) | 1 ≤ j ≤ ℓ1}{
(Nj,2, ρ2,3(Qj,2), ρ1(Q

′
j,2)) and (Nj,2, ρ2,3(Qj,2), ρ2(Q

′
j,2)) | 1 ≤ j ≤ ℓ2

}
.

(8.36)

Proof. This proposition is essentially an explicit restatement of the stable splittings in Ex-

ample 8.6 and Propositions 8.9, 8.13, 8.14, 8.23, and 8.25.

We use this to get the results in Tables 2 and 3, the tables of generators of ΩSpin
∗ (BSL(2,Z)×

BSL(3,Z)) in dimensions 7 and below, from the lists of generators we found for the spin

bordism of BZ3, BD6, BZ3∧BD6, BZ4, BS4, and BZ4∧BS4. The generators and relations

for these spin bordism groups are given in Theorems 10.5, 10.14, 11.4, 13.40, and 15.22

and Propositions 10.11, 11.6, 11.7, 13.43, 14.15, 14.23, 15.33, 15.37, 15.42, and 15.48, as

well as §10.2.1, §15.2, Table 5, and (15.29). Here we also use Remark 8.27 to improve the

embeddings ρ3 and ρ4 to ones which have easier string-theoretic interpretations.

9 Our strategy: the Kunneth map

At the only primes that matter for our computation, 2 and 3, we have similar-looking

structure: a finite cyclic group C and a finite non-Abelian group G containing C, and we

need to determine ΩSpin
∗ (BC), ΩSpin

∗ (BG), and Ω̃Spin
∗ (BC ∧ BG). For p = 3, C = Z3 and

G = D6 (II.B), and for p = 2, C = Z4 and G = S4 (II.C).

In the degrees we are interested in, ΩSpin
∗ (BC) and ΩSpin

∗ (BG) are in the literature, and

Ω̃Spin
∗ (BC ∧ BG) is not: see [145, Example 7.3.2] for ΩSpin

∗ (BZ3), [145, Example 7.3.3] for

ΩSpin
∗ (BZ4), [28, §14.1] for ΩSpin

∗ (BD6) at p = 3, and Bayen [146, Chapter 3] for ΩSpin
∗ (BS4)
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at p = 2.36 We thus could have directly attacked Ω̃Spin
∗ (BC ∧ BG), but the computation

becomes a bit messy, especially when it comes time to find manifold representatives for a

generating set of these bordism groups. We will instead do something different: there is

extra structure present in this problem, and we will use it.

Theorem 9.1. Let C and G be as above and E∗ be a multiplicative generalized homology

theory.37

1. The multiplication map m : C ×C → C induces the structure of a graded-commutative

E∗(pt)-algebra on E∗(BC), whose multiplication is called the Pontrjagin product.

2. The map m promotes the Kunneth map E∗(BC)⊗E∗(BG) into the action map of an

E∗(BC)-module structure on E∗(BC ×BG).

3. The map m induces the structure of a spectral sequence of algebras on both the Adams

and Atiyah-Hirzebruch spectral sequences computing E∗(BC): each Er-page has the

structure of a Z2-graded-commutative algebra over the respective spectral sequence com-

puting E∗(pt), and differentials satisfy the Leibniz rule

dr(xy) = dr(x)y + (−1)|x|xdr(y) (9.2)

for x and y in the spectral sequence for E∗(C) or E∗(pt).

4. Likewise, m refines the Kunneth map on the Er-page of the Atiyah-Hirzebruch and

Adams spectral sequences for E∗(BC × BG) to the structure of a Z2-graded module

over the respective spectral sequence for E∗(BC), with differentials again satisfying the

Leibniz rule (9.2).

5. All of this is natural in E∗ with respect to morphisms of homotopy-commutative ring

spectra.

Theorem 9.1 is a combination of some well-known theorems on the multiplicative struc-

ture of the Atiyah-Hirzebruch and Adams spectral sequences for a ring spectrum; here we use

the fact that if A is an abelian group, there is a model of BA which is a topological abelian

group, so that if R is a commutative ring spectrum, R∧ (BA)+ is again a commutative ring

spectrum, which is direct generalization of the fact that if S is a commutative ring, S[A]

is again a commutative ring, with the multiplication extending the addition on A. For the

multiplicative structure on these two spectral sequences, see Kochman [147, Theorem 3.6.8

and §4.2].
36Bayen states the result for BD8, but also explains how it applies for BS4.
37Precisely, we want E∗ to be the generalized homology theory associated to a homotopy-commutative

ring spectrum E. That is, the product on E-cohomology can be lifted to the point-set level, where it may
or may not be commutative, but on cohomology it is commutative.
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ΩSpin
∗ is a multiplicative generalized cohomology theory, with multiplication induced from

the direct product of manifolds. This implies the ΩSpin
∗ -algebra structure on ΩSpin

∗ (BC) helps

us find generators: if M is a k-manifold representing a class x ∈ ΩSpin
k (BC) and N is an

ℓ-manifold representing y ∈ ΩSpin
ℓ (BC), then M × N represents xy ∈ ΩSpin

k+ℓ (BC). The

analogous fact is true if y ∈ ΩSpin
ℓ (BC ×BG). This informs our plan of attack:

1. Compute the ring structure on the Adams (if p = 2) or Atiyah-Hirzebruch (if p = 3)

spectral sequence for ΩSpin
∗ (BC), and all differentials, in low degrees. Then use this to

determine the ring structure on ΩSpin
∗ (BC) itself in low degrees.

2. Run the same spectral sequence computing ΩSpin
∗ (BG).

3. Combine these to determine the module structure on the spectral sequence for ΩSpin
∗ (BC×

BG) in low degrees, and use this spectral sequence to compute all differentials in low

degrees.38

4. Use this to compute the ΩSpin
∗ (BC)-module structure on ΩSpin

∗ (BC×BG) in low degrees.

5. Determine manifold representatives for the low-degree generators of ΩSpin
∗ (BC) as a

ring and ΩSpin
∗ (BC ×BG) as an ΩSpin

∗ (BC)-module; then take direct products of these

generators to obtain additive generators for these bordism groups (i.e. what we need

for applications to string theory).

Subpart II.B The calculation at p = 3
Now we compute ΩSpin

∗ (X)⊗Z(3) for X = BZ3, BD6, and BZ3∧BD6 in low degrees and

determine a list of generating manifolds. This plugs into Proposition 8.35 to determine the

3-torsion in the spin bordism of BSL(2,Z)×BSL(3,Z), which is part of Tables 2 and 3.

In §10, we use the Atiyah-Hirzebruch spectral sequence to compute (the 3-localizations

of) ΩSpin
∗ (BZ3) and ΩSpin

∗ (BD6) in the degrees relevant for string theory, then determine

manifold representatives for generating sets of these bordism groups. A priori, this is not

a new computation: the bordism groups were worked out in [28, §12.2, §14.1], and the

generators are known due to Rosenberg [148, Proof of Theorem 2.12]. However, we repeat

this computation here because we need the ΩSpin
∗ (BZ3)-module structure on ΩSpin

∗ (BD6),

which is new. We then use this module structure in §11 to compute the Atiyah-Hirzebruch

spectral sequence for Ω̃Spin
∗ (BZ3 ∧BD6) and determine generating manifolds.

Throughout this sub-part, we implicitly localize ΩSpin
∗ at 3. This does not affect

the results that we care about, which are 3-torsion, but simplifies arguments: for example,

it allows us to ignore the 2-torsion in ΩSpin
i for i = 1, 2.

38We actually modify this strategy slightly: ΩSpin
∗ (BC×BG) and the spectral sequence computing it split

into the respective data for BC and for (BC+) ∧ BG. At this point in the calculation we already know

ΩSpin
∗ (BC) in the degrees we need, so we focus on (BC)+ ∧BG. We will elaborate on this in Remark 11.1.
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10 Calculations and generators for BZ3 and BD6

10.1 Atiyah-Hirzebruch spectral sequence for ΩSpin
∗ (BZ3)

Recall that H∗(BZ3;Z) consists of a Z in degree 0, Z3 in each odd positive degree, and 0 in

all other degrees. By the universal coefficient theorem, the same is true for Z(3)-homology,

except with Z replaced with Z(3).

Lemma 10.1 (Cartan [149]). The Pontrjagin product on H∗(BZ3;Z(3)) is trivial: there is a

Z(3)-algebra isomorphism

H∗(BZ3;Z(3)) ∼= Z(3)[y1, y3, y5, . . . ]/(3yi, yiyj for all i, j ≥ 1). (10.2)

Indeed, since all positive-degree classes have odd degree, the product of any two positive-

degree classes has even degree and therefore vanishes.

Corollary 10.3.

1. The E2-page of the Atiyah-Hirzebruch spectral sequence for ΩSpin
∗ (BZ3) is isomorphic

as algebras to

Z(3)[p1, p2, . . . , y1, y3, y5, . . . ]/(3yi, yiyj for all i, j ≥ 1), (10.4)

with pi ∈ E2
0,4i and yi ∈ E2

i,0.

2. This spectral sequence collapses on the E2-page.

Proof. Part (1) is straightforward from the definition of the Atiyah-Hirzebruch spectral se-

quence, except for the ring structure. This follows from the description of the ring structure

in Lemma 10.1 via the map µ : BZ3 × BZ3 → BZ3 induced by the group operation, then

using the map of Atiyah-Hirzebruch spectral sequences induced by µ.

Part (2) amounts to showing all differentials vanish. From the relation yiyj = 0, one

learns that every homogeneous element on the E2-page (with respect to the bigrading) is

either a polynomial in the classes pi or yj times such a polynomial, and the former case

occurs only in E2
0,∗. All differentials to or from E2

0,∗ vanish, because they can be transferred

along the maps pt → BZ3 → pt to the Atiyah-Hirzebruch spectral sequence of a point,

where they must vanish. The remaining classes, those of the form yj times a polynomial

in the classes pi, all have odd total degree; since differentials decrease total degree by 1,

all differentials must have domain or codomain a group in even total degree, and the only

nonzero even-degree elements are those on the line p = 0, for which differentials vanish.

Nevertheless, there are nontrivial extensions in this spectral sequence.
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Theorem 10.5.

1. There is an isomorphism of ΩSpin
∗ -algebras

ΩSpin
∗ (BZ3) ∼= ΩSpin

∗ [ℓ1, ℓ3, ℓ5, ℓ7, . . . ]/(ℓiℓj, 3ℓ1, 3ℓ3, 3ℓ5 − v1ℓ1, 3ℓ7 − v1ℓ3, . . . ) (10.6)

where |ℓi| = i and all generators and relations not listed are in degrees greater than 7.

2. The isomorphism in (10.6) may be chosen so that the image of ℓi in the E∞-page of

the Atiyah-Hirzebruch spectral sequence is yi.

Beware that the pattern suggested by (10.6) does not continue in the way one might

guess: ℓ9 has order 27, for example.

Proof. First we need to resolve extensions by 3. To do so, we reduce from 3-localized spin

bordism to Brown-Peterson homology BP∗ in the manner described in [28, §10.5]; this de-
termines 3-local spin bordism as a graded Abelian group but does not determine the ring

structure.

The graded Abelian group BP∗(BZ3) was computed by Bahri-Bendersky-Davis-Gilkey [150,

Theorem 1.2(a)]; see [28, §12.2] for an explicit description of these groups in low degrees. In

particular, B̃P1(BZ3) ∼= Z3, B̃P3(BZ3) ∼= Z3, B̃P5(BZ3) ∼= Z9, and B̃P7(BZ3) ∼= Z9, and

all other reduced BP -homology groups of BP in degrees 7 and below vanish.

The proof of the theorem then amounts to the observation that (10.6) is the only ring

structure compatible with both the ring structure on the E∞-page of the Atiyah-Hirzebruch

spectral sequence coming from Corollary 10.3 and with the additive structure in the previous

paragraph.

10.1.1 Generators

We now move to the generators of ΩSpin
∗ (BZ3). We begin by recalling lens spaces and some

of their important properties.

Given an integer k > 1 and integers j1, . . . , jn relatively prime to k, we define the lens

space

L2n−1
k (j1, . . . , jn) = S2n−1/Zk (10.7)

to be the orbit space of the unit sphere S2n−1 ⊂ Cn with the action of Zk generated by the

rotation

(z1, . . . , zn) = (e2πiji/kz1, . . . , e
2πijn/kzn). (10.8)

The lens spaces which will be of primary interest to us are

L2n−1
k := L2n−1

k (1, . . . , 1). (10.9)
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Indeed, many of the generators for the spin bordism groups that we will encounter in this

section, as well as those in proceeding sections, will be lens spaces. It is a standard exercise

to determine which lens spaces admit spin structures (and that all of them are orientable).

Lemma 10.10. The lens space L2n−1
k is orientable for all k, n. Furthermore, if k is odd,

then L2n−1
k admits a unique spin structure. If k is even, then L2n−1

k admits a spin structure

if and only if n is even.

With the above exposition in place, we are ready to state the generators of ΩSpin
∗ (BZ3)⊗

Z(3), which have already been considered in the literature.

Proposition 10.11 ([28, §12.3]). The isomorphism in Theorem 10.5 may be chosen so

that the lens space L2n−1
3 with its canonical orientation and unique spin structure refining

that orientation, together with the principal Z3-bundle S
2n−1 → L2n−1

3 , represents the class

ℓ2n−1 ∈ ΩSpin
2n−1(BZ3) for n = 1, 2, 3, 4. The K3 surface with trivial Z3-bundle represents

v1 ∈ ΩSpin
4 (BZ3).

Rosenberg [148, Proof of Theorem 2.12] showed that lens spaces generate ΩSpin
∗ (BZ3)

as an ΩSpin
∗ -module; these specific lens spaces were worked out in [28, §12.3] building on

Rosenberg’s result.

10.2 Atiyah-Hirzebruch spectral sequence for ΩSpin
∗ (BD6)

The cohomology of H∗(BD2n;Z) was computed by Handel in [151], and his result together

with the universal coefficient theorem tells us H∗(BD6;Z(3)). To summarize:

Hk(BD6;Z(3)) ∼=


Z(3), k = 0

Z3, k ≡ 3 mod 4

0, otherwise.

(10.12)

We are then enabled to compute ΩSpin
∗ (BD6) using the Atiyah-Hirzebruch spectral sequence.

This has been previously considered in [28].

Lemma 10.13 ([28, Theorem 14.3]).

1. The Atiyah-Hirzebruch spectral sequence computing ΩSpin
∗ (BD6) collapses on the E2-

page.

2. In total degree less than 8, the E2-page is generated by the classes v1 ∈ E2
0,4, z3 ∈ E2

3,0,

z7 ∈ E2
7,0, and p ∈ E2

3,4.

Theorem 10.14.

79



1. There is an isomorphism of ΩSpin
∗ -modules

ΩSpin
∗ (BD6) ∼= ΩSpin

∗ {k3, k7, . . . }/(3k3, 3k7 − v1k3, . . . ), (10.15)

where |ki| = i and all generators and relations not listed are in degrees greater than 7.

2. The isomorphism may be chosen so that the image of ki in the E∞-page of the Atiyah-

Hirzebruch spectral sequence is zi.

Proof. The theorem follows from Lemma 10.13 and the fact that Ω̃Spin
3 (BD6) ∼= Z3 and

Ω̃Spin
7 (BD6) ∼= Z9, see [28, Theorem 14.3] for reference.

10.2.1 Generators

The generators of ΩSpin
∗ (BD6) are the same as those for Proposition 10.11. Indeed, surjec-

tivity of the map ΩSpin
∗ (BZ3) → ΩSpin

∗ (BD6) in the range we are interested in implies that

the generators for ΩSpin
k (BD6), k = 3, 7, can be chosen to be the generators we found for

ΩSpin
k (BZ3) in Proposition 10.11.

11 Calculations and generators for BZ3 ×BD6

11.1 ΩSpin
∗ (BZ3 ×BD6) as a ΩSpin

∗ (BZ3)-module

In this subsection, we determine the ΩSpin
∗ (BZ3)-module structure on Ω̃Spin

∗ (BZ3 ×BD6) up

to degree seven.

Remark 11.1. As an ΩSpin
∗ (BZ3)-module, ΩSpin

∗ (BZ3 × BD6) splits as a sum of ΩSpin
∗ (BZ3)

and ΩSpin
∗ ((BZ3)+ ∧ BD6); the module structure on Atiyah-Hirzebruch spectral sequences

also splits in this way. Therefore in this section we will compute the latter summand and

then add back in ΩSpin
∗ (BZ3) at the end.

In the stable splitting of the product that we discussed in Example 8.6, BZ3×BD6 splits

into pt, BZ3, BD6, and BZ3 ∧BD6; we keep the latter two pieces.

We begin with the Atiyah-Hirzebruch spectral sequence computing Ω̃Spin
∗ ((BZ3)+∧BD6).

Recall the homology of H∗(BZ3;Z(3)) and H∗(BD6;Z(3)) given in Lemma 10.1 and (10.12).

The E2-page of the Atiyah-Hirzebruch spectral sequence computing Ω̃Spin
∗ ((BZ3)+ ∧ BD6)

can then be computed using the Kunneth theorem; see Figure 18 for reference. For the total

degree we are interested in, less than 8, all differentials vanish by degree reasons. Indeed, in

the homological Atiyah-Hirzebruch spectral sequence, differentials go up and to the left, and

decrease total degree by 1. Furthermore, the Atiyah-Hirzebruch spectral sequence computing

Ω̃Spin
∗ (BD6) collapses on the E2-page.
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y1z3 q y3z3

v1y1z3 v1q v1y3z3
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z7
w

v1z7
v1w

Figure 18: The E2-page of the Atiyah-Hirzebruch spectral sequence computing
Ω̃Spin

∗ ((BZ3)+ ∧BD6). Each named class generates a Z3.

Theorem 11.2. In the range p+ q ≤ 7, the Atiyah-Hirzebruch spectral sequence computing

Ω̃Spin
∗ ((BZ3)+ ∧BD6) collapses on the E2-page. As a module over AHSS(BZ3),

AHSS((BZ3)+ ∧BD6) ∼= Z3{z3, q, z7, w, . . . }/(y1q = λy3z3, . . . ) (11.3)

for some λ ∈ Z3, with all unwritten generators and relations in total degree 8 and above.

We will never need to know the precise value of λ, so do not compute it.

Proof. A straightforward application of the Kunneth map (Theorem 9.1) reveals that the

classes y1z3 and y3z3 generate E
2
4,0 and E

2
6,0, respectively. However, the Kunneth map misses

the generator in degrees five and seven, leaving us with ‘new’ classes q and w.

We draw this Atiyah-Hirzebruch spectral sequence in Figure 18.

Theorems 10.5, 10.14, and 11.2 allow us to conclude the ΩSpin
∗ (BZ3)-module structure of

ΩSpin
∗ ((BZ3)+ ∧BD6).

Theorem 11.4.

1. There is an isomorphism of ΩSpin
∗ (BZ3)-modules:

ΩSpin
∗ ((BZ3)+∧BD6) ∼= ΩSpin

∗ {k3, k7, n,m . . . }/(3k3, 3k7−v1k3, 3n, 3m, ℓ1n−λ′ℓ3k3, . . . ),
(11.5)

for some λ′ ∈ Z3, and all generators and relations not listed have topological degree

greater than 7.
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2. The isomorphism can be chosen so that the images of the generators on the E∞ page

of the E∞-page of the Atiyah-Hirzebruch spectral sequence are: ki 7→ zi, n 7→ q and

m 7→ w.

11.2 Generators

The stable splitting in Example 8.6, as well as Proposition 10.11 and the discussion in

Section 10.2.1, reveal that the only generators for ΩSpin
∗ (BZ3×BD6) we have yet to consider

are those for ΩSpin
∗ (BZ3 ∧ BD6). Fortunately, there are only four such generators and two

are in the image of the Kunneth map.

Proposition 11.6.

1. L1
3 × L3

3 with its canonical orientation and unique spin structure, where L1
3 carries

the principal Z3-bundle S
1 → L1

3 and L3
3 carries the principal D6-bundle induced from

Z3 ↪→ D6, represents the class ℓ1k3 ∈ ΩSpin
4 (BZ3 ∧BD6).

2. L3
3 × L3

3 with its canonical orientation and unique spin structure, where the first L3
3

carries the principal Z3-bundle S
3 → L3

3 and the right L3
3 carries the principal D6-

bundle induced from Z3 ↪→ D6, represents the class ℓ3k3 ∈ ΩSpin
6 (BZ3 ∧BD6).

The classes n ∈ ΩSpin
5 (BZ3 ∧ BD6) and m ∈ ΩSpin

7 (BZ3 ∧ BD6) are missed by the

Kunneth map and likewise are not represented as products of generators for ΩSpin
∗ (BZ3)

and ΩSpin
∗ (BD6).

Proposition 11.7. Let Φ: Z3 → Z3×Z3 be the diagonal map. L5
3 and L

7
3 with their canonical

orientation and unique spin structure, together with the Z3 ×D6 bundle given by

Z3
Φ−→ Z3 × Z3 ↪→ Z3 ×D6, (11.8)

represent the classes n ∈ ΩSpin
5 (BZ3 ×BD6) and m ∈ ΩSpin

7 (BZ3 ×BD6), respectively.

Proof. Botvinnik and Gilkey proved in [152] that the bordism classes of ΩSpin
∗ (BZp×BZp) are

represented by classifying maps L2n1+1
p ×L2n2+1

p → B(Zp)2 or by the compositions L2m+1
p →

BZp
Bϕ−→ B(Zp)2 for the various group homomorphisms ϕ : Zp → Zp×Zp. The theorem then

follows from the fact that the inclusion

BZ3 ∧BZ3 ↪→ BZ3 ∧BD6 (11.9)

admits a section 3-locally using the transfer Σ∞
+BD6 → Σ∞

+BZ3, so that ΩSpin
∗ (BZ3 ∧BD6)

is (3-locally) a summand of ΩSpin
∗ (BZ3 ∧BZ3).

Passing these generators through Proposition 8.35, we obtain the remaining 3-torsion in

Tables 2 and 3.
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Subpart II.C The calculation at p = 2

12 Generalities for the p = 2 computation

The computation at p = 2 has a similar overall structure to the computation at p = 3,

but the details are more complicated. We will first find the ring structure on ΩSpin
∗ (BZ4)

in the degrees relevant for us, then use it to determine ΩSpin
∗ (BSL(3,F2)) and ΩSpin

∗ (BZ4 ×
BSL(3,F2)), so that, as we went over in §8.3, we can obtain a complete generating set of

ΩSpin
∗ (B(SL(2,Z)× SL(3,Z)) in dimensions 7 and below. The action of ΩSpin

∗ (BZ4) on other

bordism groups will play a significant role in systematically discovering many generators.

The first simplification we make is to replace spin bordism with another generalized

cohomology theory called connective real K-theory, denoted ko. This is because of a result

of Anderson-Brown-Peterson [153] that implies for any space or connective spectrum X, the

Atiyah-Bott-Shapiro [154] map

Â : ΩSpin
k (X) −→ kok(X) (12.1)

is an isomorphism for k ≤ 7.39 The theory ko has better algebraic properties, so we will

focus on computing ko-homology, then return to spin bordism as we search for generators.

Another difference between the p = 3 and p = 2 cases is that because ΩSpin
∗ and ko∗ both

have 2-torsion, the Atiyah-Hirzebruch spectral sequence is harder to solve compared to a

version of the Adams spectral sequence, so we will use the latter.

Theorem 12.2. Let X be a space or spectrum homotopy equivalent to a CW complex with

with finitely many cells in each dimension. Then there is a spectral sequence

Es,t
2 = Exts,tA(1)(H

∗(X;Z2),Z2) =⇒ ko∗(X)⊗ Ẑ2. (12.3)

Here A(1) is a subalgebra of the Steenrod algebra A of cohomology operations: A(1)
is generated by the Steenrod squares Sq1 and Sq2. Tensoring with Ẑ2 is the process of

2-completion.

We will be brief – there are plenty of papers in the mathematical physics literature using

this technique, and the reader wishing to dig into the definitions and examples of these

ingredients is encouraged to read [155,28], both written with physics audiences in mind.

• A refers to the mod 2 Steenrod algebra, the Z-graded Z2-algebra of all natural transfor-

mations H∗(–;Z2) → H∗+k(–;Z2) which commute with the suspension isomorphism.

This is generated by Steenrod squares Sqn of degree n, modulo some relations. Then

A(1) is the subalgebra generated by Sq1 and Sq2.

39In higher degrees, there is a more complicated decomposition due to Anderson-Brown-Peterson [153].
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• Ext is a functor which can be defined in terms of certain equivalence classes of exten-

sions of modules.

• Ẑ2 denotes the 2-adic numbers. For a finitely generated abelian group, tensoring with

Ẑ2 retains the same information as tensoring with Z(2), so we will typically be implicit

about the appearance of the 2-adics.

Remark 12.4. The Adams spectral sequence was introduced by Adams [40], in a considerably

more general form than we gave in Theorem 12.2; we presented only what we need in

this paper. The application to ko-homology by working over A(1) first appears in work

of Anderson-Brown-Peterson [156] and and Giambalvo [157–159]. The appearance of the

Adams spectral sequence in physically motivated computations is a more recent phenomenon:

though there were some earlier works such as Rose [160], Hill [161], and Francis [162], the

technique began in earnest following its use by Freed-Hopkins [163, §10] in applications to

invertible field theories.

For any space X, the ko∗(pt)-action
40 on ko∗(X) lifts to an action of the Adams spectral

sequence for ko∗(pt) on the Adams spectral sequence for ko∗(X):

Theorem 12.5. Let E := ExtA(1)(Z2,Z2), which by Theorem 12.2 is the E2-page of the

Adams spectral sequence computing ko∗(pt).

1. There is a Z2-graded commutative Z2-algebra structure on E converging to the algebra

structure on ko∗(pt).

2. There is a natural E-action on the E2-page of the Adams spectral sequence for ko∗(X)

for any space X which converges to the ko∗(pt)-action on ko∗(X). All differentials

commute with this E-action.41

This is a consequence of the general multiplicative structure of the Adams spectral se-

quence as discussed in [147, §3.6].
Now we need to know what E is.

Theorem 12.6 (Liulevicius [165, Theorem 3]). The Z2-algebra structure on E described in

Theorem 12.5 is isomorphic to

ExtA(1)(Z2,Z2) ∼= Z2[h0, h1, v, w]/(h0h1, h
3
1, vh1, h

2
0w − v2), (12.7)

where deg(h0) = (1, 1), deg(h1) = (1, 2), deg(v) = (3, 7), and deg(w) = (4, 12).

40Passing back to spin bordism, this action represents taking the product with a spin manifold with trivial
map to X.

41Most of this theorem works with ko replaced with an arbitrary commutative ring spectrum, but in general
differentials only obey a Leibniz rule — the stronger result here is because the Adams spectral sequence for
ko∗(pt) collapses. This distinction matters if ko is replaced with tmf : see [164].
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The four generators lift to represent classes in the ko-homology and spin bordism of a

point.

• h0 lifts to 2 ∈ ko0(pt) and to the class of pt+ ⨿ pt+ in ΩSpin
0 . Thus keeping track of

h0-actions in an Adams spectral sequence is very useful — they provide information

about multiplication by 2 in ko-homology. This is one of the competitive advantages of

the Adams spectral sequence over the Atiyah-Hirzebruch spectral sequence; extension

problems are usually harder for the latter technique.

• h1 lifts to η ∈ ko1(pt) and S
1
+ ∈ ΩSpin

1 .

• v lifts to the K3 surface in ΩSpin
4
∼= Z.

• w lifts to the Bott class in ko8(pt) and the Bott manifold in ΩSpin
8 .

The bottom row of the Adams spectral sequence is nicely characterized using mod 2

cohomology, which we will repeatedly use to find generators. There is a natural isomorphism

ϱ : Ext0,tA(1)(M,N)
∼=→ HomA(1)(Σ

tM,N); using this, one can define an “edge homomorphism”

Υ: E0,t
∞ ↪→ E0,t

2 = Ext0,tA(1)(H
∗(X;Z2),Z2)

ϱ−→ HomA(1)(H
∗+t(X;Z2),Z2). (12.8)

Proposition 12.9. Let c ∈ H t(X;Z2) and M be a closed, t-dimensional spin manifold with

a map f : M → X. Let m ∈ E0,t
∞ denote the image of [M, f ] ∈ ΩSpin

t (X) in the E∞-page

of the Adams spectral sequence. If Υ(m) : H t(X;Z2) → Z2 evaluated on c is nonzero, then∫
M
f ∗(c) ̸= 0.

In the case Υ(m)(c) ̸= 0, we say that [M, f ] is detected by the mod 2 cohomology class

c. See [75, §8.4] and [166, §3.3] for a more detailed discussion of Proposition 12.9 and

Bunke [167] for an analogue of this result for s = 1.

13 Calculations and generators for BZ4

13.1 Ring structure on the Adams spectral sequence for ko∗(BZ4)

In this subsection, we describe all classes, products (Theorem 13.36), and differentials

(Proposition 13.38) in the Adams spectral sequence for ko∗(BZ2n). We only need the case

n = 2 in degrees 8 and below, but we found that the argument and general structure are

cleaner in this generality.

To calculate the ring structure on the Adams spectral sequence computing ko∗(BZ2n),

we compare it with two simpler Adams spectral sequences computing ordinary homology

of BZ2n . There the ring structures converge to the Pontrjagin product (the product on

ko∗(BZ2n) induced by the group operation in Z2n ; see Theorem 9.1, part 1) on the homology
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groups. Thus we can work backwards: the Pontrjagin product is known, so we can work out

the ring structure on the E2-pages of the two simpler spectral sequences, and then compare

with the spectral sequence we are actually interested in.

For n ≥ −1, let A(0) denote the subalgebra of A(1) generated by Sqi for i ≤ 2n; thus

A(−1) ∼= Z2 and A(0) =
〈
Sq1
〉 ∼= Z2[Sq

1]/(Sq1)2. These algebras govern Adams spectral

sequences for ordinary cohomology that are analogues of Theorem 12.2.

Proposition 13.1. Let X be as in Theorem 12.2. Then there are spectral sequences

Es,t
2 = Exts,tA(0)(H

∗(X;Z2),Z2) =⇒ H∗(X;Z)⊗ Ẑ2 (13.2a)

Es,t
2 = Exts,tA(−1)(H

∗(X;Z2),Z2) =⇒ H∗(X;Z2). (13.2b)

The inclusions A(−1)→ A(0)→ A(1) induce maps of spectral sequences in the other direc-

tion converging to the (2-completions of the) usual maps ko∗(X)→ H∗(X;Z)→ H∗(X;Z2).

In addition, if X is the classifying space of an abelian Lie group, there are ring structures

on the pages of these spectral sequences which converge to the Pontrjagin product on the

homology of X, and the change-of-Ext maps from A(−1) to A(0) to A(1) are ring homo-

morphisms.

As A(−1) = Z2 is a field, Exts,∗A(−1) is HomZ2 for s = 0 and vanishes for s > 0. Therefore

the spectral sequence (13.2b) is trivial: it always collapses without differentials or extension

problems, and its E2-page is exactly what it purports to compute. Oddly enough, this makes

it useful for us!

The next step over A(−1) is to recall the Pontrjagin product on H∗(BZ2n ;Z2). While

we’re here, we also recall a few important facts about the cohomology of BZ2n . As always

in this section, n > 1.

Theorem 13.3 ([168, Proposition 4.5.1]).

H∗(BZ2n ;Z2) ∼= Z2[x, y]/(x
2),

|x| = 1, |y| = 2
(13.4)

The Steenrod squares of the generators are

Sq(x) = x+ x2, Sq(y) = y + y2. (13.5)

Theorem 13.6 (Cartan [149]). As a ring with the Pontrjagin product,

H∗(BZ2n ;Z2) ∼= Z2[x, yi : i ≥ 1]/

(
x2, yiyj =

(
i+ j

i

)
yi+j

)
(13.7)

with |x| = 1 and |yi| = 2i. The classes x, resp. yi are dual to the mod 2 cohomology classes

x, resp. yi.

86



Cartan does not write this ring structure explicitly; see Brown [169, Theorem V.6.6] for

that.

Corollary 13.8. The ring structure on the E2-page of the A(−1)-based Adams spectral

sequence (13.2b) computing H∗(BZ2n ;Z2) is

E∗,∗
2
∼= Z2[x, yi : i ≥ 1]/

(
x2, yiyj =

(
i+ j

i

)
yi+j

)
(13.9)

with x ∈ Ext0,1 and yi ∈ Ext0,2i.

This is because, as noted above, the s = 0 part of the E2-page and the mod 2 homology

it computes are isomorphic and the spectral sequence collapses.

Now we lift toA(0). We are not sure who first made the following computation; references

include [165, §2] and [155, Example 4.5.5].

Lemma 13.10. There is a unique isomorphism of Z2-algebras

Ext∗,∗A(0)(Z2,Z2)
∼=−→ Z2[h0], (13.11)

with h0 ∈ Ext1,1.

As for A(1), h0 detects multiplication by 2. We will describe the E2-page of (13.2a),

the Adams spectral sequence over A(0), for X = BZ2n first as a Z2[h0]-module, then as an

Z2[h0]-algebra.

Lemma 13.12. There is an isomorphism of Z2[h0]-modules

ExtA(0)(H
∗(BZ2n ;Z2),Z2)

∼=−→ Z2[h0]
{
ỹj, x̃ỹj : j ≥ 0

}
(13.13)

where ỹj ∈ Ext0,2j and x̃ỹj ∈ Ext0,2j+1. Under the homomorphism

Ext0,tA(0)(H
∗(BZ2n ;Z2),Z2) = HomA(0)(H

t(BZ2n ;Z2),Z2) ↪→ HomZ2(H
t(BZ2n ;Z2),Z2),

(13.14)

each class c̃ is identified with the dual of c ∈ H t(BZ2n ;Z2).

Proof. Theorem 13.3 tells us Sq1 acts trivially on H∗(BZ2n ;Z2), and therefore the entire

algebra A(0) acts trivially. Therefore ExtA(0)(H
∗(BZ2n ;Z2),Z2) is, as a Z2[h0]-module, a

direct sum of copies of ExtA(0)(Z2,Z2) indexed by a basis of H∗(BZ2n ;Z2). This module is

generated by its classes on the line s = 0, which are

Ext0A(0)(H
∗(BZ2n ;Z2),Z2)

∼=−→ HomA(0)(H
∗(BZ2n ;Z2),Z2)

∼=→ HomZ2(H
∗(BZ2n ;Z2),Z2),

(13.15)

because A(0) acts trivially.
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Corollary 13.16. Under the isomorphisms in Corollary 13.8 and Lemma 13.12, the map

Ext∗,∗A(0)(H
∗(BZ2n ;Z2),Z2) −→ Ext∗,∗A(−1)(H

∗(BZ2n ;Z2),Z2) (13.17)

induced by the inclusion A(−1)→ A(0) sends x̃ 7→ x, ỹj 7→ yj, and x̃ỹj 7→ x · yj.

This is because, under the identification ExtA(−1) = HomZ2 , the map (13.17) is identified

with the map (13.14).

Proposition 13.18. There is an isomorphism of Z2[h0]-algebras

Ext∗,∗A(0)(H
∗(BZ2n ;Z2),Z2)

∼=−→ Z2[h0, x̃, ỹj : j ≥ 1]/

(
x̃2, ỹiỹj =

(
i+ j

i

)
ỹi+j

)
. (13.19)

Proof. Proposition 13.1 asserts (13.17) is a ring homomorphism, and Corollary 13.16 implies

that (13.17) is a vector space isomorphism restricted to the line s = 0. This uniquely forces

the products of all classes on the line s = 0, i.e. of all Z2[h0]-module generators except for

h0. The products of h0 with the other generators were already told to us as part of the

Z2[h0]-module structure in Lemma 13.12.

Now that we have the ring structures over A(−1) and A(0), we return to A(1). First

we want to know Ext as an E-module, which means understanding H∗(BZ2n ;Z2) as an

A(1)-module.

For an A(1)-module M , ΣkM denotes the same ungraded module but with the gradings

of all homogeneous elements increased by k; we write ΣM for Σ1M . Using the Steenrod

squares in Theorem 13.3, one can make the following calculation.

Proposition 13.20. Let Cη denote the A(1)-module Σ−2H̃∗(CP2;Z2).
42 Then, there is an

isomorphism of A(1)-modules

H∗(BZ2n ;Z2)
∼=−→ Z2 ⊕ ΣZ2 ⊕

⊕
n≥0

Σ4n+2Cη ⊕ Σ4n+3Cη. (13.21)

The ΣZ2 summand is generated by x; the Σ4n+2Cη summand is spanned by y2n+1 and y2n+2,

and the Σ4n+3Cη summand is spanned by xy2n+1 and xy2n+2.

For n = 2 this result also appears in [170, Lemma 3.8].

Proposition 13.22 (Bahri-Bendersky [171, §4]). There is an isomorphism of E-modules

ExtA(1)(Cη,Z2)
∼=−→ (E/h1) {κ, λ, µ, ξ} /(vκ = h0µ, vλ = h0ξ, vµ = h0wκ, vξ = h0wλ),

(13.23)

where |κ| = (0, 0), |λ| = (1, 3), |µ| = (2, 6), and |ξ| = (3, 9).
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Figure 19: The E-module ExtA(1)(Cη,Z2). Vertical lines represent h0-multiplication, so in
this picture h0µ = vκ, h0ξ = vλ, etc. This is a picture of Proposition 13.22.

We draw this E-module in Figure 19.

Combining Propositions 13.20 and 13.22 we obtain a complete description of the E2-page

of the Adams spectral sequence computing ko∗(BZ2n) as an E-module.

Corollary 13.24. There is an isomorphism of Z2-graded E-modules

ExtA(1)(H
∗(BZ2n ;Z2),Z2)

∼=−→ E {1, θ, κi, κ′i, λi, λ′i, µi, µ′
i, ξi, ξ

′
i : i ≥ 1} /RM , (13.25)

where θ ∈ Ext0,1, κi ∈ Ext0,4i−2, κ′i ∈ Ext0,4i−1, λi ∈ Ext1,4i+1, λ′i ∈ Ext1,4i+2, µi ∈ Ext2,4i+4,

µ′
i ∈ Ext2,4i+5, ξi ∈ Ext3,4i+7, and ξ′i ∈ Ext3,4i+8, and the submodule RM of relations is

RM = (h1κi, h1κ
′
i, h1λi, h1λ

′
i, h1µi, h1µ

′
i, h1ξi, h1ξ

′
i,

h0µi = vκi, h0µ
′
i = vκ′i, h0ξi = vλi, h0ξ

′
i = vλ′i,

h0wκi = vµi, h0wκ
′
i = vµ′

i, h0wλi = vξi, h0wλ
′
i = vξ′i).

(13.26)

The action of h0 on Ext(Cη) is injective, which means that the action of h0 on Ext(H∗(BZ2n ;Z2))

is close to injective.

Corollary 13.27. h0-action, as a map Es,t
2 → Es+1,t+1

2 for the Adams spectral sequence

over A(1), is injective except in the cases (s, t) = (4m + 1, 12m + 2), (4m + 2, 12m + 4),

(4m+ 1, 12m+ 3), and (4m+ 2, 12m+ 5), m ≥ 0.

Now we can compare to A(0). First, just for Cη:

Lemma 13.28 ([28, Appendix D]). There is an isomorphism of A(0)-modules j : Cη
∼=←−

42This module is called the bow in [170, Definition 3.3].
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Z2 ⊕ Σ2Z2. The map

f2 : Ext
s,t
A(1)(Cη) −→ Exts,tA(0)(Cη)

j∗−→∼= Exts,tA(0)(Z2)⊕ Exts,t+2
A(0) (Z2)

(13.10)−→∼=
∼= Z2[h0]⊕ Σ0,2Z2[h0]

(13.29)

sends κ 7→ (1, 0), λ 7→ (0, h0), µ 7→ 0, and ξ 7→ 0.

The notation Σp,q means to increase the s-grading by p and the t-grading by q.

Corollary 13.30. Under the isomorphisms in Lemma 13.12 and Corollary 13.24, the map

Ext∗,∗A(1)(H
∗(BZ2n ;Z2),Z2) −→ Ext∗,∗A(0)(H

∗(BZ2n ;Z2),Z2) (13.31)

induced by the inclusion A(0)→ A(1) takes on the following values:

1 7→ 1 θ 7→ x̃

κi 7→ ỹ2i−1 κ′i 7→ x̃ỹ2i−1

λi 7→ h0ỹ2i λ′i 7→ h0x̃ỹ2i

µi 7→ 0 µ′
i 7→ 0

ξi 7→ 0 ξ′i 7→ 0.

(13.32)

Finally we can compute products in the Adams spectral sequence over A(1) by com-

paring with the ring structure over A(0) using that the map in Corollary 13.30 is a ring

homomorphism. This time things are a little more exciting because (13.31) is not injective.

Proposition 13.33. In ExtA(1)(H
∗(BZ2n ;Z2),Z2),

1. θ2 = 0,

2. θκi = κ′i,

3. θλi = λ′i,

4. κiκj = 0,

5. κiλj =
(
2i+2j−1

2i

)
h0κi+j, and

6. λiλj =
(
2i+2j
2i

)
h0λi+j.

Proof. The product κiκj vanishes for degree reasons.

The map (13.31) is a ring homomorphism, so we can use the ring structure of ExtA(0)(· · · )
to compute the ring structure of ExtA(1)(· · · ) modulo the kernel of (13.31). Use (13.32) to
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compare the remaining products in the theorem statement with the ring structure over A(0)
as we proved in Proposition 13.18; one sees that they are compatible, so the products in the

theorem statement hold modulo the kernel of (13.31).

To finish the proof and deduce these products without having to quotient, observe that

all products in the theorem statement take place in filtration at most 2, but using (13.32), we

see that the kernel of the map (13.31) consists solely of elements in filtration 3 and higher.

Thus, restricted to the sub-vector space consisting of elements in filtration 2 and below,

(13.31) is injective, so the products in the theorem statement hold unconditionally.

Remark 13.34. We can make a slight simplification: λiλj =
(
i+j
i

)
h0λi+j because of the

identity
(
2(i+j)

2i

)
≡
(
i
j

)
mod 2 for i, j ≥ 1.

Proposition 13.35. In ExtA(1)(H
∗(BZ2n ;Z2),Z2),

1. θµi = µ′
i and θξi = ξ′i.

2. κiµj = 0 and µiµj = 0.

3. κiξj =
(
2i+2j−1

2i

)
h0µi+j, µiλj =

(
2i+2j−1

2i

)
h0µi+j, and µiξj =

(
2i+2j−1

2i

)
h0wκi+j.

4. λiξj =
(
i+j
i

)
h0ξi+j and ξiξj =

(
i+j
i

)
h0wλi+j.

Proof. Recall from Proposition 13.33 that θκi = κ′i, so θvκi = vκ′i. The relations vκi =

h0µi and vκ′i = h0µ
′
i in Corollary 13.24 thus imply h0θµi = h0µ

′
i. By Corollary 13.27,

multiplication by h0 is an injective map Ext2,4i+5 → Ext3,4i+6, so h0θµi = h0µ
′
i implies

θµi = µ′
i.

The remaining calculations in the theorem statement are completely analogous: take an

equation in Proposition 13.33, multiply both sides by v or v2, apply a relation in Corol-

lary 13.24, then appeal to Corollary 13.27 to cancel factors of h0 off of both sides of the

equation and obtain the desired result.

Combining Corollary 13.24 and Propositions 13.33 and 13.35, we get the main theorem

in this section.

Theorem 13.36.

1. There is an isomorphism of Z2-graded E-algebras

ExtA(1)(H
∗(BZ2n ;Z2),Z2) ∼= E[θ, κi, λi, µi, ξi : i ≥ 1]/R1 (13.37a)
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with generators in the following degrees: θ ∈ Ext0,1, κi ∈ Ext0,4i−2, λi ∈ Ext1,4i+1,

µi ∈ Ext2,4i+4, and ξi ∈ Ext3,4i+7. The ideal R1 of relations is

R1 = (h1κi, h1λi, h1µi, h1ξi, vκi = h0µi, vλi = h0ξi, vµi = h0wκi, vξi = h0wλi,

θ2 = 0, κiκj = 0, κiλj = A(i, j)h0κi+j, κiµj = 0, κiξj = A(i, j)h0µi+j,

λiλj = B(i, j)h0λi+j, λiµj = A(j, i)h0µi+j, λiξj = B(i, j)h0ξi+j,

µiµj = 0, µiξj = A(i, j)h0wκi+j, ξiξj = B(i, j)h0wλi+j),
(13.37b)

where A(i, j) :=
(
2i+2j−1

2i

)
mod 2 and B(i, j) :=

(
i+j
i

)
mod 2.

2. The class θ is detected by x ∈ H1(BZ2n ;Z2), κi is detected by y2i−1, and θκi by xy
2i−1.

All other generators listed in (13.37a) are not detected by mod 2 cohomology.

For n = 2, we draw the E2-page and label these generators in Figure 20, left.
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Figure 20: Left: the E2-page of the Adams spectral sequence computing ko∗(BZ4). Gener-
ators and some relations labeled. As we discussed in Proposition 13.38, the May-Milgram
theorem establishes d2 differentials between the h0-towers, which we display here. Right: the
spectral sequence then collapses at E3 = E∞.

Proposition 13.38. The differentials in the Adams spectral sequence for ko∗(BZ2n) all

vanish except on the En-page, where they have the following values for any i ≥ 1:

dn(1) = 0 dn(κi) = hn−1
0 θλi−1 (i ̸= 1)

dn(θ) = 0 dn(λi) = hn+1
0 θκi

dn(κ1) = hn0θ dn(µi) = hn−1
0 θξi−1 (i ̸= 1)

dn(µ1) = hn−1
0 vθ dn(ξi) = hn+1

0 θµi.

(13.39)

For n = 2, we draw these differentials in Figure 20, left. The Leibniz rule thus tells us

the values of differentials on all classes. For n = 2, Proposition 13.38 is proven in a different

way by Bárcenas, Garćıa-Hernández, and Reinauer [170, Theorem 3.15].
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Proof. First, ds(1) = 0 for all s by degree reasons. If ds(θ) were nonzero for any s, then

there would be finitely many Z2 summands in topological degree 0 on the E∞-page, which

is incompatible with ko0(BZ2n) containing a Z summand (namely ko0(pt)). Thus ds(θ) = 0.

The values of ds(κi) and ds(λi) follow from the May-Milgram theorem [172], specifically

from its incarnation in [28, Proposition D.13]. For ds(µi), use E-linearity of differentials to

compute vds(κi) = ds(vκi) = ds(h0µi) = h0ds(µi); then Corollary 13.27 shows there is a

unique class σ ∈ E2+n,4i+3+n
r such that h0σ = ds(vκi), fixing ds(µi) = σ. The same argument

works mutatis mutandis with (ξi, λi) in place of (µi, κi).

13.2 Lifting to the ring structure on ko∗(BZ4)

Now we describe the ko∗-algebra structure on ko∗(BZ4) in low degrees.

Theorem 13.40.

1. There is an isomorphism of ko∗-algebras

ko∗(BZ4) ∼= ko∗[ℓ1, ℓ3, q5, ℓ7, ℓ̃7, . . . ]/R2, (13.41a)

with |ℓi| = i, |q5| = 5, and |ℓ̃7| = 7, and the ideal R2 of relations is

R2 =(4ℓ1, 8ℓ3, 4q5, 8ℓ̃7, 2ℓ̃7 − 8ℓ7, ηℓ3, ηq5, ηℓ7, ηℓ̃7,

ℓ21, ℓ
2
3, ℓ1ℓ3, ℓ1q5, ℓ1ℓ7, ℓ1ℓ̃7, ℓ3q1, vℓ1 − 2q5, vℓ3 − 2ℓ̃7, . . . ).

(13.41b)

All generators and relations not listed are in degrees greater than 8.

2. The isomorphism (13.41a) may be chosen so that the images of the generators on the

E∞-page of the Adams spectral sequence are: ℓ1 7→ θ, ℓ3 7→ θκ1, q5 7→ θλ1, ℓ7 7→ θκ2,

and ℓ̃7 7→ θµ1.

Proof. First compare the theorem statement with the E∞-page of this spectral sequence,

drawn in Figure 20, right: the E∞-page is generated as an E-algebra by θ, θκ1, θλ1, θκ2,

and θµ1. The relation θ2 = 0 from Theorem 13.36 implies that, unless there are hidden

extensions, all products of pairs of these five generators vanish, and the relations h1κi = 0,

h1λ1 = 0, and h1µ1 = 0 (also from Theorem 13.36) imply η times each of these classes

vanishes unless there is a hidden η-extension.

Thus if we choose lifts of θ, θκ1, θλ1, θµ1, and θκ2 and label them as in part 2 of

the theorem statement, part (1) is the assertion that, even multiplicatively, there are no

extensions on the E∞-page in degrees 8 and below apart from extensions by 2 and the one

implied by the relation vℓ1 = 2q5. This is the form of the theorem we will prove.

Extensions by 2 are a consequence of the additive structure of ko∗(BZ4), which is cal-

culated by Bruner-Greenlees [145, Example 7.3.3]. First, ko1(BZ4) ∼= Z4 ⊕ Z2 shows ℓ1
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has order 4, and ko3(BZ4) ∼= Z8 implies ℓ3 has order 8. Since ko5(BZ4) ∼= Z4, but on the

E∞-page we see θλ2 and vθ in topological degree 5, which are not linked by an h0-action, we

obtain a hidden extension: 2q5 = vℓ1. Likewise, in degree 7, Bruner-Greenlees (ibid.) shows

us that ko∗(BZ4) ∼= Z32 ⊕ Z2, which is only possible if 8ℓ7 = 2ℓ̃7: another hidden extension.

Next, extensions by η. On ℓ1 this follows from the h1-action on the E∞-page; for the

remaining classes we need to argue there are no hidden η-extensions. Since |η| = 1 and

2η = 0, then if kon+1(BZ4) is torsion-free then η ·kon(BZ4) = 0: η times anything is torsion.

Thus we deduce ηℓ3 = 0, ηq5 = 0, ηℓ7 = 0, and ηℓ̃7 = 0.43 The same argument works to

show that ℓ1 times ℓ1, ℓ3, q5, ℓ7, or ℓ̃7 is 0, as |ℓ1| = 1 and ℓ1 is torsion. Replacing kon+1 with

kon+3, the same argument also applies to products of ℓ3 with ℓ3, q5, ℓ7, and ℓ̃7.

For extensions by v, we already have vℓ1 = 2q5, and vℓ3 = 2ℓ̃7 comes from the relation

vθκ1 = h0θµ1 on the E2-page described in Theorem 13.36. All other products of v with gen-

erators, and all products of w, q5, ℓ7, or ℓ̃7 with generators that were not already addressed,

are in degrees too high to be relevant.

13.3 Generators

The generators of ko∗(BZ4) have been previously considered in [28, §12.7]. Before we state

the result, we recall the notation of the lens space Lnk introduced in Section 10.1.1. Further-

more, we introduce Q2k−1
n :

Definition 13.42 (Botvinnik-Gilkey-Stolz [173, §4]). Let V denote the complex vector bun-

dle O(2) ⊕ Ck → CP1 and Q2k−1
n denote the quotient of S(V ) by the Zn-action which acts

diagonally by the nth roots of unity on each fiber.

Thus Q2k−1
n is a closed manifold equipped with a canonical orientation, namely that aris-

ing as the quotient of S(V ) by an orientation-preserving Zn-action. The canonical orientation
on S(V ) is induced from that on V coming from its complex structure, since TV |S(V ) and

TS(V ) are stably equivalent (see, e.g., [28, (14.84)]). For all n and k, Q2k−1
n is spin [173, §5].

Proposition 13.43 ([28, §12.7]). The following manifolds represent the generators of ko∗(BZ4)

that we identified in Theorem 13.40.

1. For n = 1, 3, Ln4 with Z4-bundle S
n → Ln4 and either of its two spin structures repre-

sents ℓn.

2. Q5
4 with Z4-bundle S(V )→ Q5

4 and either of its two spin structures represents q5.

3. Let sκ, κ = 0, 2 denote the two spin structures on L7
4 as classified by κ in [28, §C.1].

Then the isomorphism in Theorem 13.40 can be chosen so that (L7
4, s0) represents ℓ7

and 7[(L7
4, s0)]− 5[(L7

4, s2)] represents ℓ̃7. In all cases we use the Z4-bundle S
7 → L7

4.
43By contrast, in the closely related spin-Z8 bordism, there are many hidden η-extensions: see [28, Footnote

50 and §13.4].
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The fact that lens spaces and lens space bundles of the sort in Definition 13.42 suffice

to generate ko2k−1(BZ4) as an abelian group is due to Botvinnik-Gilkey-Stolz [173, §5]; the
specific generators we use were worked out in [28, §12.3].

14 Calculations and generators for BS4 and BSL(3,F2)

In this section, we compute the (2-local) spin bordism groups of BS4 and BSL(3,F2) in

degrees 7 and below, and determine a set of generating manifolds for these bordism groups.44

These bordism groups have been studied in [146, 166, 174], and in fact Bayen [146] com-

putes all of the bordism groups we need. However, like in previous sections, we repeat the

computation because we will make use of the ΩSpin
∗ (BZ4)-module structure on ΩSpin

∗ (BS4) in

§15.
The generating manifolds, however, are new. We employ a few different methods to find

generators: in §14.2.1 we study the map BZ4 → BS4 → BSL(3,F2) on spin bordism, so

that we can use the generators of Ω̃Spin
∗ (BZ4) from Proposition 13.43. We then do the same

with Z4 replaced with Z2 × Z2. This leaves two classes unresolved; we wrap them up in

§14.2.2 and §14.2.3 by pulling back to D8 ⊂ S4, then studying relatively simple bundles over

previously found generators, similar to the strategies used in [28, §§14.3.3–14.3.7], and which

go back at least as far as Dold [175].

14.1 Adams spectral sequences for ko∗(BSL(3,F2)) and ko∗(L(2))

In this subsection, we describe all classes and differentials in the Adams spectral sequences

computing ko∗(BSL(3,F2)) and ko∗(L(2)) in degrees 8 and below. Consider first the case of

ko∗(BSL(3,F2)) To begin, we recall previous results from Handel and Mitchell-Priddy.

Theorem 14.1 (Handel, [151, Theorem 5.5]).

H∗(BD8;Z2) = Z2[x1, x2, w]/(x
2
2 + x1x2),

|x1| = |x2| = 1, |w| = 2
(14.2)

Moreover, the Steenrod algebra action on H∗(BD8;Z2) is:

Sq(x1) = x1 + x21, Sq(x2) = x2 + x22, Sq(w) = w + x1w + w2 (14.3)

Theorem 14.4 (Mitchell-Priddy, [128, Theorem 2.6]).

H∗(BSL(3,F2);Z2) = Z2[ν2, ν3, ν3]/(ν
2
3 + ν3ν3),

|ν2| = 2, |ν3| = |ν3| = 3.
(14.5)

44We do not consider the stable summand BZ2 of BS4, because our procedure in Proposition 8.35 to
product BSL(2,Z)×BSL(3,Z) bordism classes discards the spin bordism of that summand.

95



The inclusion j : D8 → SL(3,F2) induces a monomorphism j∗ : H∗(BSL(3,F2);Z2) →
H∗(BD8;Z2) given as follows:

j∗(ν2) = x21 + w, j∗(ν3) = x1w, j∗(ν3) = x2w. (14.6)

Moreover, the Steenrod algebra action on H∗(BSL(3,F2);Z2) is

Sq(ν2) = ν2 + ν3 + ν22 , Sq(ν3) = ν3 + ν2ν3 + ν23 , Sq(ν3) = ν3 + ν2ν3 + ν23 (14.7)

The Steenrod squares are not given in loc. cit. but can be worked out from the Steenrod

squares in H∗(BD8;Z2) and the fact that j∗ is injective.

The first step in running the Adams spectral sequence for ko∗(BSL(3,F2)) is to determine

the A(1)-module structure on H∗(BSL(3,F2);Z2). For this we must recall a few commonly

occurring A(1)-modules.

Definition 14.8. For an A(1)-module M , ΣkM refers to the same underlying module with

Z-grading increased by k.

1. Z2 is an A(1)-module in which Sq1 and Sq2 act trivially.

2. Let J := A(1)/(Sq3). This module was named the Joker by Adams.

3. The upside-down question mark is the A(1)-module Q := A(1)/(Sq1, Sq2Sq3).

4. There is a unique nonzero A(1)-module map Σ−1A(1)→ Σ−1Z2; its kernel is denoted

R2, and called the elephant by Buchanan-McKean [176, Figure 1].

A straightforward calculation using Theorem 14.4 leads to the following.

Corollary 14.9. There is an A(1)-module isomorphism

H̃∗(BSL(3,F2);Z2) ∼= Σ2J ⊕ Σ3Q⊕ Σ6A(1)⊕ Σ7R2 ⊕ Σ8Z2 ⊕ P, (14.10)

where P is concentrated in degrees 10 and above.

We summarize (14.10) in Figure 21, left.

Now we need to compute Ext of the summands appearing in (14.10), except for P , which

lies in too high of a degree to be relevant for our computations in degrees 7 and below. Ext

commutes with direct sums so we may focus on the modules we named in Definition 14.8. By

definition, Ext(Z2) ∼= E as E-modules, and Ext of a rank-one free A(1)-module is a trivial

E-module consisting of a single Z2 summand concentrated in bidegree (0, 0) with trivial

E-action. The other three modules in Definition 14.8 have more interesting Ext groups.
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Figure 21: Left: the A(1)-module structure on H̃∗(BSL(3,F2);Z2) in low degrees, as we
calculated in Corollary 14.9. This picture includes all classes in degrees 9 and below. Right:
the same but for S4 in place of SL(3,F2), realizing the effect on cohomology of the Mitchell-
Priddy mod 2 stable splitting [128, Theorem B] of BS4 into BZ2 (gray/unshaded dots), L(2)
(orange/square dots), and BSL(3,F2) (everything else). See Proposition 8.21.

Proposition 14.11. There are isomorphisms of E-modules as follows.

Ext(J) ∼= E {a, b, c} /(h0a, h1a, va, wa+ h21c, h1b, vb+ h20c, vc+ wb), (14.12a)

where a ∈ Ext0,0, b ∈ Ext1,3, and c ∈ Ext2,8,

Ext(Q) ∼= E {d, e} /(h1d, vd+ h20e, ve+ wd), (14.12b)

with d ∈ Ext0,0 and e ∈ Ext1,5, and

Ext(R2) ∼= E {g, h, j, k} /(h1g, h0h, h21h, vg + h0k, vh, wg + h0k, wh+ h1k), (14.12c)

with g ∈ Ext0,0, h ∈ Ext0,1, j ∈ Ext2,6, and k ∈ Ext3,11.

See [155, Figure 29] for pictures of these E-modules.

Remark 14.13. These E-modules are usually only presented as modules over the subalgebra

⟨h0, h1⟩ ⊂ E; in this form, Ext(J) and Ext(R2) were first described by Adams-Priddy [177,

§3].45 The complete E-module structure on Ext(Q) is given by Bruner-Rognes [164, Example

2.32], and that of Ext(R2) is given by Bruner-Greenlees [145, Figure A.4.4]. We do not know

of a reference for the complete E-module structure on Ext(J), but it is straightforward to

work out using the long exact sequence of Ext groups associated to a short exact sequence

of A(1)-modules; see Beaudry-Campbell [155, §4.6] for examples of this technique.

45As just a bigraded vector space, Ext(J) was computed earlier, by Wilson [178, Figure 2].
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Putting these together, we obtain the second page of the Adams spectral sequence com-

puting k̃o∗(BSL(3,F2)).

Corollary 14.14. In the range t−s ≤ 8, the E2-page is generated as an ExtA(1)(Z2)-module

by nine classes subject to some relations:

• The submodule Ext(Σ2J) has generators a ∈ Ext0,2, b ∈ Ext1,5, and c ∈ Ext2,10 and

relations h0a = 0, h1a = 0, va = 0, wa = h21c, h1b = 0, vb = h20c, and vc = wb.

• The submodule Ext(Σ3Q) has generators d ∈ Ext0,3 and e ∈ Ext1,8 subject to the

relations h1d = 0, vd = h20e, and ve = wd.

• The submodule Ext(Σ6A(1)) has generator f ∈ Ext0,6 with h0f = 0, h1f = 0, vf = 0,

and wf = 0.

• The submodule Ext(Σ7R2) has generators g ∈ Ext0,7 and h ∈ Ext0,8 with relations

h1g = 0, h0h = 0, and h21h = 0 (as well as additional generators and relations in

topological degree greater than 10).

• The submodule Ext(Σ8Z2) has generator i ∈ Ext0,8 with no relations.

The following classes are detected in mod 2 cohomology: a by ν2, d by ν3, f by ν32 , g by ν22ν3,

h by ν2ν
2
3, and i by ν

4
2 . The classes b, c, and e are not detected by mod 2 cohomology.

The convergence, though easily determined using the fact that differentials in the Adams

spectral sequence are equivariant for the E-action, was determined by Bayen in [146]. Differ-

entials are determined by their values on the generators, which are d2(b) = h30d, d2(c) = h30e,

and d2(i) = h20g; all other differentials on the nine generators vanish. We summarize in

Figure 22.
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Figure 22: The Adams spectral sequence computing k̃o∗(BSL(3,F2)). Left: the E2 page.
Right: the E4 = E∞ page, up to degree 8.
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We are interested in (the 2-completion of) k̃o∗(BSL(3,F2)) up to degree 7, which amounts

to resolving extension questions on the E∞-page. This has been done by Bayen.

Proposition 14.15 (Bayen [146, Theorem 3.6.1]).

1. There is an isomorphism of Z-graded ko∗-modules

k̃o∗(BSL(3,F2))⊗ Ẑ2
∼= (ko∗ ⊗ Ẑ2)∗ {α, δ, ϵ, ζ, . . .} /R3 ⊕ Σ6Z2 · ϕ, (14.16a)

where |α| = 2, |δ| = 3, |ϕ| = 6, and |ϵ| = |ζ| = 7. The ideal R3 of relations is

R3 = (2α, ηα, vα, 8δ, ηδ, 8ϵ, 4ϵ− vδ, 4ζ − 2ϵ, . . . ) (14.16b)

and in both (14.16a) and (14.16b), all unlisted classes are in degrees 8 and above.

2. The above isomorphism can be chosen so that the images of the generators in the E∞-

page of the Adams spectral sequence are: α 7→ a, δ 7→ d, ϕ 7→ f , ϵ 7→ e, and ζ 7→ g.

In particular,

k̃o2(BSL(3,F2))
∧
2
∼= Z2 · α, k̃o3(BSL(3,F2))

∧
2
∼= Z8 · δ,

k̃o6(BSL(3,F2))
∧
2
∼= Z2 · ϕ, k̃o7(BSL(3,F2))

∧
2
∼= Z2 · (ϵ− 2ζ)⊕ Z16 · ζ.

(14.17)

L(2), in fact, is very easy in the degrees we are interested in; for an explicit description

we need to use the cohomology of BS4.

Theorem 14.18 (Nakaoka [179, Theorem 4.1], Madsen-Milgram [180, Example 3.31]).

H∗(BS4;Z2) ∼= Z2[a, b, c]/(ac),

|a| = 1, |b| = 2, |c| = 3
(14.19)

The Steenrod squares of the generators are

Sq(a) = a+ a2, Sq(b) = b+ ab+ c+ b2, Sq(c) = c+ bc+ c2. (14.20)

The cohomology ring is due to Nakaoka; Madsen-Milgram realized the generators as

Stiefel-Whitney classes, so that the Steenrod squares given here follow from the Wu formula.

Remark 14.21. Comparing Theorems 14.4 and 14.18 we see immediately that ν2, ν3, ν3 ∈
H∗(BSL(3,F2);Z2) correspond to b, ab+ c, c ∈ H∗(BS4;Z2), respectively. This is also visible

in the classes named on the two sides of Figure 21.

Lemma 14.22 (Bayen [146, §3.5.3]). H∗(L(2);Z2) is a free A(1)-module on a countably

infinite basis consisting of a class in degree 4 and other classes in degrees greater than 7.

Proposition 14.23.
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1. ΩSpin
k (L(2)) vanishes for k ≤ 7 except for k = 4, where it is isomorphic to Z2.

2. Recall the map ψ4 from Proposition 8.21. The map

ΩSpin
4 (BS4)

ψ4−→ ΩSpin
4 (L(2))

∼=−→ Z2 (14.24)

is the bordism invariant
∫
a2b, where a and b are the classes introduced in Theo-

rem 14.18.

3. ΩSpin
k (BZ4 ∧ L(2)) is 0 for 0 ≤ k ≤ 4 and Z2 for 5 ≤ k ≤ 7. Analogously to (14.24),

these summands of ΩSpin
∗ (BZ4 ∧ L(2)) are detected by

∫
xa2b,

∫
ya2b, and

∫
xya2b in

degrees 5, 6, and 7 respectively.

Proof. Part (1) is a direct consequence of Margolis’ theorem [181]: free A(1)-module sum-

mands in cohomology lift to HZ2 summands after smashing with ko. If MTSpin denotes

the spectrum whose generalized homology theory is spin bordism, then H∗(MTSpin;Z2) is

isomorphic to A⊗A(1)M for some A(1)-module M [182, Theorem B], so the change-of-rings

trick (see for example [155, §4.5]) used to apply Margolis’ theorem to ko-homology also works

for spin bordism, and therefore Margolis’ theorem applies in the same way over MTSpin.

For part (2) , part (1) and Proposition 8.21 imply that H∗(BS4;Z2) contains a Σ4A(1)
summand corresponding to L(2) as a summand of ko ∧BS4, and that this summand can be

chosen to be any Σ4A(1) summand which is not in the image on cohomology of the maps

σ : BS4 → BZ2 or m◦ q : BS4 → BSL(3,F2). Then a quick computation of the A(1)-module

structure on H̃∗(BS4;Z2) in low degrees shows that a2b generates a free summand satisfying

these criteria.

For part (3), begin with the fact that for any A(1)-moduleM , A(1)⊗Z2M is a free A(1)-
module on a basis of the form {α⊗ βi}, where α is the generator of A(1) and βi is a basis of

M as a Z2-vector space. Since H̃
∗(BZ4;Z2) has a vector space basis {x, y, xy, y2, xy2, y3, . . .}

(Theorem 13.3), then H̃∗(BZ4 ∧ L(2);Z2) in degrees 7 and below is a free A(1)-module on

the classes xa2b, ya2b, and xya2b in degrees 5, 6, and 7 respectively. Margolis’ theorem then

finishes the proof for us.

14.2 Generators

We now move to the generators of ko∗(BSL(3,F2)) and ko∗(L(2)) for degree less than 8. A

key result by which we will determine these generators is the stable splitting of BS4 given

in Proposition 8.21. With this, we can study generators for ko∗(BSL(3,F2)) and ko∗(L(2))

by instead considering the generators of ko∗(BS4).
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Manifold Bordism class Image in E∞ Dimension Char class Reference

T 2 α a 2 ν2 Prop. 14.36
L3
4 δ d 3 ν3 Prop. 14.32

RP3 × RP3 ϕ f 6 ν32 Prop. 14.36
L3
4 ×Z2 K3 ϵ e 7 n/a §14.2.2
L7
4 ζ g 7 ν22ν3 Prop. 14.32

W4 4 a2b §14.2.3

Table 5: Generators of Ω̃Spin
∗ (BSL(3,F2)). We also include the generator W4 of ΩSpin

4 (L(2)),
which we need for the spin bordism of BS4.

Figure 23: The permutation (1 2 3 4) generating a Z4 as an element of S4 acting on a
tetrahedron (inside a cube).

14.2.1 Generators coming from ko∗(BZ4) and ko∗(B(Z2 × Z2))

Many of the generators of ko∗(BS4) can be determined by considering subgroups of S4.

Indeed, consider the inclusion Z4 ↪→ S4 given by 1 7→ (1 2 3 4). Thinking of S4 as the

tetrahedral symmetry group, this map can also be characterized as sending the generator

of Z4 to the tetrahedral symmetry given by the composition of a 90◦ turn in the R2
xy-plane

with a reflection in Rz, see Figure 23. The inclusion induces a map on Z2 cohomology. For

this, first recall the Z2 cohomology of BZ4 from Theorem 13.3.

With Theorems 14.18 and 13.3 in place, we can study the map on Z2 cohomology induced

from the inclusion Z4 ↪→ S4.

Lemma 14.25. The inclusion Z4 ↪→ S4 given by 1 7→ (1 2 3 4) induces a map on Z2

cohomology
Φ : H∗(BS4;Z2)→ H∗(BZ4;Z2);

a 7→ x, b 7→ y, c 7→ xy
(14.26)

Proof. The classes a, b, c ∈ H∗(BS4;Z2) are the first, second, and third Stiefel-Whitney

classes of the representation of S4 on R3 as the symmetries of the tetrahedron. Restricting

to Z4, we obtain a Z4 rotoreflection representation ρ, the direct sum of a Z4 rotation sym-

metry on the xy-plane and a reflection symmetry Z4 → Z2 → GL1(R) on the z-axis. This

representation is not contained in SO(3), so w1(ρ) ̸= 0, and one can also show w2(ρ) ̸= 0,
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e.g. because w2 of the rotation representation is nonzero and then using the Whitney sum

formula. Thus w1(ρ) = x and w2(ρ) = y, since those are the only nonzero options, and

therefore a, b pullback to x, y, respectively. The fact that c 7→ xy then follows from the fact

that Sq1(b) = ab+ c and Sq1(y) = 0.

Lemma 14.27. Let

Φ∗ : ExtA(1)(H
∗(BZ4;Z2),Z2) −→ ExtA(1)(H

∗(BS4;Z2),Z2) (14.28)

be the map of Adams E2-pages induced by the inclusion Z4 ↪→ S4. Then

Φ∗(θ) = 0 Φ∗(θλ1) = 0 Φ∗(θµ1) = h0e

Φ∗(κ1) = a Φ∗(κ2) = f Φ∗(ξ1) = h0c

Φ∗(θκ1) = d Φ∗(µ1) = 0 Φ∗(λ2) = h0i.

Φ∗(λ1) = b Φ∗(θκ2) = g

(14.29)

The reader can check that, restricted to classes in degrees 8 and below, the description

of Φ∗ in (14.29) extends uniquely to an E-module homomorphism.

Proof. In Theorem 13.3 and Corollary 14.9, we gave direct-sum decompositions ofH∗(BZ4;Z2)

and H∗(BSL(3,F2);Z2) as A(1)-modules; the map Φ∗ : H∗(BSL(3,F2);Z2) → H∗(BZ4;Z2)

mostly sends direct summands to direct summands. Specifically, using Lemma 14.25 to eval-

uate Φ∗ on an additive basis of H∗(BSL(3,F2);Z2) in degrees ∗ ≤ 8, we obtain the following

description of Φ∗.

1. There is a unique nonzero A(1)-module homomorphism ϕJ : Σ
2J → Σ2Cη; it is surjec-

tive, with kernel Σ3Q.

2. There is a unique nonzero A(1)-module homomorphism ϕQ : Σ
3Q → Σ3Cη; it is sur-

jective, with kernel Σ6Z2.

3. There is a unique A(1)-module homomorphism ϕZ2 : Σ
6A(1) ⊕ Σ8Z2 → Σ6Cη which

is nonzero when restricted both to Σ6A(1) and to Σ8Z2; it is surjective, with kernel

Σ7R2.

4. There is a unique nonzero A(1)-module homomorphism ϕR2 : Σ
7R2 → Σ7Cη; it is

surjective, with kernel Σ8J .

Then, there is some map ϕP : P → H̃≥10(BZ4;Z2) such that, under the isomorphisms given

in Proposition 13.20 and Corollary 14.9,

Φ = ϕJ ⊕ ϕQ ⊕ ϕZ2 ⊕ ϕR2 ⊕ ϕP : H̃∗(BSL(3,F2);Z2) −→ H̃∗(BZ4;Z2). (14.30)
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Thus it suffices to compute the effects of ϕJ , ϕQ, ϕZ2 , and ϕR2 on Ext. For this we use the fact

that each of these four maps is surjective, hence it and its kernel are a short exact sequence

of A(1)-modules, which induces a long exact sequence in Ext. In practice, knowing the Ext

of each of the three pieces of the short exact sequence usually dictates the maps on Ext by

exactness, and that is true in all four cases under study here. See [155, §4.6] for information

on how to display and compute these long exact sequences; we run them in Figure 24, and

from those charts we can read off the lemma statement.

Remark 14.31. The map Φ∗ of Adams E2-pages sends θ 7→ 0 but does not kill θκi. This is an

algebraic manifestation of the fact that even though ΩSpin
∗ (BZ4) is a ring, and it has a map

to ΩSpin
∗ (BS4), the latter is not a module over the former; only over ΩSpin

∗ . This is similar to

the situation we observed with Spin-Mp(2,Z) and Spin-GL+(2,Z) bordism in [28, §14.4].

Proposition 14.32. The map ko∗(BZ4) → ko∗(BS4) induced by the inclusion Z4 ↪→ S4

from Lemma 14.25 sends ℓ3 7→ δ and ℓ7 7→ ζ, and therefore L3
4 with either of its two spin

structures and S4-bundle induced from the Z4-bundle S
4 → L3

4 represents δ, and likewise for

L7
4 and ζ.

Proof. Recall from (14.29) that θκ1 7→ d and θκ2 7→ g. All four of these classes survive to the

E∞-page, so we can lift the map on E∞-pages to a map on ko-homology using Theorem 13.40

and Proposition 14.15 and conclude ℓ3 7→ δ and ℓ7 7→ ζ. Finally, using the generators

for ko∗(BZ4) we found in Proposition 13.43, we obtain the second part of the theorem

statement.

Remark 14.33. Looking at (14.29), the classes a ∈ Ext0,2 and f ∈ Ext0,6 are also in the image

of Φ∗; specifically, a = Φ∗(κ1) and f = Φ∗(κ2). However, since d2(κi) ̸= 0 for i = 1, 2, a and

f are not in the image of Φ∗ on the E∞-page, so the proof technique of Proposition 14.32

does not furnish representing manifolds for α ∈ ko2(BS4) or f ∈ ko6(BS4). We will find

generators using a similar technique on a different subgroup of S4 in Proposition 14.36.

Similarly, there exists an inclusion Z2×Z2 ↪→ S4 which helps determine the generator of

k̃o6(BSL(3,F2)).

Lemma 14.34. The inclusion j : Z2 ×Z2 ↪→ S4 defined by the transpositions (1 2)(3 4) and

(1 3)(2 4) induces a map on Z2 cohomology

H∗(BS4;Z2)→ H∗(B(Z2 × Z2);Z2)

a 7→ 0, b 7→ x2 + xy + y2, c 7→ x2y + xy2
(14.35)

where x, y ∈ H1(B(Z2 × Z2);Z2) are the generators corresponding to the first, resp. second

Z2 summands.

Proof. The map Z2 × Z2 → S4 factors through A4, so we can first ask how a, b, and c pull

back to A4, then restrict from A4 to Z2 × Z2.
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Figure 24: The map Φ∗ from the E2-page of the Adams spectral sequence for ko∗(BZ4) to
the E2-page for ko∗(BS4) can be calculated summand by summand. This is a picture of the
proof of Lemma 14.27; see also [28, Figure 23]. Each Adams chart is a depiction of a long
exact sequence in Ext, as in [155, §4.6]; color is the image of the quotient map in the short
exact sequence, and black is the kernel. Upper left: the map ϕJ and its kernel, and the
resulting long exact sequence in Ext. Upper right: the same, for ϕQ. Lower left: the same,
for ϕZ2 . Lower right: the same, for ϕR2 . Names of cohomology classes are as in Theorem 13.3
and Theorem 14.4; names for Ext classes are as in Theorem 13.36 and Corollary 14.14 (drawn
in Figures 20 and 22, left), and the maps ϕ• are as defined in the proof of Lemma 14.27.

For S4 → A4, H
1(BA4;Z2) = 0, so a pulls back to 0. For the class b, note that it

is the second Stiefel-Whitney class of the representation of S4 on R3 as the symmetries of

a tetrahedron. Restricting to A4, we obtain the orientation-preserving symmetries of the

tetrahedron. This representation is not spin (its spin lift is the binary tetrahedral group,
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which is not A4 × Z2), so w2 is nonzero. The only option in H2(BA4;Z2) = Z2 is the

nonzero element, which we will denote as u to match with the notation of [166]. Finally,

ab+ c = Sq1(b), so in BA4, c pulls back to Sq1(u).

To get from A4 to Z2 ×Z2, we recall that u pulls back to x2 + xy + y2; then c pulls back

to Sq1(x2 + xy + y2); see [166, Proposition 5.1] for reference.

Proposition 14.36. Let n = 1 or n = 3. Give RPn × RPn the “tautological (Z2 × Z2)-

bundle,” i.e. the (Z2 × Z2)-bundle π : P → RPn × RPn classified by the map

id : π1(RPn × RPn) ∼= Z2 × Z2 −→ Z2 × Z2. (14.37)

1. For n = 1:
∫
RP1×RP1 j∗(ν2) = 1, so RP1 × RP1 ∼= T 2, with any of its four spin

structures and with the principal S4-bundle induced from P by j, represents the class

α ∈ ko2(BS4).

2. For n = 3:
∫
RP3×RP3 j∗(ν32) = 1, so RP3 × RP3, with any of its spin structures and the

principal S4-bundle induced from P by j, represents the class ϕ ∈ ko6(BS4).

Proof. That
∫
j∗(ν2) ̸= 0, resp.

∫
j∗(ν32) ̸= 0 characterizes α, resp. ϕ, follows from the

fact that the images of α and ϕ on the E∞-page, which are a and f respectively (Proposi-

tion 14.15), are detected by the mod 2 cohomology classes ν2, resp. ν
3
2 (Corollary 14.14). By

Lemma 14.34, j∗(ν2) = x2 + xy + y2, so

j∗(ν32) = x6 + x5y + x3y3 + xy5 + y6. (14.38)

If we let z, resp. w denote the generators of the left, resp. right-hand copies ofH∗(RPn;Z2) in-

sideH∗(RPn×RPn;Z2), the Kunneth formula tells usH∗(RPn×RPn;Z2) ∼= Z2[z, w]/(z
n+1, wn+1),

and because the classifying map for P is the identity, x 7→ z and y 7→ w. First consider

n = 1: this means that, pulled back to RP1 × RP1, x2 7→ 0 and y2 7→ 0, but xy 7→ zw, the

non-zero top-degree cohomology class. Thus
∫
RP1×RP1 j∗(ν2) = 1.

Now n = 3. The ring structure we just described for H∗(RP3 × RP3;Z2) forces all of

the monomials in (14.38) to vanish except for x3y3, which is the nonzero class in H6(RP3 ×
RP3;Z2), so as needed,

∫
RP3×RP3 j∗(ν32) = 1.

Remark 14.39. How did we know to try finding a representative of ϕ for Z2 × Z2, rather

than some other subgroup of S4? One helpful fact is that, after a straightforward compu-

tation, one learns Sq2(Sq2(Sq2(j∗(ν32))) ̸= 0. Thus j∗(ν32) generates a free A(1)-submodule

of H∗(B(Z2 × Z2);Z2) [163, §D.4], which by Margolis’ theorem [181] means there is some

closed spin 6-manifold M with (Z2×Z2)-bundle P →M such that
∫
M
j∗(ν32) = 1. Thus this

straightforward algebraic calculation guides us on the harder and less formulaic problem of

finding generators.

105



14.2.2 The generator X7 in dimension 7

The manifolds we have found so far in dimension 7 do not generate Ω̃Spin
7 (BSL(3,F2)); we are

missing one generator, whose image in the Adams spectral sequence is the green, triangle class

e ∈ E1,8
∞ , which generates a Z2 summand. Under the inclusions Z4 ↪→ S4 and Z2 × Z2 ↪→ S4

given in Lemma 14.25 and Lemma 14.34, this class is not in the image of the induced maps

on Adams E2-pages. The following theorem of Mitchell and Priddy will therefore be of use

to us.

Theorem 14.40 (Mitchell-Priddy [128, Theorem A]). The inclusion D8 ↪→ S4 is one of the

maps in a 2-local stable equivalence

BD8 ≃ BS4 ∨ L(2) ∨BZ2 (14.41)

Hence, part of our strategy will be to construct a seven dimensional spin manifold X7

with D8 bundle and then use Theorem 14.40 to get from D8 to S4. Before we begin with the

construction of X7, we recall the Z2 action on a lens space L2n−1
k by ‘complex conjugation’.

Definition 14.42 ([28, Definition 14.72]). Let ζ be a primitive kth root of unity and L2n−1
k

denote the lens space which is the quotient of S2n−1 ⊂ Cn by the Zk-action on Cn which is

multiplication by ζ, which preserves the unit sphere. Complex conjugation exchanges ζ with

another primitive kth root of unity, and therefore the image of a Zk-orbit of S2n−1 under

complex conjugation is another Zk-orbit. Hence, this involution descends to an involution

on L2n−1
k , which is also referred to as complex conjugation.

Recall that the K3 surface is a closed, simply connected, spin 4-manifold. Thus it has a

unique spin structure; let B → K3 denote its principal Spin4-bundle of frames. K3 has an

orientation-preserving free involution ψ : K3 → K3 which does not lift to an involution on

B; this means that the quotient by the involution, the Enriques surface E, has a Spin-Z4

structure but is not spin [183, §C.4].

Definition 14.43. Let Z2 act diagonally on L3
4×K3 such that the action on the lens space

is by complex conjugation and the action on the K3 surface is free. We define X7 to be the

quotient.

As usual for manifolds defined in this manner, quotienting by the lens space defines a

fiber bundle π : X7 → E with fiber L3
4.

Notice that the complex conjugation involution passes to inversion on π1(L
3
4) = Z4.

Hence, since K3 is simply connected, π1(X7) = D8.

Theorem 14.44. X7 has a Spin structure.

Proof. First we need to show X7 is orientable, i.e. that the involution in Definition 14.43

is orientation-preserving. This follows because complex conjugation on L3
4 is orientation-

preserving [28, §14.3.5] and the involution on K3 is orientation-preserving, as noted above.
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In order to calculate w2 and assess whether X7 has a spin structure, we need more

information on TX7. We can stably split this vector bundle in the same manner as in [28,

§§14.3.3, 14.3.5, 14.3.6]: specifically, following the same line of proof as in [28, Proposition

14.74], we obtain an isomorphism

TX7 ⊕ R
∼=−→ V ⊕ V ⊕ π∗(TE), (14.45)

where V is the rank-two vector bundle associated to the principal D8-bundle which is the

universal cover S3 ×K3→ X7 and the defining two-dimensional real representation of D8.

Apply the Whitney sum formula to (14.45) to deduce

w2(X7) = w1(V )2 + π∗(w2(E)). (14.46)

We want to show this vanishes. Since E is Spin-Z4 but not Spin, there is a nontrivial

principal Z2-bundle P → E such that w2(E) = w1(P )
2,46 and since π1(E) ∼= Z2, there is

only one such P : the double cover K3 → E. Thus w2(X7) = w1(V )2 + π∗(w1(P ))
2, and so

to prove the theorem it suffices to show w1(V ) = π∗(w1(P )).

The classes w1(V ) and π∗(w1(P )) are equivalent to group homomorphisms π1(X7) ∼=
D8 → Z2; w1(V ) is identified with the map D8 → Z2 given by quotienting by rotations,

and π∗(w1(P )) is the map π1(X7)
π∗→ π1(E)

∼=→ Z2. Thus it suffices to know that the map

π1(X7)→ π1(E) is exactly the map D8 → Z2 that quotients by the rotation subgroup, which

follows from the long exact sequence of homotopy groups of the fiber bundle L3
4 → X7 → E

and the fact that the map π1(L
3
4)→ π1(X7) is exactly the inclusion of the rotation subgroup

Z4 ↪→ D8.

Theorem 14.47. X7 with its D8 bundle is nonzero in ΩSpin
7 (BD8) and linearly independent

from the generator L7
4 in ΩSpin

7 (BD8).

Proof. Suppose that M is a spin manifold with D8 bundle P → M . The quotient of P by

Z4 ⊂ D8 is a Z2-bundle M̃ which is a double cover of M . The assignment M 7→ M̃ defines

a homomorphism

T : ΩSpin
k (BD8)→ ΩSpin

k (BZ4) (14.48)

The map T is commonly referred to as the ‘transfer.’

Applying the map T to X7, we get L3
4 × K3. The manifold L3

4 × K3 is non-trivial in

ΩSpin
7 (BZ4). Indeed, the bordism invariant ηD1 − ηD0 of the lens space L3

4 is −3/8 [28, Table

17]. With this, and the fact that

ηD(L3
4 ×K3) = IndexD(K3) ηD(L3

4), (14.49)

46From [184, Footnote 13], we learn that a Spin-Z4 structure is equivalent to a P and a Spin structure on
E ⊕ σ⊕2

P , where σP is the real line bundle associated to P . To get the condition we claim, use the Whitney
sum formula.
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it follows that the bordism invariant ηD1 − ηD0 evaluated on L3
4×K3 is 3/4. In particular, the

manifold is non-trivial in bordism. Note here that we have used the fact that the K3 has

Dirac index (−2).
The other generator we have for ΩSpin

7 (BD8) is L7
4, see Proposition 14.32 and Theo-

rem 14.40 for reference. This generator vanishes when we apply the map T : its D8-bundle is

induced from a Z4-bundle (Proposition 14.32), and therefore T produces the trivial double

cover, which bounds [0, 1]×L7
4. Hence, we conclude that X7 is linearly independent from L7

4

in ΩSpin
7 (BD8).

14.2.3 The generator W4 of ko4(L(2))

The generator W4 of ko4(L(2)) is detected by the Z2 cohomology class a2b. Consider the

inclusion of D8 into S4. We have already considered the induced map on Z2 cohomology in

the context of Theorem 14.4. Indeed, the inclusion of D8 into SL(3,F2) induces a map on Z2

cohomology sending ν2, ν3, ν3 to x21 + w, x1w, and x2w. The following lemma then follows

from Remark 14.21.

Lemma 14.50. The inclusion D8 ↪→ S4 defined by (1 2 3 4) and (1 3) induces a map on Z2

cohomology defined by

k : H∗(BS4;Z2)→ H∗(BD8;Z2),

a 7→ x1 + x2, b 7→ x21 + w, c 7→ x2w
(14.51)

The generator of k̃o4(L(2)) is detected by a2b (Proposition 14.23). Hence, it suffices to

determine a four dimensional manifold W4 with D8 bundle such that
∫
W4
k∗(ab2) ̸= 0.

Definition 14.52. Let Z2 act on L3
4 × S1 by complex conjugation on the lens space, see

Definition 14.42, and the antipodal map on S1. We define W4 to be the quotient.

We remark that W4 is can be equivalently regarded as the quotient of S3 × S1 by the

D8 action generated by two diffeomorphisms r and s: r is multiplication by i on S3 and the

identity on S1 and s is reflection on S3 and the antipodal map on S1.

Lemma 14.53. W4 is orientable and spin.

Proof. We first check that W4 is orientable, or equivalently, whether the involution we used

to define it is orientation preserving. The antipodal map is orientation preserving on S1, and

complex conjugation is orientation preserving on L3
4. Therefore, the combination of these

two involutions is orientation preserving.

Next we check that W4 is spin. We follow a similar approach as that used in the proof

of [28, Proposition 14.74]. First, we remark that there is an isomorphism of vector bundles

T (L3
4 × S1)⊕ R2 ∼=−→ L2 ⊕ R2, (14.54)
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where L → L3
4 is the quotient of C→ S3 by the Z4 action.

Letting Z2 act on L3
4 × S1 by complex conjugation on L3

4 and the antipodal map on S1,

so that the quotient is W4, there is an isomorphism of vector bundles

TW4 ⊕ R2 ∼=−→ V 2 ⊕ σ2 (14.55)

where V and σ are as follows: if P → W4 denotes the quotient S3 × S1 → W4, which is a

principalD8-bundle, then σ is associated to P and the sign representationD8 → O(1) sending

rotations to 1 and reflections to −1, and V is associated to the standard representation D8 →
O(2) as rotations and reflections on R2. Thus, σ = Det(V ), so w1(V ) = w1(σ). Using that

w2(σ) = 0, an application of the Whitney sum formula then reveals that w2(W4) = 0.

All that’s left to do is verify that
∫
W4
k∗(ab2) ̸= 0. To proceed, we need the Z2 cohomology

of W4. Notice that W4 is obtained from L3
4 × S1 by a further Z2 quotient. Since Z2 acts as

sign reversal in the base the resulting spaces are given by the fiber bundle L3
4 ↪→ W4 → RP1.

Lemma 14.56. The Serre spectral sequence for the fiber bundle L3
4 → W4 → RP1 collapses,

providing an isomorphism

H∗(W4;Z2) ∼= Z2[x, y, w]/(x
2, xy + y2, w2),

|x| = |y| = 1, |w| = 2
(14.57)

Proof. The spectral sequence computing H∗(W4;Z2) is given in Figure 25. Clearly, the

spectral sequence collapses; there is no room for differentials.

q ↑
p→ 0 1

0

1

2

3

1 x

y xy

w wx

wy wxy

Figure 25: The Serre spectral sequence computing H∗(W4;Z2).

The multiplicative structure is clear except for the relation xy + y2 = 0. This follows

from the fact that x and y pull back from BD8, and x1x2 + x22 = 0 in H∗(BD8;Z2).

A straightforward application of Lemma 14.50 reveals that

k∗(ab2) = w(x1 + x2)
2 + (x1 + x2)

4 (14.58)
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Lemma 14.56 tells us that all terms vanish except wx22. Hence,
∫
W4
a2b = 1, and we conclude

that W4 represents the unique nonzero class in ko4(L(2)).

15 Calculations and generators for BZ4 ×BS4

The last piece of our computation is the most difficult: the low-degree reduced spin bordism

groups of BZ4 ×BS4. There are a few immediate simplifications we can make:

1. By Example 8.6, Ω̃Spin
∗ (BZ4 × BS4) is a direct sum of Ω̃Spin

∗ (BZ4), Ω̃
Spin
∗ (BS4), and

Ω̃Spin
∗ (BZ4 ∧ BS4). We calculated the first two summands in low degrees in Theo-

rem 13.40 and Propositions 14.15 and 14.23, so in this section we will only focus on

BZ4 ∧BS4.

2. By Proposition 8.21, BZ4 ∧BS4 splits stably as a wedge sum of BZ4 ∧BZ2 (which we

can ignore, by Proposition 8.23), BZ4 ∧BSL3(F2), and BZ4 ∧L(2). We will tackle the

latter two summands separately.

The most powerful simplifying technique is to work BZ4-equivariantly. Generally for a group

G, BG is not a topological group, but for A an abelian group there is a model for BA which

is a topological abelian group. Thus we can ask how ΩSpin
∗ (BZ4) acts on Ω̃Spin

∗ (BZ4 ∧BS4),

similar to our 3-primary analysis in §11.1. By Theorem 9.1, this action is also present in the

Adams spectral sequence, and differentials satisfy a Leibniz rule for it.

We take advantage of this extra symmetry in two ways: in §15.1, we use it to cleanly

describe and compute the differentials in the Adams spectral sequence for Ω̃Spin
∗ (BZ4 ∧

BS4) in the range we need; then, in §15.2, we describe all manifold representatives of the

corresponding bordism classes in terms of just a few new generators.

15.1 Adams spectral sequences for ko∗(BZ4∧BSL(3,F2)) and ko∗(BZ4∧
L(2))

In this subsection, we run the Adams spectral sequence computing ko∗(BZ4 ∧ BSL(3,F2))

in degrees 7 and below. At all stages we describe the structure for BZ4 ∧ BSL(3,F2) as a

module over the corresponding structure for BZ4.

Our computation is front-loaded with algebraic calculations that will simplify the actual

spectral sequence later. First, in Lemmas 15.4, 15.6, and 15.9, we study the Ext structure on

some tensor products of A(1)-modules. Using this, we describe the E2-page as a module over

Ext(H∗(BZ4;Z2)) in Theorem 15.13. Using this and the differentials we calculated in Propo-

sition 13.38 and §14.1, we compute differentials in our spectral sequence in Theorem 15.16,

then address extensions in Theorem 15.22.
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Remark 15.1. It would be nice to apply the stable splitting techniques we have used for

BZ4 ∧ BSL(3,F2). However, Martino-Priddy-Douma show that Σ∞(BZ4 ∧ BSL(3,F2))

is indecomposable [185, Example 5.3]. Specifically, they show that the decomposition of

Σ∞(BZ4 ∧ BD8) into indecomposable summands can be found by taking the indecompos-

able summands of each factor and smashing them together — the spectrum does not simplify

further. Since Σ∞BZ4 is indecomposable and BSL(3,F2) is stably an indecomposable sum-

mand of BD8 [128, Theorem A], Σ∞(BZ4 ∧BSL(3,F2)) is indecomposable.

Let M and N be A(1)-modules. Then there is a map

ExtA(1)(M,Z2)⊗ ExtA(1)(N,Z2) −→ ExtA(1)(M ⊗N,Z2), (15.2)

which we call the Kunneth map – often it arises by applying Ext to the Kunneth map in

cohomology of a smash product of spaces. In this case, the Kunneth map on Ext converges in

the Adams spectral sequence to the product map on ko-homology groups. We will evaluate

this Kunneth map in a few examples.

Recall from Proposition 13.20 that, as an A(1)-module, H̃∗(BZ4;Z2) is a sum of shifts

of Z2 and Cη. Tensoring with Z2 does not change the isomorphism type of an A(1)-module,

so we focus on Cη.

Remark 15.3. Determining the E-module structure on Ext(M ⊗Cη,Z2) is easy, thanks to a

trick: there is an isomorphism Cη ∼= A(1)⊗E(1)Z2, where E(1) :=
〈
Sq1, Sq2Sq1 + Sq1Sq2

〉
, so

by the change-of-rings theorem, ExtA(1)(Cη ⊗M) ∼= ExtE(1)(M). The reference [166] works

out Ext over E(1) for several commonly occurring E(1)-modules. However, we will not use

this shortcut much: it does not provide any insight on the Kunneth map, hence does not

help much with the ΩSpin
∗ (BZ4)-module structure on ΩSpin

∗ ((BZ4)+∧BSL(3,F2)). The reader

may enjoy trying the E(1) trick to compute the Ext groups we work out below more directly

as a check of our calculations.

Lemma 15.4.

1. With notation for ExtA(1)(J) and ExtA(1)(Cη) as in Proposition 13.22 and Corol-

lary 14.14, there is an isomorphism of E-modules

ExtA(1)(J ⊗ Cη) ∼= (E/h1) {j, k, ℓ, . . .} /(h0j, vj, . . . ), (15.5)

with j ∈ Ext0,0, k ∈ Ext0,2, and ℓ ∈ Ext1,5, and all generators and relations not listed

are in topological degree 5 and above.

2. The Kunneth map sends a⊗ κ 7→ j, b⊗ κ 7→ h0k, b⊗ λ 7→ h0ℓ, and a⊗ λ 7→ 0.

Proof. One can check by explicit computation that J⊗Cη ∼= A(1)⊕Σ2Cη. Ext(A(1)) ∼= Z2

in bidegree (0, 0) with trivial E-action, and Ext(Cη) appears in Proposition 13.22 (drawn in

Figure 19); putting these together, we conclude the first part of the lemma.
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For the Kunneth map in the second part of the lemma, two of the classes are easy: κ and

a are both represented by the classes in Ext0 = Hom(–,Z2) which preserve the lowest-degree

element in an A(1)-module and kill all others. One can explicitly compute the tensor product

of those homomorphisms and see that it is non-trivial; since there is a unique nonzero class

in Ext0,0(J⊗Cη) by the first part of the lemma, we deduce a⊗κ must be this nonzero class,

which is j.

Since h0a = 0, h0(a ⊗ λ) 7→ 0 under the Kunneth map. Multiplying by h0, as a map

Ext1,3(J⊗Cη)→ Ext2,4(J⊗Cη), is injective by the first part of the lemma, so h0(a⊗λ) 7→ 0

under the Kunneth map forces a⊗ λ to also map to 0.

The remaining two classes can be sorted by comparing with the Kunneth map over

A(0) :=
〈
Sq1
〉
⊂ A(1). The forgetful map ExtA(1)(Cη) → ExtA(0)(Cη) is injective in topo-

logical degree 2 and below by Lemma 13.28, so if we want to prove b⊗κ = h0k and b⊗λ = h0ℓ,

it suffices to do so for extensions of A(0)-modules.

As A(0)-modules, Cη ∼= Z2⊕Σ2Z2, and under the isomorphism ExtA(0)(Z2,Z2) ∼= Z2[h0],

κ pulls back to h0 for the degree-0 Z2 and λ pulls back to h20 for the degree-2 copy of Z2 by

Lemma 13.28. Thus, if we can show that b ∈ ExtA(1)(J) is non-trivial when pulled back to

ExtA(0)(J), then b⊗ κ and b⊗ λ are nonzero; since they each live in a one-dimensional Ext

group, they must be equal to h0k, resp. h0ℓ. So we finish the proof by showing an explicit

A(1)-module extension representing b is non-split as an A(0)-module extension.

Ext1,3(J) ∼= Z2, so any non-split extension 0 → Σ3Z2 → J̃ → J → 0 represents b. For

example, we could let J̃ := A(1)/(Sq2Sq1Sq2),47 with the map to J ∼= J̃/(Sq3) given by

the quotient. We draw this extension in Figure 26, left. The Adem relation Sq1Sq2 = Sq3

implies that as A(0)-modules, the extension is also not split, as we draw in Figure 26, right:

the image of b ∈ ExtA(0)(J) is nonzero.

Σ3Z2 J̃ J Σ3Z2 J̃ J

Figure 26: Left: an A(1)-module extension representing the class b ∈ Ext1,3(J,Z2) defined
in Corollary 14.14. Right: the same extension as A(0)-modules is not split. This is an
ingredient in the proof of Lemma 15.4.

Lemma 15.6.

47Baker [186, §5] calls this A(1)-module the whiskered Joker.
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1. With notation for ExtA(1)(Q) and ExtA(1)(Cη) as in Proposition 13.22 and Corol-

lary 14.14, there is an isomorphism of E-modules

ExtA(1)(Q⊗ Cη) ∼= (E/h1) {n, p, . . .} /(. . . ), (15.7)

with n ∈ Ext0,0 and p ∈ Ext0,2, and all generators and relations not listed are in

topological degree 4 and above.

2. The Kunneth map sends d⊗ κ 7→ n and d⊗ λ 7→ h0p.

Proof. The first part of the lemma can be computed using the E(1) trick (see Remark 15.3);

alternatively, by direct computation one finds an A(1)-module isomorphism

Q⊗ Cη ∼= A(1) · x⊕ Σ2A(1) · y/(Sq1x, Sq1y, Sq2Sq3x = Sq3y), (15.8)

and the latter module is exactly the one studied by Davighi-Lohitsiri [187, Appendix A] for

applications to Spin-U(2) bordism. They compute enough about its Ext to imply the first

part of the lemma.

The second part can be proven in exactly the same way as the second part of Lemma 15.4:

d ⊗ k has to correspond to a nontrivial homomorphism Q ⊗ Cη → Z2 and live in bidegree

(0, 0), so is n, and for d⊗ λ, one can check over A(0), where the relation is easier.

Lemma 15.9. There is an A(1)-module isomorphism A(1) ⊗ Cη ∼= A(1) ⊕ Σ2A(1); thus
there is an E-module isomorphism ExtA(1)(A(1)⊗ Cη) ∼= Z2 · {σ1, σ2} with σ1 ∈ Ext0,0 and

σ2 ∈ Ext0,2. If the A(1) is generated by a mod 2 cohomology class g1 and Cη is generated by

g2, then σ1 is detected by the mod 2 cohomology class g1g2 and σ2 is detected by g1Sq
2(g2).

The image of the Kunneth map is the vector space generated by σ1.

Next, we want to understand H̃∗(BZ4 ∧ BSL(3,F2);Z2) as an A(1)-module, as a first

step to understanding it as a module over Ext(H∗(BZ4;Z2)). This amounts to plugging

Proposition 13.20 and Corollary 14.9 into the Kunneth formula:

Proposition 15.10. There is an isomorphism of A(1)-modules

H̃∗(BSL(3,F2) ∧BZ4;Z2)

∼= ΣZ2 ⊗ H̃∗(BSL(3,F2);Z2)⊕ Σ2Cη ⊗ H̃∗(BSL(3,F2);Z2)

⊕Σ3Cη ⊗ H̃∗(BSL(3,F2);Z2)⊕ Σ6Cη ⊗ H̃∗(BSL(3,F2);Z2)

⊕Σ7Cη ⊗ H̃∗(BSL(3,F2);Z2)⊕M,

(15.11)

where M is concentrated in degree ∗ ≥ 10.

Recalling the A(1)-module structure on H̃∗(BSL(3,F2);Z2) from Corollary 14.9, we see

that as an E-module, Ext(H̃∗(BZ4 ∧ BSL(3,F2);Z2)) is a direct sum of the following E-
modules:
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• Coming from ΣZ2 ⊗ H̃∗(BSL(3,F2);Z2) we have

Ext(Σ3J)⊕ Ext(Σ4Q)⊕ Ext(Σ7A(1))⊕ Ext(Σ8R2)⊕ Ext(M1). (15.12a)

• Coming from Σ2Cη ⊗ H̃∗(BSL(3,F2);Z2) we have

Ext(Σ4(J ⊗ Cη))⊕ Ext(Σ5(Q⊗ Cη))⊕ Ext(Σ8A(1))⊕ Ext(M2). (15.12b)

• Coming from Σ3Cη ⊗ H̃∗(BSL(3,F2);Z2) we have

Ext(Σ5(J ⊗ Cη))⊕ Ext(Σ5(Q⊗ Cη))⊕ Ext(M3). (15.12c)

• Coming from Σ6Cη ⊗ H̃∗(BSL(3,F2);Z2) we have

Ext(Σ8(J ⊗ Cη))⊕ Ext(M4). (15.12d)

Each Mi is concentrated in degrees 9 and above, so we can and do ignore it. Therefore we

need to know Ext(J), Ext(Q) and Ext(R2), which are given in Corollary 14.14, as well as

Ext(J ⊗ Cη) and Ext(Q⊗ Cη), which we computed in Lemmas 15.4 and 15.6 respectively.

Gathering these together, we obtain a complete description of the E2-page of this Adams

spectral sequence as an E-module. Next, we want to upgrade this to an Ext(H∗(BZ4;Z2))-

module:

Theorem 15.13. There is an isomorphism of ExtA(1)(H
∗(BZ4;Z2))-modules

ExtA(1)(H̃
∗(BZ4 ∧ (BS4)+;Z2)) ∼= E {a, b, c, d, e, f, g, h, i, k, ℓ, p, . . .} /R4, (15.14a)

where a ∈ Ext0,2, b ∈ Ext1,5, c ∈ Ext2,10, d ∈ Ext0,3, e ∈ Ext1,8, f, k ∈ Ext0,6, g, p ∈ Ext0,7,

h, i ∈ Ext0,8, and ℓ ∈ Ext1,9, and where the ideal R4 of relations is given by

R4 =(h0a, h1a, va, λ1a, µ1a, h1d, vd+ h20e, λ1d+ h0p, h1b, vb+ h20c,

κ1b+ h0k, λ1b+ h0ℓ, h0f, h1f, h1g, h0h, h1k, κ1k, h1p, . . . )
(15.14b)

and all unlisted generators and relations are in topological degrees 9 and above.

Proof. We want to determine products of classes in Ext(H∗(BZ4;Z2)) and Ext(H̃∗((BZ4)+∧
BSL(3,F2);Z2). If the class in Ext(H∗(BZ4;Z2)) comes from the Σ summand in degree 0,

that is the identity in H∗(BZ4;Z2), so these Ext classes act the same way E does. The Ext

classes coming from ΣZ2 ⊂ H∗(BZ4;Z2) are a cyclic E-module generated by θ; tensoring

with ΣZ2 is the same as shifting upwards by 1, so for Ext(ΣZ2 ⊗ H̃∗(BSL(3,F2));Z2), we

get θ times the classes in Ext(H∗(BSL(3,F2);Z2)) that we computed in Corollary 14.14.

The remaining summands we need to understand are all of the form ΣkCη⊗H̃∗(BSL(3,F2);Z2)).

The module structure follows from the description of the Kunneth map in Lemmas 15.4, 15.6,
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and 15.9 applied to whatever classes in Ext(H∗(BZ4;Z2)) correspond to κ and λ of that par-

ticular Cη summand, namely κ1 and λ1 for Σ2Cη; θκ1 and θλ1 for Σ3Cη, and κ2 and λ2 for

Σ6Cη.
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Figure 27: Left: the E2 page of the Adams spectral sequence computing k̃o∗(BZ4 ∧
BSL(3,F2)). The differentials shown here are calculated in Theorem 15.16. Right: the
E3 = E∞-page.

We draw the submodule coming from BZ4 ∧ BS4 in Figure 27, left. In particular, the

relations in (15.14b) imply that in topological degree 8 and below, every class is either part of

an infinite h0-tower, or is annihilated by h0, and all of these classes except θe are annihilated

by h1. We can therefore account for all classes in those degrees:

Corollary 15.15. Ext(H̃∗(BZ4 ∧ BS4;Z2) is generated as a Z2[h0]-module in topological

degrees 8 and below by the following classes.

3. θa ∈ Ext0,3 (annihilated by h0).

4. θd ∈ Ext0,4 (h0-tower) and κ1a ∈ Ext0,4 (annihilated).

5. θκ1a ∈ Ext0,5 (annihilated), κ1d ∈ Ext0,5 (h0-tower), θb ∈ Ext1,6 (h0-tower).

6. k ∈ Ext0,6 (h0-tower), θκ1d ∈ Ext0,6 (h0-tower).

7. θf ∈ Ext0,7 (annihilated), p ∈ Ext0,7 (h0-tower), θk (h0-tower).

8. θp ∈ Ext0,8 (h0-tower), θg ∈ Ext0,8 (h0-tower), κ1f ∈ Ext0,8 (annihilated), κ2a ∈
Ext0,8 (annihilated), θe ∈ Ext1,9 (h0-tower), ℓ ∈ Ext1,9 (h0-tower).

Theorem 15.16.

1. In the Adams spectral sequence computing ko∗(BZ4∧BSL(3,F2)), whose E2-page is as

given in Theorem 15.13, the value of d2 on the classes listed in Corollary 15.15 is

d2(θb) = h30θd d2(p) = h20θκ1d

d2(κ1d) = h20θd d2(θk) = h20θκ1d

d2(k) = h0θb+ h30κ1d d2(ℓ) = h30θk + h30p

(15.17)
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and is 0 on the remaining classes in Corollary 15.15.

2. For r > 2, dr vanishes in topological degrees 8 and below.

Therefore this Adams spectral sequence collapses at E3 in topological degree 7 and below.

Proof. We use the fact that Adams differentials satisfy a Leibniz rule for the module action:

if α ∈ Ext(H∗(BZ4;Z2)) and β ∈ Ext(H̃∗((BZ4)+ ∧BSL(3,F2);Z2)), then

d2(αβ) = d2(α)β + αd2(β). (15.18)

Using the differentials we computed in Proposition 13.38 and §14.1, we can directly evaluate

most of the differentials we need.

In many cases, d2(α) = 0 and d2(β) = 0, so d2(αβ) = 0 as well. This is the case for

αβ ∈ {θa, θd, θκ1a, θκ1d, θf, θg, θe}.
In some cases, d2(α) ̸= 0, but the relations in (15.14b) kill the differential anyway.

Namely, because h0a = 0 and h0f = 0,

d2(κ1a) = h20θa+ κ1 · 0 = 0

d2(κ1f) = h20θf + κ1 · 0 = 0

d2(κ2a) = h0θλ1a+ κ2 · 0 = 0.

(15.19)

Directly calculating with the Leibniz rule also nets us a few of the nonvanishing differentials:

d2(θb) = 0 · b+ h30θd = h30θd

d2(κ1d) = h20θd+ κ1 · 0 = h20θd.
(15.20)

Now we tackle k, ℓ, and p using h0-injectivity in a manner reminiscent of the proof of

Proposition 13.35. For example, the Leibniz rule tells us

d2(κ1b) = h20θb+ h30κ1d. (15.21a)

Since h0k = κ1b by (15.14b) and d2(h0) = 0,

h0d2(k) = h20θb+ h30κ1d. (15.21b)

From Corollary 15.15, we know that h0 : Ext
2,7 → Ext3,8 is injective, so we can cancel a

factor of h0 and conclude

d2(k) = h0θb+ h20κ1d. (15.21c)

In the same way, we have d2(λ1b) = h30θκ1b + λ1(h
3
0d) = h40θk + h40p from the Leibniz rule,

together with h0ℓ = λ1b from (15.14b), and the action of h0 is once again injective here, so

we deduce d2(ℓ) = h30θk + h30p. And lastly, d2(λ1d) = h30θκ1d and h0p = λ1d, and h0 acts

injectively here, so d2(p) = h20θκ1d.
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Only θk and θp remain, and they can be dispatched directly by the Leibniz rule, now

that we know d2(k) and d2(p).

Thanks to these differentials d2, on the E3-page there are no classes in filtration 3 or

higher in degrees 7 and below (see Figure 27, right, for a picture). Thus in this range, dr
vanishes for r ≥ 3.

Now we compute extensions to determine the complete structure as a ko∗(BZ4)-module.

Theorem 15.22.

1. There is an isomorphism of ko∗(BZ4)-modules

k̃o∗(BZ4 ∧ (BSL(3,F2))+) ∼= ko∗ {α, δ, ϵ, ϕ, ζ, A,B,C, . . .} /R5, (15.23)

where |α| = 2. |δ| = 3, |ϵ| = 7, |ϕ| = 6, |ζ| = 7, |A| = 4, |B| = 5, and |C| = 7. The

ideal R5 of relations is

R5 = (2α, ηa, vα, q5α, 8δ, ηδ, 4ϵ− vδ, 8ϵ, 2ϕ, ηϕ, 8ζ − 4ϵ,

2A, ηA, ℓ1A− ℓ3α, ℓ3A, 2B, ηB, ℓ1B − 2ℓ3δ, 8C,

ℓ3A− c1ℓ1ϕ+ 4c2C, q5δ − 4c3C, . . . )

(15.24)

and all generators and relations not listed are in degrees 8 and above, where c1, c2, c3 ∈
Z2 are undetermined.

2. The generators listed in (15.23) may be chosen so that their images in the E∞-page of

the Adams spectral sequence are:

α 7→ a, δ 7→ d ϕ 7→ f

ϵ 7→ e ζ 7→ g

A 7→ κ1a B 7→ θb+ h0κ1d C 7→ p+ θk.

(15.25)

Proof. The relations involving α, δ, ϕ, ϵ, and ζ and elements of ko∗(pt) were addressed

in Proposition 14.15. Next, one observes that on the E∞-page for k̃o(BZ4 ∧ BSL(3,F2))

(Figure 27, right), the only classes that cannot be written as a product of a class in the

E∞-page for BZ4 (Figure 20, right) and a class in the E∞-page for BSL(3,F2) (Figure 22,

right) are κ1a, θb+ h0κ1d, and p+ θk, together with multiples of those classes by powers of

h0. Thus there are classes A, B, and C in k̃o∗(BZ4 ∧BSL(3,F2)) lifting those classes on the

E∞-page, and as claimed α, δ, ϕ, ϵ, ζ, A, B, and C generate k̃o∗((BZ4)+ ∧BSL(3,F2)) as a

ko∗(BZ4)-module. Now we must figure out the remaining relations.

For ko-homology classes x, y, and z, we say (x, y) is an extension problem (for multipli-

cation by z) if it is not clear from the E∞-page of the Adams spectral sequence whether xz

is equal to y.
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Our first stop is multiplication by 2, i.e. z = 2. The E∞-page tells us some extensions

via the action of h0 (e.g. h20(p+ θk) ̸= 0 lifts to 4C ̸= 0), and rules out some others because

an extension by 2 must preserve topological degree and raise the Adams filtration by at

least 1. Looking at Figure 27, right, this leaves four extension problems for multiplication

by 2: (A, 2ℓ1δ), (ℓ3α,B), (ℓ1ϕ, 2C), and (ℓ1ϕ, 4C). Only the second of these four extension

problems can affect the ko∗-module structure of the final answer, but all four affect the

ko∗(BZ4)-module structure. Fortunately, these four extensions all split, and for the same

reason: Margolis’ theorem [181] shows that classes on the E2-page arising from Ext of a free

A(1)-module summand in the cohomology of a space or spectrum cannot support nonzero

differentials or participate in nonzero extensions by elements in π∗(S), such as 2 and η. In

this specific case, to use Margolis’ theorem we need that the classes κ1a, θκ1a, and θf all

come from free A(1)-module summands in H̃∗(BZ4 ∧ BSL(3,F2);Z2). Since Ext0 = Hom,

classes in Adams filtration 0 can be represented by A(1)-module homomorphisms to t : ΣtZ2

(see Proposition 12.9); to check that this homomorphism generates a free summand, compute

Sq2Sq2Sq2 on a class x with t(x) ̸= 0 (see Freed-Hopkins [163, §D.4]).

• Since κ1 came from y ∈ H2(BZ4;Z2) and a came from ν2 ∈ H2(BSL(3,F2);Z2),

the class yν2 detects κ1a, so to invoke Margolis’ theorem one can check that, indeed,

Sq2(Sq2(Sq2(yν2))) ̸= 0.

• Likewise, θ is detected by x ∈ H1(BZ4;Z2), and Sq2(Sq2(Sq2(xyν2))) ̸= 0, preventing

θκ1a from participating in an extension.

• Finally, f is detected by ν32 and θ by x, so θf is detected by xν32 , and Sq2(Sq2(Sq2(xν32))) =

0.

Next, extensions by η. A priori, the possible pairs for hidden extensions by η are (ℓ1α, 2ℓ1δ);

(c1ℓ1δ + c2A,B) for some c1, c2 not both 0; (ℓ3α, 2ℓ3δ), and (ℓ3δ, c3C) for C3 = 2, 4, or 6.

However, from Proposition 14.15 we know ηα = 0 and ηδ = 0, which splits almost all of

these hidden extensions, leaving only (A,B), which splits by Margolis’ theorem.

Hidden extensions by v are ruled out by degree reasons: any such extension must increase

Adams filtration by at least 3, but all classes in topological degree at most 7 on the E∞-page

have Adams filtration at most 2. And the Bott class is in too high of a degree to be relevant

for us.

The relation ℓ21 = 0 leaves very little room for there to be hidden extensions by ℓ1, since

on the E∞-page so many classes are products with θ, or admit a nonzero product with θ,

lifting to provide most of the information on the ℓ1-action on k̃o∗((BZ4)+∧BSL(3,F2)). The

only ambiguity is what ℓ1A is in terms of the generators in degree 5, but this can be solved

by redefining B if necessary, and such a choice does not affect the rest of the generators and

relations. So there are no hidden ℓ1-extensions. (The relation ℓ1B = 2ℓ3δ is not hidden, as

it is visible from the θ-action on the E∞-page.)
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For ℓ3, degree reasons suggest the following hidden extensions: (θα, c1ℓ3δ) for c1 equal to

1, 2, or 3; and (c2θδ+ c3A, c4ℓ1ϕ+ c5C) for c2, c3 ∈ Z2 not both zero and c4 ∈ Z2 and c5 ∈ Z8

not both zero. The first class of hidden extensions are split by the fact θℓ3 = 0, as are the

extensions in the second class with c3 = 0. We do not solve the second class of extensions in

this theorem, though we note that since 2A = 0, c5 must be a multiple of 4.

The only remaining relation in topological degree less than 8 is q5α, which we have left

unresolved.

In a moment, when we search for manifold generators for the corresponding bordism

groups, it will be helpful to unspool the module structure in Theorem 15.22 into something

more explicit.

Corollary 15.26. There are isomorphisms

k̃ok(BZ4 ∧BSL(3,F2)) ∼= 0, k ≤ 2,

k̃o3(BZ4 ∧BSL(3,F2)) ∼= Z2 · ℓ1α

k̃o4(BZ4 ∧BSL(3,F2)) ∼= Z4 · ℓ1δ ⊕ Z2 · A

k̃o5(BZ4 ∧BSL(3,F2)) ∼= Z2 · ℓ1A⊕ Z2 ·B

k̃o6(BZ4 ∧BSL(3,F2)) ∼= Z4 · ℓ3δ

k̃o7(BZ4 ∧BSL(3,F2)) ∼= Z8 · C ⊕ Z2 · θϕ.

(15.27)

Just as the Adams spectral sequence for ko(L(2)) was simple in comparison to ko∗(BSL(3,F2)),

the Adams spectral sequence for ko∗(BZ4∧L(2)) is much simpler than ko∗(BZ4∧BSL(3,F2)).

Indeed, an immediate consequence of Theorem 13.3 and Lemma 14.22 is that all nonzero

classes in the second page of the Adams spectral sequence computing ko∗(BZ4 ∧L(2)) lie in
filtration zero, and for n ≤ 7, all E0,n

2 (BZ4 ∧ L(2)) vanish except

E0,5
2 (BZ4 ∧ L(2)), E0,6

2 (BZ4 ∧ L(2)), E0,7
2 (BZ4 ∧ L(2)) (15.28)

Furthermore, the spectral sequence collapses at E2, giving us

ko5(BZ4 ∧ L(2)) ∼= Z2, ko6(BZ4 ∧ L(2)) ∼= Z2, ko7(BZ4 ∧ L(2)) ∼= Z2, (15.29)

detected by the mod 2 cohomology classes xa2b, ya2b, and xya2b respectively.

15.2 Generators

15.2.1 Generators coming from the Kunneth map

The Adams Kunneth map (15.2), X = BZ4 and Y = BSL(3,F2), can be used to de-

termine many of the generators for ko(BZ4 ∧ BSL(3,F2)). Indeed, for those classes in

119



Ext(H̃∗(BZ4;Z2)⊗ H̃∗(BSL(3,F2);Z2)) that are in the image of the Adams Kunneth map,

the generators of the corresponding elements in k̃o(BZ4 ∧ BSL(3,F2)) are products of gen-

erators from k̃o∗(BZ4) and k̃o∗(BSL(3,F2)), which we determined in Sections 13.3 and 14.2.

• In dimension 3, the generator, detected by θa, is generated by L1
4 × T 2.

• In dimension 4, the Z4 summand, detected by θd, is generated by L1
4 × L3

4.

• In dimension 5, the Z2 summand detected by θκ1a is generated by L3
4 × T 2.

• In dimension 6, the generator, detected by θκ1d, is generated by L3
4 × L3

4.

• In dimension 7, the Z2 summand detected by θf is generated by L1
4 × RP3 × RP3.

15.2.2 Generators coming from k̃o∗(BZ4 ∧BZ4) and k̃o∗(BZ2 ∧B(Z2 × Z2))

As in the case of k̃o∗(BSL(3,F2)) in Section 14.2, we study the generators of k̃o(BZ4 ∧
BSL(3,F2)) using Proposition 8.21. That is, we instead consider the question of determining

generators for k̃o∗(BZ4 ∧BS4). For this, subgroups of Z4 × S4 will be of particular use.

Lemma 15.30. The inclusion Z2 × (Z2 × Z2) ↪→ Z4 × S4 given by (1, 0, 0) 7→ (2, id),

(0, 1, 0) 7→ (0, (1 2)(3 4)), and (0, 0, 1) 7→ (0, (1 3)(2 4)) induces a map on Z2 cohomology

H∗(BZ4 ×BS4;Z2)→ H∗(BZ2 ×B(Z2 × Z2);Z2)

x 7→ 0, y 7→ α2, a 7→ 0, b 7→ β2 + βγ + γ2, c 7→ β2γ + βγ2
(15.31)

where
H∗(BZ4 ×BS4;Z2) ∼= Z2[x, y, a, b, c]/(x

2, ac)

H∗(BZ2 ×B(Z2 × Z2);Z2) ∼= Z2[α, β, γ]
(15.32)

Proof. The claim follows from the Kunneth theorem and Lemma 14.34.

Proposition 15.33. Consider RP3×S1 with any of its four spin structures and the principal

(Z4 × S4)-bundle P → RP3 × S1 specified by the homomorphism

π1(RP3 × S1) ∼= Z2 × Z f1→ Z2 × Z2 × Z2
f2→ Z4 × S4, (15.34)

where f1(1, 0) = (1, 1, 0), f1(0, 1) = (0, 0, 1), f2(1, 0, 0) = (2, 0), f2(0, 1, 0) = (0, (1 2)(3 4)),

and f2(0, 0, 1) = (0, (1 3)(2 4)). Then for some λ ∈ {1, 3}, [RP3×S1, P ] ∈ Ω̃Spin
4 (BZ4∧BS4)

is equal to A+ λℓ1δ.

The exact value of λ could depend on the choice of spin structure, and in any case does

not matter to us; all we need from Proposition 15.33 is that this spin bordism class is linearly

independent from ℓ1δ, so that RP3 × S1 and L1
4 × L3

4 with their (Z4 × S4)-bundles generate

Ω̃Spin
4 (BZ4 ∧BS4).
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Proof. From Corollary 15.26, Ω̃Spin
4 (BZ4∧BS4) ∼= Z2 ·A⊕Z4 · ℓ1δ, and from the images of A

and ℓ1δ on the E∞-page (Theorem 15.22), we learn A is detected by the mod 2 cohomology

class yb and ℓ1δ is detected by xc. Thus to prove the lemma it suffices to show∫
RP3×S1

y(P )b(P ) =

∫
RP3×S1

x(P )c(P ) = 1. (15.35)

Under the inclusion Z2 × (Z2 ×Z2) ↪→ Z4 × S4 described in Lemma 15.30, the class yb pulls

back to

α2β2 + α2βγ + α2γ2 (15.36)

A straightforward characteristic class computation reveals that for the bundle specified in the

theorem statement, all terms in (15.36) vanish except α2βγ, which is nonzero, so
∫
RP3×S1 yb =

1. In a similar way, Lemma 15.30 implies xc pulls back to α(β2γ + βγ2), and plugging

in the bundle P in the theorem statement, we have αβ2γ ̸= 0 but αβγ2 = 0, implying∫
RP3×S1 xc = 1.

Proposition 15.37. Consider T 4×RP3 with any of its 32 spin structures and the principal

(Z4 × S4)-bundle P → T 4 × RP3 specified by the homomorphism

π1(T
4 × RP3) ∼= Z4 × Z2 −→ Z4 × S4

(e⃗1, 0) 7−→ (1, 0)

(e⃗2, 0) 7−→ (0, (1 2)(3 4))

(e⃗3, 0) 7−→ (0, (1 3)(2 4))

(e⃗4, 0) 7−→ (0, (1 3)(2 4))

(0, 1) 7−→ (2, (1 2)(3 4)).

(15.38)

Then there is an odd λ such that [T 4 × RP3, P ] = λC in Ω̃Spin
7 (BZ4 ∧ BS4), so that{

L1
4 × RP3 × RP3, T 4 × RP3

}
generates Ω̃Spin

7 (BZ4 ∧BS4).

Again, we do not need to know the precise value of λ, and said value could depend on

the choice of spin structure.

Proof. From Corollary 15.26, Ω̃Spin
7 (BZ4∧BS4) ∼= Z2 ·ℓ1ϕ⊕Z8 ·C, and from the images of ℓ1ϕ

and C on the E∞-page (Theorem 15.22), we learn ℓ1ϕ is detected by the mod 2 cohomology

class xb3 and C is detected by y2c+ xyb2. Thus to prove the lemma it suffices to show∫
T 4×RP3

x(P )y(P )b(P )2 = 1,

∫
T 4×RP3

c(P )y(P )2 =

∫
T 4×RP3

x(P )b(P )3 = 0. (15.39)
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1. There is a Fubini theorem for mod 2 cohomology, so that∫
T 4×RP3

x(P )y(P )b(P )2 =

∫
S1

x(P |S1)

∫
S1×S1

b(P |S1×S1)

∫
S1×RP3

y(P |S1×RP3)b(P |S1×RP3).

(15.40)

Here the four S1 factors in T 4 appear in the same order as they did in (15.38). The first

factor of S1, with P |S1 , is exactly L1
4, and

∫
L1
4
x ̸= 0 (Proposition 13.43); P restricted

to the next two factors of S1 coincides with the bundle on S1 × S1 = RP1 × RP1

appearing in Proposition 14.36, so
∫
S1×S1 b ̸= 0; and P on S1×RP3 coincides with the

bundle appearing in Proposition 15.33, so
∫
S1×RP3 yb = 1. Therefore the product of

these three integrals is also nonzero,

2. The homomorphism (15.38) factors through the inclusion j : Z4 ×Z2 ×Z2 ↪→ Z4 × S4.

If we let z and w denote the generators of H1(BZ2 × BZ2;Z2) and x and y denote

the usual generators of H∗(BZ4;Z2), then j
∗(c) = xy+ z2w+ zw2 (Lemma 14.34) and

j∗(y) = y, so

j∗(cy2) = y2(xy + z2w + zw2). (15.41)

In the rest of this part of the proof, y refers to the class in H∗(BZ4×BZ2×BZ2;Z2). If

u denotes the generator of H∗(RP3;Z2), then (15.38) implies y(P ) = u2, so y(P )2 = 0,

and therefore the characteristic class (15.41) vanishes on T 4 × RP3.

3. For xb3, we once again pull back to B(Z4 × Z2 × Z2); if x, y, z, and w refer to the

same classes as in the previous part of this proof, then b pulls back to z2 + zw + w2.

Thus b3 pulls back to a product of terms ziwj where i > 3 or w ≥ 3. The Kunneth

formula implies that for any class q ∈ H1(T 4 × RP3;Z2), q
4 = 0, and (15.38) implies

w(P ) pulls back across the projection T 3 × RP3 → T 4, and the cube of any class in

H1(T 4;Z2) vanishes. Therefore
∫
T 4×RP3 xb3 = 0.

Proposition 15.42. Recall the spin 5-manifold Q5
4 and its Z4-bundle S(V ) → Q5

4 from

Definition 13.42 and Proposition 13.43, classified by the canonical identification s : π1(Q
5
4)

∼=→
Z4. Let P → Q5

4 denote the principal (Z4 × S4)-bundle classified by the homomorphism

π1(Q
5
4)

s−→ Z4
g−→ Z4 × S4, (15.43)

where g(1) := (1, (1 2 3 4)). Then [Q5
4, P ] = B in Ω̃Spin

5 (BZ4 ∧BS4).

Proof. From Corollary 15.26, Ω̃Spin
5 (BZ4 ∧ BS4) ∼= Z2 · ℓ1A⊕ Z2 · B, and from the image of

ℓ1A on the E∞-page we know that ℓ1A is detected by the mod 2 cohomology class xyb. It

thus suffices to show
∫
Q5

4
x(P )y(P )b(P ) = 0 but that Q5

4 is not null-bordant.

One can show that H∗(Q5
4;Z2) ∼= Z2[x, y, t]/(x

2, y2, t2) with |x| = 1 and |y| = |t| = 2

using a Serre spectral sequence argument similar to the one for Q11
4 in [19, Proposition D.29],

and that x(P ) = x, y(P ) = y, and b(P ) = y(P ) = y, since the image of b ∈ H2(BS4;Z2)

under the pullback map to H∗(BZ4;Z2) is y. Thus xyb = xy2 = 0.
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Let ηDk denote the η invariant of the twisted Dirac operator associated to the charge-k

irreducible complex representation of Z4 (so that k ∈ Z4). Then ηDk is a bordism invariant

ΩSpin
5 (BZ4) → R/Z and ηD1 (Q

5
4) = −1/4 [28, Table 19], so ηDk (Q

5
4, S(V )) = −k/4 mod

1. Because the permutation (1 2 3 4) is an odd element of S4, the charge 2 irreducible

representation of Z4 extends to a complex representation of S4, namely the complexified

sign representation. Therefore ηD2 extends to a Z2-valued bordism invariant of S4-bundles,

and the product (ηD2 )
left(ηD2 )

right (“left” and “right” for the Z4 and S4 factors) is a bordism

invariant Ω̃Spin
5 (BZ4 ∧BS4)→ Z2 whose value on (Q5

4, P ) is nonzero.

This argument was effectively about the spin bordism of BZ4 ∧BZ4, rather than BZ4 ∧
BS4. The spin bordism of BZ4 ∧ BZ4 is studied in detail by Bárcenas, Garćıa-Hernández,

and Reinauer [170, §5, §6], who show that the class of Q5
4 is nonzero in Ω̃Spin

5 (BZ4 ∧ BZ4)

using η-invariants, though they do not discuss extensions to Z4 × S4.

15.2.3 Generators of ko∗(BZ4 ∧ L(2))

It is straightforward to show that the generators of k̃o5(BZ4 ∧ L(2)), k̃o6(BZ4 ∧ L(2)), and
k̃o7(BZ4∧L(2)) are detected by the classes xa2b, ya2b, xya2 ∈ H∗(BZ4×BS4;Z2). It follows

that k̃o5(BZ4 ∧ L(2)) is generated by L1
4 ×W4, where W4 was described in Section 14.2.3.

Similarly, if we let W6 denote the generator of k̃o6(BZ4 ∧ L(2)), then L1
4 × W6 generates

k̃o7(BZ4 ∧ L(2)).
To find this last generator, we first shrink the search space by replacing Z4 × S4 with a

smaller group.

Lemma 15.44. Let φ : Z2
2 → Z4×S4 be the homomorphism sending (1, 0) 7→ (2, (1 3)(2 4))

and (0, 1) 7→ (0, (1 3)). Then under the identifications H∗(BZ4;Z2) ∼= Z2[x, y]/(x
2), H∗(BS4;Z2) ∼=

Z2[a, b, c]/(ac) and H
∗(BZ2

2;Z2) ∼= Z2[α, β] given by Theorems 13.3, 14.18, and the Kunneth

formula respectively,
φ∗(x) = 0 φ∗(a) = β

φ∗(y) = α2 φ∗(b) = α2 + αβ

φ∗(c) = 0.

(15.45)

Proof. Naturality of the Kunneth isomorphism implies that it suffices to understand the

pullbacks by the maps ϕ1 : Z2 ↪→ Z4 and ϕ2 : Z2
2 ↪→ S4 given by ϕ1(1) = 2, ϕ2(1, 0) = (1 3),

and ϕ2(0, 1) = (1 3)(2 4). For ϕ1 the calculation on cohomology follows from [28, Lemma

14.38] (specifically i4, not ı̃4). For ϕ2, we use the fact that b and c are w2, resp. w3 of the

standard four-dimensional permutation representation 4 of S4 [128, Proposition 5.1]: we can

therefore restrict the representation to Z2
2 and calculate its Stiefel-Whitney classes there. If

σi denotes the real, one-dimensional representation which is nontrivial on the ith copy of Z2

inside Z2
2, and which is trivial on the other copy, then the reader can directly check

ϕ∗
2(4)
∼= R2 ⊕ σ2 ⊕ (σ1 ⊗ σ2). (15.46)
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The Whitney sum formula quickly calculates w2 and w3 of this representation for us.

The reader can then check that

φ∗(ya2b) = α4β2 + α3β3. (15.47)

Proposition 15.48. Let Pi → RP3 × RP3 be the principal Z2-bundle which has nontrivial

monodromy around the ith RP3 and is trivial around the other RP3. Then the bordism class

of (RP3×RP3, φ(P1, P2)) inside Ω̃
Spin
6 (BZ4∧BS4) is not in the span of {C, θϕ}, and therefore

may be taken as our representative for the final remaining generator W6.

Proof. First, RP3 is spin, so RP3 × RP3 is also spin. As we discussed above, it therefore

suffices to show that ∫
RP3×RP3

(ya2b)(φ(P1, P2)) (15.49)

is nonzero. Let a ∈ H2(BZ2;Z2) denote the generator; by (15.47), φ∗(ya2b) = α4β2 + α3β3,

and by definition we have α = a(P1) and β = a(P2), so (15.49) is equivalent to∫
RP3×RP3

(a(P1)
4a(P2)

2 + a(P1)
3a(P2)

3), (15.50)

so we need to show this is nonzero. NowH∗(RP3×RP3;Z2) ∼= Z2[a(P1), a(P2)]/(a(P1)
4, a(P2)

4),

which immediately implies (15.50) equals 1.
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A The shape of singular fibers

The first step to deriving the singular fiber geometries for the cases

T 3/(Z3)Γ(2)
3
, T 3/(Z4)Γ(2)

4
, (A.1)

is to find three-dimensional lattices, in whose basis the monodromies act like a rotation. For

the 2-torus and γ3 this meant choosing τ = e2πi/3 which we will re-derive exemplifying the

technique applicable to the higher-dimensional cases.

Example: The 2-torus

Recall that the SL(2,Z) transformation γ3 is given by

γ3 =

(
−1 −1
1 0

)
. (A.2)

We want to find two vectors λ1 and λ2 that form a basis of the lattice Λ2 defining the torus

T 2 = R2/Λ2. And we want them to be such that γ3 looks like a rotation in this necessarily

non-orthogonal basis. For that we choose the ansatz

λ1 =

(
1

0

)
, λ2 =

(
a

b

)
. (A.3)

The action of γ3 is given by

λ1 → λ̃1 = γ3

(
λ1
λ2

)
= −λ1 − λ2 =

(
−1− a
−b

)
,

λ2 → λ̃2 = γ3

(
λ1
λ2

)
= λ1 =

(
1

0

)
.

(A.4)

We are looking for a (2× 2) matrix A that has the property Aλ̃i = λi, which is given by

A =

(
a −a(a+1)+1

b

b −(a+ 1)

)
, (A.5)

where we have used that b ̸= 0 for λ1 and λ2 to be linearly independent. Next, we demand

that A is a rotation matrix, i.e., an element in SO(2), which can be phrased as ATA = 1.

One solution to this requirement, that also leads to a right-handed coordinate system is

given by

a = −1
2
, b =

√
3
2
. (A.6)
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Indeed, expressed as a complex number by identifying R2 ≃ C, we find(
a

b

)
≃ τ = e2πi/3 , (A.7)

precisely what we would expect from the action of modular transformations.

Fixing the shape of the 3-tori

Now we apply the same technique to the three-dimensional tori.

It is easy to see that Γ
(2)
3 is actually an element of SO(3) which means that for the

orbifold T 3/(Z3)Γ(2)
3

we can choose the lattice Λ3 = Z3. To determine the actual geometric

realization of the singular fiber we will actually increase the fundamental domain of the

torus, i.e., discuss a multi-cover. The basis of the enlarged fundamental domain is given by

λ̃1 =

1

1

1

 , λ̃2 =

 1

−1
0

 , λ̃3 =

 0

1

−1

 , (A.8)

The order of the covering can be easily inferred from the determinant of the base change

det

1 1 0

1 −1 1

1 0 −1

 = 3 . (A.9)

This new basis is chosen since λ̃1 coincides with the rotation axis, and λ̃2 and λ̃3 are per-

pendicular to it. To be more precise the action of Γ
(2)
3 is given by

λ̃1 → λ̃1 , λ̃2 → −λ̃2 − λ̃3 , λ̃3 → λ̃2 . (A.10)

This is exactly the transformation property imposed by γ3 in the sub-torus spanned by λ̃2
and λ̃3. Therefore we find that the triple cover T̃ 3 allows for a straightforward quotient

structure given by

T̃ 3/(Z3)Γ(2)
3

= (T 2/Z3)× S1 . (A.11)

To obtain the actual geometry we further have to reduce to the original fundamental domain

of the torus. This can be done by additionally implementing shifts by internal lattice points,

of which there are three since T̃ 3 is a triple cover. These internal lattice points are given by

p1 =

0

0

0

 , p1 =

1

0

0

 = 1
3
λ̃1 +

2
3
λ̃2 +

1
3
λ̃3 , p3 =

1

1

0

 = 2
3
λ̃1 +

1
3
λ̃2 +

2
3
λ̃3 . (A.12)
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Figure 28: The singular fiber T 3/(Z3)Γ(2)
3

in terms of its triple cover on the left, where the

translational symmetry on the fixed points of T 2/Z3 is indicated by shaded blue arrows, and
its fibration structure on the right.

Modding out by this Zs3 translational action, we obtain the singular fiber

T 3/(Z3)Γ(2)
3

=
(
(T 2/Z3)× S1

)
/Zs3 . (A.13)

This can be understood as a fibration of T 2/Z3 over the circle with periodicity 1
3
λ̃1, see

Figure 28. In particular, we see that Zs3 exchanges the fixed points of T 2/Z3 when going

around the circle, leaving a single line of local C/Z3 singularities as expected.

We have to work a little harder for the singular fiber in the case of Γ
(2)
4 , since it is not

given by an element of SO(3). As in the case of T 2/Z3 discussed above, this means that we

want to find a basis of the lattice Λ3, which is necessary non orthogonal, in which Γ
(2)
4 acts

as a rotation. Starting with the ansatz, in analogy to (A.3),

λ1 =

1

0

0

 , λ2 =

ab
0

 , λ3 =

cd
e

 , (A.14)

we can go through analogous steps as in the two-dimensional case and find an appropriate,

right-handed basis given by

λ1 =

1

0

0

 , λ2 =

−1
2√
3
2

0

 , λ3 =

 0

− 1√
3√
2
3

 . (A.15)
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The explicit action of Γ
(2)
4 reads

λ1 7→ λ1 + λ2 + λ3 , λ2 7→ −λ1 , λ3 7→ −λ2 . (A.16)

As in the case of Γ
(2)
3 we want to obtain an easier understanding of this action by enlarging

the fundamental domain. Guided by the fact that λ1 + λ3 maps to itself we choose

λ̃1 = λ1 + λ3 , λ̃2 = λ1 + λ2 , λ̃3 = λ2 + λ3 , (A.17)

with

det

1 1 0

0 1 1

1 0 1

 = 2 , (A.18)

showing that it is a double cover of the original fundamental domain. The action of Γ
(2)
4 on

this new basis is given by

λ̃1 → λ̃1 , λ̃2 → λ̃3 , λ̃3 → −λ̃2 , (A.19)

which shows that it acts as γ4, i.e., rotation by π
2
, on λ̃2 and λ̃3. Thus, we find that taking

the quotient by (Z4)Γ(2)
4

of the double cover T̃ 3 one has

T̃ 3/(Z4)Γ(2)
4

= (T 2/Z4)× S1 . (A.20)

The internal lattice points are given by

p1 =

0

0

0

 , p2 =


1
2
1

2
√
3√
2
3

 = λ1 + λ2 + λ3 =
1
2

(
λ̃1 + λ̃2 + λ̃3

)
. (A.21)

The singular fiber is therefore given by an additional quotient by a Zs2 translational symmetry

T 3/(Z4)Γ(2)
4

=
(
(T 2/Z4)× S1

)
/Zs2 (A.22)

as depicted in Figure 29. The action of Zs2 can be understood as inducing a fibration of

T 2/Z4 over a circle with periodicity λ̃1. Its action exchanges the two fixed points with local

description of the form C/Z4 and leaves the third fixed point of the form C/Z2 invariant,

giving two line of orbifold singularities.

Finally, we want to briefly discuss the singular fiber of the 3-torus modded and mon-

odromy M
(2)
2 (an equivalent discussion applies for M

(2)
1 ), which defines the action

λ1 7→ λ3 , λ2 7→ −λ1 − λ2 − λ3 , λ3 7→ λ1 , (A.23)
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Figure 29: The singular fiber T 3/(Z3)Γ(2)
4

in terms of its double cover on the left, where the

translational symmetry on the fixed points of T 2/Z4 is indicated by shaded blue arrows, and
its fibration structure on the right.

from which we can define the invariant

λ̃1 = λ1 + λ3 7→ λ̃1 , (A.24)

as well as the

λ̃2 = λ1 + λ2 7→ −λ̃2 , λ̃3 = λ2 + λ3 7→ −λ̃3 . (A.25)

This shows that there is a double cover T̃ 3 of the original torus, such that

T̃ 3/(Z2)M(2)
1

= (T 2/Z2)× S1 , (A.26)

with the C/Z2 orbifold points at {0 , 1
2
λ̃2 ,

1
2
λ̃3 ,

1
2
λ̃2+

1
2
λ̃3} The only interior points are given

by

p1 = 0 , p2 =
1
2
λ̃1 +

1
2
λ̃2 +

1
2
λ̃3 = λ1 + λ2 + λ3 , (A.27)

and one sees that shifts by it lead to shifts half-way around the S1 and exchange the pair of

orbifold points at {0 , 1
2
λ̃1 +

1
2
λ̃2} and {12 λ̃1 ,

1
2
λ̃2}. Thus, one has the singular geometry

T 3/(Z2)M(2)
1

=
(
(T 2/Z2)× S1

)
/Zs2 (A.28)

sketched in Figure 30.

A.1 Non-geometric singular fibers

Finally, we want to apply the same method in the context of exceptional field theory, where

we understand the simultaneous SL(2,Z) and SL(3,Z) action as the tensor product acting
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Figure 30: The singular fiber T 3/(Z2)M(2)
1

in terms of its double cover on the left, where the

translational symmetry on the fixed points of T 2/Z2 is indicated by shaded blue arrows, and
its fibration structure on the right.

on a 6-torus (the auxiliary internal space).48 We will only consider the singular fiber for

γ3 ⊗ Γ
(2)
3 =



0 −1 0 0 −1 0

0 0 −1 0 0 −1
−1 0 0 −1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0


, (A.29)

which acts as49

λ1 7→ −λ2 − λ5 , λ2 7→ −λ3 − λ6 , λ3 7→ −λ1 − λ4 ,
λ4 7→ λ2 , λ5 7→ λ3 , λ6 7→ λ1 .

(A.30)

of course the same approach can be used for γ4 ⊗ Γ
(2)
4 .

This action has a two-dimensional invariant subspace spanned by the lattice vectors

λ̃1 = −λ1 + λ3 − λ4 + λ5 , λ̃2 = −λ2 + λ3 − λ4 + λ6 , (A.31)

48Here, we will not explicitly work out a good basis for the lattice Λ6 but determine the fibration structure
form a carefully chosen multi-cover.

49In terms of the two index notation λαa one has: λ1 = λ1,1 , λ2 = λ2,1 , λ3 = λ3,1 , λ4 = λ1,2 , λ5 =
λ2,2 , λ6 = λ3,2 with SL(3,Z) index α and SL(2,Z) index a.
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with λ̃1 7→ λ̃1 and λ̃2 7→ λ̃2. Next, we define the directions

λ̃3 = λ1 + λ2 + λ3 7→ −λ1 − λ2 − λ3 − λ4 − λ5 − λ6 = −λ̃3 − λ̃4 ,

λ̃4 = λ4 + λ5 + λ6 7→ λ1 + λ2 + λ3 = λ̃3 ,
(A.32)

and

λ̃5 = λ3 − λ5 7→ −λ3 − λ1 − λ4 = −λ̃5 − λ̃6 ,

λ̃6 = λ1 + λ4 + λ5 7→ λ3 − λ5 = λ̃5 .
(A.33)

The λ̃i define a T̃ 6 which is a 9-fold cover of the original T 6 over which the monodromy

action simplifies and one has

T̃ 6/(Z3)γ3⊗Γ
(2)
3

= T 2
(12) × (T 2

(34)/Z3)× (T 2
(56)/Z3) , (A.34)

where we label the various sub-tori by their basis in terms of the λ̃i. This orbifold has nine

orbifold singularities of the form C2/Z3 at the combinations of orbifold points of the two-

dimensional sub-tori (at {0 , 1
3
λ̃3+

2
3
λ̃4 ,

2
3
λ̃3+

1
3
λ̃4} and {0 , 13 λ̃5+

2
3
λ̃6 ,

2
3
λ̃5+

1
3
λ̃6}, respectively).

This means that in the original basis the orbifold points are at

1
3
λ̃3 +

2
3
λ̃4 =

1
3

(
λ1 + λ2 + λ3

)
+ 2

3

(
λ4 + λ5 + λ6

)
,

2
3
λ̃3 +

1
3
λ̃4 =

2
3

(
λ1 + λ2 + λ3

)
+ 1

3

(
λ4 + λ5 + λ6

)
, 1

3
λ̃5 +

2
3
λ̃6 =

2
3

(
λ1 + λ4

)
+ 1

3

(
λ3 + λ5

)
,

2
3
λ̃5 +

1
3
λ̃6 =

1
3

(
λ1 + λ4 − λ5

)
+ 2

3
λ3 .

(A.35)

As above, to obtain the original fundamental domain one needs to mod our by shifts by

interior points. These are given by:

p1 = 0 ,

p2 =
1
3
λ̃1 +

2
3
λ̃5 +

1
3
λ̃6 = λ3 ,

p3 =
2
3
λ̃1 +

1
3
λ̃5 +

2
3
λ̃6 = λ3 + λ5 ,

p4 =
1
3

(
λ̃1 + λ̃2

)
+ 1

3
λ̃3 +

2
3
λ̃4 = λ3 + λ5 + λ6 ,

p5 =
2
3

(
λ̃1 + λ̃2

)
+ 2

3
λ̃3 +

1
3
λ̃4 = 2λ3 − λ4 + λ5 + λ6 ,

p6 =
1
3
λ̃2 +

1
3
λ̃3 +

2
3
λ̃4 +

1
3
λ̃5 +

2
3
λ̃6 = λ1 + λ3 + λ4 + λ5 + λ6 ,

p7 =
2
3
λ̃2 +

2
3
λ̃3 +

1
3
λ̃4 +

2
3
λ̃5 +

1
3
λ̃6 = λ1 + 2λ3 + λ6 ,

p8 =
1
3
λ̃1 +

2
3
λ̃2 +

2
3
λ̃3 +

1
3
λ̃4 +

1
3
λ̃5 +

2
3
λ̃6 = λ1 + 2λ3 + λ5 + λ6 ,

p9 =
2
3
λ̃1 +

1
3
λ̃2 +

1
3
λ̃3 +

2
3
λ̃4 +

2
3
λ̃5 +

1
3
λ̃6 = 2λ3 + λ4 + λ5 .

(A.36)

As for the geometric cases above, the action exchanges the orbifold fixed point and can be
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Figure 31: Sketch of the singular fiber of the non-geometric quotient T 6/(Z3)(γ3,Γ(2)
3 )

, which

can be understood as the fibration of two T 2/Z3 orbifolds over a base torus spanned by 1
3
λ̃1

and 1
3
λ̃1 +

1
3
λ̃2.

written in terms of the two Z3 actions

Zs3 on T 2
(12) × (T 2

(56)/Z3) : (z(12) , z(34) , z(56)) 7→ (z(12) +
1
3
λ̃1 , z(34) , z(56) +

2
3
λ̃5 +

1
3
λ̃6) ,

Z̃s3 on T 2
(12) × (T 2

(34)/Z3) : (z(12) , z(34) , z(56)) 7→ (z(12) +
1
3
λ̃1 +

1
3
λ̃2 , z(34) +

1
3
λ̃3 +

2
3
λ̃4 , z(56)) ,

(A.37)

where we used the complex coordinate z(ij) for the 2-subtorus T 2
(ij). From this action we see

that we can understand the full singular T 6 fiber as a fibration of (T 2
(34)/Z3) × (T 2

(56)/Z3)

over a base T 2 spanned by 1
3
λ̃1 and 1

3
λ̃1 +

1
3
λ̃2, which leads to the volume reduction to that

of the original required for the 9-fold cover, and the action on the fibers specified above and

depicted in Figure 31.

From the covering and the action one can already see that the singular fiber involves all

of the 6-torus coordinates. It is therefore clear that the action cannot be made geometric

in any duality frame and will involve the variation of other moduli fields. To illustrate

this, let us solve the section constraint, by demanding that everything only depends on the

internal coordinates Y 1,a, which translates to the periodicity conditions imposed by λ1 and

λ4. Varying the coordinates over their full range

Y 1,1 ∈ [0, λ1] , Y 1,2 ∈ [0, λ4] , (A.38)

we find the following two-dimensional subspace in T̃ 6 (parameterized by coordinates Ỹ i ∼
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Ỹ i + λ̃i, with i ∈ {1 , . . . , 6}):

Ỹ i =



−Y 1,1 − Y 1,2

−Y 1,2

Y 1,1

Y 1,2

0

Y 1,1 + Y 1,2


, (A.39)

which is further subjects to the orbifold quotients and shifts, which in general has a very

complicated singularity structure, whose discussion goes beyond the current investigation,

but will be interesting to study in the future.

B Knit Product

This appendix gives a brief overview of the knit product appearing in the description of the

U-duality group given in Lemma 7.8. We start with the definition of the knit product. As

with the direct and semi-direct products, there is an internal knit product and an external

knit product. We start with the internal definition.

Definition B.1 (Internal Knit Product). Let G be a group and H,K < G. If G = HK and

H ∩K = {e}, then G is said to be the internal knit product of H and K, denoted H ▷◁ K.

The slightly more complicated definition is that of the external knit product.

Definition B.2 (External Knit Product). Suppose that H and K are groups and suppose

that there exist mappings α : K × H → H and β : K × H → K satisfying the following

properties:

• α(e, h) = h and β(k, e) = k for all h ∈ H and k ∈ K.

• α(k1k2, h) = α(k1, α(k2, h))

• β(k, h1h2) = β(β(k, h1), h2)

• α(k, h1h2) = α(k, h1)α(β(k, h1), h2)

• β(k1k2, h) = β(k1, α(k2, h))β(k2, h)

for all h1, h2 ∈ H and k1, k2 ∈ K. The first three properties assert that the mapping

α : K × H → H is a left action and β : K × H → K is a right action. On the cartesian

product H ×K, we then define a multiplication and an inversion mapping by

• (h1, k1)(h2, k2) = (h1α(k1, h2), β(k1, h2)k2)

• (h, k)−1 = (α(k−1, h−1), β(k−1, h−1))
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Then H ×K is a group call the external knit product of H and K, denoted H ▷◁ K. Note

that H × {e} and {e} ×K are subgroups isomorphic to H and K and H ×K is an internal

knit product of H × {e} and {e} ×K.

The knit product is a natural generalization of the semi-direct product. For example,

G = X⋊Y requires that X is a normal subgroup while G = X ▷◁ Y does not. Furthermore,

the internal semi-direct product is a generalization of the internal direct product which

requires both X and Y to be normal subgroups of G. We thus have

Knit Product ⊃ Semi-Direct Product ⊃ Direct Product. (B.3)
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[100] L. Bhardwaj and S. Schäfer-Nameki, “Higher-form symmetries of 6d and 5d

theories,” JHEP 02 (2021) 159, arXiv:2008.09600 [hep-th].

[101] A. P. Braun, M. Larfors, and P.-K. Oehlmann, “Gauged 2-form symmetries in 6D

SCFTs coupled to gravity,” JHEP 12 (2021) 132, arXiv:2106.13198 [hep-th].

141

http://dx.doi.org/10.1103/PhysRevD.48.2826
http://dx.doi.org/10.1103/PhysRevD.48.2826
http://arxiv.org/abs/hep-th/9305073
http://dx.doi.org/10.1103/PhysRevD.77.106004
http://dx.doi.org/10.1103/PhysRevD.77.106004
http://arxiv.org/abs/0712.1252
http://dx.doi.org/10.1016/S0924-8099(08)80029-7
http://arxiv.org/abs/0803.1194
http://dx.doi.org/10.1007/JHEP04(2015)050
http://arxiv.org/abs/1501.01600
http://arxiv.org/abs/1501.01600
http://dx.doi.org/10.1088/1126-6708/2007/02/003
http://arxiv.org/abs/hep-th/0612072
http://dx.doi.org/10.1016/j.nuclphysb.2011.10.037
http://dx.doi.org/10.1016/j.nuclphysb.2011.10.037
http://arxiv.org/abs/1109.4484
http://dx.doi.org/10.1007/JHEP06(2013)019
http://arxiv.org/abs/1303.0221
http://dx.doi.org/10.1007/JHEP12(2018)020
http://arxiv.org/abs/1803.00550
http://arxiv.org/abs/2501.05678
http://arxiv.org/abs/hep-th/9507121
http://dx.doi.org/10.1007/s11005-016-0839-5
http://arxiv.org/abs/1503.04806
http://arxiv.org/abs/1503.04806
http://dx.doi.org/10.21468/SciPostPhys.12.2.047
http://arxiv.org/abs/2008.09117
http://dx.doi.org/10.1007/JHEP02(2021)159
http://arxiv.org/abs/2008.09600
http://dx.doi.org/10.1007/JHEP12(2021)132
http://arxiv.org/abs/2106.13198


[102] M. Cvetic, M. Dierigl, L. Lin, and H. Y. Zhang, “Higher-form symmetries and their

anomalies in M-/F-theory duality,” Phys. Rev. D 104 no. 12, (2021) 126019,

arXiv:2106.07654 [hep-th].
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