
Modular Representation Theory and the CDE Triangle

ARUN DEBRAY

PFp
(G) c //

e

��

RFp
(G)

RQp
(G)

d

CC

SENIOR HONORS THESIS

STANFORD UNIVERSITY

DEPARTMENT OF MATHEMATICS

MAY 18, 2015





Contents

Introduction iv

Chapter 1. The Theory Behind Modular Representations 1
1.1. Irreducibility and Indecomposability in Positive Characteristic 1
1.2. Reduction of Representations 3
1.3. Modular Characters 6
1.4. Projective Modules 8
1.5. The CDE Triangle 10
1.6. The CDE Triangle on the Character Level 13

Chapter 2. Modular Representations of Some Small Groups 16
2.1. The Modular Representation Theory of Z/p 16
2.2. The Modular Representation Theory of S3 17
2.3. The Modular Representation Theory of S4 21
2.4. The Modular Representation Theory of A4 23
2.5. The Modular Representation Theory of S5 24
2.6. The Modular Representation Theory of GL2(F3) 31
2.7. The Modular Representation Theory of D10 33
2.8. A Sillier Example: D8 and Q8 35

Bibliography 36

Index 37

iii



Introduction

“Representation theory is like a George R.R. Martin novel. There are lots and lots of characters;
most of them are complex, and many of them are unfaithful. But everything gets a lot tensor:
there are a lot of duals, and some of the characters end up decomposing!”

This paper is my senior honors thesis, written under the direction of Professor Akshay Venkatesh. The senior
thesis is a significant part of the requirements for the honors major in mathematics at Stanford, and serves the
dual purpose of educating a student on an advanced topic in mathematics and producing an exposition of that
topic. My thesis will discuss modular representation theory and a collection of results on modular representations
encapsulated in a diagram called the CDE triangle (1.5.1), the figure on the title page. Specifically, in this paper, I
will present the background theory of modular representations needed to state and prove these results; then, I will
use these results in several explicit examples, calculating modular character tables and the matrices defining the
CDE triangle for several groups.

Though this is a senior honors thesis, the prerequisites will be relatively benign. In order to talk about
modular representation theory, one of course has to use results from the ordinary, characteristic 0 representation
theory of finite groups, and this prerequisite will be pretty important. I will also use some module theory (e.g.
projective modules, simple modules, and tensor products) in an important way. Finally, there will also be a few
other dependencies from algebra, such as some basic properties of the p-adic numbers; these are less central than
having already seen representation theory of finite groups in characteristic 0.

Overview and Major Results. Though representation theory is the study of group actions on vector spaces,
the most common choices for these vector spaces are those over fields of characteristic zero, or positive character-
istic that doesn’t divide the order of the group being studied. Modular representation theory concerns itself with
the other choices, where the characteristic of the base field divides the order of the group.

This seemingly small change makes a world of difference, as Maschke’s theorem (Theorem 1.1.1), the
cornerstone of representation theory in characteristic 0, no longer holds, as explored in Section 1.1. This makes it
much more complicated to describe how a representation breaks down into irreducible representations. In order
to have a general theory, we need ways of working around this, such as working with semisimplifications (which
do decompose cleanly) and with the modular characters discussed in Section 1.3. Then, we can use the CDE
triangle to connect the characteristic 0 theory and the characteristic p theory for a particular group G.

This paper is divided into two chapters; Chapter 1 provides an exposition of the theory, and Chapter 2 provides
examples of the modular characters and explicit calculations of the morphisms in the CDE triangle.

Here’s a summary of the important results contained in the first chapter. Let G be a finite group and p be a
prime dividing |G|.

(1) Though not all representations in positive characteristic are semisimple, taking the semisimplification,
defined in Section 1.1, still provides a lot of information about finitely generated Fp[G]-modules.
Specifically, the following are equivalent for two such modules M and N .
• M and N have isomorphic semisimplifications.
• For any g ∈ G, the characteristic polynomials for the actions of g on M and N are equal. (Proposi-

tion 1.2.7)
• The modular characters of M and N are equal. (Corollary 1.3.5)
• M and N define the same class in the Grothendieck group Rk(G). (Corollary 1.5.2)

(2) Brauer’s theorem (Theorem 1.3.4), that the modular characters of the simple Fp[G]-modules are a basis
for the space of class functions on p-regular elements of G, and therefore (Corollary 1.3.6) there are as
many simple Fp[G]-modules as there are conjugacy classes of G with order not divisible by p.

iv
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(3) The results on the CDE triangle, including:
• Given a representation in characteristic 0, there’s a way to produce a representation in characteristic

p, called reduction, that’s well-defined up to semisimplification (Section 1.2); moreover, reduction
induces a surjective morphism on Grothendieck groups (Theorem 1.5.10), which means that every
Fp[G]-module can be lifted to characteristic zero in the form of a “virtual module,” i.e. a linear
combination of simple Qp[G]-modules.

• To obtain all of the irreducible modular characters, it suffices to take the irreducible characters in
characteristic zero, reduce them mod p, and then decompose them into irreducibles; in this sense,
the characteristic 0 theory contains all of the information from characteristic p, and also makes
calculating modular character tables much simpler. (Proposition 1.5.14)

Then, in the second chapter, we work this out in several explicit cases: the cyclic group Z/p; the symmetric groups
S3, S4, and S5; the alternating group A4; the dihedral group D10; the group GL2(F3); and finally p-groups such
as D8 and Q8. In each of these cases, we use reduction of characters from characteristic 0 to obtain the table of
modular characters, and then use this to calculate the three maps in the CDE triangle; in the simpler cases, we can
also explicitly describe the projective indecomposable modules, rather than just their characters.

A standard reference for this subject is Serre’s Linear Representations of Finite Groups [7].

Some Applications. Representation theory over R or C is sometimes motivated by its applications to physics,
as it is very useful in quantum mechanics and particle physics. However, this application goes away when one
passes to positive characteristic, since the symmetries physicists describe with representation theory tend to be as
Lie groups acting on Euclidean space. Nonetheless, modular representation theory is useful in several areas of
mathematics.

For example, results from modular representation theory are used in the classification of the finite simple
groups. The proof of the Brauer-Suzuki theorem [1] rests on the relationship between the ordinary and modular
characters through the decomposition homomorphism as well as the linear independence of the modular characters
(Theorem 1.3.4). The Z∗ theorem [2], another important result in the theory of finite simple groups, also depends
on calculations with modular characters.

Results from modular representation theory also appear in algebraic topology: the Adams conjecture is a
statement about real vector bundles over CW complexes, and yet its proof in [6] involves the characteristic p rep-
resentation theory of the finite groups GLn(Fp) and On(Fp). There are also applications of modular representation
theory to number theory, as discussed in [7, Ch. 19].

Notational Conventions. In this paper, we will use the following notational conventions.

• G will always denote a finite group, and |G| will denote its cardinality. p will be a prime number dividing
|G|, and G(p)reg is the set of p-regular elements of G, as defined in Section 1.3.

• Z/p denotes the cyclic group of order p, and Zp denotes the p-adic integers.
• Sn denotes the symmetric group on n letters; An denotes the alternating group on n letters; D2n denotes

the dihedral group with 2n elements; and Q8 denotes the quaternion group.
• K will denote a field of characteristic 0, often Qp, and k will denote a field of characteristic p, often Fp.

L will be a field of any characteristic.
• The ring of integers of K is denoted OK . In this paper, OK will always be a discrete valuation ring, so mOK

will denote its maximal ideal, and π will denote a uniformizer for mOK
.

• Λ will denote a lattice inside K , as defined in Section 1.2.
• If A is a ring, A[G] will denote the group algebra.
• All modules in this paper are left modules, and will usually be denoted M and N , or V and W .
• RL(G) and Pk(G) are the Grothendieck groups defined in Section 1.5.
• χ will denote the character of a representation in characteristic 0; φi will be used to denote the

modular characters of the simple k[G]-modules; and Φi will be used for the characters of the projective
indecomposable k[G]-modules.

• C`(G, K) denotes the space of K-valued class functions on G.

Acknowledgements. Modular characters are not the only important characters in bringing this thesis to
fruition, and I would like to thank, in no particular order, the many people who played a part in helping me along
the way.
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CHAPTER 1

The Theory Behind Modular Representations

“As much as we often prefer to work over C, modular representation theory has some very positive
characteristics.”

1.1. Irreducibility and Indecomposability in Positive Characteristic

In representation theory, it’s often extremely useful to know how to build a representation out of smaller or
less complicated representations. Irreducibility and indecomposability are two basic examples of this.

Definition. Let V be a representation of a group G. Then, a subspace W of V is G-stable if the action of G sends
W to itself, i.e. g ·w ∈W for all g ∈ G and w ∈W .

Definition.
• A G-representation V is irreducible if there are no G-stable subspaces W of V other than 0 and V itself.
• A G-representation V is indecomposable if it is not isomorphic to a direct sum of G-representations

W1 ⊕W2.
• A representation that isn’t irreducible is called reducible, and similarly, one that is not indecomposable is

called decomposable.

Here are some quick properties.
• Irreducibility implies indecomposability: if V = W1 ⊕W2 as G-representations, then W1 ⊕ {0} ( V is

G-stable.
• An irreducible representation of G over a field L is a simple L[G]-module (a module whose only

submodules are 0 and itself).
• If V is reducible, with W a G-stable subspace, then 0→W → V → V/W → 0 is an exact sequence of

G-representations.
Furthermore, in characteristic 0, these two notions of irreducibility and indecomposability are equivalent.

Theorem 1.1.1 (Maschke). Let G be a finite group and K be a field such that char(K) = 0 or char(K) = p - |G|. If V
is a finite-dimensional representation of G over K and V has a G-stable subspace W, then there exists a representation
W ′ of G over K such that V =W ⊕W ′ (as G-representations).

This theorem is proven in [5, Ch. XVIII, § 1]; the key step in the proof of this theorem is averaging an action
of the elements of G, which involves dividing by |G|. Thus, this doesn’t work when char(K) divides |G|. Moreover,
when char(K) = p does divide |G|, there are representations that are reducible, but indecomposable.

Example 1.1.2. Let V be the two-dimensional representation of Z/p = 〈x〉 over Fp, where xn acts as
�

1 0
n 1

�

;

this is a representation because 0 7→ I and
�

1 0
m 1

��

1 0
n 1

�

=
�

1 0
m+ n 1

�

.

Then, the subspace

W =
��

0
y

�

| y ∈ Fp

�

is Z/p-stable, but V is not decomposable: if it were, then there would exist some other Z/p-stable subspace W ′,
so that V =W ⊕W ′, but suppose that

�

1 0
n 1

��

cx
y

�

=
�

cx
cnx + y

�

=
�

λcx
λy

�

1



2 Modular Representation Theory and the CDE Triangle

for some λ ∈ Fp and all n ∈ Fp; then, since cx = λcx , we have λ= 1, and therefore cx = 0 (when n= 1), but this
means that c = 0, so we recover W as the only stable subspace. In particular, this means V is indecomposable, but
not irreducible.

This discrepancy between indecomposability and irreducibility is very important in modular representation
theory.

Another basic fact about irreducibility is the Jacobson density theorem.

Theorem 1.1.3 (Jacobson density theorem). Let L be an algebraically closed field and G be a finite group. Then, the
L[G]-module map

L[G]−→
⊕

M∈SL

EndL(M),

where SL is the set of isomorphism classes of simple f.g. L[G]-modules, is surjective.

For a proof, see [5, Ch. XVII, § 3].

1.1.1. The Semisimplification of a Module. In addition to simple modules, we can also consider semisimple
modules, which are defined to be those modules isomorphic to direct sums of simple modules. A representation
V over a field L is a semisimple L[G]-module if every G-stable subspace is a direct summand, i.e. if W ⊆ V
is G-stable, then there exists a W ′ ⊆ V such that V = W ⊕W ′. Thus, Maschke’s theorem informs us that all
representations in characteristic zero are semisimple modules, and Example 1.1.2 demonstrates that not all
representations over fields of positive characteristic are semisimple.

Nonetheless, if V is any finite-dimensional representation and W ⊂ V is G-stable, then V/W is also a G-
representation, and, assuming W isn’t trivial and isn’t all of V , then, both have dimension strictly less than V . Thus,
these can be thought of as less complicated representations that build together to form V . If one keeps repeating
this process on W and V/W , it terminates eventually (since one-dimensional representations are irreducible),
providing a finite set of irreducible G-representations known as its composition factors.

Lemma 1.1.4. The composition factors of an f.g. L[G]-module V are unique up to isomorphism and reordering.

PROOF. Let {M1, . . . , Mm} and {N1, . . . , Nn} be two sets of composition factors for V . It’s sufficient to prove
that M1

∼= N j for some j; then, induction takes care of the rest.
The key observation is that if M and N are two G-stable subspaces of an L[G]-module V , then it doesn’t

matter whether one quotients by M before N/(M ∩ N) or quotients by N followed by M/(M ∩ N). Notice that
M∩N is also G-stable, since if x ∈ M∩N , then g · x ∈ M and g · x ∈ N for all g ∈ G, and therefore, e.g. M/(M∩N)
is a G-stable subspace of V/N .

• If we consider M first, the components are M and V/M , so then taking N , which has become N/(M ∩N)
in the quotient, we get M , N/(M ∩ N), and (V/M)/(N/(M ∩ N)). Finally, we can decompose M into
M ∩ N and M/(M ∩ N).

• If one chooses N first, the same factors result, but with M and N switched: M ∩ N , N/(M ∩ N),
M/(M ∩ N), and (V/N)/(N/(M ∩ N)).

Three of these are the same: M ∩ N , M/(M ∩ N), and N/(M ∩ N). The remaining ones are isomorphic as
well: by the second isomorphism theorem of modules, M/(M ∩ N) ∼= (M + N)/N , so (V/M)/(N/(M ∩ N)) ∼=
(V/M)/((M +N)/M)∼= V/(M +N) by the third isomorphism theorem of modules, and applying it to the module
arising from the other choice (with M and N switched) also produces V/(M + N), so they’re isomorphic.

To obtain a set of composition factors of V , one chooses a G-stable submodule M and quotients by it, and
then repeats. Without loss of generality, we can assume that M is simple; if not, it contains a simple submodule
that the algorithm will eventually get to, and we just showed that order doesn’t matter in this algorithm, so we
may place the simple submodule first, and get the same answer.

Thus, there’s an ordered list of G-stable simple modules which, when one applies this algorithm to it, produces
{M1, . . . , Mm}, and another such ordered list which yields {N1, . . . , Nn}. But we just showed that the order doesn’t
matter, so we can regard the Mi and N j are drawn from the same finite set of G-stable simple submodules of
V (which is finite because V is finitely generated). But since each of the Mi and N j are simple, M1 must be a
submodule or a quotient of one of the N j . If it’s a submodule, then M1 = N j , since N j is simple, and if it’s a
quotient, then we proceed one step further in the algorithm, so M1 must be a submodule or quotient of another
M j′ . Since the algorithm terminates after a finite number of steps, then M1 = N j for some j. �
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A module M is said to have finite length if it has a finite number of composition factors; this is equivalent to
every ascending and descending chain of submodules of M stabilizing, because if not, each quotient in the chain
would induce another composition factor of M .

Definition. The semisimplification of a finitely generated L[G]-module is the direct sum of its composition factors.

Lemma 1.1.4 guarantees this is well-defined up to isomorphism. Moreover, since two semisimple modules are
isomorphic iff they have isomorphic composition factors, then the semisimplification of a module M is the unique
semisimple module that has composition factors isomorphic to those of M . Additionally, we know that if M is a
semisimple module, then M is its own semisimplification.

1.2. Reduction of Representations

The simplest way to obtain representations of a group in positive characteristic is from a representation in
characteristic zero. We want to take a representation “mod p,” which is possible when it’s represented by matrices
with integer entries, but for anything else there’s a problem. Additionally, it’ll be better to have a description that
is independent of basis. So we need a systematic way of sending representations from an algebraically closed field
of characteristic zero to one of characteristic p. This suggests that the base field should be the p-adics Qp, because
it’s relatively easy to describe how Zp sits inside Qp, and Zp/pZp

∼= Fp.
Thus, the formal process of reducing a representation looks like this: let G be a finite group, p be a prime

dividing |G|, and ρ be a complex (finite-dimensional) representation of G. Then, since G is finite, ρ may be
realized over Q.

Fix an algebraic closure Qp of Qp; since we have an embedding ι :Q ,→Qp, we can take Q to be the algebraic
closure of Q inside Qp with respect to this embedding. Thus, ρ is also a representation over Qp, i.e. it’s a map
into GLn(Qp). Since ρ is in fact a representation over a finite extension over Q, it is also a representation over a
finite extension of Qp.

For the rest of this section, let K denote this finite extension of Qp, and let OK denote its ring of integers. Thus,
OK is a discrete valuation ring, and K is its fraction field; let π be a uniformizer for OK (i.e. a generator for its
maximal ideal mOK

).

Definition. A lattice in a K-vector space V is the OK -span of a K-basis for V .

This is the same idea as a Z-lattice inside a Q-vector space, and the geometric intuition carries over, e.g. given
two lattices, there’s a common lattice contained in both.

Lemma 1.2.1. The sum of two lattices is a lattice; that is, if V is a K-vector space and Λ1 and Λ2 are lattices in V ,
then Λ1 +Λ2 = {v1 + v2 | v1 ∈ Λ1, v2 ∈ Λ2} is also a lattice.

PROOF. Let B1 (resp. B2) be the K-basis of V whose OK -span is Λ1 (resp. Λ2), and let n = dimK(V ). Then,
there’s a map M ∈ GL(V ) that sends B1 to B2, and therefore M(Λ1) = Λ2. In a basis for V , the entries mi j of M
are elements of K , and since there are a finite number of them, they have a common denominator, i.e. a nonzero
a ∈ OK such that ami j ∈ OK for all i and j. Thus, aM(Λ1) = aΛ2, and since the entries of aM are in OK , then if
v ∈ Λ1, then aM · v ∈ Λ1 as well, since it’s an OK -linear combination of the generators of Λ1. Thus, aΛ2 ⊆ Λ1, and,
since a 6= 0, Λ2 ⊆ (1/a)Λ1. Since Λ1 ⊆ (1/a)Λ1 as well, then Λ1 +Λ2 ⊆ (1/a)Λ1 as well. Since these are abelian
groups, we can consider the index of Λ1 +Λ2 inside (1/a)Λ1; in fact, it must be finite, because Λ1 ⊆ (1/a)Λ1 has
finite index and Λ1 ⊆ Λ1 +Λ2 ⊆ (1/a)Λ1.

Thus, Λ1+Λ2 is an OK -submodule of (1/a)Λ1, which is a free, finitely-generated OK -module, and therefore
Λ1+Λ2 is also a free, finitely-generated OK -module. Since Λ1+Λ2 is finite-index in (1/a)Λ1, then this implies
they must have the same rank, so Λ1+Λ2 is an OK -submodule of V with rank equal to the dimension of V , and
therefore is a lattice as well. �

Applying the lemma n times shows that any finite sum of lattices is also a lattice.

Proposition 1.2.2. G-stable lattices exist over Qp. That is, if ρ : G→ GL(V ) is a representation over K, then there
exists a lattice Λ⊆ V such that g ·Λ⊆ Λ for all g ∈ G.

PROOF. Let Λ be any lattice in V , and for any g ∈ G, define gΛ = {gv | v ∈ Λ}. Since ρ(g) is invertible, then it
must have full rank, and in particular sends bases of V to bases of V , so gΛ is still a lattice.
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Then, let

Λ′ =
∑

g∈G

gΛ.

By Lemma 1.2.1, Λ′ is a lattice. An arbitrary element of Λ′ has the form

`=
∑

g∈G

gvg for some vg ∈ Λ,

so

h · `=
∑

g∈G

(hg)vg .

Multiplication by h is a (setwise) bijection G→ G, so as g ranges over all elements of G, so does hg. In particular,
h · ` ∈ Λ′, so Λ′ is G-stable. �

Now, returning to ρ and V , choose a G-stable lattice Λ in V . Since Λ is G-stable, the action of ρ on Λ fixes it,
which means that ρ is actually a map into GLn(OK). This means that, in a basis, the entries of the matrices of
ρ are in OK , so, reducing them mod mOK

yields matrices with coefficients in k = OK/mOK
, which is a finite field

extension of Fp. Thus, we have obtained a representation ρ : G→ GLn(k).
This operation, called reduction of a representation mod p, depends on the lattice chosen, and so sometimes it

is called the reduction of M with respect to Λ.

Example 1.2.3. Let’s explicitly reduce a representation of S3, the symmetric group on three elements. S3 acts on
3-tuples of elements of Q3 by σ · (a1, a2, a3) = (aσ(1), aσ(2), aσ(3)). Since this action preserves the sum a1+ a2+ a3,
then it preserves the subspace of 3-tuples summing to zero, so restricting to the vector space V of 3-tuples summing
to zero, we obtain a two-dimensional representation.

If v1 = (1,−1,0) and v2 = (0,1,−1), then {v1, v2} is a basis for V . In this basis, this representation can be
described in terms of matrices.

1 7−→
�

1 0
0 1

�

(a b) 7−→
�

−1 1
0 1

�

(a b c) 7−→
�

0 −1
1 −1

�

(1.2.1)

In particular, Λ1 = Z3 · {v1, v2} is a lattice in V . Since the action of each element of S3 maps v1 and v2 to Z3-linear
combinations of v1 and v2, then Λ1 is S3-stable, so we can reduce.

In order to take the reduction, we simply need to reduce mod 3, so the group elements have the same matrix
representations as in (1.2.1), though now the matrices are in GL2(F3) rather then GL2(Q3).

However, if one chooses a different lattice, the resulting representation might not be isomorphic. Consider
v3 = (−2,1,1) and v4 = (1,−1,0). Then, {v3, v4} is a Q3-basis for V , so its Z3-span is a lattice; call it Λ2. In this
basis, our representation takes on the following form.

1 7−→
�

1 0
0 1

�

(a b) 7−→
�

1 0
3 −1

�

(a b c) 7−→
�

1 −1
3 −2

�

(1.2.2)

Just as above, since the coefficients of these matrices are in Z3, then the action of each element of S3 sends v3 and
v4 to Z3-linear combinations of them, so Λ2 is S3-stable. Thus, we may once again reduce mod 3, producing a
matrix representation of S3 over F3:

1 7−→
�

1 0
0 1

�

(a b) 7−→
�

1 0
0 −1

�

(a b c) 7−→
�

1 −1
0 1

�

. (1.2.3)

However, it turns out these two representations aren’t conjugate, and thus are actually nonisomorphic. If they
were, then there would be some 2× 2 matrix that simultaneously conjugates the matrices in (1.2.1) into (1.2.3).
The identity matrix is preserved by all conjugation, so let’s consider the matrices for (a b c). If we know that

�

0 −1
1 −1

��

a b
c d

�

=
�

a b
c d

��

1 −1
0 1

�

,

then
�

−c −d
a− c b− d

�

=
�

a b− a
c d − c

�

,
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so b+ c = a− b =−d. Solving these equations in F3 yields four matrices:

A=
�

−1 −1
1 0

�

B =
�

−1 1
1 1

�

−A=
�

1 1
−1 0

�

−B =
�

1 −1
−1 −1

�

.

Since the sign of the conjugating matrix makes no difference, we really only have two options. Out of these two

options, only B conjugates
�

0 −1
1 −1

�

to
�

1 −1
0 1

�

. However, it doesn’t work for the matrices for (a b):

�

−1 1
0 1

��

−1 1
1 1

�

=
�

−1 0
1 1

�

, but
�

−1 1
1 1

��

1 0
0 −1

�

=
�

−1 −1
1 −1

�

.

Thus, there is no matrix that conjugates the first representation to the other, so they’re not actually isomorphic.

Though the above representations are nonisomorphic, the characteristic polynomial of the automorphism
associated to each group element is independent of the lattice chosen: if χ1,σ denotes the characteristic polynomial
of σ ∈ S3 acting as in the first representation, given by the matrices in (1.2.1), and χ2,σ denotes that of the second
representation, given by the matrices in (1.2.3), then:

• 1 ∈ S3 is sent to the same matrix by each representation, so χ1,1 = χ2,1.
• χ1,(a b)(λ) = (1+ λ)(1− λ) + (0)(1) = 1− λ2, and χ2,(a b)(λ) = (1+ λ)(1− λ)− (0)(0) = 1− λ2, so

they’re equal.
• χ1,(a b c)(λ) = λ(λ+1)+1 = λ2+λ+1, and χ2,(a b c)(λ) = (λ−1)2− (1)(0) = λ2−2λ+1 = λ2+λ+1

in F3, so they’re equal.
This is no accident.

Proposition 1.2.4. The characteristic polynomial of the reduction of a representation does not depend on the choice
of lattice.

PROOF. Let ρ be a representation of G over K, g be an element of G, and Λ be a G-stable lattice. Let χg,K
denote the characteristic polynomial of the representation over K. Since Λ is G-stable, then in an OK -basis for
Λ, the matrix for ρ(g) has coefficients in OK , and in particular, the coefficients for χg,K are in OK . However, the
coefficients of a characteristic polynomial don’t depend on the choice of basis, and therefore don’t depend on the
choice of lattice. Thus, when the matrix M for g is reduced, the characteristic polynomial is the determinant of
M −λI , but since this is a polynomial in λ and the entries of M , then when these entries are reduced mod mOK

(i.e. are sent to k by modding out by mOK
), the new characteristic polynomial is just the original χg,K with all

of the coefficients taken mod mOK
as well. This also doesn’t depend on the lattice chosen, so the characteristic

polynomial of the reduced representation is independent of the lattice chosen. �

In the above proof, we reduced the character of a representation along with the representation itself, by taking
the coefficients of the characteristic polynomial modulo mOK

. We’ll end up using this again.

Proposition 1.2.5. Let χ1, . . . ,χ` be linearly independent class functions for a group G over K, and let χ i denotes
the reduction of χi modulo mOK

. Then, the χ1, . . . ,χ` are linearly independent over k.

PROOF. Suppose there is a dependence relation between them:

∑̀

i=1

αiχi = 0,

with αi ∈ K . Since K is the fraction field of OK , and there are finitely many αi , we can find a common denominator c
and multiply by it, so that cαi ∈ OK for each i. Thus, without loss of generality, we can assume that α1, . . . ,αn ∈ OK .
Moreover, we can assume at least one isn’t in mOK

: if all of them are, then divide by the highest power of π that
divides all of them.

The next step is to reduce mod mOK
; let αi = αi mod mOK

, and χ i denote the function g 7→ χi(g)mod mOK
.

Since at least one of the αi isn’t in mOK
, we still have a nontrivial linear dependence relation as k-valued class

functions on G. �

Corollary 1.2.6. The reductions of the irreducible characters for a group G are linearly independent over k.
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This is because the irreducible characters are linearly independent.
Proposition 1.2.4 tells us that the characteristic polynomial of the reduction is well-defined, but it also

completely determines the semisimplification.

Proposition 1.2.7. Let M and N be f.g. k[G]-modules such that for every g ∈ G, the characteristic polynomials for
(g·) ∈ Endk(M) and (g·) ∈ Endk(N) are equal. Then, the semisimplifications of M and N are isomorphic.

PROOF. Let {Si}i∈I denote the set of isomorphism classes of simple f.g. k[G]-modules, and assume that there
exists some pair of modules M and N whose characteristic polynomials are equal for all g ∈ G, but that are not
themselves isomorphic. Then, let mi be the multiplicity of Si in the composition factors for M , and ni be the
multiplicity of Si in the composition factors for N . In particular, choose M and N to be minimal over all such pairs
of k[G]-modules, as a pair that minimizes

∑

i∈I mi + ni . Since M and N are finitely generated, this is a finite sum,
so such a minimum exists.

If g ∈ G, then the characteristic polynomials for the actions of g on M and N are equal, so the characters for
M and N are equal. In particular, if θi(g) denotes the characteristic polynomial of g acting on Si , the characters
are

χM (g) =
∑

i∈I

mi Tr(θi(g)) =
∑

i∈I

ni Tr(θi(g)) = χN (g).

Thus, by Proposition 1.2.5, the irreducible characters are independent, so ni ≡ mi mod p for each i.
Now, let’s look at the characteristic polynomials themselves. Since they’re equal, their ratio is 1, i.e. for any

g ∈ G, the following is true in k:
∏

i∈I

θi(g)
ni−mi = 1.

But since ni −mi ≡ 0 mod p, each term in the product is a pth power. And since we’re in characteristic p, if f and
g are polynomials with ( f (x)/g(x))p = 1, then f (x)/g(x) = 1 (since there are no other pth roots), and therefore

∏

i∈I

θi(g)
(ni−mi)/p = 1.

This means that we can choose smaller values for the sum of the mi and ni and still have the characteristic
polynomials for the resulting M and N be equal, which is a contradiction, because we assumed we chose the
minimal pair. �

In summary, reduction is a way of obtaining representations in positive characteristic from ones in characteristic
zero. We’ll often use K = Qp and k = Fp after this section, to avoid having to worry about which fields
representations are defined over. Reduction will be very useful for our concrete calculations in chapter 2.

1.3. Modular Characters

As in the previous section, let G be a finite group and p be a prime dividing |G|. We’ll again be interested in
reducing representations from K =Qp to k = Fp; thus, all modules in this section will be assumed to be finitely
generated.

Definition. An element g of G is p-regular if p - |g|. Similarly, a conjugacy class is p-regular if its elements are
(since they all have the same order). The set of p-regular elements of G is denoted G(p)reg .

Let m denote the least common multiple of the orders of the elements of G(p)reg , and let µK ⊂ K and µk ⊂ k
denote the sets of mth roots of unity in each respective field. Then, since p - m, µk and µK both have m elements,
and reduction mod p is an isomorphism r : µK → µk of the multiplicative group structures.

If M is an n-dimensional representation of G, then any g ∈ G(p)reg defines an action (g·) ∈ Endk(M). Its
eigenvalues λ1, . . . ,λn must lie in µk, as gm = id, and if λ is an eigenvalue of g, then λm must be an eigenvalue of
id, i.e. 1. Thus, one can define a function φM : G(p)reg → K by the formula

φM (g) =
n
∑

i=1

r−1(λi).

Definition. This function φM is called the Brauer character or modular character of M .

Here are some quick but important properties.
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Proposition 1.3.1.
(1) φM (1) = dimk(M).
(2) φM is a class function on G(p)reg , i.e. if g ∈ G(p)reg and h ∈ G, then φM (hgh−1) = φM (g).
(3) If 0→ M ′→ M → M ′′→ 0 is a short exact sequence of k[G]-modules, then φM = φM ′ +φM ′′ . Thus, as a

special case, φM⊕N = φM +φN for k[G]-modules M and N.
(4) If M and N are k[G]-modules, then φM⊗N = φM ·φN .

PROOF. These proofs do not differ significantly from the proofs of the analogous facts for ordinary characters
in characteristic 0.

For part (1), 1 acts as the identity map, so all of its eigenvalues are 1, and there are dimk(M) of them.
Part (2) follows because the eigenvalues of an endomorphism are invariant under conjugation.
In part (3), it’s possible to consider this a short exact sequence of vector spaces, because the eigenvalues are

calculated using only the information of each module as a k-vector space. However, a short exact sequence of
vector spaces always splits. Thus, if AM is the matrix of g ∈ G acting on M , and AM ′ and AM ′′ are defined similarly,
then there is a k-basis for M in which

AM =
�

AM ′

AM ′′

�

.

Thus, set of eigenvalues of AM is the union (with multiplicity) of the sets of eigenvalues of AM ′ and AM ′′ , so
φM (g) = φM ′(g) +φM ′′(g).

Part (4) is true because if g ∈ G and λ1, . . . ,λm are the eigenvalues of g acting on M , and ν1, . . . ,νn are the
eigenvalues of g acting on N , then the eigenvalues of g acting on M ⊗ N are {λiν j | 1≤ i ≤ m, 1≤ j ≤ n}. �

Since the list of composition factors of a module is generated by repeatedly taking submodules and quotients,
then applying part (3) of the above proposition yields the following.

Corollary 1.3.2. Let M be a k[G]-module and N1, . . . , Nm be its composition factors. Then, φM = φN1
+ · · ·+φNm

.

Then, there are a few more results which tie these characters more explicitly to representations.

Proposition 1.3.3. Let M be a K[G]-module with character χM , and let M denote a reduction of M. Then,
φM = χM |G(p)reg

.

That is, reduction sends ordinary characters to modular characters!

PROOF. Let g ∈ G(p)reg . Then, the action of g in Endk(M) has trace χM (g) = λ1+ · · ·+λn for λi ∈ µK , as per the
above discussion.

Thus, φM (g) = χM (g)mod p, because the characteristic polynomial for g acting on M is just that of g acting
on M modulo p. But reduction mod p is an isomorphism µK → µk, so φM (g) = χM (g). �

Theorem 1.3.4 (Brauer). The irreducible modular characters {φM | M is a simple k[G]-module} are a basis for the
K-vector space C`(G(p)reg , K) of class functions G(p)reg → K.

PROOF. First, we must show that they span C`(G(p)reg , K). Given any class function f : G(p)reg → K, it’s possible

to extend it to a class function ef : G → K (e.g. letting ef (g) = 0 if g 6∈ G(p)reg). Since the characters of simple
K[G]-modules are a basis for C`(G, K), there’s a linear combination

ef =
∑

i

λiχMi

where each Mi is a simple K[G]-module and λi ∈ K , and if we restrict to the p-regular conjugacy classes, we get
the same relation for f . Reduce each Mi mod p to get a k[G]-module M i; by Proposition 1.3.3, we now have the
relation

f =
∑

i

λiφM i
.

For a given i, M i may not be a simple k[G]-module, but it has some finite list of composition factors Ni,1, . . . , Nn,mi
,

which are simple k[G]-modules. Then, by Corollary 1.3.2,

f =
∑

i

mi
∑

j=1

λiφN j
,
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so f is a linear combination of modular characters of simple k[G]-modules.
Next, we will show that the irreducible modular characters φ1, . . . ,φ` are linearly independent. Since these

are class functions G(p)reg → K , it’s possible to extend each one to a class function eφi : G→ K by letting eφi(g) = 0 if

g 6∈ G(p)reg , and eφi(g) = φi(g) otherwise. In particular, the eφi are linearly independent if and only if the φi are.

By Proposition 1.2.5, the eφi are linearly independent if their reductions φ i are, so suppose there is a
dependence relation between the φ i:

∑

i

αiφ i = 0,

with the αi ∈ k.
Let j be such that α j 6= 0. By the Jacobson density theorem (Theorem 1.1.3), there exists an x ∈ k[G] such

that φ i(x) = 0 when i 6= j and is nonzero when i = j, i.e. x acts as a projection. For this x , the dependence
relation is α jφ j(x) = α j · c j = 0 for a nonzero c j , which is a contradiction. In particular, the φ i are linearly

independent, so the eφi are, and therefore the irreducible modular characters φi are linearly independent as
well. �

In characteristic zero, two representations of the same group G with equal characters are isomorphic. This isn’t
true in positive characteristic: the two k[S3]-representations from Example 1.2.3 aren’t isomorphic, but have equal
characteristic polynomials, and therefore their characters are equal. The key is once again semisimplification.

Corollary 1.3.5. If the modular characters of two k[G]-modules M and N are equal, then their semisimplifications
are isomorphic.

PROOF. By Theorem 1.3.4, the character of M is a linear combination of the irreducible modular characters
in a unique way, the sum of the characters of the composition factors of M . However, since it’s equal to the
character of N , it is also the sum of the characters of the composition factors of N . These are two ways of
writing this character as a linear combination of the irreducible modular characters, so they must have the same
coefficients; therefore, the composition factors of M and N must be the same up to isomorphism. In particular,
since the semisimplification is the direct sum of the composition factors, the semisimplifications of M and N are
isomorphic. �

In particular, when building character tables, the following corollary is extremely useful.

Corollary 1.3.6. The number of irreducible modular characters, and therefore the number of isomorphism classes of
simple k[G]-modules, is equal to the number of p-regular conjugacy classes of G.

PROOF. If there are ` classes of G that are p-regular, then a class function on G(p)reg is a choice of ` elements of
K , and therefore a basis for this space has ` elements. �

It’ll also be useful to have the following criterion, which is proven in [7, §16.4].

Theorem 1.3.7 (Brauer-Nesbitt). Let n be the largest power of p dividing |G| and M be a simple K[G]-module such
that n | dim(M). Then, if M is a reduction of M, M is a simple k[G]-module.

1.4. Projective Modules

Projective modules are important in modular representation theory: when k has characteristic dividing |G|,
projective k[G]-modules are particularly well-behaved, and if char(k) = 0 or doesn’t divide |G|, all k[G]-modules
are projective, so the existence of nonprojective k[G]-modules is another important difference that arises in
modular representation theory.

First of all, let’s recall the definition of projective.

Definition. If A is a ring, then a A-module M is a projective module if maps out of M can be lifted across surjections;
that is, for every surjection N � N ′ of A-modules and A-module homomorphism f ′ : M → N ′, there exists an
A-linear f : M → N such that the following diagram commutes.

N

����
M

f ′
//

f
>>

N ′
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For example, free modules are projective.
The following equivalent criterion will also be useful.

Lemma 1.4.1. An A-module M is projective iff it is a direct summand in a free module.

PROOF. First, assume M is projective. It is always possible to find a free module F and a surjection π : F � M
(e.g. let F be free on the elements of M). Since M is projective, the identity map id : M → M lifts to an f : M → F
such that π ◦ f = id. Thus, in the short exact sequence

0 // ker(π) // F π // M // 0, (1.4.1)

f is a section for π, and so (1.4.1) splits. Therefore, F ∼= M ⊕ ker( f ), and so M is a direct summand in a free
module.

In the other direction, let F = M ⊕M ′, where F is free, and let π : N � N ′ be a surjective map of A-modules.
Given an f ′ : M → N ′, we can define a ef ′ : F → N ′ by letting ef ′(m, n) = f (m); since F is free and therefore
projective, this map lifts to a ef : F → N such that π(ef (m, n)) = ef (m, n) = f (m). Let f : M → N be given by
f (m) = ef (m, 0); this defines a lift for f ′, so M is projective. �

One of the reasons projective k[G]-modules are important in modular representation theory is that they
correspond closely to projective OK[G]-modules.

Proposition 1.4.2. If M is a projective k[G]-module, then there is a unique (up to isomorphism) projective OK[G]-
module P such that P/mOK

P ∼= M.

For a proof of this result, see [7, §14.4].
Though not all simple k[G]-modules are projective, there’s a similar notion that will play an important role in

later sections.

Definition. A projective indecomposable is an f.g. projective k[G]-module that is indecomposable (that is, it doesn’t
split as the direct sum of two k[G]-modules).

These are the building blocks of the projective k[G]-modules, as Corollary 1.4.6, below, will illustrate. To
prove it, though, we need a few preliminary results first.

Lemma 1.4.3 (Fitting). Let A be a ring and M be an indecomposable A-module of finite length. Then, every
ϕ ∈ EndA(M) is either an isomorphism or nilpotent.

PROOF. We have chains of submodules of M given by

ker(ϕ)⊆ ker(ϕ2)⊆ ker(ϕ3)⊆ · · ·

and
Im(ϕ)⊇ Im(ϕ2)⊇ Im(ϕ3)⊇ · · · ,

but since M has finite length, these must stabilize, so there’s an n such that ker(ϕn) = ker(ϕn+k) and Im(ϕn) =
Im(ϕn+k) when k ≥ 0.

Suppose x ∈ Im(ϕn)∩ ker(ϕn). Then, x = ϕn(z) for some z ∈ M , and since x ∈ ker(ϕn) = ker(ϕ2n), then
z ∈ ker(ϕn), so x = 0. Thus, Im(ϕn) ∩ ker(ϕn) = 0. Also, for any x ∈ M , ϕn(x) ∈ Im(ϕn) = Im(ϕ2n), so
ϕn(x) = ϕ2n(z). Let y = x −ϕn(z); then, ϕn(x −ϕn(z)) = 0, or x = y +ϕn(z).

Thus, M = Im(ϕn)⊕ ker(ϕn), so since M is indecomposable, either ker(ϕn) = 0 and Im(ϕn) = M , meaning ϕ
is an isomorphism, or ker(ϕn) = M , so ϕ is nilpotent. �

Corollary 1.4.4. Let A be a ring, M be an indecomposable A-module of finite length, and ϕ1, . . . ,ϕn ∈ EndA(M). If
ϕ1 + · · ·+ϕn is an isomorphism, then at least one of the ϕi is.

PROOF. First, let n= 2 and suppose not. Without loss of generality assume that ϕ1+ϕ2 = id, because if not,
we can replace ϕ1 with ϕ1 ◦ (ϕ1 +ϕ2)−1 and ϕ2 with ϕ2 ◦ (ϕ1 +ϕ2)−1. Thus, ϕ1 +ϕ2 = id; in particular, this
means they commute.

Since both ϕ1 and ϕ2 aren’t isomorphisms, then by Lemma 1.4.3, they’re both nilpotent, so there exists an
N such that ϕN

1 = ϕ
N
2 = 0. But since ϕ1 and ϕ2 commute, the expansion of (ϕ1 +ϕ2)2N has in all of its terms

at least one of the ϕi raised to a power at least N , so (ϕ1 +ϕ2)2N = 0 as well. Thus, ϕ1 +ϕ2 is nilpotent, so it
cannot be an isomorphism.

Finally, apply induction to get this for all n. �
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Theorem 1.4.5 (Krull-Schmidt). If A is a ring and M is an A-module with finite length, there is a unique way to write
M as a finite direct sum of indecomposable A-modules, up to isomorphism of the direct-sum factors and reordering.

PROOF. Let M1, . . . , Mm and N1, . . . , Nn be A-submodules of M such that

M =
m
⊕

i=1

Mi =
n
⊕

j=1

N j .

Without loss of generality, assume m≤ n, for if not, the Mi and N j may be switched.
Let pi : M1→ Ni denote the restriction to M1 of the canonical projection M � Ni and q j denote the restriction

to N j of the canonical projection M � M1. Thus, ψ =
∑n

i=1 qi ◦ pi = idM1
, as each x ∈ M1 is dissected into its

components (x1, . . . , xn) from each of the N j; then, restricted to each component, ψ is the identity. Thus, by
Corollary 1.4.4, one of the qi ◦ pi must be an isomorphism.

Thus, we have maps pi : M1→ Ni and qi : Ni → M1 whose composition is an isomorphism; this means that
M1
∼= Im(qi)⊕ ker(pi), but since M1 is indecomposable, the only way for this to happen is for pi and qi to be

isomorphisms or pi = 0 — but then qi ◦ pi = 0. In particular, M1
∼= Ni , and then the rest of the proof follows by

induction.
Finally, we need to show existence of a direct-sum decomposition, but if there’s no way to write M as a direct

sum of indecomposables, then it’s indecomposable, so it is its own decomposition. Thus, there is exactly one such
decomposition into indecomposables. �

Corollary 1.4.6. If M is an f.g. projective k[G]-module, then there is a unique way to write M ∼= P1 ⊕ · · · ⊕ P` up to
isomorphism of the direct-sum factors and reordering, where the Pi are projective indecomposable k[G]-modules.

PROOF. M has a finite number of composition factors, as discussed in Section 1.1, so using Theorem 1.4.5,
there’s a unique way to write M ∼= P1 ⊕ · · · ⊕ P` for indecomposable k[G]-modules, up to isomorphism of factors
and reordering.

By Lemma 1.4.1, M is a direct summand in a free module F , so

F ∼= M ⊕M ′ ∼= P1 ⊕ · · · ⊕ P` ⊕M ′,

and therefore each Pi is also a projective module, and therefore a projective indecomposable. �

1.5. The CDE Triangle

Some of the most powerful statements in modular representation theory, relating representations in character-
istic zero to those in characteristic p, can be encapsulated in a commutative diagram called the CDE triangle.

Most of the tools we’ve been using have been invariant under semisimplification, including the characteristic
polynomial (which actually determines the semisimplification, by Proposition 1.2.7) and the reduction of a
K[G]-module. Thus, it will be useful for us to identify modules up to their semisimplifications. This motivates the
following definition.

Definition.

• Let A be a ring and C be a full subcategory of the category of finitely generated A-modules. Then,
the Grothendieck group of C , denoted GG(C ), is the abelian group with the following generators and
relations.

– For each object M in C , there is a generator [M] ∈ GG(C ).
– For each short exact sequence 0→ M ′→ M → M ′′→ 0 in C , add the relation [M] = [M ′]+[M ′′].

The class of an A-module M in the Grothendieck group is denoted [M].
• If L is a field, G is a group, and FL denotes the category of f.g. L[G]-modules, the Grothendieck group

GG(FL) is denoted RL(G). If PL denotes the category of f.g. projective L[G]-modules, the Grothendieck
group GG(PL) is denoted PL(G).

Notice that some elements of GG(C ), such as −[M], aren’t classes of modules, though every element is a
linear combination of classes of modules.

Lemma 1.5.1. If N1, . . . , Nm are the composition factors of an A-module M ∈ C , then in GG(C ), [M] = [N1]+ · · ·+
[Nm].
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PROOF. Let’s induct on m, the number of composition factors; this is vacuously true if m= 1.
More generally, suppose M has m composition factors, where m > 1. Then, there exists a nontrivial A-

submodule N ( M , and therefore M/N is nontrivial as well. Then, the set of composition factors of M is the union
of those of N and those of M/N , and since both N and M/N are nontrivial A-modules, each has strictly fewer
composition factors than M does. By induction, the result is true for N and M/N , so [M] = [N] + [M/N] =
[N1] + · · ·+ [Nm]. �

Corollary 1.5.2. If two A-modules M1, M2 ∈ C have the same composition factors up to isomorphism, then [M1] =
[M2] ∈ GG(C ).

PROOF. Let {N1, . . . , Nm} be these composition factors; then, [M1] = [N1] + · · ·+ [Nm] = [M2]. �

Thus, in the Grothendieck group, modules are identified with their semisimplifications.
Finally, it’ll be useful to have a criterion for checking when a map is well-defined on a Grothendieck group.

Lemma 1.5.3. Let H be an abelian group and Φ :C → H be a function. If for every exact sequence 0→ M ′→ M →
M ′′→ 0 we have Φ(M) = Φ(M ′) +Φ(M ′′), then there is a unique group homomorphism Φ∗ : GG(C )→ H such that
Φ∗([M]) = Φ(M) for all M ∈ C .

In this case, Φ is called additive.

PROOF. The relations for GG(C ) are all of the form [M] = [M ′] + [M ′′] for such short exact sequences, and
so Φ∗ as defined in the theorem statement commutes with all relations in GG(C ), and is therefore is well-defined.
Thus, such a Φ∗ exists; it is unique because it’s specified on the basis for GG(C ). �

We will be able to apply these properties of general Grothendieck groups to the specfic cases of RL(G) and
PL(G), which are necessary for defining the CDE triangle. Let G, K , and k be as in the previous sections.

Proposition 1.5.4. If L is a field, then RL(G) is a free Z-module, and the set SL of isomorphism classes of simple f.g.
L[G]-modules is a basis for RL(G).

PROOF. Let R be a free abelian group with SL as a basis. Then, there’s a map α : R→ RL(G) given by sending
a simple module M ∈ SL to its class [M].

The assignment sending a module to the sum of its composition factors in R is additive, because if 0→ N →
M → M/N → 0 is a short exact sequence, then the set of composition factors of M is the union of those of N and of
M/N , up to isomorphism. Thus, by Proposition 1.5.3, there exists a unique group homomorphism β : RL(G)→ R
such that if M is an L[G]-module with composition factors N1, . . . , Nn, then β([M]) = N1 + · · ·+ Nn.

Finally, α and β are inverses: if M ∈ SL , then β(α(M)) is equal to M again, since it’s simple, so M is its
only composition factor, and if [M] ∈ RL(G) has composition factors N1, . . . , Nm, then [M] = [N1] + · · ·+ [Nm] =
α(N1 + · · ·+ Nn) = α(β(M)). �

Proposition 1.5.5. Pk(G) is a free Z-module, and the set SP of classes of f.g. projective indecomposables is a basis for
Pk(G).

PROOF. The proof for Proposition 1.5.4 can be adapted to this case as well; the key is that Corollary 1.4.6
guarantees that there exists a unique decomposition of any f.g. projective k[G]-module into projective indecom-
posables.

Thus, we may let P be the free abelian group with SP as a basis, and define α : P → Pk(G) by sending
a projective indecomposable M ∈ SP to its class [M]. Then, there’s also a map β : Pk(G) → P defined by
decomposing a projective k[G]-module M into a direct sum of projective indecomposables N1, . . . , Nm, sending
[M] 7→ N1+ · · ·+ Nm, and extending linearly to the whole group. This assignment is again additive, so defines a
group homomorphism β : Pk(G)→ P.

α and β are inverses, because if M decomposes into a direct sum of the projective indecomposables N1, . . . , Nm,
then [M] = [N1] + · · ·+ [Nm]. �

Now, we can introduce the CDE triangle, which is the following diagram of abelian groups.

Pk(G)
c //

e
  

Rk(G)

RK(G)
d

>> (1.5.1)
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We already know what the objects are, so now we must define c, d, and e.

1.5.1. Definition of c : Pk(G)→ Rk(G). Let P be an f.g. projective k[G]-module; then, sending P to its class
in Rk(G), i.e. as an f.g. k[G]-module, is additive, because if 0→ P ′→ P → P ′′→ 0 is short exact, then in Rk(G),
[P] = [P ′] + [P ′′]. Thus, by Lemma 1.5.3, this defines a group homomorphism c : Pk(G)→ Rk(G); often, it is
called the Cartan homomorphism.

1.5.2. Definition of d : RK(G) → Rk(G). Given an f.g. K[G]-module M , i.e. a representation of G in
characteristic zero, we defined how to reduce it to a representation in characteristic p, i.e. a k[G]-module.

Lemma 1.5.6. If M is an f.g. K[G]-module and Λ1 and Λ2 are two G-stable lattices in M, then the semisimplifications
of the reductions of M with respect to Λ1 and Λ2 are isomorphic.

PROOF. Let N1 be the reduction of M with respect to Λ1 and N2 be that with respect to Λ2. By Proposition 1.2.4,
the characteristic polynomials N1 and N2 are equal for any g ∈ G, so by Proposition 1.2.7 the semisimplifications
of N1 and N2 are isomorphic. �

Thus, reduction defines a function red : {isomorphism classes of f.g. K[G]-modules} → Rk(G).

Lemma 1.5.7. red is an additive function.

PROOF. Let 0→ M ′→ M → M ′′→ 0 be a short exact sequence of K[G]-modules. Then, M and M ′⊕M ′′ have
isomorphic semisimplifications, so for any g ∈ G, the actions of g on M and on M ′ ⊕M ′′ have equal characteristic
polynomials. In the proof of Proposition 1.2.4, we showed that the characteristic polynomial of a reduction is
obtained from the characteristic polynomial of the original by reducing the coefficients modulo mOK

, so if M is
a reduction of M and N is a reduction of M ′ ⊕ M ′′, then for any g ∈ G, the actions of g on M and on N have
the same characteristic polynomials. But by Proposition 1.2.7, the characteristic polynomial of a k[G]-module
completely determines its semisimplification, so M and N have isomorphic semisimplifications, and therefore have
the same class in Rk(G). �

Thus, reduction is a homomorphism d : RK(G)→ Rk(G). This is called the decomposition homomorphism.

1.5.3. Definition of e : Pk(G)→ RK(G). By Proposition 1.4.2, given a projective k[G]-module M , there’s a
unique projective OK[G]-module P up to isomorphism such that P/mOK

P ∼= M . Then, P ⊗OK
K is a K[G]-module.

We will check that the assignment M 7→ [P ⊗OK
K] ∈ RK(G) is additive, and therefore defines a map

e : Pk(G)→ RK(G) sending [M] 7→ [P ⊗OK
K] and extending linearly.

Suppose 0 → M ′ → M → M ′′ → 0 is a short exact sequence of projective k[G]-modules; then, idM ′′ lifts
across the surjection M � M ′′ to a section, so the sequence splits and M ∼= M ′ ⊕ M ′′. Let P ′ be the projective
OK[G]-module such that P ′/mOK

P ′ ∼= M ′, and P ′′ be that for M ′′; then, P ′ ⊕ P ′′ reduces mod mOK
to M , because

(P ′ ⊕ P ′′)/mOK
(P ′ ⊕ P ′′)∼= (P ′/mOK

P ′)⊕ (P ′′/mOK
P ′′)∼= M ′ ⊕M ′′ ∼= M .

Thus, e(M) = [(P ′ ⊕ P ′′)⊗OK
K] = [(P ′ ⊗OK

K)⊕ (P ′′ ⊗OK
K)] = e(M ′ ⊕M ′′), so it’s additive.

1.5.4. Properties of the CDE Triangle.

Theorem 1.5.8. The CDE diagram (1.5.1) commutes.

PROOF. Using the definitions of c, d, and e, the theorem statement is equivalent to stating that if one chooses
a projective k[G]-module P and lifts it to a K[G]-module M as described in Section 1.5.3, the semisimplification
of P is isomorphic to the semisimplification of the reduction of M .

P is lifted to M by way of an intermediate OK[G]-module P ′, which has the properties that P ′ ⊗OK
K = M

and P ′/mOK
P ′ ∼= P. The first property means there’s a natural inclusion i : P ′ ,→ M of OK[G]-modules defined

by i(x) = x ⊗ 1, so that i(P ′) is isomorphic to P ′. Furthermore, i(P ′) is a G-stable lattice in M , since it is an
OK[G]-module that generates all of M when tensored with K .

Thus, we may as well use i(P ′) as our lattice for reducing M , since the class of the reduction in Rk(G) doesn’t
depend on the choice of lattice. But i(P ′)∼= P ′, so the reduction is just P ′/mOK

P ′, which is isomorphic to P again.
Thus, any reduction of M has semisimplification isomorphic to that of P, so the diagram commutes. �

Proposition 1.5.9. In the bases SK of RK(G), Sk of Rk(G), and SP of Pk(G) defined in Propositions 1.5.4 and 1.5.5,
E = DT, and therefore C is a symmetric matrix.
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This is proven in [7, §15.4].

Theorem 1.5.10. d is surjective.

This is proven in [7, §17.3].

Corollary 1.5.11. e is injective.

PROOF. Since E = DT and D is surjective, then if D is an m× n matrix, then its rank is m, so E is an n×m
matrix with the same rank. Thus, the dimension of its kernel is m− rank(E) = 0. �

Theorem 1.5.12. c is injective.

This is proven in [7, §16.1], and can be restated by applying the definition of the Grothendieck groups.

Corollary 1.5.13. If two projective k[G]-modules have the same composition factors up to isomorphism, they are
isomorphic.

PROOF. If two projective k[G]-modules M and M ′ have the same composition factors up to isomorphism, then
they define the same class in Pk(G), because c is injective. By Corollary 1.4.6, each can be written as a direct sum
of the projective indecomposables P1, . . . , P` in a unique way:

M = (P1)
m1 ⊕ (P2)

m2 ⊕ · · · ⊕ (P`)m` , and M ′ = (P1)
n1 ⊕ (P2)

n2 ⊕ · · · ⊕ (P`)n` ,

where the mi and ni denote the multiplicity of Pi in the direct sums for M and M ′, respectively.
By Proposition 1.5.5, the classes [Pi] of these projective indecomposables are a basis for Pk(G), so since M

and M ′ define the same class, then

[M] =
∑̀

i=1

mi[Pi] = [M
′] =

∑̀

i=1

ni[Pi],

in Pk(G), but this means mi = ni for all i, and therefore M ∼= M ′. �

Finally, the following proposition, a corollary of Theorem 1.5.10, is useful for calculations: in order to
determine all of the irreducible modular characters for a group, one can start with the characters from characteristic
0, which are well-known, and then reduce and decompose. This will be our primary technique for calculating
irreducible characters in Chapter 2.

Proposition 1.5.14. The set of irreducible characters obtained by reducing every simple f.g. K[G]-module and
decomposing the character of each reduction into irreducible modular characters is a complete list of the irreducible
modular characters.

PROOF. Since d is surjective, then it sends the basis SK of RK(G) to a spanning set SK of Rk(G). Then, replacing
the class [M] of a module M with the classes of its irreducible components [N1], . . . , [Nn] in this set cannot
make the spanned set smaller, because [N1] + · · ·+[Nn] = [M], so the spanned set contains all of the elements
it did before the replacement. In particular, if one replaces every element in SK with its composition factors,
which are irreducible k[G]-modules, the result is still a spanning set. Since SK ⊆ Sk (all of the classes of simple
k[G]-modules), but Sk is a basis and SK is a spanning set, then SK = Sk. �

1.6. The CDE Triangle on the Character Level

The Grothendieck groups in the CDE triangle are closely related to spaces of K-valued class functions; for
example, RK(G) has the set of classes of simple K[G]-modules as a basis, and the space C`(G, K) of class functions
K → G has the characters of these simple K[G]-modules as a basis.

This notion can be made formal by tensoring objects and maps in the CDE triangle with K .

Proposition 1.6.1. The map α : K⊗K RK(G)→ C`(G, K) defined by sending a the class [M] of a simple K[G]-module
to its character χM is an isomorphism.

PROOF. Since RK(G) is Z-free, then its basis SK is mapped to a K-basis in K ⊗K RK(G). Then, α maps this basis
into the set of irreducible characters of G in characteristic 0. Since the assignment of a simple K[G]-module to its
irreducible character defines a bijection of the isomorphism classes of simple K[G]-modules and the irreducible
characters, then α is a bijection on these bases, and therefore an isomorphism of K-vector spaces. �
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Proposition 1.6.2. The map β : K⊗K Rk(G)→ C`(G(p)reg , K) defined by sending the class [M] of a simple k[G]-module
to its modular character φM is an isomorphism.

PROOF. Since Rk(G) is Z-free, then its basis Sk is mapped to a K-basis in K ⊗K Rk(G). Then, β maps this basis
into the set of irreducible modular characters of G. Since β defines a bijection from simple k[G]-modules to
the set of irreducible modular characters, then β is a bijection on these bases, and therefore an isomorphism of
K-vector spaces. �

Proposition 1.6.3. The map α defined in Proposition 1.6.1 identifies the image of idK ⊗e : K⊗K Pk(G)→ K⊗K RK(G)
with the subspace W of C`(G, K) of class functions that are 0 off of G(p)reg , and idK ⊗e with the inclusion W ,→ C`(G, K).

Proposition 1.6.4. Under the identifications α and β from the previous three propositions, idK ⊗d and idK ⊗c are
the restriction of class functions from G to G(p)reg .

For a proof of these two propositions, see [7, §18.3]. They imply in particular that idK ⊗c : W → C`(G(p)reg , K)
is an isomorphism.

Thus, after tensoring with K , the CDE triangle corresponds to the following commutative diagram of K-vector
spaces.

W
idK ⊗c

∼ //

idK ⊗e ##

C`(G(p)reg , K)

C`(G, K)

idK ⊗d

88
(1.6.1)

The Z-bases for the Grothendieck groups introduced in Propositions 1.5.4 and 1.5.5 carry over to K-bases for these
spaces of class functions under the identifications α and β . Let sk = |Sk| and sK = |SK |, so that W and C`(G(p)reg , K)
are sk-dimensional, and C`(G, K) is sK -dimensional.

In particular, we may write the morphisms in (1.6.1) as matrices C , D, and E in these bases, coming from
idK ⊗c, idK ⊗d, and idK ⊗e, respectively.

• D, the decomposition matrix, is an sk × sK matrix sending the class of a module to its reduction mod
p, and therefore by Proposition 1.3.3 sends an ordinary character to the modular character of the
reduction, which is a linear combination of the irreducible modular characters. In particular, the entry
di j of D is the coefficient of the ith irreducible modular character φi in this linear combination for the
decomposition of the jth irreducible ordinary character χ j . That is, for any g ∈ G(p)reg ,

χ j(g) =
sk
∑

i=1

di jφi .

Thus, the jth column of D lists off these coordinates, so we can describe all of the χ j in terms of the φi
as follows:









χ1
...
χsK









= DT









φ1
...
φsk









.

• C , the Cartan matrix, is an sk × sk matrix sending the class of a projective module to its class in Rk(G),
and therefore sends the character of a projective module to its modular character on G(p)reg . In particular,
since the characters of projective indecomposables are a basis for W , but projective indecomposables
may have nonprojective composition factors, the entry ci j of C is the coefficient of the ith irreducible
modular character φi in the expression of the character Φ j of the jth projective indecomposable. That is,
for any g ∈ G(p)reg ,

Φ j(G) =
sk
∑

i=1

ci jφi .
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In the same way as for D, we can describe the Φ j in terms of the φi using CT, but since C is symmetric
by Proposition 1.5.9, we have









Φ1
...
Φsk









= C









φ1
...
φsk









.

• Finally, E is an sK × sk matrix whose coefficients ei j describe how the character Φ j of a projective
indecomposable is a linear combination of the irreducible characters χi , i.e.

Φ j =
sK
∑

i=1

ei jχi ,

and therefore in the same way as for D,








Φ1
...
Φsk









= ET









χ1
...
χsK









.

Finally, the following lemma will be used several times when calculating character tables, so it’ll be useful to
prove it here.

Lemma 1.6.5. The trivial representation is the only one-dimensional representation of Z/p in characteristic p.

PROOF. Let k be a field of characteristic p. A one-dimensional representation of Z/p over k is a group
homomorphism Z/p→ k×, and since Z/p is generated by 1, such a homomorphism is uniquely determined by a
choice of element x ∈ k× with order p, i.e. a root of x p − 1.

However, in characteristic p, this polynomial factors as (x − 1)p, and therefore the only solution is x = 1. In
this case, the homomorphism Z/p→ k× sends everything to 1, and therefore is the trivial representation. �

We have now covered all of the theory we will need for the character table calculations in the next chapter.



CHAPTER 2

Modular Representations of Some Small Groups

“Did you hear the one about the mathematician who lobbied Congress, so that his interest group
would have a faithful representation?”

2.1. The Modular Representation Theory of Z/p

Let p be prime. Then Z/p, the cyclic group of order p, has p elements, so its modular representation theory is
only interesting over characteristic p.

Character Table in Characteristic Zero. Since Z/p is abelian, then each element is in its own conjugacy
class, so there are p conjugacy classes and p irreducible representations, and each irreducible representation is
one-dimensional. Thus, each irreducible representation is determined by sending the generator 1 ∈ Z/p to a pth

root of unity, so the character table is given in Table 1.

0 1 2 · · · p− 1
χ1 1 1 1 . . . 1
χ2 1 ζp ζ2

p . . . ζp−1
p

χ3 1 ζ2
p ζ4

p . . . ζ2p−2
p

...
...

...
...

. . .
...

χp 1 ζp−1
p ζ2p−2

p . . . ζp

TABLE 1. Character table for Z/p in characteristic 0, where p is prime and ζp is a fixed primitive
pth root of unity.

What Happens In Characteristic p. Since the order of every non-identity element in Z/p is p, then {0} is
the sole p-regular conjugacy class. Thus, by Corollary 1.3.6, there’s only a single irreducible modular character.
The trivial representation over k is irreducible, so its character must be the unique irreducible modular character,
and all of the irreducible characters in characteristic 0 reduce to the modular character of the trivial representation
in characteristic p, because on the sole p-regular class {0}, they all equal the The character table is given in Table 2.

0
φ 1

TABLE 2. Character table for Z/p in characteristic p.

We can also calculate the matrices C , D, and E from Section 1.6, and thus describe the CDE triangle. The
decomposition matrix is the 1× p matrix

D =
�

1 1 . . . 1
�

,

and E = DT, so
C = DDT=

�

p
�

.

Thus, the character of the sole projective indecomposable is

Φ = χ1 +χ2 + · · ·+χp

16
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or in terms of φ,

Φ = pφ.

However, we can go one step better and compute the projective indecomposable for Z/p itself.

Proposition 2.1.1. The sole projective indecomposable module for Z/p in characteristic p is the group algebra
k[Z/p].

PROOF. First of all, why is k[Z/p] indecomposable? As a k[Z/p]-module, it’s generated by the identity e of
Z/p, so if it’s possible to write f : k[Z/p] ∼→ M ⊕ N , then what is f (e)? It must be of the form (m, n) where m
generates M and n generates N , or else f wouldn’t be surjective. Moreover, the orders of m and n must divide the
order of e, which is p, so they must be either 1 or p. They can’t both be 1 (or k[Z/p] would be trivial), and if
one is 1 and the other is p, then the direct sum is trivial, so both m and n must have order p. If this is the case,
however, then (m, 0) isn’t generated by (m, n), but (m, n) is supposed to generate all of M ⊕ N . Thus, k[Z/p] is
indecomposable.

Since k[Z/p] is free of dimension 1 over itself, then it is a projective k[Z/p]-module. Thus, it is the projective
indecomposable; we know there cannot be any more because there is only one p-regular conjugacy class. �

2.2. The Modular Representation Theory of S3

S3, the symmetric group on three elements, has 6 elements, so its modular representation theory breaks down
into the cases p = 2 and p = 3.

2.2.1. Character Table in Characteristic Zero. As conjugacy type is equivalent to cycle type in symmetric
groups, there are three conjugacy classes, 1, (a b), and (a b c). The character table for S3 is given in Table 3.

1 (a b) (a b c)
χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

TABLE 3. Character table for S3 in characteristic zero.

Here, χ1 is the character of the trivial representation and χ2 is that of the sign representation. Then, χ3
can be found by the orthogonality relations (it must be two-dimensional, since |S3| = 6 = 12 + 12 + χ3(1)2,
and its values on the remaining two classes are given by taking dot products); explicitly, it is the permutation
representation on three-tuples summing to zero, since that sum is preserved by the action of S3. Specifically, if
σ ∈ S3, σ · (a1, a2, a3) = (aσ(1), aσ(2), aσ(3)). The space of 3-tuples whose sum is zero is two-dimensional, and we
obtain the irreducible two-dimensional representation whose character is χ3.

2.2.2. The case p = 2. The 2-regular conjugacy classes are 1 and (a b c); thus, χ1 and χ2 coincide on
the 2-regular classes of S3, and reduce to the trivial character φ1. Then, there can be no more irreducible
one-dimensional representations in this characteristic, because such a representation must factor through the
abelianization of S3, which is Z/2, but by Lemma 1.6.5, the only one-dimensional representation of Z/2 in
characteristic 2 is trivial.

As a consequence, χ2 is sent to an irreducible modular character in this characteristic, because if it were
reducible, then it would decompose as a sum of two one-dimensional modular characters. Since there’s only one
1-dimensional representation, and its character is φ1, then χ2((a b c)) would have to be 2φ1((a b c)) = 2, but
instead it’s −1. Thus, χ2 6= 2φ1, so χ2 reduces to an irreducible modular character φ2 in characteristic 2.

Since there are two 2-regular conjugacy classes, this is the complete list of irreducible representations in this
characteristic. The modular character table is presented in Table 4.

1 (a b c)
φ1 1 1
φ2 2 −1

TABLE 4. Character table for S3 in characteristic 2.
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The decomposition matrix is

D =
�

1 1 0
0 0 1

�

,

and E = DT, so

C = DDT=
�

2 0
0 1

�

.

Thus, the characters of the projective indecomposables are

Φ1 = χ1 +χ2,

Φ2 = χ3,

or in terms of the φi ,

Φ1 = 2φ1.

Φ2 = φ2.

We can also compute the projective indecomposable modules for S3 in characteristic 2. Let V be the representation
of S3 on 3-tuples adding to zero, i.e. σ·(a1, a2, a3) = (aσ(1), aσ(2), aσ(3)), which is a two-dimensional representation,
and let W be the projective indecomposable of Z/2, which has an S3-action defined by the sign homomorphism
sign : S3→ Z/2, in which σ · x = sign(σ) · x for an x ∈W .

Proposition 2.2.1. V and W are the two projective indecomposables of S3 in characteristic 2.

PROOF. Since φ2 is the modular character for V , then it has modular character equal to that of Φ2. Let P be
the projective indecomposable which has that character; then, since Φ2 = φ2 on G(p)reg , P and V have the same
composition factors up to isomorphism. But V is a simple k[S3]-module, so it has exactly one composition factor,
which is itself. The composition factors of P are isomorphic to those of V , so P has a single composition factor
isomorphic to V , and therefore P ∼= V , so V is indeed a projective indecomposable.

Next, we will show that W is projective. Let π : N � N ′ and f ′ : W → N ′ be maps of k[S3]-modules, and let
{0Z/2, 1Z/2} denote the two elements of Z/2. We may regard N and N ′ as k[Z/2]-modules by averaging under the
sign homomorphism: specifically, let

0Z/2 · x = (1 2) · x + (1 3) · x + (2 3) · x
1Z/2 · x = x + (1 2 3) · x + (1 3 2) · x

for x ∈ N or x ∈ N ′. This defines a Z/2-action because

1Z/2 · (1Z/2 · x) = 3x + 3(1 2 3)x + 3(1 3 2)x = x = 0Z/2 x ,

since we’re in characteristic 2, and similarly 0Z/2 ·(0Z/2 · x) = 0Z/2 · x , 1Z/2 ·(0Z/2 · x) = 1Z/2 · x , and 0Z/2 ·(1Z/2 · x) =
1Z/2 · x .

With this action on N and N ′, π and f ′ are k[Z/2]-linear, because as k[S3]-linear maps, they commute with
the sign homomorphism. Thus, since W is a projective k[Z/2]-module, f ′ lifts to a k[Z/2]-morphism f such that
π ◦ f = f ′, and we know that for any σ ∈ S3,

f (σ · x) = f ((signσ) · x) = (signσ) · f (x), (2.2.1)

as f is k[Z/2]-linear. (2.2.1) will allow us to prove f is also k[S3]-linear: to check that it commutes with (1 2),
we have that

(1 2) f (x) = f ((1 2)x) + f ((1 3)x) + f ((2 3)x)

= f ((1 2)x) + f (1Z/2 · x) + f (1Z/2 · x) = f ((1 2)x)

since we’re in characteristic 2, and the proof that the actions of (1 3) and (2 3) commute with f is the same. Then,
for (1 2 3),

(1 2 3) f (x) = f ((1 2 3)x) + f ((1 3 2)x) + f (x)

= f ((1 2 3)x) + f (0Z/2 · x) + f (0Z/2 · x) = f ((1 2 3)x),

and (1 3 2) is the same. Thus, f is k[S3]-linear, so W is projective.
Then, we will show that W is indecomposable. If there were an isomorphism u : W

∼→ M⊕N of k[S3]-modules,
then M and N could be made into k[Z/2]-modules by defining 1 ∈ Z/2 to act as ((1 2)+(1 3)+(2 3))/3 did, since
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this also has order 2. Under this action, u is (Z/2)-equivariant, and therefore an isomorphism of k[Z/2]-modules,
but we know that W is an indecomposable k[Z/2]-module, so this isn’t true, and therefore it’s indecomposable as
a k[S3]-module as well. �

2.2.3. The case p = 3. The 3-regular conjugacy classes are 1 and (a b), so χ1 and χ2 are distinct on the
3-regular elements of S3. Since they’re the characters of one-dimensional representations, their reductions mod 3
are irreducible modular characters, respectively denoted φ1 and φ2. Since there are only two 3-regular conjugacy
classes, then these must be all of the irreducible representations (and χ3 decomposes to φ1 +φ2 on the 3-regular
elements), so the character table is given in Table 5.

1 (a b)
φ1 1 1
φ2 1 −1

TABLE 5. Character table for S3 in characteristic 3.

The decomposition matrix is

D =
�

1 0 1
0 1 1

�

,

and E = DT, so

C = DDT=
�

2 1
1 2

�

.

Thus, the characters of the projective indecomposables are

Φ1 = χ1 +χ3,

Φ2 = χ2 +χ3,

or in terms of the φi ,

Φ1 = 2φ1 +φ2.

Φ2 = φ1 + 2φ2.

We can also compute the two projective indecomposables for S3 in characteristic 3. Let V denote the permutation
representation on k3, where σ · (a1, a2, a3) = (aσ(1), aσ(2), aσ(3)), and let S denote the sign representation, whose
modular character is φ2.

Proposition 2.2.2. The projective indecomposables are V and V ⊗k S.

PROOF. First, we will show that V ⊗k S is a projective indecomposable if V is; then, we will prove that V is a
projective indecomposable.

Claim. The functor –⊗kS defines an equivalence of categories from the category of k[S3]-modules to itself.

PROOF. It suffices to prove the following two things.

(1) –⊗kS is fully faithful, i.e. that for any k[S3]-modules M and N , –⊗ idS : Homk[S3](M , N)→ Homk[S3](M⊗k
S, N ⊗k S) is an isomorphism.

(2) For every k[S3]-module N , there’s a k[S3]-module M such that M ⊗k S ∼= N .

First, (1). There are natural isomorphisms iM : M ⊗k S⊗k S→ M and iN : N ⊗k S⊗k S→ N , and these induce
an isomorphism j : Homk[S3](M ⊗k S ⊗k S, N ⊗k S ⊗k S)→ Homk[S3](M , N). Let Φ : Homk[S3](M ⊗k S, N ⊗k S)→
Homk[S3](M , N) be defined by Φ( f ) = j( f ⊗ idS) and Ψ : Homk[S3](M , N)→ Homk[S3](M ⊗k S, N ⊗k S) be given
by Ψ(g) = g ⊗ idS . Because f ⊗ idS⊗ idS = f for any morphism f of k[S3]-modules, Φ and Ψ are inverses, so this
functor is fully faithful.

For (2), let M be a k[S3]-module; then, since S⊗k S is the trivial representation, then (M ⊗k S)⊗k S ∼= M , so
M ⊗k S is the desired object. �
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Since –⊗kS is an equivalence of categories, then it sends projective modules to projective modules: the data
that a k[S3]-module M is a direct summand in a free module F is an inclusion i : M ,→ F along with a section
s : F → M such that s ◦ i = id, and this is preserved by an equivalence of categories. It also means that –⊗kS
sends indecomposables to indecomposables, the data that a k[S3]-module M has a direct summand N is also an
inclusion N ,→ M with a section M → N , and this data is preserved by an equivalence of categories. Thus, –⊗kS
sends projective indecomposables to projective indecomposables, so if V is a projective indecomposable, then
V ⊗k S is as well.

Suppose π : N � N ′ and f ′ : V → N ′ are maps of k[S3]-modules. We want to show that for any k[S3]-module
X , there is a setwise bijection

Homk[S3](V, X )
∼−→ {x ∈ X | (1 2)x = x}. (2.2.2)

Lemma 2.2.3. For any x ∈ X with (1 2)x = x, there is a unique ϕ : V → X such that ϕ(e3) = x.

PROOF. We know ϕ(e3) = x , so let ϕ(e1) = (1 3)x and ϕ(e2) = (2 3)x . This defines a linear map, and it
commutes with the group action because (1 2), (2 3), and (1 3) generate S3, and ϕ already commutes with these
three permutations. Thus, there exists such a ϕ.

This ϕ is unique because e3 generates V as a k[S3]-module, so given any v ∈ V , v = a · e3 for an a ∈ k[S3],
and therefore ϕ(v) = a · x . �

Moreover, given a map ϕ : V → X of k[S3]-modules, x = ϕ(e3) must be fixed by (1 2), since e3 is, and
therefore ϕ is the unique morphism such that ϕ(e3) = x . Thus, we have established the bijection in (2.2.2), so
specifying a map f : V → N is equivalent to finding an x ∈ N fixed by (1 2). To show π ◦ f = f ′, it suffices that
π(x) = f ′(e3); then, for any other v ∈ V , v =

∑

g∈S3
λg g · e3, so since f is S3-equivariant, then

π( f (v)) =
∑

g∈S3

λg gπ( f (e3)) =
∑

g∈S3

λg g f ′(e3) = f ′(v).

Thus, to show that V is projective, it suffices to find an x ∈ π−1( f (e3)) that is fixed by (1 2).
Choose any y ∈ π−1( f (e3)) and let x = (y + (1 2)y)/2, which we can do because we’re in characteristic 3.

Then, (1 2)x = ((1 2)y + y)/2= x , and

π(x) =
π(y) + (1 2)π(y)

2
=

f (e3) + (1 2) f (e3)
2

=
f (e3) + f (e3)

2
= f (e3),

since f ′ is S3-equivariant, so x ∈ π−1( f (e3)). Therefore f ′ lifts, and V is projective.
Finally, we must show that V is indecomposable. We will prove this by finding all of the invariant subspaces,

and demonstrating that none of them are direct summands, except 0 and V itself. Since S3 acts on V by
permutation, we only have to consider tuples up to permutations and scalar multiplication, and since this
representation is realizable over F3, then we have the following cases.

• The subspace generated by (0,0, 0) is the trivial subspace.
• If W is an S3-stable subspace containing (0, 0, 1), then it also contains (0, 1, 0) and (1, 0, 0), and therefore

is all of V itself.
• If W is an S3-stable subspace containing (0, 1, 1), then it also contains (1, 0, 1) and (1, 1, 0), so it contains
(−1, 1, 1) and (1,−1, 1). Adding these together, W contains (0, 0, 1), and therefore by the previous case
W = V .

• If W contains (1, 1,−1), then it also contains (1,0, 0), and therefore W = V by a previous case.
• The space generated by (1,1,1) is an invariant, one-dimensional subspace containing all tuples of the

form (a, a, a).
• The space generated by (1,−1, 0) is an invariant, two-dimensional subspace containing all tuples whose

sum is zero, since this is unchanged by permutation. In particular, this space contains (1, 1,1).

Thus, there are exactly two invariant subspaces other than {0} and V itself: W1 = 〈(1, 1, 1)〉 and W2 = 〈(1,−1, 0)〉,
and the latter contains the former. If W1 is a direct summand, then by the recognition theorem for direct sums,
there would have to be another nontrivial k[S3]-submodule of V whose intersection with W1 is {0}, but there isn’t
one, so W1 isn’t a direct summand. Similarly, there is no nontrivial k[S3]-submodule of V whose intersection with
W2 is {0}, and therefore W2 cannot be a direct summand either.

Thus, V doesn’t have any direct summands other than {0} and itself, and therefore is indecomposable. �
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2.3. The Modular Representation Theory of S4

S4, the symmetric group on four elements, has 24 elements, so its modular representation theory breaks down
into the cases p = 2 and p = 3.

2.3.1. Character Table in Characteristic Zero. As conjugacy type is equivalent to cycle type in symmetric
groups, there are five conjugacy classes, 1, (a b), (a b)(c d), (a b c), and (a b c d). The character table for S4 is
given in Table 6.

1 (a b) (a b)(c d) (a b c) (a b c d)
χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 2 0 2 −1 0
χ4 3 1 −1 0 −1
χ5 3 −1 −1 0 1

TABLE 6. Character table for S4 in characteristic zero, as proven in [4, §18.1].

Here, χ1 is the character for the trivial representation and χ2 that for the sign representation. χ4 comes from
the representation ρ4 where S4 acts on four-tuples summing to zero: σ · (a1, a2, a3, a4) = (aσ(1), aσ(2), aσ(3), aσ(4)).
The set of these tuples is a three-dimensional vector space, so ρ4 is a three-dimensional representation, and its
character is χ4. Then, χ5 arises from tensoring ρ4 with the sign representation; thus, in any characteristic, χ3 is
irreducible iff χ4 is.

2.3.2. The Case p = 2. The 2-regular conjugacy classes are 1 and (a b c), so by Proposition 1.3.6, there will
be two irreducible modular characters.

The trivial representation and the sign representation coincide on the 2-regular classes, providing a one-
dimensional irreducible character φ1. Thus, we need only one more representation. There can’t be any more
one-dimensional ones, because a one-dimensional representation must factor through the abelianization of S4,
which is Z/2. However, by Lemma 1.6.5, the only such representation is the trivial representation, so in particular,
any one-dimensional representation of S4 in characteristic 2 must be trivial.

Suppose that χ3 doesn’t reduce to an irreducible representation in characteristic 2, so that it splits on the
2-regular elements. Since it’s two-dimensional, then it must split as the sum of two one-dimensional characters,
i.e. twice the trivial character φ1. But then, χ3((1 2 3)) =−1 would have to be twice that of φ1((1 2 3)) = 1, so
it’s not 2φ1. Thus, χ3 reduces to an irreducible φ2.

These are the two irreducible representations in characteristic 2; the character table is presented in Table 7.

1 (a b c)
φ1 1 1
φ2 2 −1

TABLE 7. Character table for S4 in characteristic 2.

Now, it’s possible to fill in the CDE triangle. The remaining irreducibles from characteristic 0 must decompose
as sums of φ1 and φ2 on the 2-regular elements; looking at the character table, one sees that χ1,χ2 7→ φ1 and
χ3 7→ φ2, as established, and that χ4,χ5 7→ φ1 +φ2. Thus, the decomposition matrix is

D =
�

1 1 0 1 1
0 0 1 1 1

�

,

and E = DT, so

C = DDT=
�

4 2
2 3

�

.

Associated to φ1 and φ2 are the characters Φ1 and Φ2 of the projective indecomposable k[S4]-modules, which are
given by DT:

Φ1 = χ1 +χ2 +χ4 +χ5

Φ2 = χ3 +χ4 +χ5.



22 Modular Representation Theory and the CDE Triangle

And after decomposing the χi , the characters for the projective indecomposables are expressed in terms of φ1 and
φ2 by the matrix C , as

Φ1 = 4φ1 + 2φ2

Φ2 = 2φ1 + 3φ2.

2.3.3. The Case p = 3. The 3-regular conjugacy classes are 1, (a b), (a b)(c d), and (a b c d).
Thus, the trivial and sign representations are distinct in this characteristic (e.g. since they differ on (a b)), so

they are two of the irreducible modular characters: χ1 7→ φ1 and χ2 7→ φ2; they are irreducible because they are
one-dimensional.

Just as with characteristic 2, there can be no more irreducible one-dimensional representations of S4 in
characteristic 3, because they would have to factor through the abelianization Z/2. Once again, a one-dimensional
representation of Z/2 is a choice of an element squaring to 1, but in characteristic 3, there are two: 1, corresponding
to the trivial representation, and −1, corresponding to the sign representation. But both of these have already
been accounted for in S4, so there can be no others.

On the 3-regular elements, χ3 = φ1 +φ2, so χ3 is reducible.
Since χ5 is obtained from χ4 by tensoring with the sign representation, then as stated above one is irreducible

iff the other is. Since there are four 3-regular conjugacy classes, then there will be four modular characters, and
two have already been accounted for. Thus, if χ4 and χ5 reduce to irreducible representations, then we will be
done.

We know that dim(ρ4) = χ4(1) = 3. Since |S4| = 24, then 3 | 24, but 32 - 24, and 3 | dim(ρ4). Thus, by
Theorem 1.3.7, ρ4 reduces to an irreducible representation in characteristic 3, and so χ4 7→ φ3, the next irreducible
modular character. Then, the same argument works for χ5, so its character on the 3-regular elements is also an
irreducible modular character, and will be denoted φ4.

Thus, we have the four irreducible characters in characteristic 3. Table 8 shows the character table.

1 (a b) (a b)(c d) (a b c d)
φ1 1 1 1 1
φ2 1 −1 1 −1
φ3 3 1 −1 −1
φ4 3 −1 −1 1

TABLE 8. Character table for S4 in characteristic 3.

With the character table in place, the next step is to describe the morphisms in the CDE triangle. To calculate
the decomposition matrix, χ1 7→ φ1 and χ2 7→ φ2 as noted above; then, χ3 7→ φ1+φ2, and χ4 7→ φ3 and χ5 7→ φ4.
Thus,

D =











1 0 1
0 1 1

1 0
0 1











,

and E = DT as usual, so

C = DDT=











2 1
1 2

1 0
0 1











.

Associated to φ1, φ2, φ3, and φ4 are the characters Φ1, . . . ,Φ4 of the projective indecomposable k[S4]-modules.
Their description in terms of the χi is given by DT.

Φ1 = χ1 +χ3

Φ2 = χ2 +χ3

Φ3 = χ4

Φ4 = χ5,
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and in terms of the φi is given by C .

Φ1 = 2φ1 +φ2

Φ2 = φ1 + 2φ2

Φ3 = φ3

Φ4 = φ4.

2.4. The Modular Representation Theory of A4

A4, the alternating group on 4 elements, has 12 elements, so its modular representation theory breaks down
into two cases, p = 2 and p = 3.

Character Table in Characteristic Zero. In alternating groups, cycle type does not determine conjugacy
class; there are four conjugacy classes, given by 1, (a b)(c d), and two conjugacy classes of 3-cycles:

c3 = {(1 2 3), (1 3 4), (1 4 2), (2 4 3)}
c4 = {(1 3 2), (4 1 2), (2 3 4), (3 1 4)}.

The character table is presented in Table 9.

1 (a b)(c d) c3 c4

χ1 1 1 1 1
χ2 1 1 ω ω2

χ3 1 1 ω2 ω
χ4 3 −1 0 0

TABLE 9. Character table for A4 in characteristic zero. Here, ω is a primitive cube root of unity.

These representations can all be explicitly constructed. Since the abelianization of A4 is Z/3, then the three
one-dimensional representations χ1, χ2, and χ3 of A4 are the ones corresponding to the three one-dimensional
representations of Z/3. Specifically, a one-dimensional representation of Z/3 is a choice of an element whose
cube is 1, and there are three of these, corresponding to the three cube roots of unity in K. χ1 is the trivial
representation, and then the two others send 1 ∈ Z/3 to an element of order 3 in K×, i.e. a cube root of unity.
Then, the remaining, three-dimensional representation χ4 is the restriction of χ4 for S4 in Table 6: the action of
S4 on 4-tuples adding to zero is also an action of A4 on the same space, and is irreducible by the orthogonality
relations.

The case p = 2. The 2-regular conjugacy classes of A4 are 1, c3, and c4, so there will be 3 modular characters
by Corollary 1.3.6. This ends up being relatively easy: all three one-dimensional representations are still distinct
on the 2-regular conjugacy classes of A4, and they must be irreducible, so these are all of them. That’s all, folks!
See Table 10 for the character table.

1 c3 c4

φ1 1 1 1
φ2 1 ω ω2

φ3 1 ω2 ω
TABLE 10. Character table for A4 in characteristic 2. Once again, ω is a primitive cube root of unity.

Notationally, we’ll let φi be the reduction of χi . Then, χ4 decomposes as φ1+φ2+φ3 in this characteristic,
because 1+ω+ω2 = 0.

Thus, the decomposition matrix is

D =







1 0 0 1
0 1 0 1
0 0 1 1






,
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and E = DT, so

C = DDT=







2 1 1
1 2 1
1 1 2






.

Thus, the characters of the projective indecomposable k[A4]-modules are given by

Φ1 = χ1 +χ4

Φ2 = χ2 +χ4

Φ3 = χ3 +χ4,

and in terms of the φi ,

Φ1 = 2φ1 +φ2 +φ3

Φ2 = φ1 + 2φ2 +φ3

Φ3 = φ1 +φ2 + 2φ3.

The case p = 3. The 3-regular conjugacy classes are 1 and (a b)(c d). Thus, we should expect two irreducible
representations in this characteristic.

However, all three one-dimensional representations coincide on these conjugacy classes; they’re all trivial.
Thus, χ1,χ2,χ3 7→ φ1, where φ1 denotes the modular character of the trivial representation.

There will be one more representation, but it cannot be one-dimensional: any one-dimensional representation
must factor through the abelianization of A4, which is Z/3. But by Lemma 1.6.5, the only one-dimensional
representation of Z/3 in characteristic 3 is trivial. Since this was already accounted for, so Z/3 has no more
irreducible representations in this characteristic, and therefore A4 has no more one-dimensional representations in
characteristic 3.

The Brauer-Nesbitt theorem, Theorem 1.3.7, directly proves that χ4 reduces to an irreducible representation:
|A4| = 12, so 3 divides |A4|, but 9 doesn’t. Then, 3 | dim(ρ4) = 3, so the theorem is satisfied, and χ4 7→ φ2, an
irreducible modular character. Thus, we’ve found all of the irreducible modular characters; the character table is
given in Table 11.

1 (a b)(c d)
φ1 1 1
φ2 2 −1

TABLE 11. Character table for A4 in characteristic 3.

Thus, we’ve found both irreducibles, so the decomposition matrix is

D =
�

1 1 1 0
0 0 0 1

�

,

and E = DT, so

C = DDT=
�

3 0
0 1

�

.

Thus, the characters of the projective indecomposables are

Φ1 = χ1 +χ2 +χ3

Φ2 = χ4,

or in terms of φ1 and φ2,

Φ1 = 3φ1

Φ2 = φ2.

2.5. The Modular Representation Theory of S5

S5, the symmetric group on 5 elements, has 60 elements, so its modular representation theory breaks down
into the cases p = 2, p = 3, and p = 5.
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2.5.1. Character Table in Characteristic Zero. Since conjugacy type is equivalent to cycle type in symmetric
groups, there are seven conjugacy classes: 1, (a b), (a b c), (a b c d), (a b c d e), (a b)(c d), and (a b)(c d e). Its
character table is given in Table 12.

1 (a b) (a b c) (a b c d) (a b c d e) (a b)(c d) (a b)(c d e)
χ1 1 1 1 1 1 1 1
χ2 1 −1 1 −1 1 1 −1
χ3 4 2 1 0 −1 0 −1
χ4 4 −2 1 0 −1 0 1
χ5 5 1 −1 −1 0 1 1
χ6 5 −1 −1 1 0 1 −1
χ7 6 0 0 0 1 −2 0

TABLE 12. Character table for S5 in characteristic 0, as proven in [4, Ch. 19].

Here, χ1 is the character of the trivial representation and χ2 is that of the sign representation. χ3 comes from
the representation ρ3 where S5 acts on five-tuples summing to zero via the permutation representation

σ · (a1, a2, a3, a4, a5) = (aσ(1), aσ(2), aσ(3), aσ(4), aσ(5)).

Since the space of 5-tuples summing to zero is four-dimensional, this is a four-dimensional representation, and
its character is χ3. Then, χ4 is the character of the representation obtained by tensoring ρ3 with the sign
representation. In particular, χ4 is irreducible in a given characteristic iff χ3 is (though, as discussed below, it’s
equal to χ3 on the 2-regular elements); a similar relationship holds for χ5 and χ6.

2.5.2. The Case p = 2. The 2-regular conjugacy classes are those with odd order, i.e. 1, (a b c), and
(a b c d e). Thus, by Corollary 1.3.6, there should be three irreducible modular characters.

In characteristic 2, the trivial representation and sign representation coincide, to provide an irreducible
representation φ1 of dimension 1. Furthermore, by Theorem 1.3.7, since |S5|= 60, 4 divides |S5| but 8 - |S5|, and
therefore χ3 and χ4 reduce to irreducible representations in characteristic 2, because they are four-dimensional.
However, they coincide on the 2-regular elements of S5, so we get only one more irreducible character, which we’ll
call φ2.

Since the five-dimensional representations χ5 and χ6 came from tensoring with the sign representation, they’re
also identical in characteristic 2. And on the 2-regular conjugacy classes, χ7 = χ5 + χ1, so χ7 isn’t irreducible.
Thus, the last irreducible character in characteristic 2 comes either from χ5 or a component of it.

Proposition 2.5.1. The five-dimensional representations of S5 are reducible in characteristic 2.

This is proven in [3, Ch. 6]. This proposition, along with character computations, allows us to determine the
remaining modular character.

Proposition 2.5.2. On the 2-regular elements, χ5 = φ1+φ3, where φ3 is the modular character of an irreducible
four-dimensional representation in characteristic 2.

PROOF. Since ρ5 is reducible, its character is a sum of at least two irreducible characters. However, since there
are three 5-regular conjugacy classes and we’ve already found two irreducible characters, then there is exactly one
more.

Since 5 is prime, then χ5 cannot split as n ·φ for any φ, so one of the characters in its decomposition has to
be one of φ1 or φ2 that we’ve already seen. However, on the 2-regular elements, χ5 −φ2 is a one-dimensional
class function distinct from φ1, but every one-dimensional representation of S5 in characteristic 2 factors through
the abelianization Z/2, and by Lemma 1.6.5, φ1 is the only such character, so χ5 −φ2 can’t be the character of a
simple k[S5]-module.

Thus, the only remaining option is χ5−φ1, which therefore produces the character φ∗ of a four-dimensional
representation:

1 (a b c) (a b c d e)
5 −1 0

− 1 1 1
4 0 −1
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This φ∗ will be our desired character, but we must show that it’s irreducible. Since there’s exactly one more
irreducible character, we know that if φ∗ is reducible, then either φ∗ = 2φ∗∗, where φ∗∗ is two-dimensional, or
φ∗ = φ1 +φ∗∗, where φ∗∗ is three-dimensional.

In the first case, where φ∗∗ appears twice in the expression for φ∗, its value on (a b c d e) is half that of φ∗,
so φ∗∗((a b c d e)) =−1/2. However, since this is a two-dimensional modular character, this means that −1/2 is
a sum of two mth roots of unity, where m is the least common multiple of the orders of the 2-regular elements of
S5. Thus, m = 15, so we want a way to write 1/2 as a sum of two 15th roots of unity α and β . We can accomplish
this in Qp if and only if we can do this in C, but in C, writing 1/2 as such a sum means they must both be complex
(since 1 is the only real 15th root of unity), and α and β must be conjugates. However, this means Re(α) =−1/4,
but there’s no 15th root of unity satisfying this, so this φ∗∗ isn’t a modular character, and therefore φ∗ cannot split
in this way.

The other option is that φ∗ = φ1 +φ∗∗, with the latter three-dimensional. In this case, φ∗∗((a b c d e)) =−2,
so we must write −2 as a sum of three 15th roots of unity. We can again do this in Qp iff it’s possible in C, but
it’s also impossible in C. Either all three of the roots are real (in which case the only choice is 1, and 1+ 1+ 1
certainly isn’t equal to −2), or two are complex and one is real, so the latter must be equal to 1. But there are no
two 15th roots of unity that sum to −3, so this choice of φ∗∗ isn’t a modular character either.

Thus, φ∗ is irreducible. �

Let φ3 denote the φ∗ constructed in the above proof. Since we know all of the irreducible characters, we can
write down the character table, and do so in Table 13.

1 (a b c) (a b c d e)
φ1 1 1 1
φ2 4 1 −1
φ3 4 0 −1

TABLE 13. Character table for S5 in characteristic 2.

Then, we can calculate the maps in the CDE triangle. The decomposition matrix is

D =







1 1 0 0 1 1 2
0 0 1 1 0 0 0
0 0 0 0 1 1 1






,

and E = DT, so

C = DDT=







8 0 4
0 2 0
4 0 3






.

Thus, the characters of the projective indecomposable modules are

Φ1 = χ1 +χ2 +χ5 +χ6 + 2χ7

Φ2 = χ3 +χ4

Φ3 = χ5 +χ6 +χ7,

or in terms of the φi ,

Φ1 = 8φ1 + 4φ3

Φ2 = 2φ2

Φ3 = 4φ1 + 3φ3.

2.5.3. The Case p = 3. In characteristic 3, the trivial representation and the sign representation differ, so χ1
and χ2 correspond to distinct irreducible modular representations φ1 and φ2, respectively.

The 3-regular conjugacy classes are 1, (a b), (a b c d), (a b c d e), and (a b)(c d), since (a b c) and
(a b)(c d e) have orders divisible by 3.

Since 3 | 60 but 9 - 60, then by Theorem 1.3.7, whenever 3 | dim(ρi), where ρi is irreducible in characteristic
0, the reduction of ρi mod 3 is still irreducible. Thus, χ7 reduces to an irreducible modular character, as it is
six-dimensional.



Arun Debray 27

Since there are five 3-regular conjugacy classes and we’ve uncovered three irreducible representations, there
must be two more.

Claim. χ3 (and therefore also χ4) reduces to an irreducible representation in characteristic 3.

PROOF. We will prove this by starting with a single vector, and acting on it by group elements in order to
generate the entire space.

First, though, recall how χ3 is defined: since we’re not in characteristic 5, it’s a permutation action on 5-tuples
adding to zero: σ ·(a1, . . . , a5) = (aσ(1), . . . , aσ(5)). This representation is realizable over F3, so we may take k = F3
for this proof.

The space of 5-tuples summing to zero is four-dimensional, so take the following basis:

e1 =















1
−1

0
0
0















, e2 =















0
1
−1

0
0















, e3 =















0
0
1
−1

0















, and e4 =















0
0
0
1
−1















.

Thus, 1 ∈ S5 acts as the identity; (1 2) sends e1 7→ −e2, e2 7→ e1 + e2, and fixes e3 and e4; (1 2 3) sends e1 7→ e2,
e2 7→ −e1 − e2, e3 7→ e1 + e2 + e3, e4 7→ e4; and so on.

Since S5 acts on these tuples by permutation, we only need to consider types of tuples up to reordering, and
since we’re looking at a k-vector space, scalar multiples come for free; then, given any tuple of a given type, the
action of S5 generates all of the others of that type. In particular, one can ignore sign. Thus, ignoring (0, 0, 0, 0, 0),
there are four types:

e1 =















1
−1

0
0
0















, e1 − e2 + e3 =















1
1
−1
−1

0















, e1 − e2 =















1
1
1
0
0















, and e1 − e2 + e4 =















1
1
1
1
−1















.

Each of these sums to 0 mod 3, and these must be the only four types, because once you specify the number of
1s, only these types appear: e.g., if there’s exactly one 1, it’s either (1,−1, 0, 0, 0) or (1,−1,−1,−1,−1), both of
which are the same types as above; if there are two, we get the second type; if there are three, we get the third
type; and if there are four, the last type is forced.

So we know that if we have any invariant subspace and it contains a given tuple, it must contain all tuples of
that type. Thus, the next step is to show that, given any type, we can obtain all of the others; we’ll go between the
first and the second, between the second and the third, and then between the third and the fourth, so that given a
tuple of any type (and therefore all tuples of that type), it’s possible to generate all of the others.

Let’s start with the first type, e1. Then, (1 3)(2 4) · e1 is (0, 0, 1,−1, 0), so e1+(1 3)(2 4) · e1 = (1,−1, 1,−1, 0),
so we’ve gotten the second type. In the other direction, v1 = (1, 1,−1,−1, 0) and v2 = (1,−1, 1,−1, 0) are both of
the second type, and v1 + v2 = (−1, 0, 0, 1, 0) is first type. Thus, if an invariant subspace contains a tuple of either
first or second type, it contains all vectors of both types.

If v1 = (1,1,−1,−1,0) and v2 = (0,−1,−1,1,1), so they’re both second type, then v1 + v2 = (1,0,1,0,1),
which is third type; then, if w1 = (1, 1, 1, 0, 0) and w2 = (1, 1, 0, 1, 0), then they’re both third type, but w1 +w2 =
(−1,−1, 1,1, 0), which is second type. Thus, one can go between the second and third types.

Let v1 = (1,1,1,0,0) and v2 = (0,0,1,1,1), which are both of third type, and v1 + v2 = (1,1,−1,1,1),
which is fourth type. Then, if w1 = (1,1,1,1,−1) and w2 = (1,1,1,−1,1), which are both fourth type, then
w1 +w2 = (−1,−1,−1, 0,0), which is third type. Thus, it’s possible to go between the third and fourth types.

Thus, given any tuple, it is possible to generate all tuples of its type, and then to generate the entire space, so
any invariant subspace of this representation is equal to the whole space, so it is irreducible. �

Since χ3 reduces to an irreducible representation, there’s a corresponding modular character φ3, and as noted
above, χ4 is irreducible iff χ3 is, so it gives us another modular character φ4. Thus, we’ve found all five irreducible
characters (since χ7 is also irreducible, so we’ve found φ5). This is all the information we need to make the
character table, which appears in Table 14.
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1 (a b) (a b c d) (a b c d e) (a b)(c d)
φ1 1 1 1 1 1
φ2 1 −1 −1 1 1
φ3 4 2 0 −1 0
φ4 4 −2 0 −1 0
φ5 6 0 0 1 −2
TABLE 14. Character table for S5 in characteristic 3.

Next, the morphisms of the CDE triangle: the decomposition matrix is

D =















1 0 0 0 0 1 0
0 1 0 0 1 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 0 0 1















,

and E = DT, so

C = DDT=















2 0 0 1 0
0 2 1 0 0
0 1 2 0 0
1 0 0 2 0
0 0 0 0 1















.

Thus, the characters of the projective indecomposables are

Φ1 = χ1 +χ6

Φ2 = χ2 +χ5

Φ3 = χ3 +χ5

Φ4 = χ4 +χ6

Φ5 = χ7,

or in terms of the φi ,

Φ1 = 2φ1 +φ4

Φ2 = 2φ2 +φ3

Φ3 = φ2 + 2φ3

Φ4 = φ1 + 2φ4

Φ5 = φ5.

2.5.4. The Case p = 5. The only conjugacy class with order dividing 5 is (a b c d e), so the 5-regular
conjugacy classes are 1, (a b), (a b c), (a b c d), (a b)(c d), and (a b)(c d e). There are six conjugacy classes, and
therefore six irreducible representations.

Since χ1 and χ2 are distinct on the 5-regular classes of S5, they correspond to distinct irreducibles in
characteristic 5, respectively φ1 and φ2.

Since 5 divides |S5| = 60 but 25 doesn’t, Theorem 1.3.7 implies that any five-dimensional irreducible
representations remain irreducible in characteristic 5; thus, χ5 and χ6 remain irreducible.

Claim. χ3 (and therefore χ4) are not irreducible in characteristic 5.

PROOF. Suppose that they were; then, since there are six 5-regular classes, these would be all of the mod-
ular characters in this characteristic. In particular, that means it would be possible to describe the remaining
characteristic 0 character, χ7, in terms of the others on the 5-regular classes.
(1 2)(3 4) is 5-regular, and for i = 1, . . . , 6, χi((1 2)(3 4))≥ 0. However, χ7((1 2)(3 4)) =−2, so no positive

combination of χ1, . . . ,χ6 can create χ7 on the 5-regular classes, so this is a contradiction. �



Arun Debray 29

The reason the proof given in characteristic 3 doesn’t work is that, since we can’t divide by 5, this representation
isn’t on 5-tuples summing to 0; instead, it’s the quotient of the permutation representation V ′ of S5 by the invariant
subspace W = {(a, a, a, a, a) | a ∈ k}.

In order to classify the representations, we’ll need to find an invariant subspace.

Claim. If V ⊆ V ′/W denotes the subspace of tuples that sum to 0, V is an irreducible, S5-stable subspace.

Note that the sum of the entries of a tuple is well-defined, even in the quotient, because all elements of W
sum to zero.

PROOF. If v1, v2 ∈ V , the sum of the entries in v1 + v2 is the sum of all 10 entries of both v1 and v2, i.e.
0+ 0 = 0, and taking the sum of the entries commutes with scalar multiplication, so the scalar multiple of a v ∈ V
still sums to zero. Thus, V is a subspace. It’s S5-stable because permuting the entries of a tuple doesn’t change the
sum. Thus, V is invariant.

To show that it’s irreducible, we’ll once again sort the elements of V into types, and then show that it’s possible
to go from any type to any other type.

First, it’s possible to realize each element of V as a 4-tuple whose entries sum to zero in a unique way, by
subtracting off (1, 1, 1, 1, 1) times the fifth entry, and then taking only the first four entries; for example (0, 1, 2, 3, 4)
is represented by (1, 2, 3, 4, 0). Thus, since the last entry is zero, the sum of the first four entries is unchanged, so
V is realized as those 4-tuples summing to zero.

This space is three-dimensional, with e1 = (1,−1, 0, 0), e2 = (0, 1,−1, 0), and e3 = (0, 0, 1,−1) forming a basis
(since any (a, b, c,−a− b− c) can be written as ae1+(a+ b)e2+(a+ b+ c)e3, and they’re linearly independent).

Once again, we’ll consider the types of 4-tuples, i.e. equivalence classes under permutation of elements (by
S4) and scalar multiplication. In particular, any nonzero tuple has a nonzero element somewhere, and without
loss of generality it can be permuted into the first index, and then by scalar multiplication of the whole tuple, the
first element can be made to be a 1.

We end up with the following five types of tuples.

τ1 = (1, 4,0, 0)

τ2 = (1, 1,3, 0)

τ3 = (1, 1,1, 2)

τ4 = (1, 4,1, 4)

τ5 = (1, 4,2, 3).

From any type we can get to any other type:

• Since 2τ1 = (2,3,0,0), then we can go from the first type to the second: (1,4,0,0) + (0,2,3,0) =
(1, 1,3, 0).
• Going from type 2 to type 3: (1,1, 3,0) + (1, 0,3, 1) = (2,1, 1,1).
• Going from type 3 to type 4: (1,1,1,2) + (1,1,2,1) = (2,2,3,3); scalar multiplication by 3 turns this

into (1,1, 4,4).
• Going from type 4 to type 1: (1,4, 1,4) + (1, 4,4, 1) = (2,3, 0,0) = 2τ1.

Thus, everything can be generated from everything else save the last type, which we can also account for.

• Going from type 1 to type 5: (1,4, 0,0) + (0, 0,2, 3) = (1,4, 2,3).
• Going from type 5 to type 2: (1, 4, 2, 3)+ (1, 2, 3, 4) = (2, 1, 0, 2), which is a scalar multiple of (1, 3, 0, 1).

Thus, every type can generate every other type, so every element of V can generate the entire space from the
action of k[S5]. Thus, V must be irreducible. �

When we quotient the original representation (that is, the one reduced from χ3) by V , the result is therefore a
one-dimensional representation; we can figure out which by calculating the character of V . Use the basis e1, e2, e3
from above.

• 1 acts as the identity matrix, and, since this is a three-dimensional representation, has trace 3.
• (1 2) sends e1 7→ −e1, e2 7→ e1 + e2, and e3 7→ e3. Thus, it has trace 1.
• (1 2 3) sends e1 7→ e2, e2 7→ −e1 − e2, and e3 7→ e1 + e2 + e3. This means its trace is 0.
• (1 2 3 4) sends e1 7→ e2 and e2 7→ e3, but e3 7→ −e1 − e2 − e3. Its trace is −1.
• (1 2)(3 4) sends e1 7→ −e1 and e3 7→ −e3, but e2 7→ e1 + e2 + e3; thus, its trace is also −1.
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• (1 2)(3 4 5) sends e1 7→ −e1 and e2 7→ e1 + e2 + e3. However, e3 is sent to (0, 0, 0, 1,−1), which means
we have to fiddle with it to get back to its 4-tuple representation; this is equivalent to (1,1,1,2,0),
which is e1 + 2e2 − 2e3, so the trace of (1 2)(3 4 5) is −2.

Thus, on the 5-regular elements, χ3 − χV must be one of the one-dimensional representations we’ve already
identified. In fact,

1 (a b) (a b c) (a b c d) (a b)(c d) (a b)(c d e)
4 2 1 0 0 −1

− 3 1 0 −1 −1 −2
1 1 1 1 1 1

So then χ3 decomposes as χV +φ1 on the 5-regular elements, and since V is irreducible, call its character φ3. Note
that φ3 is not invariant under tensoring with the sign representation, so the resulting representation is another
irreducible representation in characteristic 5: φ4 = φ3 ·φ1, so χ4 = φ2 +φ4 on the 5-regular elements.

Then, we saw already that χ5 and χ6 reduce to irreducible representations, which we will call φ5 and φ6,
respectively. And now that we’ve found φ3 and φ4, we can see that χ7 = φ3 +φ4 on the 5-regular elements. We
now know enough to write down the character table in characteristic 5, and do so in Table 15.

1 (a b) (a b c) (a b c d) (a b)(c d) (a b)(c d e)
φ1 1 1 1 1 1 1
φ2 1 −1 1 −1 1 −1
φ3 3 1 0 −1 −1 −2
φ4 3 −1 0 −1 −1 −2
φ5 5 1 −1 −1 1 1
φ6 5 −1 −1 1 1 −1

TABLE 15. Character Table of S5 in characteristic 5.

The decomposition matrix is

D =

















1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 0 0 1
0 0 0 1 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0

















,

and E = DT, so

C = DDT=

















2 0 1 0 0 0
0 2 0 1 0 0
1 0 2 1 0 0
0 1 1 2 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















.

Thus, the characters of the projective indecomposables are

Φ1 = χ1 +χ3

Φ2 = χ2 +χ4

Φ3 = χ3 +χ7

Φ4 = χ4 +χ7

Φ5 = χ5

Φ6 = χ6,
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or in terms of the φi ,

Φ1 = 2φ1 +φ3

Φ2 = 2φ2 +φ4

Φ3 = φ1 + 2φ3 +φ4

Φ4 = φ2 +φ3 + 2φ4

Φ5 = φ5

Φ6 = φ6.

2.6. The Modular Representation Theory of GL2(F3)

The general linear group of degree 2 with coefficients in F3, GL2(F3) (also written GL(2,F3) or GL(2,3)) is
the group of invertible 2× 2 matrices with coefficients in F3. It has 48 elements, so its modular representation
theory breaks down into two cases, p = 2 and p = 3.

2.6.1. Character Table in Characteristic Zero. GL2(F3) has eight conjugacy classes.
• The identity I , with order 1.
• −I , with order 2.

• c3, those matrices conjugate to
�

0 1
−1 0

�

, which have order 4.

• c4, those matrices conjugate to
�

0 1
1 −1

�

, which have order 8.

• c5, the matrices conjugate to
�

0 1
1 1

�

, which have order 8.

• c6, the matrices conjugate to
�

1 1
0 1

�

, which have order 3.

• c7, the matrices conjugate to
�

−1 1
0 −1

�

, which have order 6.

• c8, the matrices conjugate to
�

1 0
0 −1

�

, which have order 2.

The character table for GL2(F3) is given in Table 16. Notice that χ5 = χ4 ·χ2 and χ7 = χ6 ·χ2.

I −I c3 c4 c5 c6 c7 c8

χ1 1 1 1 1 1 1 1 1
χ2 1 1 1 −1 −1 1 1 −1
χ3 2 2 2 0 0 −1 −1 0
χ4 2 −2 0 i

p
2 −i

p
2 −1 1 0

χ5 2 −2 0 −i
p

2 i
p

2 −1 1 0
χ6 3 3 −1 −1 −1 0 0 1
χ7 3 3 −1 1 1 0 0 −1
χ8 4 −4 0 0 0 1 1 0

TABLE 16. Character table for GL2(F3) in characteristic 0, as proven in [5, Ch. XVIII, § 12].

The abelianization of GL2(F3) is 〈−I〉 ∼= Z/2.

2.6.2. The Case p = 2. The 2-regular classes of GL2(F3) are I and c6. Thus, by Corollary 1.3.6, there are
exactly two irreducible modular characters in this characteristic.

The reductions of χ1 and χ2 coincide on I and c6 as the trivial character φ1; then, there can be no more
one-dimensional representations in this characteristic, because they would factor through the abelianization Z/2,
which has no more one-dimensional representations in this characteristic by Lemma 1.6.5.

This means that the reduction of χ3 (which coincides with the reductions of χ4 and χ5) is also irreducible:
if it were reducible, it would have to be the sum of two one-dimensional characters, and therefore would equal
2φ1 on I and c6. However, χ3(c6) = −1 and φ1(c6) = 1, so this isn’t the case, and χ3 reduces to an irreducible
character φ2.
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Thus, that’s all of the irreducible modular characters. The character table is given in Table 17.

I c1

φ1 1 1
φ2 2 −1

TABLE 17. Character table for GL2(F3) in characteristic 2.

The decomposition matrix is

D =
�

1 1 0 0 0 1 1 2
0 0 1 1 1 1 1 1

�

,

and E = DT, so

C = DDT=
�

8 4
4 6

�

.

Thus, the characters of the projective indecomposables are

Φ1 = χ1 +χ2 +χ6 +χ7 + 2χ8

Φ2 = χ3 +χ4 +χ5 +χ6 +χ7 +χ8,

or in terms of the φi ,

Φ1 = 8φ1 + 4φ2

Φ2 = 4φ1 + 6φ2.

2.6.3. The Case p = 3. The 3-regular conjugacy classes of GL2(F3) are I , −I , c3, c4, c5, and c8. Thus, by
Corollary 1.3.6, there are exactly six irreducible modular characters in this characteristic.

The reductions of χ1 and χ2 are distinct in this characteristic, and since they’re one-dimensional, then they’re
irreducible, so their reductions φ1 and φ2, respectively, are two irreducible modular characters. However, there
can be no more one-dimensional representations, since such a representation would have to factor through the
abelianization Z/2, and a one-dimensional representation of Z/2 is given by sending e 7→ 1 and 1 7→ α, where
α2 = 1. Thus, α = ±1, but both of these possibilities have already been accounted for, so there are no more
one-dimensional representations of GL2(F3) in this characteristic.

χ4 is two-dimensional, so if it were reducible, then on the 3-regular elements, it would be a sum of two
one-dimensional characters, which are therefore either φ1 or φ2. Since φ1(−I) = φ2(−I) = 1, this would force
χ4(−I) = 2 (since it would have to decompose as 2φ1, φ1+φ2, or 2φ2), but instead, χ4(−I) =−2, so this cannot
happen. Thus, χ4 reduces to an irreducible modular character φ3.

Since χ5 is two-dimensional, distinct from χ4 on the 3-regular elements, and has χ5(−I) =−2, then precisely
the same argument works for it; thus, its reduction φ4 is irreducible.

Finally, let’s use Theorem 1.3.7. Since 3 divides |GL2(F3)|= 48 but 9 doesn’t divide the order of the group,
then any three-dimensional representation of GL2(F3) that’s irreducible in characteristic zero reduces to an
irreducible representation in characteristic 3. In particular, this means the two three-dimensional characters, χ6
and χ7, reduce to irreducible modular characters φ5 and φ6, respectively, and so we’ve found all six irreducibles.
The character table is presented in Table 18.

I −I c3 c4 c5 c8

φ1 1 1 1 1 1 1
φ2 1 1 1 −1 −1 −1
φ3 2 −2 0 i

p
2 −i

p
2 0

φ4 2 −2 0 −i
p

2 i
p

2 0
φ5 3 3 −1 −1 −1 1
φ6 3 3 −1 1 1 −1

TABLE 18. Character table for GL2(F3) in characteristic 3.



Arun Debray 33

The decomposition matrix is

D =

















1 0 1 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

















,

and E = DT, so

C = DDT=

















2 1 0 0 0 0
1 2 0 0 0 0
0 0 2 1 0 0
0 0 1 2 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















.

Thus, the characters of the projective indecomposables are

Φ1 = χ1 +χ3

Φ2 = χ2 +χ3

Φ3 = χ4 +χ8

Φ4 = χ5 +χ8

Φ5 = χ6

Φ6 = χ7,

or in terms of the φi ,

Φ1 = 2φ1 +φ2

Φ2 = φ1 + 2φ2

Φ3 = 2φ3 +φ4

Φ4 = φ3 + 2φ4

Φ5 = φ5

Φ6 = φ6.

2.7. The Modular Representation Theory of D10

D10, the dihedral group of 10 elements (symmetries of the regular pentagon), has ten elements, so its modular
representation theory breaks down into two cases, p = 2 and p = 5. Note that if q is an odd prime, the modular
representation theory of D2q looks pretty similar to that of D10, laid out below.

2.7.1. Character Table in Characteristic Zero. D10 has the presentation 〈r, s | r5 = s2 = 1, srs = r−1〉; using
this notation, its conjugacy classes are 1, c2 = {r, r4}, c3 = {r2, r3}, and c4 = {srn | n = 0, . . . , 4} (i.e. all of the
order-2 elements).

Thus, there are four irreducible representations, and the only way to write 10 as a sum of four nonzero squares
is 10= 12+ 12+ 22+ 22, so two are one-dimensional and two are two-dimensional. The two one-dimensional
ones are given by the trivial representation and a “sign representation” which sends an smrn ∈ D10 to (−1)m. Then,
the two-dimensional representations are the standard action of the dihedral group: r acts by rotation and s by
reflection; however, r may rotate through one-fifth of a circle or two-fifths, and these produce the two remaining
irreducible representations. Thus, the character table is as in Table 19.

2.7.2. The Case p = 2. The 2-regular classes of D10 are 1, c2, and c3, on which χ1 and χ2 coincide as the trivial
character φ1. There can be no more one-dimensional representations, as a one-dimensional representation must
factor through the abelianization of D10, which is Z/2, and by Lemma 1.6.5, there are no more one-dimensional
representations of Z/2.

In particular, this means that χ3 and χ4, which are distinct in this characteristic, must remain irreducible: if
either were reducible, it would split as a sum of two one-dimensional characters, and therefore as twice the trivial
character φ1. However, then χ3(c2) = 2, instead of 4 cos(2π/5), and χ4 has the same problem: χ4(c3) 6= 2. Thus,
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1 c1 c2 c3

χ1 1 1 1 1
χ2 1 1 1 −1
χ3 2 2cos(2π/5) 2cos(4π/5) 0
χ4 2 2cos(4π/5) 2cos(2π/5) 0

TABLE 19. The character table for D10 in characteristic zero.

this doesn’t work, so χ3 and χ4 reduce to irreducible modular characters in this characteristic, denoted φ2 and φ3
respectively.

Since there are three 2-regular conjugacy classes, and we’ve described three irreducible representations, then
there aren’t any more, by Corollary 1.3.6. The character table is presented in Table 20.

1 c2 c3

φ1 1 1 1
φ2 2 2cos(2π/5) 2cos(4π/5)
φ3 2 2cos(4π/5) 2cos(2π/5)

TABLE 20. Character table for D10 in characteristic 2.

Thus, the decomposition matrix is

D =







1 1 0 0
0 0 1 0
0 0 0 1






,

and E = DT, so

C = DDT=







2 0 0
0 1 0
0 0 1






.

The characters of the projective indecomposables are

Φ1 = χ1 +χ2,

Φ2 = χ3,

Φ3 = χ4,

or in terms of the φi ,

Φ1 = 2φ1

Φ2 = φ2

Φ3 = φ3.

2.7.3. The Case p = 5. The 5-regular conjugacy classes are 1 and c4, so by Corollary 1.3.6, there are two
irreducible representations in this characteristic. However, χ1 and χ2 are distinct one-dimensional characters of
D10 in characteristic 5, so call them φ1 and φ2, respectively. Thus, we’re done, and indeed, χ3 and χ4 both split as
φ1 +φ2. Table 21 contains the character table.

1 c4

φ1 1 1
φ2 1 −1

TABLE 21. Character table for D10 in characteristic 5.

The decomposition matrix is

D =
�

1 0 1 1
0 1 1 1

�

,
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and E = DT, so

C = DDT=
�

3 2
2 3

�

.

Thus, the characters of the projective indecomposables are

Φ1 = χ1 +χ3 +χ4,

Φ2 = χ2 +χ3 +χ4,

or in terms of the φi ,

Φ1 = 3φ1 + 2φ2

Φ2 = 2φ1 + 3φ2.

2.8. A Sillier Example: D8 and Q8

Just as in characteristic zero, where D8 and Q8 have the same character table (though, since they’re non-
isomorphic as groups, the representations themselves are different), their modular representation theories also
behave very similarly.

In fact, there’s not very much to say about it in general: since each group is order 8, the only interesting case
is p = 2; then, the only 2-regular subgroup of either must be the identity. Since there’s only one 2-regular class,
there’s only one irreducible character, which therefore must be trivial. The resulting character table, if one can
even call it that, is given in Table 22.

1
φ 1

TABLE 22. The character table of D8 or Q8 in characteristic 2, or more generally, of any p-group
in characteristic p.

Nonetheless, we may calculate the matrices for the CDE triangles for these two groups. Since their character
tables are the same in characteristic 0 and 2, then the CDE triangles will also be identical. Since D8 has five
conjugacy classes, then it has five irreducible representations over K , and since the sums of the squares of their
dimensions must be |D8| = 8, then their dimensions must be 1, 1, 1, 1, and 2. In particular, these are their
characters on the identity, even after reducing to characteristic 2, so the decomposition matrix is

D =
�

1 1 1 1 2
�

,

and E = DT, so
C = DDT=

�

8
�

.

Thus, the character of the lone projective indecomposable k[D8]-module is

Φ = χ1 +χ2 +χ3 +χ4 + 2χ5,

or in terms of φ,

Φ = 8φ,

and as noted above, Q8 has the same CDE triangle.
The reason these examples were uninteresting were because all elements of D8 and Q8 are 2-regular save for

the identity, and p = 2 is the only interesting case; thus, the same can be said for modular representations of any
finite p-group: all elements except the identity have order dividing p, so there is only one p-regular conjugacy
class, and this is the only interesting positive characteristic. Thus, for any p-group (e.g. D16 or the Heisenberg
group over Fp), the only irreducible representation will be trivial, and the CDE triangle looks similar to the one
above.
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